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Abstract. Milawa is a theorem prover styled after ACL2 but with a
small kernel and a powerful reflection mechanism. We have used the
HOL4 theorem prover to formalize the logic of Milawa, prove the logic
sound, and prove that the source code for the Milawa kernel (2,000 lines
of Lisp) is faithful to the logic. Going further, we have combined these
results with our previous verification of an x86 machine-code implemen-
tation of a Lisp runtime. Our top-level HOL4 theorem states that when
Milawa is run on top of our verified Lisp, it will only print theorem
statements that are semantically true. We believe that this top-level the-
orem is the most comprehensive formal evidence of a theorem prover’s
soundness to date.

1 Introduction

Theorem provers like HOL4, Coq, and ACL2 are each meant to reason in some
particular logic, are each written in a programming language like ML, OCaml,
or Lisp, and are each executed by a runtime like Poly/ML, the OCaml system,
or Clozure Common Lisp. If we want to make sure that a theorem prover can
only prove true statements, we should ideally show that:

A. the logic is sound,

B. the theorem prover’s source code is faithful to its logic, and

C. the runtime executes the source code correctly.

In this paper, we explain how we have used the HOL4 theorem prover to establish
these three properties about the Milawa theorem prover.

Milawa [2] is a theorem prover inspired by NQTHM and ACL2. Unlike these
programs it has a small kernel, somewhat like an LCF-style system. This kernel
notably performs reflection and includes a mechanism that modifies the kernel at
runtime. High-level tactics like (conditional) rewriting are added into the kernel
through a sequence of reflective extensions.

Our proofs of A through C for the Milawa prover are the key lemmas in a
single, top-level HOL4 theorem: when the kernel of the Milawa theorem is run
on our verified Lisp runtime, Jitawa [13], it will only ever prove statements that
are true with respect to the semantics of Milawa’s logic. This theorem means,
for instance, that no matter how reflection or any other operation is used, the



statement ‘true equals false’ can never be proved. This top-level theorem relates
the semantics of the logic (not just syntactic provability) all the way down to
the concrete x86 machine code.

We believe this work provides the most comprehensive formal evidence of a
theorem prover’s soundness to date, as the combination of these three properties
have, to our knowledge, never before been formally proved for any interactive
theorem prover.

2 Milawa in a nutshell

Before delving into the details of our formalizations and soundness results, we
start with a high-level description of the Milawa theorem prover.

ACL2-like. Milawa follows the Boyer-Moore tradition of theorem provers. Like
NQTHM and ACL2, its logic is essentially a clean subset of first-order Lisp.
Also like these systems, its top-level loop processes user-provided events. Events
steer the prover process. A user can submit events which, for example, cause the
prover to define a new function or prove a specific theorem. However, Milawa is
simpler than ACL2 in many ways. Milawa is particularly minimalist in its user-
interface and debugging output: it really just processes a list of events, aborting
if any event is unacceptable.

Small kernel. The most important difference between Milawa and ACL2 is that
Milawa has a small logical kernel, somewhat like an LCF-style prover. In contrast,
other Boyer-Moore systems have no cordoned off area for soundness-critical code.
This design means that the authors of ACL2 must program very carefully to
avoid accidentally introducing soundness bugs. But it also means that ACL2 can
make greater leaps in reasoning and perform well on large-scale applications; the
ACL2 design avoids the LCF-bottleneck where all proofs must at runtime boil
down to the primitive inferences of the logic.

Reflection. Milawa was designed to show that it is possible to combine the ben-
efits of a small trusted kernel and, at the same time, avoid the LCF-bottleneck.
Milawa has approximately 2000 lines of soundness-critical Lisp code. This Lisp
code initializes the system and sets up the top-level event handling loop. An
important part of this code is the initial proof checker. This initial proof checker
only accepts proofs that use the primitive inferences of the logic, very much like
an LCF-style kernel. In order to allow larger steps in proofs, Milawa supports a
special event that replaces the prover’s current proof checker with a new, user-
supplied proof checker. For this switch event to be accepted, we must first prove
that the new user-supplied proof checker (which is just a function in the logic
of Milawa) can only prove statements that the initial proof checker could have
proved. The initial proof checker lives within the Milawa logic. Every function
defined in the logic is also defined outside in the underlying Lisp runtime.
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Bootstrapping. By (repeatedly) replacing the initial proof checker with new, im-
proved checkers that can make larger leaps in their proofs, we can build a prover
that performs ACL2-style proofs where, e.g., conditional rewriting is treated as
a single inference step. We call the soundness critical code—the initial 2000-line
Lisp program—Milawa’s kernel. The Milawa theorem prover is what this kernel
morphs into after running through a long list of events (the bootstrapping se-
quence) that ultimately installs a powerful, ACL2-like proof checker. This final
proof checker allows for high-level, Boyer-Moore style steps such as rewriting,
case splitting, generalization, cross-fertilization, and so forth.

