
Network Scalability in the Data Centre

CPGS Report

Malcolm Scott

Contents

1 Introduction 1
1.1 Data Centre Network Design Challenges 1
1.2 Scalability Limitations of Ethernet . 4
1.3 Related Work . 6

2 Scalable Ethernet Addressing: MOOSE 8
2.1 Hierarchical Addressing . 8
2.2 MOOSE Architecture . 9
2.3 Interoperability Considerations . 15
2.4 Implementation and Evaluation . 17
2.5 Ongoing Work . 17

3 Broadcast Traffic Optimisation 19
3.1 The Broadcast Problem . 19
3.2 Address Directory Service: ELK . 20
3.3 IPv6 Neighbour Discovery . 22
3.4 Ongoing Work . 24

4 Layer-3 Virtual Machine Migration 26
4.1 Transparent IPv6 Address Persistence . 27

5 Conclusion and Thesis Plan 30
5.1 Thesis Structure . 30
5.2 Timeline . 31

Bibliography 32

i

List of Figures

1.1 Effect of RSTP on a 2D mesh topology . 5

2.1 Assignment of MOOSE addresses by switches 10

2.2 Sequence diagram . 12

2.3 Mobility options . 14

3.1 Broadcast traffic breakdown by protocol . 21

3.2 Rate of ARP messages on a test network with and without ELK 23

4.1 Virtual network topology . 28

ii

CHAPTER 1

Introduction

My research is on improving the scalability of data centre networks, in a manner which
could realistically be deployed in the near future. In order to explain the motivation for
this work, I will describe in this chapter the current situation in data centre networking,
and why scalability issues are a real and current concern. The outcomes of my research
will, I hope, also apply to other scenarios.

1.1 Data Centre Network Design Challenges

Traditionally, data centres have contained disparate clusters of servers dedicated to
specific applications which operate independently. The servers purchased for a partic-
ular application would largely communicate either within the cluster or with clients
in the outside world—not with other server clusters. The network infrastructure was
(and still is) almost invariably Ethernet and IPv4 due to their ubiquity elsewhere, but
network scalability was rarely an issue as the network could be subdivided arbitrar-
ily. In any case the entire data centre was not likely to be excessively large. The net-
work would generally form a simple tree topology comprising top-of-rack switches, a
switched or routed aggregation layer and a routed core; so long as the servers of each
cluster were in the same part of the tree and within the same IP subnet, internal and
external communication would be reasonably efficient.

This no longer applies to modern data centres. Three main factors have changed.

1.1.1 Virtualisation

From the perspective of the network, a virtual machine is no different to a physical one;
each virtual machine is addressable separately via its own Ethernet and IP addresses
[Barham et al., 2003]. However, virtualisation introduces a layer of abstraction between
physical server and operating system which allows any virtual server to run on any

1

1. INTRODUCTION

physical machine, often with the ability to migrate between physical machines whilst
running [Clark et al., 2005]. Live migration is beneficial as it allows for more resilience
and flexibility; physical servers can be added in order to increase capacity or removed
for maintenance at any time without affecting application availability.

Supporting live migration is a significant challenge for network designers. The
premise behind current virtual machine migration systems is that the process must be
entirely transparent to the guest operating system and application; applications keep
running and are not even aware that they have been migrated, and any TCP connec-
tions to clients or other servers remain open. In order for TCP connections to sur-
vive the migration, the virtual machine’s IP address must not change and therefore—
assuming the nonexistence of mitigating technologies such as IP Mobility [Perkins,
2002], which is not widely implemented—live migration can only occur within a
broadcast domain and a virtual machine cannot cross any routers.

Consequently, if live migration is to be supported across the entire data centre—or
indeed between data centres—the network must be a single large Ethernet. IP routers
cannot be used to subdivide the network, and Ethernet is required to scale on its own.
As I will describe in Section 1.2, Ethernet is already unable to scale to this degree.

