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Abstract—We formalise and study the notion of polymorphic
algebraic theory, as understood in the mathematical vernacular as a
theory presented by equations between polymorphically-typed terms
with both type and term variable binding.

The prototypical example of a polymorphic algebraic theory is Sys-
tem F, but our framework applies more widely. The extra generality
stems from a mathematical analysis that has led to a unified theory
of polymorphic algebraic theories with the following ingredients:
- polymorphic signatures that specify arbitrary polymorphic opera-

tors (e.g. as in extended λ-calculi and algebraic theories of effects);
- metavariables, both for types and terms, that enable the generic

description of meta-theories;
- multiple type universes that allow a notion of translation between

theories that is parametric over possibly different type universes;
- polymorphic structures that provide a general notion of algebraic

model (including the PL-category semantics of System F); and
- a Polymorphic Equational Logic that constitutes a sound and

complete logical framework for equational reasoning.
Our work is semantically driven, being based on a hierarchical two-

levelled algebraic modelling of abstract syntax with variable binding.
As such, the development requires a sophisticated blend of math-
ematical tools: presheaf categories, the Grothendieck construction,
discrete generalised polynomial functors, and aspects of categorical
universal algebra.

1. INTRODUCTION

The notion of polymorphism is one of the most remark-
able inventions in programming languages. The concept was
introduced by Strachey in 1967 (see [28]) who classified the
phenomena into ad-hoc and parametric polymorphism. The
theory of the latter started with the polymorphic λ-calculus of
Girard [13] and Reynolds [26], and led to Milner’s striking
application to functional programming [22]. Since then, the
theory of polymorphism has deepened and its applicability
spread broadly. Nowadays, it is not only supported in func-
tional languages (e.g. Haskell), but is an integral part of
a variety of calculi, such as Coq, the π-calculus [24], and
XML [18]. It has also been incorporated into object-oriented
languages (e.g. C++, Scala) where it is regarded as a key
feature of generic programming.

The range of applicability of polymorphism illustrates that,
despite its origins, it is not necessarily rooted in λ-calculi.
But, what are polymorphic calculi? In tackling this question,
the aim of the paper is to establish an algebraic framework for
analysing and reasoning about polymorphic systems generally.
Indeed, we formalise and study the notion of polymorphic
algebraic theory, as a formal theory presented by equations
between polymorphically-typed terms. In doing so, we de-
velop: signatures for polymorphic term constructors built on

top of signatures for polymorphic types; algebraic theories
giving rise to the syntax and semantics of polymorphic types
and terms, and thereby to equational presentations and their
models; and a sound and complete logical framework for
equational reasoning about polymorphic algebraic theories.

Our approach is not based on λ-calculi. Rather, it is se-
mantically driven, capturing varieties of polymorphic systems
that include extended λ-calculi as particular examples. The
necessary background for our work follows.

Abstract syntax and variable binding. Our starting point is
the algebraic model of abstract syntax with variable binding
in presheaf categories. The prototypical example is the syntax
of untyped λ-terms:

(ν)
1 ≤ i ≤ n

1, . . . , n ` νi
(@)

1, . . . , n ` t 1, . . . , n ` s
1, . . . , n ` t@s

(λ)
1, . . . , n, n+ 1 ` t

1, . . . , n ` λ(νn+1.t)

Its abstract syntax is generated by three term constructors: the
variable ν, the application @, and the abstraction λ. Here, ν is
a nullary operation parameterised by the context, while @ is a
binary operation; λ, however, is not merely a unary operator,
as it binds a variable (and thereby decreases the context). To
model the general phenomenon of variable binding, Fiore,
Plotkin and Turi [10] took the presheaf category SetF as
universe of discourse. Here, F is the category with objects
{1, . . . , n} (n ∈ N), for which we henceforth abuse notation
and simply write n ∈ F, and all functions between them.
Intuitively, this is the category of contexts of (nameless)
object variables (in the sense of de Bruijn [3]) and their
renamings. An important result of [10] is that the abstract
syntax with variable binding (up to α-equivalence) of any
binding signature (viz. one with variable-binding operators)
is characterised as the initial algebra of a prescribed signature
endofunctor on SetF. For example, the signature endofunctor
Σλ on SetF for λ-terms is given by Σλ(X) = V+X×X+δX
where each summand corresponds to each constructor. The
presheaf of variables V ∈ SetF is given by V(n) = n and the
endofunctor δ on SetF, modelling context extension, is given
by δX(n) = X(n+ 1).

A Σ-algebra for an endofunctor Σ is a pair (A,α) consist-
ing of a carrier A and an algebra-structure map α : ΣA→ A.
The initial Σλ-algebra can be constructed inductively as the
presheaf Λ of all λ-terms modulo α-equivalence. This explains
directly why presheaves are suited to model syntax with
binding; namely judgments n ` t are modelled as elements



of
∐
n∈F Λ(n), while the presheaf action models the renaming

of free variables.
Fiore, Plotkin and Turi [10] also considered the modelling

of single-variable and simultaneous capture-avoiding substi-
tution. The relevant mathematical structure for the latter was
elucidated as that of a Σ-monoid (A,α, ν, µ), consisting of a
compatible pair of a Σ-algebra (A,α) and a monoid (A, ν, µ)
with respect to the substitution monoidal structure (V, •)
on SetF. The unit ν models variables; the multiplication µ
substitution.

Object variables and metavariables. The above development
was limited to the modelling of object-level abstract syntax.
There is however also a need for considering a meta-level. We
explain this with an example.

When developing a theory of λ-calculus, one uses both
object and meta variables. For instance, in the mathematical
vernacular (e.g. in the context of head normal forms), one may
consider the λ-term λx. yM . Here “x” and “y” are object-
level variables, as the λ-calculus is the object language; while,
at the level of text, “M” is a meta-level variable, standing for
some λ-term. From the viewpoint of substitution, there is a
crucial difference between object variables and metavariables.
Indeed, because of α-equivalence, the operation of substituting
a term for an object variable is not a simple textual substitu-
tion, e.g (λx. yM)[y := x y] = λz. x yM [x := z][y := x y]
for fresh z; while, on the contrary, the substitution of a term
for a metavariable essentially is, e.g.

(λx. yM)[M 7→ x y] = λx. y (x y) . (1)

Free Σ-monoids. A mathematical theory for both object vari-
ables and metavariables should thus take the above distinctions
into account. This problem was explored in Hamana [16] and
in Fiore [5, Part I]. The key is to use free Σ-monoids.

The idea is to regard presheaves X ∈ SetF as metavari-
able declarations, with elements of X(k) corresponding to
metavariables of arity k, and consider the Σ-monoid MX
freely generated by X . This can be inductively constructed
as an initial

(
V + Σ(−) + X • (−)

)
-algebra, with structure

maps V → MX , Σ(MX) → MX , and X • MX → X
respectively modelling variables, operators, and parameterised
metavariables. The latter under the rule

1, . . . , n ` ti (1 ≤ i ≤ k)

1, . . . , n ` M[t1, . . . , tk]
M ∈ X(k)

The arity of a metavariable denotes the number of term pa-
rameters that it is to take for subsequent substitution in terms
instantiating the metavariable.