3 Method

To prove the soundness of Milawa in HOL4, we proceeded as follows.

A. We started by formalizing Milawa’s logic, following closely the detailed prose
description given in Chapter 2 of Davis [2]. We then proved the logic is
sound. This part was largely a routine formalization and soundness proof
(Section 4), but we did hit some surprises involving the termination obliga-
tions Milawa generates (Section 7).

B. Next we turned our attention to the implementation of Milawa’s kernel. Our
task here was to verify these 2,000 lines of Lisp code with respect to the
behavior of Jitawa [13], our verified Lisp runtime. We proved a connection
using the following steps (Section 5).

1. Jitawa’s correctness theorem is stated in terms of a read-eval-print loop
which reads ASCII input. Using rewriting, we evaluated its parser on the
ASCII definition of Milawa’s kernel.

2. Once the ASCII input had been turned into appropriate abstract syntax,
we ran a proof-producing tool [12] to translate deeply embedded Lisp
programs into their ‘obvious’ shallowly embedded counterparts.

3. Given the convenient shallow embeddings, we proved that Milawa’s main
loop maintains an invariant that implies that all proved theorems are true
w.r.t. our semantics of Milawa’s logic.

C. We had already verified our Lisp runtime, Jitawa, as described in a previous
paper [13]. What remained was to connect the results from A and B to
Jitawa’s top-level correctness theorem (Section 6).

The result of combining A, B and C is a top-level theorem (Section 6) that
relates logical soundness all the way down to machine-code execution. We found
mistakes in Milawa’s implementation, but no soundness bugs (Section 7).

4 Milawa’s logic

We start with a formalization and soundness proof of Milawa’s logic. Milawa
targets a first-order logic of recursive functions with induction up to ε0, similar
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to the logics of NQTHM and ACL2. The objects of the logic are the natural
numbers, symbols, and conses (ordered pairs) of other objects; we call these
objects S-expressions. The logic has primitive functions for working with S-
expressions like equality checking, addition, cons, car, cdr, etc., whose behavior
is given with axioms. Starting from these primitives, we can define recursive
functions that look like Lisp programs. An introduction to the logic can be
found in Chapter 2 of Davis [2].

The Milawa logic is considerably weaker than popular higher-order logics.
Thanks to this, its soundness can be established using higher-order logic as the
meta-logic. In this section, we explain how we have used the HOL4 system to
formalize the syntax (Section 4.1), semantics (4.3) and rules of inference (4.4) of
the Milawa logic, and to mechanically prove the soundness of its inference rules
(4.5) and definition principle (4.6). In later sections we connect these soundness
proofs to the theorem prover’s implementation.

4.1 Syntax of terms and formulas

We formalize the syntax of the Milawa logic as the following datatype:

sexp ::= Val num | Sym string | Dot sexp sexp S-expression

prim ::= If | Equal | Not | Symbolp | Symbol less
| Natp | Add | Sub | Less | Consp | Cons
| Car | Cdr | Rank | Ord less | Ordp

func ::= PrimitiveFun prim primitive functions
| Fun string user-defined

term ::= Const sexp constant S-expression
| Var string variable
| App func (term list) function application
| LamApp (string list) term (term list) λ formals body actuals

formula ::= ¬formula negation
| formula ∨ formula disjunction
| term = term term equality

These type definitions are not quite enough to capture correct Milawa syntax.
We write separate well-formedness predicates called term ok and formula ok to
formalize the additional requirements. In particular,

– every function application must have correct arity and refer to a known
function with respect to the context (see below), and

– every lambda application must have the same number of formal and actual
parameters, must have distinct formal parameters, and its body must not
refer to variables other than its formal parameters; these requirements make
substitution straightforward.
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The term ok and formula ok well-formedness predicates depend on a logical con-
text, π, which will be explained below.

