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ABSTRACT

Hardware-based packet classification and capture can be a
useful feature for a high-speed networked device, or a useful
debugging aid for NetFPGA projects. This paper presents
the design and implementation details of a drop-in module
for the NetFPGA framework which provides a simple but
nevertheless highly flexible system for matching patterns in
one or more packet headers and/or payloads and diverting
such packets to the host system via DMA for inspection or
recording. The module is implemented in such a way as to
never act as a bottleneck to the NetFPGA pipeline, and can
classify packets at wire speed. We also present an extensible
software framework which allows filters to be specified and
implemented by the user in a simple manner according to
built-in knowledge of common protocols, provides display of
captured packets via the Wireshark protocol analyser and
optionally further distributes captured packets to custom
processes via a publish/subscribe system for analysis and /or
storage. The hardware module and associated software will
be available to the NetFPGA community under a free li-
cense.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network Monitoring

General Terms
Measurement, Performance

1. INTRODUCTION

It is frequently required for a network operator to be able to
inspect a subset of the packets passing through a network.
This can be needed for a wide variety of different reasons,
such as

e fault diagnosis,

e fault detection,
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e investigation of network abuse,
e capacity planning and monitoring,

e usage logging

and many others. Traditionally, this used to be achieved by
configuring a switch or router to mirror all traffic to a mon-
itoring server, which performed packet classification of the
complete feed of all packets in software against criteria con-
figured by the network operator—but with exponentially-
increasing transmission speeds it is increasingly necessary
to perform packet classification in hardware so that only
the packets of interest are handled in software.

There are a number of commercial, high-speed, hardware-
based packet classification and capture systems on the mar-
ket such as those manufactured by Endace [1]. The aim of
this paper and the module it describes is not to compete with
such systems, but rather to design and implement a small yet
flexible self-contained module for performing packet classifi-
cation and capture as part of a larger NetFPGA project—for
example a router or switch. This could be in order to add
an extra feature for one of the reasons described above, or
it could be as a debugging aid during the development of a
NetFPGA-based project.

Our module can be inserted into the user data path of a
project which follows the recommended NetFPGA architec-
ture, likely with no or minimal modification required, and
provides a register interface for configuration of per-port fil-
ters. Captured packets are sent via DMA to the software,
specially marked such that they can easily be separated from
other exception or control packets, and can be displayed by
standard tools or processed by simple scripts.

In addition, we have implemented a software configuration
tool to aid the user in compiling filters from simple, human-
readable specifications broadly similar to those used by the
familiar software-based packet capture tool TCPdump [3].

2. DESIGN DECISIONS

There is considerable variation in what might be required or
expected in a packet classifier. In the simplest case, a classi-
fier might allow only header fields of a particular set of pre-
defined protocols to be inspected when considering whether
a given packet should match the classifier, and may only
allow one classification filter to be active at a time. More
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advanced classifiers may allow multiple filters to be installed,
and/or allow matching of user-defined protocols or arbitrary
packet payload data.

The approach chosen in this case was a compromise be-
tween hardware complexity and feature breadth. Keeping
the hardware simple was an important requirement as this
module is intended to be used as part of a larger design and
must avoid taking up too much space on the FPGA. The
following requirements were drawn up:

e Optional per-physical-port filters. As standard,
each MAC interface can have filters configured inde-
pendently; packet classification is applied on packet
ingress according to the filters configured on the ingress
port. Filtering can also be added to DMA interfaces
at the cost of FPGA area. Alternatively, if required
in order to save more space, one filter can be shared
between ports thus excluding the per-port filter capa-
bility.

e Multiple filters can be combined such that all
must match. Multiple header patterns can be com-
bined into a single filter such that the packet must
match every specified pattern in order to satisfy the
filter as a whole. No complex boolean expressions
involving multiple filters are permitted—in particular
there is no boolean ‘OR’ supported, only ‘AND’—as
this would increase hardware complexity considerably.

e Matching of arbitrary protocol headers. The set
of protocols supported is not hardwired into the hard-
ware and can be updated from software. Matching of
headers of any protocol whatsoever is supported, pro-
vided that the headers are contained within the first
64 bytes of the packet (counting from the start of the
Ethernet header) and the headers are at fixed positions
within the packet (variable-length headers are not sup-
ported; see below). If 64 bytes proves to be insufficient,
the packet capture range can be increased without too
much difficulty, although this would take up a greater
amount of the available FPGA area.