The universal property of MX internalises [5] as a map

MX × [X⇒A]→ A : (t, θ) 7→ tθ in SetF

for every Σ-monoid A. It is here that the notion of metavari-
able substitution appears. Syntactically, one understands θ
as an assignment and tθ as the induced meta-substitution
operation on t. For instance, example (1) above is formally
recast as (

λ(x. y@ M[x])
)
θ = λ

(
x. y@(x@y)

)

where M has arity 1 and θ corresponds to the assignment[
M[ ] 7→ [ ]@y

]
.

Second-order algebra and equational logic. The syntactic
theory of abstract syntax with variable binding and metavari-
ables was introduced by Aczel [1]. This formal language
allowed him to consider equational presentations and rewriting
rules for calculi with variable binding. For instance, in this
setting, the β and η axioms of the λ-calculus are each specified
as a single equation:

(β) M : 1, N : 0 ` λ(x.M[x])@N = M[N] ,

(η) M : 0 ` λ(x.M@x) = M .
(2)

In view of the above developments, Fiore et al. [8,9] con-
sidered algebraic theories for such second-order equational
presentations. As in (first-order) universal algebra, one may
work with these model theoretically as abstract algebraic struc-
tures (viz. Σ-monoids satisfying the axioms) [9] or logically
by means of a logical framework referred to as second-order
equational logic [8].

An important point here is that the generality of the ap-
proach makes it also applicable to the formalisation of type
structure with binding. For instance, signatures Σ with a
binding operator µ, say intended to model recursive types,
give rise to free Σ-monoids modelling abstract syntax with
µ-types, type-variable binding, and type metavariables. Equa-
tional presentations on these can also be considered; e.g. for
modelling equirecursive types: µ(x.T[x]) = T

[
µ(x.T[x])

]
.

Polymorphic abstract syntax. The above theory is limited
to sorted (e.g. untyped and simply-typed) languages. The
passage from the mono-sorted universe of discourse SetF to
an S-sorted one consists in considering the presheaf category
Set(F↓S)×S for (F ↓S) × S the category of S-sorted contexts
paired with sorts [21,4].

Hamana [17] tackled the algebraic modelling of polymor-
phically-typed abstract syntax. A crucial departure from the
multi-sorted case is the need for a dependent indexing structure
on contexts and types to capture the algebraic structure of
polymorphic terms. In a polymorphic system, such as Sys-
tem F, well-typed terms are formulated using judgments of
the following form:

n
&& ** ++

| Γ ` t : τ

type
context

term
context term type

(3)

The arrows here indicate dependency, as type variables may
appear in any of the other parts of the judgment. To model such
dependent context and type structure with respect to a universe
of types in context U ∈ SetF, Hamana [17] identified the
Grothendieck construction [15] (for which we use the notation∮

) as key, introducing the category

GU =
∮ n∈F

(F↓Un)× Un

with objects given by structures of the form:(
n ∈ F ,

〈
|Γ| ∈ F , Γ ∈ (Un)|Γ|

〉
, τ ∈ Un

)
.



The universe of discourse SetGU was then shown to be
appropriate to model polymorphically-typed object-level syn-
tax [17]. Fiore [6] further isolated the notion of generalised
polynomial functor as a suitable mathematical theory for this
purpose.

This paper. We develop polymorphic algebraic theories
founded on these earlier works. We incorporate the notions
of metavariables and Σ-monoids into the algebraic polymor-
phic setting. Syntactically, the framework encompasses meta-
types (viz. types with type metavariables), and meta-terms
(viz. terms with both meta-types and term metavariables). We
explain why this is necessary next.

Consider the vernacular rule for abstraction in the typed
λ-calculus:

[x : σ]M : τ

λxσ.M : σ⇒τ
(4)

Is this a single operator? One usally thinks so. But this is
only the case when regarded as a schema, with σ and τ
being type metavariables that, by instantiation, yield a family
of (object-level) operators indexed by all pairs of (object)
types. Analogously, consider the typed versions of the β and
η axioms (2):

(β) M : [σ]τ , N : σ ` λσ,τ (x.M[x])@N = M[N] : τ ,

(η) M : σ⇒τ ` λσ,τ (x.M@x) = M : σ⇒τ .
(5)

Are these a pair of single axioms? Again, this is only the case
when they are regarded as schema with σ and τ being type
metavariables yielding a family of (object-level) axioms by
instantiation.

Although the distinction between meta and object levels
usually receives little attention when developing a theory
in the mathematical vernacular, this viewpoint is seriously
needed when developing a formal meta-theory or a mechanised
formalisation of a theory. In such case, one must formalise all
ingredients, including the meta-level aspects.

We precisely formulate the distinction between meta and
object levels. For instance, in our polymorphic algebraic
theory, the λ-abstraction rule (4) is formalised as a single
operator specified as

S : ∗, T : ∗ . abs : (S)T → S⇒T

where S and T are metavariables for types, and where the
symbol . separates the type metavariable context from the
source and target arity information (resp. (S)T and S⇒ T) of
the operator (here termed abs) as specified by meta-types. In
a similar vein, our formalism permits single specifications of
the β and η axioms (5).

Conceptually, our analysis leads to the viewpoint that the
universe of types in context U ∈ SetF as discussed above
should be a Σ-monoid for a type signature Σ. For instance,
the initial Σ-monoid M0 corresponds to the universe of
object types; the free Σ-monoid MX on a presheaf of type
metavariables X corresponds to the universe of meta-types
with metavariables in X; and the free Σ-monoidMEX satis-
fying a second-order equational presentation E on a presheaf

of type metavariables X corresponds to the universe of meta-
types with metavariables in X modulo the axiomatisation E.
The mathematical theory naturally requires one to deal with
such multiple universes, and it is in this sense that we refer
to it as being multiversal.

The notion of algebraic structure for polymorphism that
arises consists thus of a ΣTy-monoid U ∈ SetF for a type
signature ΣTy together with a ΣTm-monoid A ∈ SetGU for
a term signature ΣTm with U acting on A by means of
a type-in-term substitution structure. Free algebras provide
polymorphically-typed abstract syntax, from which equational
presentations arise as sets of equations. As customary, alge-
braic models for equational presentations are then defined as
algebras that satisfy the equations. The logical counterpart
of this model theory is provided by Polymorphic Equational
Logic (PEL), a sound and complete logical framework for
equational reasoning about polymorphic algebraic theories.

Further work. Various directions for further work are
possible. A promising one is to apply the mathematical theory
of the paper to mechanised formalisation. In the light of the
correspondence between dependent polynomial functors and
inductively defined dependent types [23,12], our algebraic
theory provides a methodology for formalising the syntax
and semantics of polymorphic systems in proof assistants
supporting dependent and inductive types. In fact, the strongly-
typed representation of System F syntax of Benton et al. [2]
in Coq can be thus obtained.

