Specialist Meeting at Imperial College, April 2016

A New Verified Compiler Backend for

CakeML

Main contributors to date: Anthony Fox, Ramana Kumar,
Magnus Myreen, Michael Norrish, Scott Owens,Yong Kiam Tan

%%) CHALMERS

UAIVERSITY OF TEOMNOLOGY

&% CAMBRIDGE Kent

8 UNIVERSITY OF o | DATA | % University of
b1
~N 7

CakeM

What? j (strict evaluation, stateful)

\'4
|. A programming language in the style of Standard ML and OCaml.

2. An ecosystem of proofs and verification tools

3. A verified, end-to-end development

Veritied complilation...

State of the art

Tarwe ?,"‘ ,“ Oraon
m:uhouc ----- ‘ CONOrry
il C source ElElilie - — - - Linear Sl o == == -
Y - neal S'..ayt ::oru-m D | 1 yout of e Do 3
P Y ' e—— | whocaton | ,,,,1 recoaNEon Valdaton || W n | actvaton Power PC
4 m) e O raruChons
- pover __,' e
o S el
O Model & Aegsier asocason ty | — [wacwe | [Memory
‘ P, F Detat
C checker .,- ot . ow analyses — P‘W - PR o ry) ‘ .\::::U;u | o et e

Leroy et al. Source: http://compcert.inria.fr/

Compiles C source code to assembly

Good performance numbers

Ecosystem: Verified Software Toolchain - Princeton University

Veritied compilation...
...for tunctional languages?

Answer: Many, but all are ‘toy’.

Attempt: CakeML first ‘realistic’ verified ML compiler (plus ecosystem).

The CakeML language

CakeML, the language
~ Standard ML without functors

A

(" i.e. with almost everything else:

higher-order functions

mutual recursion and polymorphism
datatypes and (nested) pattern matching
references and (user-defined) exceptions
arbitrary-precision integers

<A NSNS S

modules, signhatures, abstract types

/Update.’ New since POPL’ | 4: \e

v foreign-function interface
v mutable arrays, byte arrays, bytes
v vectors strings, chars

v type abbreviations

v

CakeML, the language
~ Standard ML without functors

A

(" i.e. with almost everything else:

higher-order functions

mutual recursion and polymorphism
datatypes and (nested) pattern matching
references and (user-defined) exceptions
arbitrary-precision integers

LA QS A S

modules, signhatures, abstract types

Ecosystem

Proof-producing synthesis Verified compiler backend

HOL functions Emdl CakeML AST Emd CakeML AST —>

Verified parsing Verified type inference

el |B — N E Ny — e 'C Y388 — typeable yes/no

Soon: Proof-producing verification-condition generation

@GO g — e P e etk i.e. a ‘verification condition’

Also: x86 implementation with read-eval-print-loop

This talk: Compiler verification

user expectations

| gap
observational behaviour

of source code
A

proved connection

<

modelled behaviour of
generated machine code

| gap
real behaviour of hardware

Verified compiler backend

-

The entire development is in
the HOL4 theorem prover.