e Matching of data at the start of protocol pay-
load. As a generalisation of the previous point, no
distinction is made between protocol headers and pay-
load, and as a result filters can apply string matching
to the first few bytes of packet payloads in order, for
example, to identify HTTP GET requests and similar
simple protocols. However, strings matched must ap-
pear at a predictable byte offset into the packet, which
once again precludes use of this feature where variable-
length headers are present. This is discussed in more
detail below.

e Marking of captured packets by inserting a spe-
cial Ethernet address. Software can inspect the
Ethernet header of the packet in order to distinguish
captured packets from other exception packets which
may be sent to the DMA interfaces by other modules.
This does mean that the original Ethernet destination
of the packet is lost, but we considered that in gen-
eral higher-layer protocol headers such as IP are of
more interest and this was the least intrusive method
of marking a packet.

Furthermore, was considered important that this module
would not adversely affect performance of the overall hard-
ware system. The module is intended to sit in a simple
pipeline in series with other NetFPGA user data path mod-
ules and as with any such module is in a position where it
could cause a performance bottleneck if it behaved in cer-
tain ways. As a result we implemented the module in such a
way as to never cause such a bottleneck. In particular, the
packet classification and capture module is:

e Fully pipelined. The module by necessity buffers
packet data for a short while, in a FIFO, in order to
allow inspection of up to 64 bytes of packet data before
determining the packet’s destiny but is capable of hav-
ing multiple packets in motion at the same time—i.e.
the tail end of one packet and the start of the next—
without interruption.

e Low latency. Packet data passes through the pipeline
in eight-byte words, preceded by a control header at
the start of the packet, so nine clock cycles elapse dur-
ing the arrival of the required 64 bytes of packet data.
One further clock cycle after the required data has ar-
rived, packet data can be passed on to the next module,
and so 80 nanoseconds of latency is introduced by this
module.

e Wire-speed. The module is not capable of initiating
a pipeline stall, and thus will not cause a throughput
bottleneck. Data entering the FIFO buffer is matched
asynchronously within one clock cycle, and the packet
header rewriting stage at the output of the module
also completes within one clock cycle. Flow through
the FIFO is controlled entirely by inputs from neigh-
bouring modules.

2.1 Variable-length Headers and Payload

Extending the packet classification hardware design to sup-
port variable-length protocol headers would introduce a con-
siderable extra complexity and cause a corresponding FPGA
area penalty at the very least—and would likely also re-
quire a relaxation of the latency or throughput requirements
given above due to the difficulty of performing more complex
matches within a single 8-nanosecond clock period.

Unfortunately, however, some of the most common proto-
cols such as IP and TCP include the facility for optional
additional headers. Of these, IP options would be the most
problematic as they would introduce an unpredictable offset
to all higher-layer header fields, but thankfully they are seen
rarely in the wild due to the prevalence of routers which do
not permit them [2].

TCP options are seen in the wild frequently, however; Linux
for example will usually include the optional TCP times-
tamp header on every packet unless this has been specif-
ically disabled. Since options are placed after mandatory
header fields, this does not impede in matching other fields,
but it does cause the start of the payload to become un-
predictable, or in some cases it can extend the headers be-
yond the 64-byte matching window supported by this packet
classifier in its current form. TCP timestamps can usually
be disabled—on Linux, for example, one can run (as root)



the command “sysctl net/ipv4/tcp_timestamps=0"—and
this may prove necessary if hardware-based payload match-
ing is absolutely required. However due to the impracticality
of disabling TCP timestamps and any other options on ev-
ery endpoint it is likely that the payload matching feature
cannot be relied upon in the general case in its current form.

Nevertheless this does not preclude the utility of the packet
classifier for TCP traffic. Everything but the payload can
be reliably matched in hardware, and any further payload
matching could be done with software cooperation. For ex-
ample, in order to match HTTP GET requests, the hard-
ware could capture TCP packets destined for port 80—
presumably a tiny subset of the total traffic through the
hardware—and the software could inspect the payloads for
the GET query taking into account the length of the TCP
header.