The type structure of the present theory will be extended
to encompass polymorphic kinds. Preliminary results [17]
indicate that this direction will be a natural extension of the
current framework.

2. TYPE UNIVERSES AND POLYMORPHIC SIGNATURES

We start motivating the development with the prototypical
example of System F, illustrating and explaining how our
notion of polymorphic signature specifies type and term struc-
tures.

Example 2.1 (System F [13,26]) The polymorphic signature
ΣF = (ΣTy

F , ΣTm
F ) for System F consists of: a type signature

ΣTy
F = { b : ∗, ⇒ : ∗, ∗ → ∗, ∀ : (∗)∗ → ∗ } together

with a term signature ΣTm
F given as follows

S, T : ∗ . abs : (S)T → S⇒T

S, T : ∗ . app : S⇒T, S → T

T : [∗]∗ . tabs : α.T[α] → ∀(α.T[α])

S : ∗, T : [∗]∗ . tapp : ∀
(
α.T[α]

)
→ T[S]

The type signature specifies three type constructors. Their
associated arities respectively express that b is a type, that ⇒
is a constructor building a type from two given types, and that
∀ is a constructor building a type as the result of binding a
type variable in a type.

Let us now see how the term signature faithfully encodes
the vernacular typing rules, considering the term and type



abstraction rules:

Ξ | Γ, x : σ ` t : τ

Ξ | Γ ` λx : σ. t : σ⇒τ

Ξ, α | Γ ` t : τ

Ξ | Γ ` Λα. t : ∀α. τ

The arity of the abs term constructor is parameterised by
two type metavariables S and T, both of arity ∗ and thereby
to be understood as representing types. The the source arity
(S)T of abs represents the premise of the term-abstraction rule,
expressing that it consists of a term of type T in a context
extended with a fresh term variable of type S. Note that the
informal metavariables σ and τ of the vernacular rule are
respectively formalised by means of the formal metavariables
S and T. The target arity S⇒T of abs represents the type of
the term in the conclusion of the rule.

The arity of the tabs term constructor is parameterised by
one metavariable T of arity [∗]∗ representing an open type. The
source arity α.T[α] of tabs represents the premise of the type-
abstraction rule, expressing that it consists of a term of open
type T[α] in a context extended with a fresh type variable α.

The formal treatment follows.

2.1. Type signatures and universes

Definition 2.2 A type signature ΣTy is a set of type con-
structors with arities specified as c : (∗n1)∗, · · · , (∗nl)∗ → ∗
with ni ∈ N. The intended meaning here is that of c taking l
arguments with the i-th argument binding ni type variables.

A type signature is a binding signature in the sense of [10]
and, as such, induces a signature endofunctor ΣTy on SetF.
We let MX denote the free ΣTy-monoid on a presheaf
X ∈ SetF, being particularly interested in this construction
when performed on a presheaf of type metavariables [16,5].

Notation 2.3 For a small category C, we use the notation |C|
for the set of its objects; while, for a presheaf P ∈ SetC, we
write |P | for its underlying indexed set in Set|C|. The functor
|− | : SetC → Set|C| is monadic and its left adjoint is denoted
(−). It is explicitly given by S(c) =

∐
z∈C S(z)× C(z, c).

Definition 2.4 A type metavariable S of arity n ∈ N is
declared as S : [∗n]∗, with the prefix omitted when n = 0. Sets
of type metavariable declarations S correspond to N-indexed
sets {S(k)}k∈N where the S(k) are the sets of metavariables
in S of arity k, and can be freely considered as a presheaf
S ∈ SetF. A pair (S, ρ) ∈ S(n) with S ∈ S(k) and ρ : k → n
in F is displayed as S[ρ1, . . . , ρk], and simply as S when k = 0.

For a set of type metavariable declarations S, the presheaf
MS ∈ SetF consists of meta-types in context, with metavari-
ables from S. It is thus natural to use the notation S . n ` τ
for τ ∈MS(n). Furthermore, we implicitly use the technique
of de Bruijn levels [3] for representing abstract syntax with
variable binding. For example, in the context of Example 2.1,
the close type ∀(α.T[α]), where T is a type metavariable of
arity 1, stands for ∀(1.T[1]).

Definition 2.5 A type universe for a type signature ΣTy is
defined to be ΣTy-monoid.

A typical example of a type universe is M0 (the universe
of object types) and, more generally, MS (the universe of
meta-types with metavariables from S). A non-syntactic type
universe features in the PL-category semantics of System F
(Example 7.3).

We consider next the denotation of meta-types by means of
a meta-substitution operation [16,5].

Definition 2.6 Let S be a set of type metavariable declara-
tions and let U be a type universe. An assignment θ : S  n U
(n ∈ N) is an N-indexed function θ : S → |δnU | . Henceforth,
since [S⇒U ](n) ∼= SetN(S, |δnU |), the exponential presheaf
[S⇒U ] ∈ SetF will be regarded as consisting of assignments.

A main result of [5, Part I] established that the free
ΣTy-monoid monad M is strong with respect to the cartesian
closed structure of SetF. This has two important consequences
for us here: for every type universe U , the universal extension
map internalises as a morphism M(X) × [X⇒ U ] → U in
SetF and every presheaf δnU ∼= [ Vn⇒ U ] ∈ SetF (n ∈ N)
pointwise acquires a canonical type-universe structure. One
thus obtains a meta-substitution operation (or interpretation
function) M(S) × [S ⇒ δnU ] → δnU of meta-types under
assignments, for which we will use the following notation

S . k ` τ , θ : S  n+k U 7→ τθ ∈ U(n+ k) .

2.2. Polymorphic signatures

As a notational convention, we use the vector notation
−→
(−)

for sequences; the length function for these is denoted | − |.
Definition 2.7 A polymorphic signature Σ = (ΣTy, ΣTm)
consists of a type signature ΣTy together with a term signature
ΣTm given by a set of operators with arities of the form

S . f : k1.(
−→σ1)τ1, . . . , k`.(

−→σl)τ ` → τ (` ∈ N) (6)

where S is a set of type metavariable declarations with respect
to which S . ki ` −→σi and S . ki ` τ i for all 1 ≤ i ≤ `, and
S . 0 ` τ . The intended meaning here is that of f taking
` arguments with the i-th argument binding ki type variables
and |−→σi| term variables.

An important point to note above is that the source and target
arities of operators are written in the language of syntactic
type universes rather than in an informal meta-language. In
particular, operator declarations are meant to be instantiated
by means of meta-substitutions (see Fig. 1).