4.2 Context

The definitions of the syntax, semantics and inference rules all depend on infor-
mation regarding user-defined functions. To keep the formalization simple, we
chose to combine all of this information into a single mapping, which we call
the logical context. We model the logical context as a finite partial map π from
function names, of type string , to elements of type:

string list× func body × (sexp list→ sexp)

The first component, string list, names the formal parameters for the function.
The second component, func body , gives the syntactic definition for the function.
This func body is usually either (1) the right-hand side of a definition, for an
ordinary function defined by an equation, or (2) a variable name and property,
for a witness (Skolem) function. For reasons that will be explained in Section 4.6,
we also allow the omission of the function body, i.e., a None alternative.

func body ::= Body term concrete term (e.g. recursive function)
| Witness term string property, element name
| None no function body given

Finally, the sexp list → sexp component is an interpretation function, which is
used in the definition of the semantics. These interpretation functions specify
what meaning the semantics is to assign to applications of user-defined func-
tions. In the next section, we will see a well-formedness criteria that relates the
interpretation functions with the syntax in func body .

4.3 Semantics

Next, we define a semantics of Milawa’s formulas. We present these semantics
in a top-down order. Our topmost definition is validity: a Milawa formula p is
valid, written |=π p, if and only if (1) p is syntactically correct w.r.t. the logical
context π and (2) p evaluates to true in π for all variable instantiations i.

(|=π p) = formula okπ p ∧ ∀i. eval formula i π p

We define the evaluation of a formula with respect to a particular variable
instantiation i. Our formula evaluator, eval formula i π, is built on top of a term
evaluator, eval term i π, as follows. The syntax overloading can be confusing in
the following definition. On the left-hand side ¬, ∨ and = are the constructors
for the formula type, while on the right-hand side ¬ and ∨ are the usual Boolean
connectives and = is HOL’s equality predicate.

eval formula i π (¬p) = ¬(eval formula i π p)
eval formula i π (p ∨ q) = eval formula i π p ∨ eval formula i π q
eval formula i π (x = y) = (eval term i π x = eval term i π y)
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We define term evaluation with respect to a variable instantiation i. Here
[[v0, . . . , vn] 7→ [x0, . . . , xn]] is a function which maps vi to xi, for 0 ≤ i ≤
n, and all other variable names to NIL. Below map is a function such that
map f [t0, t1, . . . , tn] = [f t0, f t1, . . . , f tn].

eval term i π (Const c) = c
eval term i π (Var v) = i(v)
eval term i π (App f xs) = eval app (f,map (eval term i π) xs, π)
eval term i π (LambdaApp vs x xs) = let ys = map (eval term i π) xs in

eval term [vs 7→ ys] π x

Application of a function to a list of concrete arguments, a list of type
sexp list, is evaluated according the following eval app function. This function
evaluates primitive functions according to eval primitive and user-defined func-
tions according to the interpretation function interp stored in the logical context.
The interpretation functions will be explained further below.

eval app (PrimitiveFun p, args, π) = eval primitive p args
eval app (Fun name, args, π) = let ( , , interp) = π(name) in

interp(args)

We omit the definition of eval primitive, which is lengthy and straightforward,
but note that it is a total function. A few example evaluations:

eval primitive Add [Val 2,Val 3] = Val 5
eval primitive Add [Val 2,Sym "a"] = Val 2
eval primitive Cons [Val 2,Sym "a"] = Dot (Val 2) (Sym "a")

The definitions above constitute the semantics of Milawa. Clearly, this se-
mantics is intimately dependent on the interpretation functions stored inside
the context π. In order to make sure that these interpretation functions are ‘the
right ones’, i.e., correspond to the syntactic definitions of the user-defined func-
tions, we require that the context is well-formed, i.e., satisfies a predicate we will
call context ok.