A common workaround is to constrain live migration to certain subsets of the phys-
ical servers by dividing the data centre’s servers into pools, each on a separate Ethernet
broadcast domain. This provides some of the benefits of live migration in that individ-
ual machines can still be taken offline assuming there is spare capacity in every pool,
but in some situations this will hinder rather than help: if all servers in a particular
region of the data centre have to be shut down, for example due to network or power
maintenance, this may leave one pool with insufficient physical servers to run all its
virtual machines. Amazon EC2 does not use live migration at all; this decision was
likely motivated at least in part by the network engineering challenges. Cold migra-
tion does occur in EC2—when a virtual machine instance is booted, it will be allocated
to a physical server according to available capacity—but even then the network is sub-
divided into “availability zones” between which instances will never move.

1.1.2 Larger Data Centres

With the rising popularity of cloud computing, major service providers are building
ever-larger data centres. The details are generally considered commercially-sensitive,
but the occasional snippet of information hints at the scale involved. Microsoft, for
example, opened a high-density data centre in Chicago in 2009 which can hold 300,000
servers [Chrapaty, 2008]; they also run or are building slightly-smaller facilities in
Dublin, Texas and Washington. In 2008 their infrastructure was expanding by 10,000
servers every month. These numbers represent physical servers; virtualisation adds
another order of magnitude of addresses as discussed above.

2

1. INTRODUCTION

In such an environment, supporting live migration within and between data cen-
tres would require a single broadcast-domain to be able to handle millions of virtual
machines across several hundred thousand physical servers in geographically-diverse
locations.

A further case study requiring live migration between several interconnected data
centres is provided by the Intelligent Energy-aware Networks (“INTERNET”) project,
alongside which I am working. One of the aims of the INTERNET project is to develop
the ability to move computational loads near to sources of renewable power in order
to minimise electrical transmission losses. Data centres would be built near to, for
example, wind farms around the country—but since different wind farms generate
power at different times according to weather patterns, entire data centres would be
turned on and off automatically with virtual servers migrated accordingly between
data centres located hundreds or perhaps thousands of miles apart.

1.1.3 Resilient Topologies

Traditional data centre network architectures are based on tree topologies. Each server
rack, containing on the order of 20 to 40 servers, has a top-of-rack Ethernet switch with
a single connection to each server. (With virtualisation, the server may logically contain
several hosts, which is achieved by the means of a software Ethernet switch running
in the virtualisation layer.) Connections from around 20–40 top-of-rack switches are
aggregated back to a single end-of-row switch. The end-of-row switch is in turn con-
nected into a core network; in a small data centre the core may simply be a single large
IP router. As live virtual machine migration becomes a necessity, this router will have
to be replaced by a switch.

Ethernet switching works best on a tree topology, and so this arrangement has
worked well in the past. In larger networks, however, trees start to have significant
problems. For instance, as soon as three or more geographically-diverse data centres
are interconnected on a single Ethernet network, direct links between data centres be-
come desirable in order to minimise multi-hop paths across long-distance links. Unless
a single data centre acts as the hub through which traffic between any other pair of data
centres passes, the overall topology of the multi-data-centre network can no longer be
a tree.

A tree network also offers no resilience; if a single component or link fails, every-
thing downstream of the failure will lose connectivity. Resilience is generally added by
duplicating components: by deploying two end-of-row switches per row of racks and
supplying each top-of-rack switch with an uplink to each, alternate paths exist if any-
thing upstream of the top-of-rack switch fails. Such a topology is termed a fat tree. This
is just the tip of the iceberg in improved topologies; Abu-Libdeh et al. [2010] propose
a 3D torus, CamCube, which works well where there is a high degree of inter-server

3

1. INTRODUCTION

communication. Unfortunately, Ethernet does not make efficient use of any resilient
topology.

1.2 Scalability Limitations of Ethernet1

Ethernet has lasted well since its inception in the 1970s [Metcalfe and Boggs, 1976]
with Ethernet frame-structure and addressing remaining ubiquitous in the data centre
environment as in many others. However, Ethernet exhibits scalability issues when
used to build broadcast domains of more than a few thousand devices, such as costly
and energy-dense address table logic and storms of broadcast traffic.

The traditional method of avoiding such problems is the artificial subdivision of
a network, but this introduces an administrative burden, requires significant routing
equipment and with current protocols also precludes live migration.