Example 2.8 (Polymorphic FPC [20]) The signature ΣTy

for types is ΣTy
F extended with +,× : ∗, ∗ → ∗ and µ :

(∗)∗ → ∗. An excerpt of the term signature follows:

T1, T2, T : ∗ . case : T1 + T2, (T1)T, (T2)T → T

T : [∗]∗ . intro : T
[
µ
(
α.T[α]

)]
→ µ(α.T[α])

T : [∗]∗ . elim : µ
(
α.T[α]

)
→ T

[
µ
(
α.T[α]

)]
Example 2.9 (Existential λ-calculus [11]) The type signa-
ture is given by ⊥ : ∗, ¬ : ∗ → ∗, ∧ : ∗, ∗ → ∗, and



∃ : (∗)∗ → ∗. As for the terms, we only consider the following
two key rules:

Ξ | Γ ` s : σ{α := τ}
Ξ | Γ ` 〈τ , s〉 : ∃(α.σ)

Ξ | Γ ` s : ∃(α.σ) Ξ, α | Γ, x : σ ` t : τ
Ξ | Γ ` unpack s as 〈α, x〉 in t : τ

The rule for unpack requires the side condition that in its
second premise the variable α is fresh for all the types in the
context Γ and for τ . The term signature corresponding to these
two rules is thus:

S : [∗]∗, T : ∗ . pack : S[T] → ∃
(
α.S[α]

)
S : [∗]∗, T : ∗ . unpack : ∃

(
α.S[α]

)
, α.(S[α])T → T

Note that the second argument of the operator unpack is
specified under a type metavariable context with T : ∗ thereby
enforcing the side condition of the rule that α does not appear
free in τ .

Example 2.10 (Global state) The signature for a basic al-
gebraic theory of global state [25] has type signature L : ∗
for locations, E : ∗ for expressions, and Bool,Nat : ∗ for
Boolean and natural number values. The term signature has
two operators:

V : ∗ . lookup : L, (V)E → E

V : ∗ . update : V, L,E → E

providing operations that are parameterised by types. This is
unlike the original treatment [25], where the parameterisation
is only treated informally.

An algebraic theory over this signature is first-order with
variable binding and polymorphism, without recourse to
λ-calculi.

As shown in the examples, polymorphic signatures are
suitable for the specification of a wide variety of polymorphic
languages. Indeed, the notion encompasses polymorphic types
(with variable binding and type metavariables) in the broad
sense of them being variable types, as referred to by Gi-
rard [14], together with polymorphic operators (parameterised
by type metavariables) between them.

3. POLYMORPHIC SIGNATURE ENDOFUNCTORS

This section presents the categorical semantics of polymor-
phic signatures. In the spirit of categorical algebra, this is done
by associating signatures with endofunctors that interpret the
arity of operators (§ 3.3). As customary, then, models arise as
endofunctor algebras.

Two preliminary sections are respectively devoted to intro-
ducing the appropriate universe of discourse (§ 3.1) and the
general theory (§ 3.2) for the interpretation.

3.1. Contexts for polymorphism
Following [17], the universes of discourse for the inter-

pretation of polymorphic signatures will be categories of
presheaves on small categories of contexts that arise from the
Grothendieck construction [15].

The (covariant) Grothendieck construction on a func-
tor F : F → C , for C a full subcategory of the large cat-
egory of locally small categories and functors, is the category
denoted

∮
F or

∮ I∈F F(I) with objects given by pairs I ∈ F
and A ∈ F(I), and morphisms (f, ϕ) : (I, A)→ (J,B) with
f : I → J in F and ϕ : F(f)(A)→ B in F(J).

We give sample uses of the Grothendieck construction for
manufacturing categories of contexts.

Example 3.1 For a set T (of sorts), the category F ↓ T (of
T -sorted contexts) is the opposite of

∮ n∈Fop

Tn. Thus, it has
objects Γ : |Γ| → T with |Γ| ∈ F and morphisms ρ : Γ→ Γ′

given by maps ρ : |Γ| → |Γ′| in F such that Γ = Γ′ ◦ ρ :
|Γ| → T .

Example 3.2 Every presheaf T ∈ SetF (of sorts in con-
text) induces a functor F ↓ (T−) : F → Cat, for Cat
the category of small categories and functors. The category
FT =

∮ n∈F F↓(Tn) (of T -sorted contexts) has objects (n|Γ)
with n ∈ F and Γ ∈ F↓(Tn), and morphisms (ρ, π) : (n|Γ)→
(n′|Γ′) with ρ : n → n′ in F and π :

(
(Tρ) ◦ Γ

)
→ Γ′ in

F↓(Tn′).
We will also need to consider indexed versions of this

construction. To this end, for a presheaf X ∈ SetF, we
define H(T,X) =

∮ n∈F F ↓ (Tn) × Xn. This category has
objects (n | Γ ` x) with (n |Γ) ∈ FT and x ∈ Xn, and
morphisms (n | Γ ` x) → (n′ | Γ′ ` x′) given by maps
(ρ, π) : (n|Γ) → (n′|Γ′) in FT such that Xρx = x′. An
ubiquitous particular case is the category GT = H(T, T ).

3.2. Generalised polynomial functors
A central technical tool in our development is the notion of

generalised polynomial functor introduced in [6]. This fits a
general abstract scheme for defining polynomial constructions
that also incorporates the notion of dependent polynomial
functor [23,12]. This section reviews the basics, deferring
details to [6].

We need recall that every f : X → Y in Cat induces
the adjoint situations f! a f∗ a f∗ : SetX → SetY where
f∗ = (−) ◦ f and f! and f∗ are respectively given by left
and right Kan extending along f [15,19]. For instance, the
adjunction (−) a | − | : SetC → Set|C| introduced in
Notation 2.3 amounts to i! a i∗ for i the inclusion |C| → C.

A Cat-polynomial P is a diagram A Isoo a // J t // B
in Cat. Its induced generalised polynomial functor FP is the
composite t! a∗ s

∗ : SetA → SetB. A polynomial diagram
is discrete when its component a : I → J is of the form∐
i∈I ∇Li

:
∐
i∈I Li · Ci →

∐
i∈I Ci for a set I and finite

sets Li, where L · C =
∐
`∈L C and ∇L : L · C → C is the

codiagonal [IdC]`∈L.
Discrete generalised polynomial endofunctors are useful

because by means of their algebras one can specify structure
on presheaves with complex source and target arities. To see
this, note that an FP -algebra for the generalised polynomial
endofunctor induced by a discrete polynomial P as

C
∐
i∈I Li · Ci

[si]i∈I
oo

qi∈I∇Li //
∐
i∈I Ci

[ti]i∈I
// C



consists of a presheaf A ∈ SetC together with an I-indexed
family of structure maps∏

l∈Li
A
(
si(l · −)

)
→ A

(
ti(−)

)
in SetCi . (7)

Note that the first and last components of a polynomial respec-
tively specify source and target re-indexing. As we will see,
this provides a very expressive and flexible formalism. Indeed,
since furthermore discrete generalised polynomial functors
admit inductive constructions of free algebras [6, Prop. 5.1],
in the following two sections we will use them to model poly-
morphic signatures (§ 3.3) and type-in-term substitution (§ 4).