~

The CakeML compller

Version | & 2

Version

4
First boots
traPPing of 1 .
piler.

Ramana Kumar Magnus 0. Myreen* 1 Michael Norrish 2 §cott Owens
1 Computer Laboratorys University of Cambridge, UK
2 Canberra Researe 1ab, NICTA, Australia
3 gchool of Computing, University of Kent,
Abstract 1. Introduction
We have Jeveloped and mechanica\\y yerified an ML system called The last decade has seen a strong interest 10 verified compilation:
CakeML, which supports substantial subset of standard ML. and there have been significant, high-P ofile results, many based
CakeML 18 imp\emented g an interactive read—eval—prim 1o0p on the CompCert compiler for C 11, 14, 16, 291. This interest is
REPL) 10 x86-6 achine code- Our correctness theorem ensures easy to justify: in the context of program erification, i unverifie
that this EPL imp\ementahon prints only thos€ result permitted compiler forms a 1arge and € mplex pa f the truste computing
by the gemantics of CakeML Our yerification effort touches on base However our knowledges none of the existing work on
a breadth of topics including lexing, Parsing. typ checking, in verified compilers for genera\—pu ose languages has ddressed all
cremental and dynamic compilation garbage collection arbitrary aspects of a mpiler along tWoO dimension one, th compilation
recision arithmetic, and ompiler bootstrapp'mg. algorithm for converting @ program from a Source string to @ 1ist O
Our contributions are twolO 4. The first is ply in build numbers representing machine code, and tWO. the execution of that
© . that 1S end—to—end verified, Jemonstrating that eac algorithm a mp\emented in machine €0 e
o-Cl "~ n in practice be compose Our purpose 1 this paper 15 o explain now we have verified
 _a1v on any a compiler along the full scope £ both of these dimens10ns for a
4ical genera\-purpose program ng languag Our language is
oy typeds 1 pure strict functiona
P e ad, we mean

Dimensions of Compiler Veritication

source code

< how far compiler goes)

abstract syntax
intermediate language

VM bytecode First verification to cover the full
spectrum of both dimensions.

machine code

compiler implementation implementation interactive call in read-
algorithm in ML in machine code eval-print loop runtime
A\

(the thing that is verified)

Intuition for Bootstrapping

Proof-producing synthesis Verified compiler backend

SRR | ST | GTLIE | S
Verified parsing Verified type inferem
el |B — N E Ny — e 'C Y388 — typeable yes/no

Intuition for Bootstrapping

&

el |B — N E Ny — e 'C Y388 — typeable yes/no

HOL functions

linput
HOL functions gmdl CakeML AST Emd CakeML AST —>

l output

verified x86 implementation of parsing, type inference, and compilation

Version 1 as in POPL'14

Compiler phases:

£n-09-0-0- 230
g

[huge step J\ huge step]

Bytecode simplified proofs of
read-eval-print loop, but made
optimisation impossible.

Almost no optimisations possible...
Poor design.

Version 2

Goals:

Design compatible with optimisations.

Acceptable performance.

Strategy: take inspiration from OCaml compiler (for some parts).

Values

abstract values incl.
code pointers and refs

64-bit 32-bit
words words

abstract values incl. closures and ref pointers

T ()

machine words and code labels

Languages

T (source syntax >

-~

no modules

Cno cons. names)

Cno declarations)

Cfull pat. match)

C no pat. match)

last language
with closures
(has multi-arg.

closures)

func. lang.
without

closures

only 1 global

abstract
imperative
language

imperative
language with
machine words,
memory and a
GC primitive
NS J
4)
imperative
language
with array-like
stack and
optional GC
N J

labelled
assembly lang.
N\ y g)

NSOV RV VAVAVAVAVAVVAYRVAVEY R YR V.VAVRVAVIRVAY

<
<
<
<

Compiler transformations

Parse concrete syntax
Infer types, exit if fail

Eliminate modules

Replace constructor
names with numbers

Reduce declarations to
exps; introduce global vars

Make patterns exhaustive

Compile pattern matches
to nested Ifs and Lets

Rephrase language

Fuse function calls/apps
into multi-arg calls/apps

Eliminate dead code
Prepare for closure conv.
Perform closure conv.
Fold constants

Shrink Lets

Compile global vars into a
dynamically resized array

Switch to imperative style
Reduce caller-saved vars

Combine adjacent
memory allocations

Remove data abstraction
Select target instructions
Perform SSA-like renaming
Force two-reg code (if req.)
Allocate register names
Concretise stack
Implement GC primitive

Turn stack access into
memory acceses

Rename register to match
arch registers/conventions

Flatten code
Delete no-ops (Tick, Skip)

Encode program as
concrete machine code

ARMv6 %\

RN
[ARMVB] [X86-64] [MIPS-64] [RISC-V]

All languages communicate with the external world
via a byte-array-based foreign-function interface.