For a context to be well-formed, any user-defined functions with an entry of
the following form in the logical context π,

π(name) = (formals,Body body , interp)

must have the interp function return the same value as an evaluation of body with
appropriate instantiations of the formal parameters, i.e., the following defining
equation must be true:

∀i. interp(map i formals) = eval term i π body

Note that this is a non-trivial equation since eval term, which appears on the
right-hand side of the equation, can refer to interp via eval app. Indeed, proving
soundness of the definition principle requires proving that the termination obli-
gations generated by Milawa imply that our interpetation is total (Section 4.6).
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A similar condition applies to witness functions. If,

π(name) = (formals,Witness prop var , interp)

is true then the following implication must hold. This implication states that, if
there exists some value v such that property prop is true when variable names
var :: formals are substituted for values v :: args in prop, then interp(args)
returns some such value v. Here the test for ‘is true’ is Lisp’s truth test, i.e., ‘not
equal to NIL’. These witness functions are explained in Davis [2].

∀args.
(∃v. eval term [var :: formals 7→ v :: args] π prop 6= NIL) =⇒
eval term [var :: formals 7→ interp(args) :: args] π prop 6= NIL

The well-formedness criteria for contexts puts no restrictions on the interp func-
tion if the function body is None.

The full definition of the well-formedness criteria for contexts, context ok, is
given below. Here free vars is a function that computes the list of free variables
of a term, and list to set converts a list to a set.

context ok π =
(∀name formals body interp.

(π(name) = (formals,Body body , interp)) =⇒
term okπ body ∧ all distinct formals ∧
list to set (free vars body) ⊆ list to set formals ∧
∀i. interp(map i formals) = eval term i π body) ∧

(∀name formals prop var interp.
(π(name) = (formals,Witness prop var , interp)) =⇒

term okπ prop ∧ all distinct (var :: formals) ∧
list to set (free vars prop) ⊆ list to set (var :: formals) ∧
∀args.

(∃v. eval term [var :: formals 7→ v :: args] π prop 6= NIL) =⇒
eval term [var :: formals 7→ interp(args) :: args] π prop 6= NIL)

4.4 Inference Rules

Due to space constraints, this section will only sketch a few of Milawa’s 13 in-
ference rules. Two of the simplest are shown below. Here milawa axioms is a set
consisting of the 56 axioms from Davis [2]. Most of these are basic facts about
the primitive functions, e.g. term equality is reflective, symmetric and transitive;
the Less primitive is anti-reflective and transitive, etc.

`π a ∨ (b ∨ c)
`π (a ∨ b) ∨ c (associativity)

a ∈ milawa axioms
`π a

(basic axiom)

The most complicated inference rule allows induction according to a user-defined
measure over the ordinals up to ε0. We omit the presentation of that lengthy
inference rule, which Chapter 6 of Kaufmann et al. [6] explains in detail.
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Apart from the normal inference rules, we also include rules that allow func-
tion definitions to be looked up from the logical context, e.g.

π(name) = (formals,Body body , interp)
`π App (Fun name) (map Var formals) = body

4.5 Soundness and Consistency

We state the soundness theorem for Milawa’s inference rules as follows:

∀π p. context ok π ∧ (`π p) =⇒ (|=π p)

We have proved this statement by induction over the inference rules `π. Proving
soundness of the induction rule was the most interesting case: this proof required
induction over the ordinals up to ε0, for which we need to know that less-than
over these ordinals is well-founded. Fortunately, Kaufmann and Slind [7] had
already formalized this result in HOL4. The soundness of the induction rule
follows almost directly from their result.

The soundness theorem from above lets us immediately prove many reassur-
ing corollaries. For instance, since |=π T = NIL is false and `π T = T is true we
know that Milawa’s inference rules are consistent.

4.6 Soundness Preserved by Function Definitions

As part of our verification of Milawa’s kernel (Section 5.4), we have proved
that the kernel maintains an invariant which states that (1) the current logical
context π is well-formed, context ok π, and (2) that all theorems the Milawa
theorem prover has accepted are provable using the inference rules based on
that current context π, i.e., for any formula p accepted by the kernel, we have
`π p. However, when new definitions are made the logical context is extended. In
order to maintain our invariant, we must hence show that properties (1) and (2)
carry across context extensions.

Proving that property (1) carries across is straightforward since the syntactic
inference rules only make tests for inclusion in the context.

Proving that well-formedness of the context, i.e., property (2), carries across
context extensions is less straightforward. The main complication is that we
need to find an interpretation for the new function that agrees with the syn-
tax of the new definition. Using HOL’s choice operator, we define a function
new interp (definition omitted) which constructs such an interpretation if such
an interpretation exists. This reduces the goal to proving that an interpretation
exists. For witness functions, this proof is almost immediate. For conventional
functions, this proof required showing that a `π-proof of the generated termina-
tion obligations is sufficient to imply that a suitable interpretation exists. Below,
definition ok (definition omitted) requires that certain syntactic conditions are
true and that the termination obligations can be proved.