3. HARDWARE DESIGN

The self-contained packet classification and capture hard-
ware module, named “packet_capture”, is intended to sit in
the user data path provided by the NetFPGA framework.
A single instance of the module implements a single set of
filters (either for a single header pattern or a combination
of header patterns which must all match for a packet to
be captured). It is primarily intended to be instantiated
once per physical port, between and in series with the MAC
receive queue and the input arbiter, in order to achieve per-
port filtering. However if FPGA space is at a premium the
packet_capture module can be instantiated a single time,
after the input arbiter module (thus reducing the footprint
by 75%) in order to forego per-port filters.

Since the packet_capture module implements both the fil-
ter management and packet classification logic it also re-
quires participation in the PCI register bus for filter config-
uration purposes.

The filter itself can be considered to be stored in two 8 x 64
bit, dual-port RAMs per module instantiation, called £il-
ter_data and filter_mask. In practice, although these are
behaviourally specified as RAMs, due to their small size they
are invariably automatically optimised during synthesis into
LUTs for increased performance. filter_data represents
the data to search for in each of the first eight data words (i.e.
the first 64 bytes of packet data after the standard module
header prepended onto the packet by the NetFPGA frame-
work); the relevant word from filter_mask is first ANDed
with the packet data before comparison with the relevant
filter_data word.

This is best illustrated through an example. Consider a filter
which aims just to match an Ethertype of 0x0800, ignoring
all other header fields. The Ethertype field appears in bits 16
through 31 of the second word. Thus this match is specified
by the two variables

filter_data[1]
filter_mask[1]

64°h0000_0000_£f£fff_0000;
64°h0000_0000_0800_0000;

(with the remainder of filter_data and filter_mask ini-
tialised to all-zeros).

The task of computing suitable values for filter_data and
filter_mask is left to the software. This at first glance
may appear to be a trade-off, but actually this approach has
several benefits and few disadvantages. Leaving protocol-
specific knowledge out of the hardware allows the packet
classification engine to be futureproof: adding support for
a new protocol need only be done in software, and does
not require taking the hardware offline. It also keeps the
hardware simple, and thus more reliable as well as smaller in
terms of FPGA footprint. Complex filters can be compiled
by the software and uploaded to the hardware as a simple
set of 64-bit values.

3.1 Configuration Interface
The hardware receives raw filter_data and filter_mask
values from the software via PCI register writes.

An XML register map is provided, suitable for use with the
register system introduced in version 2 of the NetFPGA
framework. The register interface provided is simple; a fil-
ter is uploaded via a table interface which will be familiar
to users of the standard NetFPGA framework modules’ reg-
ister interfaces. The register map compiles to the following
set of registers:

FILTER_TABLE_ENTRY_DATA_HI
FILTER_TABLE_ENTRY_DATA_LO
FILTER_TABLE_ENTRY_MASK_HI
FILTER_TABLE_ENTRY_MASK_LO
FILTER_TABLE_WR_ADDR
FILTER_TABLE_RD_ADDR

In order to upload a filter (which, after compilation, is likely
represented in the software by a 512-bit data string and a
further 512-bit mask), the software must divide the data
into 64-bit chunks indexed ¢ = 0 through 7, then for some
index ¢, write the top 32 bits of filter_datali] to the
FILTER_TABLE_ENTRY_DATA_HI register, the bottom 32 bits
to FILTER_TABLE_ENTRY_DATA_LO. The same procedure is
used for filter_mask[7] and FILTER_TABLE_ENTRY_MASK_HI
and _LO. Having performed these four writes, the index 4
must then be written to the table’s write address register,
FILTER_TABLE_WR_ADDR. This completes the write of a filter
word, and the whole procedure of five writes can be repeated
for each other value of i.

Reading the filter back into software requires a similar pro-
cess in reverse: first the address to be read is written to
FILTER_TABLE_RD_ADDR and then the data and mask at that
address can be read back from the appropriate other regis-
ter.

On power-up, the filter table on the FPGA may contain
uninitialised data. It is not cleared during startup, but
instead a separate set of flags—filter_valid[i]—tracks
when each table entry is written. When matching packet
data, if this flag is not set for a particular filter word, that
word is assumed to have a mask of zero such that it will
never be considered.

One additional register is provided, separately from the filter
table interface: PORT_NUM_HITS. This is simply a counter
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Figure 1: Simplified data flow through the packet classifier

which is incremented every time a packet matches the filter
and is provided to allow the software to check the number of
packets it has received against this counter for verification
purposes. It can be reset by writing a value (most usefully
0) to this register.