(next slides will zoom in)

Result:

| 2 intermediate languages (ILs)

and many within-IL optimisations

each IL at the right level of abstraction

-

_

for the benefit of
proofs and compiler
implementation

s
Values used by
the semantics

_

~\

J

V

Values

Languages

i (source syntax) -

[sou rce ASTJP

(no modules)

abstract values incl. closures and ref pointers

-

last language
with closures

(has multi-arg.

closures)

j

> Incl.
and refs

func. lang.
without
closures

&

J

J

(no cons. names)P
(no declarations)P
("full pat. match)D

(no pat. match)
4)

<

D Rephrase lanquage

<

JRVAVAVAVAY

Compiler transformations

Parse concrete syntax

Infer types, exit if fail

Eliminate modules

Replace constructor
names with numbers

Reduce declarations to
exps; introduce global vars

Make patterns exhaustive

Compile pattern matches
to nested Ifs and Lets

Parser and type
inferencer as before

Early phases reduce
the number of
language features

Fuse function calls/apps
into multi-arg calls/apps

Eliminate dead code
Prepare for closure conv.

Perform closure conv.
Fold constants

Shrink Lets

Compile global vars into a

Language with multi-
argument closures

abstract values incl.

abstract values incl. closures

code pointers and refs

1L J
T 4)

T ()

code labels

(no declarations)‘/ exps; introduce global vars

(full pat. match)

(no pat. match)

4)

last language
with closures
(has multi-arg.

closures)

func. lang.
without
closures

-
_

)
o
S
<
—h
Q
O
o
L

__/

abstract
imperative
language

_

imperative
language with
machine words,
memory and a

GC primitive
g /
4)
imperative

Y U YUY Y Y

<
<

Make patterns exhaustive

Compile pattern matches
to nested Ifs and Lets

Rephrase lanauaae

LIC 1idiriovci Ol
language features

Fuse function calls/apps
iInto multi-arg calls/apps

Eliminate dead code
Prepare for closure conv.
Perform closure conv.
Fold constants

Shrink Lets

Compile global vars into a
dynamically resized array

Switch to imperative style
Reduce caller-saved vars

Combine adjacent
memory allocations

Remove data abstraction
Select target instructions
Perform SSA-like renaming
Force two-reg code (if req.)
Allocate register names
Concretise stack
Implement GC primitive

- J
4)
Language with multi-
argument closures
- J
4)
Simple first-order
functional language
- J
4)
Imperative language
- J

Machine-like types

64-bit 32-bit
words words

machine words and code labels

«
4)
imperative
language with
machine words,

3 v

4)
imperative
language
with array-like

optional GC
o /
-

labelled

\

VLRV VAVAVEVAVAVVATE

assembly lang.
y lang y

memory allocations
Remove data abstraction
Select target instructions

Perform SSA-like renaming
Force two-reg code (if req.)

Allocate register names
Concretise stack
Implement GC primitive

Turn stack access into
memory acceses

Rename register to match
arch registers/conventions

Flatten code
Delete no-ops (Tick, Skip)

Encode program as
concrete machine code

)

ARMv6]¢

\
[ARMVB) (X86-64) [MIPS-64) [RISC-V)

All languages communicate with the external world

via a byte-array-based foreign-function interface.

Machine-like types

-

Imperative compiler
with an FP twist:
garbage collector,

live-var annotations,

fast exception
mechanisms

Targets 5 architectures

- J

Some detalls

Closure representation:

Closures are values with a code pointer:

Block closure tag
([CodePtr ptr; Number arg_count] Q free_var_vals)

For mutually recursive closures:
Block closure tag

|CodePtr ptr; Number arg_count;|RefPtr ref _ptr]

/\

4)
expected number of arguments

(multi-argument closures)

- J

More detalls

Configurable data representation

Example pointer value:

0..