1.2.1 Forwarding Databases

Ethernet’s scalability is limited primarily by the forwarding database that every switch
in an Ethernet network must maintain [IEEE Computer Society, 2004a, §7.8–7.9]. A
switch’s forwarding database contains one entry per source address seen in any frame
passing through that switch, and stores that MAC address together with the learnt lo-
cation of that address—the port on which packets from that address were last seen.
This is later used to determine on which port to transmit frames destined for that
address. Devices frequently broadcast frames throughout the network (for example
ARP queries) so active devices on the network are listed in most switches’ forwarding
databases most of the time.

In modern switches the capacity of this database is generally of the order of 16,000–
64,000 entries. Higher-capacity forwarding databases exist but are generally con-
strained to very high-end, power-hungry and expensive switches or to low-speed
switches such as those implemented in software. On a moderately large network,
full databases are a serious risk. If the database becomes full, entries will be dis-
carded; frames for unknown addresses are flooded to all ports and the resulting traffic
storm could cause major problems, especially in the presence of low-capacity edge
links which could become saturated with other hosts’ traffic.

Traditionally the forwarding database has been stored in a content-addressable
memory (CAM) as lookups must be very fast, particularly as 10 Gbit/s Ethernet be-
comes ubiquitous. As networks grow, the number of entries in a switch’s forwarding
database must naturally increase; however, increasing the capacity of CAMs without

1This section and the next are adapted from corresponding sections of a previous workshop paper
[Scott et al., 2009].

4

1. INTRODUCTION

P

Q

P

Q

root

(a) (b)

Figure 1.1: A 2D mesh topology, (a) before and (b) after RSTP has removed loops, high-
lighting the path taken by frames transmitted between two adjacent nodes P and Q

sacrificing speed whilst constraining energy consumption is proving to be challenging
[Yu et al., 2005; Pagiamtzis and Sheikholeslami, 2006]. Cheaper switches use DRAM in
place of a CAM, but this is likely to remain slower especially for large tables.

1.2.2 RSTP

Ethernet’s inability to handle networks containing loops also presents a significant
scalability problem. In the presence of loops, frames are forwarded around the loop
indefinitely due to the lack of a hop counter; in the presence of broadcast frames this
will result in a broadcast storm in which all capacity on all links will be consumed by
an infinite stream of duplicate frames. The Rapid Spanning Tree Protocol, RSTP [IEEE
Computer Society, 2004a, §17], exists to ensure that any loops are broken by disabling
any redundant links, which means that any multipath capability of the topology can-
not be exploited. Furthermore, on a dense mesh network RSTP must disable a large
proportion of links; this considerably lengthens paths across such topologies and may
introduce a bottleneck at the root of the spanning tree (see Figure 1.1). In a data centre
environment, this potentially amounts to a large proportion of capacity being wasted
wherever redundant links are installed, which may be expensive long-haul fibres.

1.2.3 Broadcast

The original Ethernet was a shared-medium network, where every frame was broad-
cast and no switching took place. Modern-day wired Ethernet-based networks instead
consist almost entirely of point-to-point links; as a result of this, the distinction between
unicast, broadcast and multicast has become more important.

5

1. INTRODUCTION

Not only does Ethernet flood frames destined for unknown hosts, but it also uses—
and encourages higher-layer protocols to use—broadcast for control messages. In par-
ticular, ARP [Plummer, 1982] performs address resolution via broadcast queries and
advertisements, and DHCP [Droms, 1997] uses broadcast messages for automatic con-
figuration. It is impractical to replace these protocols entirely as this would require
software upgrades to every device, but it would be desirable for the network to min-
imise the forwarding of broadcast traffic to unnecessary destinations.

1.3 Related Work

It is well-known that traditional Ethernet scales poorly, and there have been various at-
tempts in recent years to rectify this. The most widely-used of these in real-world net-
works is MPLS-VPLS (Multiprotocol Label Switching—Virtual Private LAN Service)
[Rosen et al., 2001]. This connects Ethernet islands together through tunnels across a
MPLS cloud. MPLS works by adding one or more labels to the start of every frame, i.e.
encapsulating the frame inside its own protocol.