As with the module itself, the register map defines enough
registers for a single filter only. If using per-port filters, the
register map must be instantiated four times. The register
system provides a facility to do this simply in project.xml:

<nf:instance name="packet_capture" count="4" />

3.2 Data Flow

The flow of data through the module centres around a small
FIFO buffer—an instantiation of the NetFPGA library mod-
ule “small_fifo”, parameterised to be 72 bits wide (in or-
der to accommodate a 64-bit data word and an 8-bit con-
trol word) and 10 stages deep—as summarised in Figure 1.
The input of this FIFO is connected directly up to the ex-
ternal interface of packet_capture; the next available data
and control words from the preceding stage of the user data
path (e.g. the MAC) is written directly into the FIFO in
each clock cycle so long as the FIFO is not full.

Filter matching also takes place at this stage, by monitor-
ing data as it arrives in the module and is written into
the FIFO. A small state machine detects the arrival of a
NetFPGA module header and thus the start of a packet, and
in a register—in_word_num—keeps a count of the number of
packet data words so far. The currently-appropriate word
of the filter is thus contained in filter_datal[in_word_num]
and filter_mask[in_word_num], and similarly for the cur-
rent filter_valid flag.

Using this data, we can determine whether the filter matches
(a “hit”) or mismatches (a “miss”) at the current word. This
problem has by this point been reduced to the pair of com-
binatorial logic expressions given in Figure 2. Crucially
though it is not the case that filter_miss is the negation

of filter_hit. A miss means that a filter pattern explic-
itly did not match; in the case where the mask is zero (or
filter_valid is unset) there is simply no pattern to match
and the filter is ignored giving neither a hit nor a miss.

If when the eighth word is reached there has been at least one
filter hit and no filter miss, the packet is considered to have
matched the filter and a flag—exception_pkt—is set to in-
dicate that the current packet is to have its header and des-
tination port rewritten so that it reaches the software. Soon
afterwards (by one clock cycle if the downstream pipeline is
flowing freely) the first word of the packet will emerge from
the other end of the FIFO and reach the header rewrite state
machine. If the exception_pkt flag is set, the aforemen-
tioned rewriting happens inline here as the data passes from
the FIFO to the module outputs (out_ctrl and out_data).

The exact nature of the rewriting depends on parameters
passed to the module, detailed below.

3.3 Module Parameterisation

The header rewriting behaviour of the packet capture mod-
ule is configurable to an extent. As previously mentioned,
captured packets are tagged with a special reserved destina-
tion Ethernet address; this defaults to FF:FF:FF:FF:FF:FE
but can be changed via a (compile-time) module parameter;
it is not expected that there would be any need to change
this however as this address is not likely to be found in real
network traffic.

The destination DMA interface for packets matching the fil-
ter can be set during operation: the module provides an
input called exception_port for this purpose (a 16-bit one-
hot-encoded field in the same format as the destination port
field in the NetFPGA module header). Additionally a per-
port default can be specified via a module parameter, such
that if exception_port is tied to zero the default is used
instead; the intended purpose of this is to have captured
packets from each of the four MAC ports sent to the corre-
sponding one of the four DMA interfaces by configuring the
default for each module appropriately.



assign filter_hit = in_wr &

filter_valid[in_word_num] & |filter_mask[in_word_num] &
((in_data & filter_mask[in_word_num]) == filter_datal[in_word_num]);

assign filter_miss = in_wr &

filter_valid[in_word_num] & |filter_mask[in_word_num] &
((in_data & filter_mask[in_word_num]) !'= filter_datal[in_word_num]);

Figure 2: Combinatorial expressions for determining filter hits and misses at a given word

Additionally, in a per-port filtering setup, the module must
be parameterised according to the port it is associated with:
in particular the block address of the PCI register block
(as generated from the XML register map by the register
system) to use must be provided, and must be different for
each instance of the packet_capture module so that filters
remain separate.

4. SOFTWARE DESIGN

The software component contains all of the protocol-specific
knowledge needed to compile filters suitable for sending to
the hardware. It also contains components to aid the dis-
tribution of captured packets to any interested party via a
publish/subscribe mechanism.