3.3. Polymorphic signature endofunctors
We define the signature endofunctor corresponding to a

polymorphic signature Σ. This is done parametrically on a
type universe U for ΣTy on the universe of discourse given
by the presheaf category SetGU (recall Example 3.2).

To explain the approach, we start with analysing concrete
cases in System F (Example 2.1). For the term abstrac-
tion operator abs, the corresponding operation of an algebra
A ∈ SetGU should be given by a natural map

A(n | Γ, σ ` τ )→ A(n | Γ ` σ⇒Uτ ) .

Operators may also extend contexts for type variables in
operations, as in the case of the type abstraction operator
tabs for which the corresponding operation of an algebra
A ∈ SetGU should be given by a natural map

A(n+ 1 | Γ ` τ )→ A
(
n | Γ ` ∀U(τ)

)
.

To obtain these kind of algebraic operations from the arity
specification of operators, one needs to formulate the instan-
tiation of meta-types in arities by types in the universe U
by means of meta-substitutions, and incorporate the extension
of contexts for type variables as prescribed by source arities.
Technically, this requires to use of the Grothendieck construc-
tion H

(
U, [S⇒U ]

)
of Example 3.2, for S a set of metavariable

declarations.

Definition 3.3 Let Σ be a polymorphic signature and U
a type universe for ΣTy. To every operator f as in (6) we
associate the following discrete polynomial Pf

GU ` · H
(
U, [S⇒U ]

)sf
oo

∇` // H
(
U, [S⇒U ]

) tf
// GU

where the source and target functors are respectively given by
sf
(
i · (n | Γ ` θ)

)
= (n+ ki |

(
Γi + 〈−→σiθi〉

)
` τ iθi) and

tf (n | Γ ` θ ) = (n | Γ ` τθ ), where Γi and θi respec-
tively arise from Γ and θ by the presheaf action along the
coproduct injections ki ↪→ n+ ki.

The signature endofunctor Σ on SetGU is defined as the
discrete generalised polynomial functor

∐
f∈ΣTm FPf

. This is
explicitly given by

ΣA(n | Γ ` u ) =
∐
f,θ

∏
i∈`A(n+ ki | Γi,

−→σiθi ` τ iθi )

where the coproduct ranges over operators f in ΣTm as in (6)
and assignments θ : S  n U such that τθ = u ∈ Un.

4. TYPE-IN-TERM SUBSTITUTION

The monoid multiplication of a type universe provides an
operation that models simultaneous capture-avoiding type-in-
type substitution. Also polymorphic terms have type variables
and the need for instantiating them leads to a type-in-term
substitution operation that should be modelled. We address
this issue by giving an algebraic axiomatisation of type-in-
term substitution.

Let (U, ν, µ) be a type universe. For τ ∈ U(n+ l) and
σi ∈ U(n) with 1 ≤ i ≤ l, we let τ{σ1, . . . , σl} ∈ U(n)
be given by the multi-variable capture-avoiding substitution
µn(τ ; νn(1), . . . , νn(n), σ1, . . . , σl); pointwise extending the
notation to Γ{σ1, . . . , σl} ∈ F↓(Un) for Γ ∈ F↓

(
U(n+ l)

)
.

Our aim is to define algebraic structure on a presheaf A ∈
SetGU amounting to structure maps

ςσn : A(n+ 1 | Γ ` τ) −→ A
(
n | Γ{σ} ` τ{σ}

)
a 7→ (a){σ} (8)

with (n | Γ ` τ) ∈ GU and σ ∈ Un, that we will later on
axiomatise so as to model the substitution of a distinguished
type variable by a type. We again invoke the formalism
of generalised polynomial functors and consider the discrete
polynomial

GU H(δU, δU × U)
soo t // GU (9)

with s(n | Γ ` τ , σ) = (n+ 1 | Γ ` τ) and t(n | Γ ` τ , σ) =
(n | Γ{σ} ` τ{σ}). We write ↑ for the discrete generalised
polynomial endofunctor on SetGU induced by (9), noting that
according to (7) an algebra-structure map ↑ A → A exactly
specialises to (8).

The axioms for type-in-term substitution are analogous to
the ones given for substitution algebras in [10]. To present
them, we need introduce the following notation: For ρ : `→ m
in F, U ∈ SetF, and A ∈ SetGU , we let ρUn = U(n+ρ) : U(n+
`)→ U(n+m) and ρAn = A(n+ρ, id) : A(n+ ` | Γ ` τ)→
A
(
n+m | ρUn ◦ Γ ` ρUn (τ)

)
; and consider the weakening,

swapping, and contraction maps up : 0 → 1, sw : 2 → 2,
and con : 2→ 1.

Definition 4.1 Let (U, ν) be a V -pointed object in SetF. A
type-in-term substitution for A ∈ SetGU is an algebra ↑A→ A
in SetGU subject to the following axioms:
- a ∈ A(n | Γ ` τ), σ ∈ U(n) ` (upAn a){σ} = a

- a ∈ A(n+ 2 | Γ ` τ), σ ∈ U(n+ 1), σ′ ∈ U(n)

`
(
(a){σ}

)
{σ′} =

(
(swAn a){upUn σ′}

)
{σ{σ′}}

- a ∈ A(n+ 2 | Γ ` τ) ` (a){newn} = conAn a

where new : 1→ δU (a generic new variable) is the transpose
of the point ν : V→ U .

The axioms have an intuitive reading; e.g. the first one
expresses that substituting for a type variable not free in a
term does not affect the term.

Example 4.2 The presheaf of object variables V ∈ SetGU is
defined as V(n | Γ ` τ) =

(
F ↓ Un

)(
〈τ〉,Γ

) ∼= {x ∈ |Γ| :
Γ(x) = τ }. It has a type-in-term substitution structure ςV :



↑V → V given by maps that reinterpret a variable of type τ
in context Γ as one of type τ{σ} in context Γ{σ}.

5. POLYMORPHIC STRUCTURES

We introduce polymorphic structures. They provide a gen-
eral basic notion of algebraic model, and thereby of abstract
syntax, for polymorphic algebraic theories.

In the vein of [21,4,17], for A,B ∈ SetGU , we define
(A •B) ∈ SetGU by the coend

(A •B)(n | Γ ` τ)

=
∫∆∈F↓Un

A(n |∆ ` τ)×
∏

1≤i≤|∆|B
(
n |Γ ` ∆(i)

)
(10)

remarking that (V, •) provides a monoidal structure on SetGU

suitable for considering monoids with polymorphic algebraic
structure.

Definition 5.1 A polymorphic structure for a polymorphic
signature Σ and a type universe U for ΣTy consists of a
Σ-monoid (A,ϕ, ν, µ) in SetGU and a type-in-term substi-
tution ς : ↑A → A that are compatible in the sense that the
following diagrams commute

↑ΣA
↑ϕ

��

// Σ ↑A Σς
// ΣA

ϕ

��

↑A
ς

// A

↑V

↑ν
��

ςV
// V

ν
��

↑A
ς

// A

↑(A •A)

↑µ
��

// ↑A • ↑A ς•ς
// A •A

µ

��

↑A
ς

// A

where ↑Σ(−) → Σ↑(−) and ↑(−• =) → ↑(−) • ↑(=) are
appropriate coercion maps.