∀π name formals body .
context ok π ∧ definition ok (name, formals, body , π) =⇒
context ok (π[name 7→ (formals, body , new interp π name formals body)])
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5 Correctness of Milawa’s implementation

With logical soundness out of the way, our next goal was to show that the source
code of the Milawa kernel respects the logic’s inference rules.

First, some background: in previous work [13], we introduced the Jitawa Lisp
runtime. Jitawa is able to host the Milawa theorem prover. By this, we mean
that it is able to execute Milawa’s kernel all the way through its bootstrapping
process [2], a long sequence of definitions, proofs and reflective extensions which
ultimately extend the kernel with many high-level proof procedures like those of
NQTHM and ACL2. As part of the Jitawa work, we developed an operational
semantics for the Lisp dialect that Jitawa executes, and proved that the x86
machine code for Jitawa implements this semantics.

Milawa’s kernel is about 2,000 lines of Lisp code. In this section, we explain
how we have proved that this Lisp code is faithful to Milawa’s inference rules
w.r.t. the operational semantics that Jitawa has been proved to implement.

5.1 From ASCII characters to a shallow embedding in HOL4

The top-level Jitawa semantics describes how S-expressions are to be parsed from
an input stream of ASCII characters and then evaluated. One of the simplest
functions in Milawa’s kernel is shown below. This function will be used as a
running example of how we lift Lisp functions into HOL to make interactive
verification manageable.

(defun lookup-safe (a x)

(if (consp x)

(if (equal a (car (car x)))

(if (consp (car x))

(car x)

(cons (car (car x)) (cdr (car x))))

(lookup-safe a (cdr x)))

nil))

When Jitawa reads the ASCII definition of lookup-safe, it parses the lines
above and, as far as its operational semantics is concerned, turns them into a
datatype of the form:

App Define [Const (Sym "LOOKUP-SAFE"),Const (...),Const (...)]

We wrote a custom conversion (based mostly on rewriting) in HOL4 which
parses the source code for Milawa’s 2000-line kernel into abstract datatypes such
as the expression above. The evaluation of the parser happens inside the HOL4
logic, so the result is a theorem of the form string to prog milawa kernel lisp = . . .
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When Jitawa evaluates the Define expression from above, a definition for
lookup-safe is added to its list of functions. The new entry is:

function name: "LOOKUP-SAFE"

parameter list: "A", "X"
function body: If (App (PrimitiveFun Consp) [Var "X"])

(If (App (PrimitiveFun Equal) [...])
(If (App (PrimitiveFun Consp) [...] (...) (...))
(App (Fun "LOOKUP-SAFE") [...]))

(Const (Sym "NIL"))

Instead of performing tedious proofs directly over deep embeddings such
as that above, we developed a tool that automatically translates these deep
embeddings into shallow embeddings and, in the process, proves that the shallow
embeddings accurately describe evaluations of the deep embeddings. The details
of this tool are the subject of a separate paper [12], but the net effect of using
it on lookup-safe is easy to see: we get a simple HOL function,

lookup safe a x = if consp x then
if a = car (car x) then

if consp (car x) then
car x

else cons (car (car x)) (cdr (car x))
else lookup safe a (cdr x)

else Sym "NIL"

and a theorem relating the deep embedding to this shallow embedding, stated
in terms of the application relation ap−→ of Jitawa’s semantics:

. . . =⇒ (Fun "LOOKUP-SAFE", [a, x], state) ap−→ (lookup safe a x, state)

Here state is Jitawa’s mutable state which has, e.g., the I/O streams and the
list of function definitions. The state is not changed by lookup safe because
lookup-safe is a pure function. Extracted impure functions take the state as
input and produce a new state as output, e.g. Milawa’s admit defun function
returns a (value, new-state) pair:

. . . =⇒ (Fun "ADMIT-DEFUN", [cmd , s], state) ap−→ (admit defun cmd s state)

5.2 Milawa’s proof checkers and reflection

The largest and most important pure function in Milawa is its initial proof
checker, proofp. This function is given an appeal (an alleged proof) to check. It
walks through the appeal, checking that each proof step is a valid use of some
inference rule. When Milawa starts, it uses proofp to check alleged proofs of
theorems and termination obligations. But the kernel can later be told to start
using some user-defined function, say new-proofp, to check proofs. Typically new-
proofp can accept “higher level” proofs that use new inference rules beyond the
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“base level” rules available in proofp. The kernel will only switch to new-proofp
after establishing its fidelity claim: whenever new-proofp accepts a high-level
proof of φ, there must exist a base-level proof of φ that proofp would accept.