4.1 Filter Compilation and Installation

A utility called pacap_filter is responsible for compiling
a human-readable packet filter specification into the filter
data and filter mask values required by the hardware. As a
demonstration of the flexibility of this application, a sample
invocation could look like

pacap_filter 2,3 \
ip.dest=131.111.179.82 \
tcp.dport=80 tcp.data=GET

meaning that ports 2 and 3 will be monitored for TCP
packets directed to 131.111.179.82 port 80, whose payloads
begin with the string “GET”. (All clauses must match si-
multaneously, i.e. are ANDed together.) This filter speci-
fication, in fact, implies a few other criteria which are ap-
plied automatically—for example that the Ethertype must
be 0x0800, so that non-IP packets are not matched acciden-
tally. The process which pacap_filter undertakes in order to
apply this filter can be seen in the sample output from the
application shown in Figure 3. This process completes in a
fraction of a second.

The pacap_filter utility is written in Python, and mostly
consists of a table of protocols and header fields, along with
metadata on the way in which protocols stack (so that, for
example, referring to TCP in the filter causes checks to be
added on various IP header fields, which in turn causes an
Ethertype check, as expanded above). At the time of writ-
ing, pacap_filter understands Ethernet, IPv4, ICMP, UDP,
TCP and OSPF; more protocols are expected to be added
as they are required.

4.2 Captured Packet Distribution

control andThe existing software component of the project
which integrates this packet_capture module—for example,

== Expanded filter

ip:
dest: 0x836FB352
ver: 0x4
hdrlen: 0x5
protocol: 0x6
ether:
type: 0x800
tep:
dport: 0x50

data: 0x474554

== Compiled filter

DATA 0000000000000000 0000000008004500 0000000000000006
000000000000836F B352000000500000 0000000000000000
0000000000004745 5400000000000000

MASK 0000000000000000 00000000FFFFFF0O 00000000000000FF
000000000000FFFF FFFFOOOOFFFFO000 0000000000000000
000000000000FFFF FF00000000000000

Erasing packet capture filters on port O

Erasing packet capture filters on port 1

Uploading filters to packet capture hardware on port 2
Uploading filters to packet capture hardware on port 3
Done.

== Running capture

Figure 3: Sample output from pacap_filter

in the case of the basic router we used to prototype the mod-
ule, the control and exception-packet-handling software—
must be modified slightly in order to take account of the
specially-tagged captured packets which will be received on
the DMA interfaces. The required change is minimal, how-
ever: all it must do is check the destination MAC address
on every received packet, and if it matches the tag address
(FF:FF:FF:FF:FF:FE or as configured in the hardware) it
should be forwarded to a UNIX socket.

The UNIX socket is provided by pacap_daemon, a pub-
lish/subscribe moderator which distributes packets to any
connected client. Clients can exist to process and/or store
packets in any way; this stage is left to the user. Writing a
client is a simple process in almost any UNIX scripting or
programming language, as the required UNIX socket API is
almost ubiquitous.

A sample client is provided with the packet capture sys-
tem as it stands. This is built into pacap_filter, and copies
received packets into the Wireshark network protocol anal-
yser [4] for user-friendly display and manipulation (via a
dummy network interface, as provided by the Linux kernel
‘dummy’ module, since Wireshark is unable to read from a
UNIX socket). As it stands, therefore, pacap_filter is suit-



able for use by an end-user who does not need to know the
detail of how packets are being captured; the software op-
erates in a similar manner to TCPdump or Wireshark but
with the benefit of hardware acceleration.

5. CONCLUSION

We have implemented a capable yet compact packet cap-
ture and classification module suitable for insertion into a
NetFPGA project, and able to cooperate with the other
modules that make up the project, allowing for the addi-
tion of packet capture capabilities to almost any networking
hardware implementable on the NetFPGA—or simply as a
handy debugging mechanism for NetFPGA projects which
allows the developer to see in real time the packets passing
through the hardware.

The module works effectively in practice, despite a few de-
sign trade-offs having been made in order to keep the FPGA
area used small. Filters are compiled and deployed from a
simple, human-readable filter specification language using
an easily-extensible software framework, and packets can be
easily distributed in software for custom analysis.

The Verilog and XML source of the hardware module, to-
gether with the Python source of the software components,
will be made available under a free license to the NetFPGA
community.
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