A

address value

.00110011101 00 O1 010 1

A A
padding T length T

ﬁ tag A marker

A

7

These can be left out

_

Speeds up pattern
matching, if present

J

Fven more detaills

Stack contains information about live vars for the GC

stack

))

0010110101010

Details of one stack frame:

pointer / livi/!far !\

... | 00000101 | 00100100 | ...
A 4 X

7 AN
continues last word
end of frame

Semantics & Proofs

Semantics

Each intermediate language has a formal semantics.

We define these using a functional big-step style (ESOP’ | 6)
where the semantics is an evaluation function in logic

Extract of abstract first-order lang:

evaluate ([Var n|,env,s) =
if n < len env then (Rval [nth n env],s)

else (Rerr (Rabort Rtype error),s)

evaluate ([If 1 =2 x3],env,s) =
case evaluate ([z1],env,s) of
(Rval vs,s1) =
if Boolv true = hd vs then evaluate ([z2],env,s1)
else if Boolv false = hd vs then evaluate ([z3],env,s1)
else (Rerr (Rabort Rtype error),s1)
| (Rerr e,s1) = (Rerr e,s1)

Top-level observable FFl semantics defined using evaluate.

Proof

Proof styles:

Standard induction on evaluation function
v proofs in direction of compilation
¥ no co-induction needed for divergence pres. (ESOP’| 6)

Untyped logical relation (ind. on compile function)

Each part of the compiler preserves obs. semantics:

r

_

type-safe
source
implies this

J

- compile config prog = new_prog N
syntactic condition prog A
Fail ¢ semantics ffi prog = due to out-of-memory error]

semantics fft new_prog C
extend with resource limit (semantics ffi prog)

abstre

code

Is and code labels

Imperative
language

4)
Imperative
language with
machine words,
memory and a
GC primitive
_ /
4)
Imperative
language
with array-like

YLVEVLVAVAVAVAYATE

AatAanls AnA

Difficult cases

GC and register allocator interaction

Combine adjacent
memory allocations

[

Remove data abstraction ——

Select target instructions
Perform SSA-like renaming
Force two-reg code (if req.)
Allocate register names

GC introduced j

Concretise stack

Implement GC primitive

Turn stack access into
memory acceses

u
LN

GC calls concretised j

Solution: we use a semantics that allows reordering of stack variables.

Size, Effort, Speed

Combpiler Size:

Proof Size:

Effort:

Speed:

6 000 lines of function definitions
(excludes target-specific instruction encoders & config)

100 000 lines of HOL proof script

6 people, 2 years, but not full time

next slide...

(Numbers up-to-date as of April 2016)

SImple Benchmarks

B CakeML v1
B CakeML v2

slower
interpreted OCam|

faster

l

exec time / exec time of interpreted OCaml

fib gsort queue btree

SImple Benchmarks

B CakeML v1
M CakeML v2

. OCaml native-code compiler <(state of the art)

slower
interpreted OCam|

faster

l

exec time / exec time of interpreted OCaml|

/\fib gsort queue A btree

Contributing factor:
CakeML has arbitrary (an anomaly)
_ Precision arithmetic y

SImple Benchmarks

— Why?
Version | can compile big programs (in-logic)

Version 2 in-logic evaluation is too slow for large examples

| A

(we are working to improve this)

[why not outside? J

lmmediate future work

/ unknown }
fun map f [] = []

| map f (x::xs) = f x ::

map f Xs;

val list_addl = map (fn n => n + 1);

Ny

|

Any app of a known function needs to
be optimised to a fast procedure call.

)

\

Inlining should produce a

_

copy of map specialised
for fn n => n+l

J

This talk:

Big-picture:

Why?

— CakeML

New compiler’s design compatible with optimisations
Ecosystem around a clean formalised ML language

End-to-end verification, and end-to-end verified applications

Questions?

Ramana Kumar Anthony Fox Scott Owens Michael Norrish