We prove that proofp is faithful to the inference rules of the Milawa logic.
That is, whenever proofp is given well-formed inputs and it returns something
other than NIL, the conclusion of the alleged proof is `π-provable. Here axioms
and thms are lists of formulas, and atbl is an arity table.

∀appeal axioms thms atbl .
appeal syntax ok appeal ∧ atbl ok π atbl ∧
thms inv π thms ∧ thms inv π axioms ∧
proofp appeal axioms thms atbl 6= Sym "NIL" =⇒ `π conclusion of appeal

To accommodate the reflective installation of new proof checkers, the invari-
ant we describe in the next section requires that the property above must always
hold for whatever function is the current proof checker. It turns out that Mi-
lawa’s checks of the fidelity claim are sufficient to show that a new-proofp may
only be installed when it satisfies this property.

5.3 Milawa’s invariant

As it executes, Milawa’s kernel carries around state with several lists and map-
pings that must be kept consistent. Its program state consists of:

– a list of axioms and definitions,
– a list of proved theorems,
– an arity table for syntax checks (e.g., are all mentioned functions defined?

are they called with the right number of arguments?),
– the name of the current proof checker (proofp, new-proofp, . . . ), and
– a function table that lists all the definitions that have been given to the Lisp

runtime, and the names of functions that must be avoided since they have a
special meaning in the runtime (error, print, define, funcall, . . . ).

There is also state specific to the Lisp runtime’s semantics:

– its view of how functions have been defined,
– its input and output streams, and
– a special ok flag that records whether an error has been raised.

Finally, for our soundness proof, there is also logical (ghost) state:

– a logical context π must also be maintained.

A key part of our proof was to formalize the invariant that relates these state
elements. For the most part, the dependencies and relationships between the
state components were obvious, e.g. each entry in the function table must have
a corresponding entity inside the runtime’s function table, and since this is a
reflective theorem prover each function in the logic must have an entry in the
runtime’s function table.
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A few details were less straightforward. Each layer has its own abstraction
level, e.g. the kernel and runtime allow macros but these are expanded away
in the logic, and the function table uses S-expression syntax but the runtime’s
operational semantics only sees an abstraction of this syntax. There are also
some language mismatches: the logic has primitives (e.g. ordp and ord-<) which
are not primitive in the runtime, and the runtime has several primitives that
are not part of the logic (e.g., funcall, print, error). To further complicate
things, some of these components can lag behind: the function table starts off
mentioning functions that have not yet been defined in the logic. Such functions
can only be defined using exactly the definition given in the function table,
otherwise the defining event, admit-defun or admit-witness, causes a runtime
error. We will explain this invariant in more detail in forthcoming journal article
and/or extensive technical report.

We proved that each event handling function, e.g. admit-thm, admit-defun,
admit-switch etc., maintains the invariant. As a result, the kernel’s top-level
event-handling loop maintains the invariant.

5.4 Theorem: Milawa is faithful to its logic

Milawa’s kernel reads input, processes it, and then prints output that says
whether it has accepted the proofs and definitions it has been given. In order to
make it clearer what Milawa claims to have proved, we extended Milawa with
a new event, (admit-print φ), which causes φ to be printed if it has already
been proved as a theorem, or else fails. For instance, this new event can print:

(PRINT (THEOREM (PEQUAL* (+ A B) (+ B A))))

We formulate the soundness of Milawa as a guarantee about the possible out-
put: whatever the input, Milawa will only ever print THEOREM lines for formulas
that are true w.r.t. the semantics |=π of the logic. More precisely, we first define
what an acceptable line of output is w.r.t. a given logical context π:

line ok (π, l) = (l = "NIL") ∨
(∃n. (l = "(PRINT (n . . . ))") ∧ is number n) ∨
(∃φ. (l = "(PRINT (THEOREM φ))") ∧ context ok π ∧ |=π φ)

We then prove that Milawa’s top-level function, milawa main, only produces out-
put lines that satisfy line ok, assuming that no runtime errors were raised during
execution, i.e., that ok is true. Here compute output (definition omitted) is a
high-level specification of what output lines coupled with their respective logical
context the input cmds produces.