Homomorphisms of polymorphic structures, referred to as
polymorphic translations, are maps that are both Σ-monoid
morphisms and ↑-algebra homomorphisms.

The category of polymorphic structures and translations for
a polymorphic signature Σ and a type universe U for ΣTy is
denoted Poly(Σ,U).

5.1. Free polymorphic structures
From the theories of equational systems [7] and of discrete

generalised polynomial functors [6] we have the following
result.

Theorem 5.2 The forgetful functor Poly(U,Σ) → SetGU is
monadic.

We outline a construction of free polymorphic structures,
obtaining the underlying indexed set of the free polymorphic
structure NUX ∈ SetGU on a presheaf X ∈ SetGU as a
quotient of an indexed set NU |X| ∈ Set|GU |.

For Z ∈ Set|GU |, the indexed set NUZ ∈ Set|GU | has
syntactic character and is defined by the rules of Fig. 1. In
this context, we let |NUX| be given by the quotient of NU |X|
under the congruence generated by the identification

Z{−→σ }[tπ1, . . . , tπ|∆|] = Z′{−→σ }
[
t1, . . . , t|∆′|

]
(11)

for n ∈ F, π : ∆→ ∆′ in F↓(Un), Z ∈ X(n+|−→σ | | ∆ ` τ),
and Z′ = X(id, π)(Z) ∈ X(n+|−→σ | | ∆′ ` τ). This quotient
arises from the coend (10). The presheaf and polymorphic
structures of NUX are essentially given syntactically.

For a polymorphic structure (A,ϕ, ν, µ, ς), the universal
extension of a morphism ϑ : X → A in SetGU is the
polymorphic translation ϑ] : NUX → A given as follows:

- ϑ](x) = ν(x)

- ϑ]
(
fθ(. . . ,

−→αi.−→xi .ti, . . .)
)

= ϕf ( . . . , ϑ](ti), . . . )

- ϑ]
(

Z{σ1, . . . , σl}[t1, . . . , tm]
)

= µ
(
(ϑ Z){σ1, . . . , σl}; ϑ](t1), . . . , ϑ](tm)

)
where, extending the notation introduced in (8), for a ∈
A(n+ l | Γ ` τ) and σi ∈ U(n) with 1 ≤ i ≤ l, we set
(a){σ1, . . . , σl} =

(
· · ·
(
(a){ı1(σ1)}

)
· · ·
)
{ıl(σl)} for ıi the

coproduct injection n ↪→ n+ l − i.

5.2. Polymorphic abstract syntax with metavariables

We now consider free polymorphic structures that corre-
spond to polymorphic abstract syntax with metavariables.
For this purpose, the notion of metavariable arity is directly
suggested by the mathematical model as that of a context for
polymorphism. This leads to the consideration of indexed sets
Z ∈ Set|GU | as metavariable declarations, where one regards
Z ∈ Z(n |−→σ ` τ) as the declaration Z : {n}[−→σ ]τ , for the
metavariable Z of arity {n}[−→σ ]τ , in Z. Such metavariables
are to be instantiated by terms involving n fresh type variables
and |−→σ | fresh variables.

Every indexed set Z ∈ Set|GU | freely gives rise to the
presheaf Z ∈ SetGU . In view of the following characterisation,
the polymorphic structure NU (Z) ∈ SetGU is given in purely
syntactic terms:

|NUZ| ∼= NUZ

for Z(n | Γ ` τ) given by∐
(k |∆ `σ) ∈ GU
ρ ∈ F(k, n)

[
Uρσ ≡ τ

]
×
[
(Uρ) ◦∆ ≡ Γ

]
× Z

(
k | ∆ ` σ

)
.

We henceforth refer to elements of NUZ(n | Γ ` τ) as meta-
terms. For these we introduce an operation of meta-substitution
(i.e. substitution for metavariables in meta-terms) as follows.

Definition 5.3 For (k|∆) ∈ FU , the endofunctor δ(k|∆) on
SetGU is defined as

(
d(k|∆)

)∗
for d(k|∆) the endofunctor on

GU given by

d(k|∆)(n |Γ ` τ) = ( k + n | ∆,Γ ` (τ) )

where (∆,Γ) = (Uı ◦∆) + (U ◦ Γ) for ı and  the first and
second coproduct injections into k + n.

Definition 5.4 Let Z be a set of metavariable declarations
and A a polymorphic structure. An assignment for meta-
substitution ϑ : Z  (k|∆) A, where (k|∆) ∈ FU , is an
|GU |-indexed function ϑ : Z → |δ(k|∆)A|.



(Var)
(x : τ) ∈ Γ

x ∈ NUZ(n | Γ ` τ)

(Op)
(S . f : k1.(

−→σ1)τ1, . . . , k`.(
−→σ`)τ ` → τ) ∈ ΣTm |−→αi| = ki (1 ≤ i ≤ `)

θ : S  n U θi = ı
[S⇒U ]
i (θ) (ıi : n ↪→ n+ ki , 1 ≤ i ≤ `)

ti ∈ NUZ(n+ ki | Γθi, −→xi : −→σiθi ` τ iθi) (1 ≤ i ≤ `)

fθ(
−→α1.
−→x1.t1, . . . ,

−→αl. −→xl .tl) ∈ NUZ(n | Γ ` τθ)

(MVar)
Z ∈ Z(n+ l | x1 : τ1, . . . , xm : τm ` τ) σi ∈ U(n) (1 ≤ i ≤ l)

ti ∈ NUZ
(
n | Γ ` τ i{σ1, . . . , σl}

)
(1 ≤ i ≤ m)

Z{σ1, . . . , σl}[t1, . . . , tm] ∈ NUZ
(
n | Γ ` τ{σ1, . . . , σl}

)
NB: For S =

(
Si : [∗ni ] ∗

)
1≤i≤m, the formal concretion fθ may be denoted fθ(S1),...,θ(Sm) or simply f when the omission

is inferable from the context. These operators bind both type and term variables and we implicitly assume the technique of
de Bruijn levels [3] for their representation.

Fig. 1. Rules for NUZ

For every polymorphic structure A, the presheaf δ(k|∆)A
canonically inherits a polymorphic structure. Thus, every as-
signment ϑ : Z  (k|∆) A yields an interpretation function

ϑ] : NUZ(n |Γ ` τ) −→ A( k + n | ∆,Γ ` (τ) )

t 7→ tϑ

that gives meaning to meta-terms according to metavariable
interpretations.