∃ans k output ok.
milawa main cmds init state = (ans, (k, output , ok)) ∧
(ok =⇒ (ans = Sym "SUCCESS") ∧

let result = compute output cmds in
every line line ok result ∧
output = output string result)

12



This approach works in part because Jitawa’s print function, though used by
Milawa’s kernel, is not made available in the Milawa logic. In other words, a user-
defined function can’t trick us into invalidly printing (PRINT (THEOREM . . . )).

This soundness theorem can be related back to the operational semantics of
Jitawa through the following theorem, which was automatically derived by our
tool for lifting deep embeddings into shallow embeddings:

. . . =⇒ (Fun "MILAWA-MAIN", [input ], state) ap−→ (milawa main input state)

6 Top-level soundness theorem

Now we are ready to connect the above soundness result to the top-level correct-
ness theorem for Jitawa, which was proved in previous work [13]. Its top-level
correctness theorem is stated in terms of a machine-code Hoare triple [11], which
can informally be read as saying: if Jitawa’s implementation is started from a
state where enough memory is allocated (init state) and the input stream of
ASCII characters holds input for which Jitawa terminates, then either an error
message is reported or a final state described by exec−→ is reached for which ok is
true and output is the final state of the output stream (final state).

{ init state input ∗ pc pc ∗ 〈terminates for input〉 }
pc : code for entire jitawa implementation

{ error message ∨ ∃output . 〈([], input) exec−→ (output , true)〉 ∗ final state output }

Roughly speaking, exec−→ involves parsing some input, evaluating it with ap−→ ,
and printing the result. By manually unrolling exec−→ to reveal the ap−→ relation
for the call of milawa main, it was straightforward to prove our top-level theorem
relating Milawa’s soundness down to the concrete x86 machine code.

This theorem, shown below, can informally be read as follows: if the ASCII
input to Jitawa is the code for Milawa’s kernel followed by a call to Milawa’s
main function on any input input , then the machine-code implementation for
Jitawa will either abort with an error message, or succeed and print line ok
output (according to compute output) followed by SUCCESS. Here strings are
lists of characters, hence the use of list append (++) for strings.

∀input pc.

{ init state (milawa implementation ++ "(milawa-main ’input)") ∗ pc pc }
pc : code for entire jitawa implementation

{ error message ∨ (let result = compute output (parse input) in
〈every line line ok result〉 ∗
final state (output string result ++ "SUCCESS")) }

7 Quirks, bugs and other points of interest

We ran into some surprises during the proof.
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Two minor bugs. No soundness bugs were found during our proof, but two
minor bugs were uncovered and fixed. One was a harmless omission in the initial
function arity table. The other allowed definitions with malformed parameter
lists (not ending with nil) to be accepted. We don’t see how these bugs could
be exploited to derive a false statement, but the latter could probably have
lead to undefined behavior when using a Common Lisp runtime, instead of our
verified Lisp runtime.

Complication with termination obligations. In its current form, Milawa will only
accept user-defined functions when their termination obligations are proven.
However, the termination obligations can, in some cases, mention the function
that is being defined. For instance, when defining a function like:

f(n, k) = if n = 0 then k else f(n− 1, f(n− 1, k + 1))

Milawa will require that the following termination condition has been proved for
some measure function m:

n 6= 0 =⇒ m(n− 1, f(n− 1, k + 1)) <ord m(n, k) ∧
m(n− 1, k + 1) <ord m(n, k)

But note that this statement mentions function f , i.e., f ought to be part of
the logical context π in order for this formula to be well-formed (formula ok).
Milawa’s kernel gets around this problem by checking the proof of such termina-
tion obligations in a half-way state, where f is acceptable syntax but the defining
equation is not yet available as a theorem. Our formalization of the logic checks
the termination obligations in a similar half-way state: the termination obliga-
tions are checked in a state where the function’s name is available in the context
but the function body is set to None (Section 4.2).

Extensions. Once we had completed the full soundness proof, we took the op-
portunity to step back and consider what part of the system can be made better
without complicating the soundness proof.

Evaluation through reflection: The original version of Milawa only used re-
flection to run the user-defined proof-checkers. However, one can equally well
prove theorems by evaluation in the runtime, since all function defined in the
logic also have a counter-part in the runtime. We have implemented and proved
sound such an event handler (admit-eval).

Support for non-terminating functions: Note that our formalization of Mi-
lawa’s logic only requires that there must exist an interpretation in HOL for each
of the functions living in Milawa’s logic. This means, e.g., that tail-recursive func-
tions can be admitted without any proof of the termination obligations, because
any tail-recursive function can be defined in HOL without a termination proof.
We have proved that it is sound to extend a context with any recursive func-
tion that passes a simple syntactic check which tests whether all recursive calls
are in tail position. This extension has not been implemented in the Milawa
kernel because, if it were there, Milawa might not terminate. The precondition
in the correctness theorem for our Lisp implementation requires that Milawa
terminates for all inputs (Section 6).
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8 Summary and related work

Davis’ dissertation [2] describes how the Milawa theorem prover is constructed
using self-verification from a small trusted kernel. In this paper, we have ex-
plained how we have verified in HOL4 that this kernel is indeed trustworthy.
We have proved that the implementation of the Milawa theorem prover can
never prove a statement that is false when it is run on Jitawa, our verified Lisp
implementation. This theorem goes from the logic all the way down to the ma-
chine code. To the best of our knowledge, this is the most comprehensive formal
evidence of a theorem prover’s soundness to date.

Related work. The most closely related work is that of Kumar et al. [8] which
aims to verify a similar end-to-end soundness result for a version of the HOL
light theorem prover. Kumar et al. have a verified machine-code implementa-
tion of ML [9] (the dialect is called CakeML) and have an implementation of
the HOL light kernel which has been proved sound w.r.t. a formal semantics
of higher-order logic (HOL). At the time of writing, this CakeML project has
not yet composed the correctness theorem for the ML implementation with the
soundness result for the verified implementation of the HOL light kernel.

Kumar et al. based their semantics of HOL on work by Harrison [5], in which
Harrison formalized HOL and proved soundness of its inference rules. Harrison’s
formalization did not include any definition mechanisms.

A reduced version of the Calculus of Inductive Constructions (CiC), i.e.,
the logic implemented by the Coq proof assistant, has also been formalized.
Barras [1] has given reduced CiC a formal semantics in set theory and formalized
a soundness proof in Coq. Recently, Wang and Barras [15] showed that the
approach is modular and applied the framework to the Calculus of Constructions
plus an abstract equational theory.

Milawa’s logic is a simplified variant of the ACL2 logic. The ACL2 logic
has previously been modeled in HOL, most impressively by Gordon et al. [3,
4]. In this work, ACL2’s S-expressions and axioms are formalized as a shallow
embedding in HOL. ACL2’s axioms are proven to be theorems in HOL, and a
mechanism is developed in which proved statements can be transferred between
HOL4 and ACL2. Our work is in many ways cleaner, e.g., Milawa’s S-expressions
do not contain characters, strings or complex rationals, which clutter proofs. As
part of our previous work on the verified Jitawa Lisp implementation, we proved
that the axioms of Milawa (milawa axioms from Section 4.4) are compatible with
Jitawa’s semantics. In the current paper, we went much further: we formalized
the logic, proved soundness of all of Milawa’s inference rules and proved sound-
ness of the concrete implementation of Milawa w.r.t. Jitawa’s semantics.

Other theorem prover implementations have also been verified. Notewor-
thy verifications include Ridge and Margetson [14]’s soundness and complete-
ness proofs for a simple first-order tableau prover that can be executed in Is-
abelle/HOL by rewriting, and the verification of a SAT solver with modern
optimizations by Marić [10]. Marić suggests that his SAT solver can be used as
an automatically Isabelle/HOL-code-generated implementation.
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Source code. Milawa’s soundness proof and all auxiliary files are available at
http://www.cl.cam.ac.uk/~mom22/jitawa/, and the Milawa theorem prover
is available at http://www.cs.utexas.edu/~jared/milawa/Web/.
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