5.3. The multiverse of polymorphic structures

We combine all polymorphic structures, varying over all
type universes, for a polymorphic signature Σ into a sin-
gle category Poly(Σ). This category abstractly arises as the
(contravariant) Grothendieck construction applied to a functor
Poly(Σ,−) : ΣTy-Monop → CAT : U 7→ Poly(Σ,U). An
explicit definition follows. We note that it relies on the fact
that for every ΣTy-monoid homomorphism φ : U → U ′, the
functor (Gφ)∗ : SetGU

′
→ SetGU maps polymorphic structures

for (Σ,U ′) to polymorphic structures for (Σ,U).

Definition 5.5 The category Poly(Σ) for a polymorphic
signature Σ has objects (U,A) consisting of a type universe
U for ΣTy and a polymorphic structure A for (Σ,U). A
morphism (ϕ, ϑ) : (U,A)→ (U ′, A′) consists of a morphism
φ : U → U ′ of type universes together with a polymorphic
translation ϑ : A→ (Gφ)∗A′.

Universe shift. The category Poly(Σ) supports a notion of
translation between polymorphic structures on possibly differ-
ent universes, with maps that provide two-levelled translations
for types and for terms over types. As an application, we
indicate how one can transport a meta-term on a universe to
another one.

Let L−M : W → U be a morphism of type universes,
translating types τ ∈W (n) to types LτM ∈ U(n). The functor
FL−M : FW → FU translates thus contexts Γ ∈ F ↓ (Wn)
to contexts LΓM =

(
(F↓L−Mn) ◦ Γ

)
∈ F↓(Un). Furthermore,

the functor
∣∣GL−M

∣∣
!

: Set|GW | → Set|GU | translates a set of

metavariable declarations Z on the universe W to the set of
metavariable declarations LZM on the universe U given by

Z ∈ LZM
(
n | LΓM ` LτM

)
⇐⇒ Z ∈ Z(n | Γ ` τ ) .

Finally, we have the assignment Z →
∣∣(GL−M

)∗NU LZM
∣∣,

mapping the metavariable Z ∈ Z(n | −→x : −→σ ` τ) to the meta-
term Z[−→x ] ∈ NU LZM

(
n | −→x :

−→
LσM ` LτM

)
, that induces the

polymorphic translation

L−M : NWZ(n | Γ ` τ)→ NU LZM
(
n | LΓM ` LτM

)
whose effect is to translate types within meta-terms.

6. POLYMORPHIC EQUATIONAL LOGIC

We introduce Polymorphic Equational Logic (PEL): a sound
and complete logical framework for equational reasoning
about polymorphic algebraic theories.

The equational judgments of PEL are of the form

Z . n | Γ `W s = t : τ (12)

where W is a type universe, Z ∈ Set|GW | is a set of
metavariable declarations, (n | Γ ` τ) ∈ GW is a context, and
s, t ∈ NWZ(n | Γ ` τ) are meta-terms. When W is a universe
of meta-types MS for a set of type metavariable declarations
S (as e.g. in Figs. 3, 4, 5), equational judgments are written
as

S | X . n | Γ ` s = t : τ .

An equational presentation consists of a set of equational
judgments, typically referred to as axioms.

Remark 6.1 In type theory, the type universe is given syn-
tactically by means of a second-order equational presentation
(see [8, § 5]) for the type signature. In PEL, this corresponds to
working with universes of meta-types modulo equations. This
can be done model theoretically by means of free second-
order algebraic models for the equational presentation (see [8,
§ 8]) or logically by enriching PEL with type-equality judg-
ments manipulated by second-order equational logic (see [8,
Figs. 2 & 3]). We will however not dwell further on this here.



(Ref)

Z . n | Γ `U t = t : τ

(Sym)
Z . n | Γ `U s = t : τ

Z . n | Γ `U t = s : τ

(Tra)
Z . n | Γ `U s = t : τ Z . n | Γ `U t = u : τ

Z . n | Γ `U s = u : τ

(Ax)
(Z . n | Γ `W s = t : τ) ∈ E

LZM . n | LΓM `U LsM = LtM : LτM
L−M : W → U

(Sub)
Z . n | Γ `U si : σi (1 ≤ i ≤ m)

Z . n | x1 : σ1, . . . , xm : σm `U t = t′ : τ

Z . n | Γ `U t[−−−−−→xi := si] = t′[−−−−−→xi := si] : τ

(Op)
S . f : k1.(

−→σ1)τ1, . . . , k`.(
−→σ`)τ ` → τ ∈ ΣTm |−→α i| = ki (1 ≤ i ≤ `)

θ : S  n U θi = ı
[S⇒U ]
i (θ) (ıi : n ↪→ n+ ki , 1 ≤ i ≤ `)

Z . n+ ki | Γθi,
−−−−−→
xi : σiθi `U si = ti : τ iθi (1 ≤ i ≤ `)

Z . n | Γ `U fθ(. . . ,
−→αi.−→xi.si, . . .) = fθ(. . . ,

−→αi.−→xi.ti, . . .) : τθ

(MSub)
ϑ : Z0  (k|∆) NUZ  : n ↪→ k + n

Z0 . n | Γ `U s = t : τ

Z . k + n | ∆,Γ `U sϑ = tϑ : (τ)

(MVar)(
Z : {n+ k}[τ1, . . . , τ l]τ

)
∈ Z σi ∈ U(n) (1 ≤ i ≤ k)

Z . n | Γ `U si = ti : τ i{σ1, . . . , σn} (1 ≤ i ≤ l)

Z . n | Γ `U Z{σ1, . . . , σk}[s1, . . . , sl] = Z{σ1, . . . , σk}[t1, . . . , tl] : τ{σ1, . . . , σk}
(Act)

ρ : m→ n π : ρ(Γ)→ ∆

Z . m | Γ `U s = t : τ

Z . n | ∆ `U πρ(s) = πρ(t) : ρ(τ)

(TSub)
Z . n+ 1 | Γ `U s = t : τ σ ∈ U(n)

Z . n | Γ{σ} `U s{σ} = t{σ} : τ{σ}

Fig. 2. Polymorphic Equational Logic (PEL)

Vernacular notation
(β) Γ ` (λx.M)N = M [x := N ] : τ

(type β) Γ ` (Λα.M)σ = M [α := σ] : τ{α := σ}

Formal notation in PEL

(β) S, T : ∗ | M : [S]T, N : S . ` app( abs(x.M[x]),N ) = M[N] : T

(type β) S : ∗, T : [∗]∗ | M : {α}T[α] . ` tapp
(
tabs(α.M{α})

)
= M{S} : T[S]

Fig. 3. Sample axioms for System F

Vernacular notation

(let∧) Γ ` let 〈x1, x2〉 = 〈M1,M2〉 inM = M [x1 := M1, x2 := M2] : τ

(letη) Γ ` let 〈x1, x2〉 = N inM [z := 〈x1, x2〉] = M [z := N ] : τ

(∃β) Γ ` unpack 〈ι,N〉 as 〈α, x〉 inM = M [α := ι, x := N ] : τ

(∃η) Γ ` unpack N as 〈α, x〉 inM [z := 〈α, x〉] = M [z := N ] : τ

Formal notation in PEL

(let ∧) S1, S2, T : ∗ | M : [S1, S2]T, M1 : S1, M2 : S2 . ` let
(
pair(M1,M2), x1.x2.M[x1, x2 ]

)
= M[M1,M2 ] : T

(let η) S1, S2, T : ∗ | M : [S1∧S2]T, N : S1∧S2 . ` let
(
N, x1.x2.M[pair(x1, x2)]

)
= M[N] : T

(∃β) S : [∗]∗, T, U : ∗ | M : {α}
[

S[α]
]

T, N : S[U] . ` unpackS,T

(
packS,U(N), α.x.M{α}[x]

)
= M{U}[N] : T

(∃η) S : [∗]∗, T : ∗ | M :
[
∃(α.S[α])

]
T, N : ∃(α.S[α]) . ` unpackS,T

(
N, α.x.M[packS,α(x)]

)
= M[N] : T

Fig. 4. Sample axioms for the existential λ-calculus λ∃



V : ∗ | X : E . ` : L ` lookup
(
`, v.update(`, v, X)

)
= X : E

V : ∗ | X : [V, V]E . ` : L ` lookup
(
`, w.lookup(`, v.X[v, w])

)
= lookup

(
`, v.X[v, v]

)
: E

V : ∗ | X : E . ` : L, v, w : V ` update
(
`, v, update(`, w, X)

)
= update(`, w, X) : E

Fig. 5. Sample axioms for global state

A polymorphic structure A on a type universe U sat-
isfies an equation as in (12) above whenever for every
morphism of type universes L−M : W → U and all as-
signments ϑ : Z  (k|∆) A

(
GL−M

)
, we have sϑ = tϑ in

A
(
k + n | LΓ,∆M ` L(τ)M

)
. An algebraic model of an equa-

tional presentation is a polymorphic structure that satisfies all
the axioms.

6.1. PEL
The deduction system of PEL is given by the inference rules

of Fig. 2. These have been synthesised from the mathematical
model of polymorphic structures on type universes. Besides
the equivalence-relation and axiom rules common to all equa-
tional deductive systems, it consists of congruence rules that
reflect the various algebraic aspects of polymorphism.

Specifically, the rules (Ref), (Sym), (Tra) are those of equiv-
alence relations; the rule (Ax) stipulates that the translation of
axioms in a type universe become theorems in another type
universe. Finally, the rules (Sub), (Op), (MSub), (MVar), (Act),
and (TSub) are respectively congruence rules for substitution,
operators, meta-substitution, metavariables, presheaf action,
and type-in-term substitution.

We also have the following derived and admissible rules.

Structural rules. Weakening, contraction, and permutation on
metavariables are obtained as instances of (MSub). Weakening,
contraction, and permutation on type and term contexts are
obtained as instances of (Act).

Universe shift. In PEL, the universe of an axiom can be
changed when instantiating it in the (Ax) rule. This property
extends to the whole deductive system as the following ad-
missible rule for universe shifting:

(USh)
Z . n | Γ `W s = t : τ

LZM . n | LΓM `U LsM = LtM : LτM
L−M : W → U

6.2. Soundness and completeness
Let E be an equational presentation. For a type universe U

and a set of metavariable declarations Z ∈ Set|GU |, consider
the quotient NE

U Z of NUZ in SetGU determined by the
equivalence relation that identifies s, t ∈ NUZ(n | Γ ` τ)
whenever the equation (Z . n | Γ `U s = t : τ) is derivable
from E in PEL. This construction yields the free algebraic
model of E on Z for U , and is instrumental in establishing
the following result.

Theorem 6.2 Polymorphic Equational Logic is sound and
complete (i.e. for all equational presentations E, an equation
is derivable from E in PEL iff it is satisfied by all algebraic
models of E).

7. EXAMPLES

Example 7.1 Continuing with the examples of § 2, sample
axioms of System F, the existential λ-calculus, and global
state are respectively presented as PEL equations in Figs. 3,
4, and 5.

Example 7.2 (Polymorphic CPS translation [11]) Fu-
jita [11] gave a CPS translation from System F to the
existential λ-calculus λ∃. The translation consists of a type
translation (−)• from System F types to λ∃-types, to-
gether with a CPS translation [[−]] from System F terms
to λ∃-terms (e.g.

(
∀(α.τ)

)•
= ¬∃(α.¬τ•) and [[Λα.M ]] =

λa. a (λk.unpack k as 〈α, c〉 in [[M ]]c)). The CPS translation
is sound:

Γ `F s = t : τ =⇒ ¬¬Γ• `λ∃ [[s]] = [[t]] : ¬¬τ• . (13)

Interestingly, this pair of translations is an example of our
notion of polymorphic translation. Indeed, let TF (resp. T∃)
be the initial type universe for ΣTy

F (resp. ΣTy
∃ ) and let

ΛF = NF
TF

0 (resp. Λ∃ = N λ∃
T∃

0) be the initial algebraic model
for System F (resp. λ∃). The definition of (−)• determines
an ΣTy

F -algebra structure on T∃, and the definition of [[−]]
determines a ΣTm

F -algebra structure on Λ¬¬∃ = Λ∃
(
G¬¬(−)

)
for ¬¬ the double negation endomap on T∃. This yields
a polymorphic structure (T∃,Λ¬¬∃ ) which, by (13), is an
algebraic model of System F, and we have a polymorphic
translation

(
(−)•, [[−]]

)
: (TF,ΛF)→ (T∃,Λ¬¬∃ ).

Example 7.3 (Categorical model of System F [27]) Recall
that a PL-category consists of a cartesian category C with
objects given by finite powers of a distinguished object Ω, a
C-indexed cartesian closed category C(−,Ω) : Cop → CCC,
for CCC the large category of cartesian closed categories, and
right adjoints to C(π1,Ω) : C(−,Ω)→ C(−×Ω,Ω) satisfying
the Beck-Chevalley condition.

From a PL-category, one defines a polymorphic structure
(U,PL) for System F by setting

U =
∣∣C(Ω(−),Ω)

∣∣ ,
PL(n | Γ ` τ ) = C(Ωn,Ω)

(∏
1≤i≤|Γ| Γ(i), τ

)
.

Seely’s categorical interpretation of the types and terms of
System F determines algebra structures on U and PL. For
example, for (∀ : 〈∗〉∗ → ∗ ) ∈ ΣTy

F , the correspond-
ing algebraic operation ∀U : δU → U is defined by
the right adjoint to C(π1,Ω) : C(Ωn+1,Ω) → C(Ωn,Ω).
The multiplication structures of both monoids U and PL
are given by composition. The type-in-term substitution for
σ ∈ U(n) arises as C

(
〈idΩn , σ〉,Ω

)
: PL(n+ 1 | Γ ` τ) →

PL(n | Γ{σ} ` τ{σ}). Altogether, this yields an algebraic
model of System F.
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