In MPLS-VPLS, the label edge routers (LERs) must determine the frame’s initial la-
bel(s) based upon the destination address via a lookup table. Frames follow prenego-
tiated label-switched paths (LSPs) that, unlike Ethernet, are not constrained to follow
a spanning tree; LSPs are precomputed at connection setup time and the relevant next
hop is stored in a lookup table on each intermediate switch. Each switch must hence
use each frame’s label to index into this lookup table to determine how to switch the
frame.

The effect, once the connection has been negotiated, is to provide what appears to
be one or more large Ethernet networks, transparently overlaid on the MPLS cloud.
Whilst this solves effectively the problem of shortest-path routing across the MPLS
cloud, the overlay Ethernets are still susceptible to the usual scalability problems—and
in fact VPLS adds further large lookup tables on every switch that can in some con-
figurations scale even worse than Ethernet’s forwarding databases. LERs must map
every MAC address to a LSP; label switch routers (LSRs) must store the next hop for
every LSP in which they participate, which in the core of the network could scale as
O(hosts2).

A similar scheme is proposed by Hadžić [2001], with the difference that Ethernet-
inside-Ethernet encapsulation is used rather than a new protocol. This has the ad-
vantage that less processing is required on intermediate switches in the backbone net-
work. However, routes across the backbone are constrained to a spanning tree, and
encapsulating switches must obtain a new destination address for every frame using a
lookup table that—like Ethernet’s forwarding database—must contain every transmit-
ting MAC address. Due to its heavy basis on Ethernet, this shares many of Ethernet’s

6

1. INTRODUCTION

scalability problems.
SmartBridge [Rodeheffer et al., 2000] and Rbridges [Perlman, 2004] both encap-

sulate Ethernet frames in a new inter-switch protocol, and run a link-state routing
protocol between switches. The link state graph includes the location of every MAC
address—necessary because the address space remains flat and any address could ap-
pear anywhere—i.e. it again contains every host. Furthermore, switches must perform
expensive computation to update routing tables whenever a MAC address joins or
leaves the network.

Myers et al. [2004] suggest that Ethernet’s main failing is its broadcast service, and
propose a new architecture in which hosts make explicit use of directory services oper-
ated by switches rather than broadcasting queries. It is clear that switches’ participa-
tion is necessary in order to deal with the broadcast problem; however the suggested
modifications to Ethernet are not backwards-compatible and would require at least
software modifications to all connected devices. Ethernet is, perhaps unfortunately,
too widespread for this to be practical; transparent interception of broadcast frames
and subsequent local handling or redirection via multicast or unicast remains the only
practical solution.

SEATTLE [Kim et al., 2008] takes a more scalable approach. A routing protocol
is operated between switches, but in contrast to the approaches described above, the
routing protocol only propagates switch location information, rather than every MAC
address on the network. Flat MAC addresses are still used, and thus a mechanism is
required to look up the switch to which a given address is connected. This is achieved
by using a distributed hash table (DHT) operating on participating switches with local
caching to alleviate load. This is certainly a step in the right direction but introduces
considerable complexity to switches, since they now must maintain and update the
DHT continually, and it is clear that a SEATTLE switch would have a significant soft-
ware component in the data path.

1.3.1 Internet Engineering Task Force ARMD Working Group

The IETF has recently formed a working group, entitled “Address Resolution for Mas-
sive numbers of hosts in the Data center” (ARMD), to investigate “the impact of chang-
ing workloads and existing protocols on datacenter network performance” [Dunbar
and Schliesser, 2011]. In the formative stages of this working group, the chairs ex-
pressed interest in my contributing to their work; I believe that working with a stan-
dards body is worthwhile and I intend to pursue this. Unfortunately, due to internal
disagreement within the IETF, the ARMD working group has been directed not to in-
vestigate potential protocol enhancements until at least mid-2012.

Nevertheless, during its first year, ARMD will work with data centre operators and
may produce useful data to quantify the problem.

7

CHAPTER 2

Scalable Ethernet Addressing: MOOSE

MOOSE—Multi-level Origin-Organised Scalable Ethernet—is my enhanced switching
and addressing architecture for Ethernet. I originally developed it during my time as
a research assistant on the Intelligent Network Airport (TINA) project; the problems
encountered in the data centre environment are remarkably similar and MOOSE is
expected to apply equally well here. I have continued to develop MOOSE over the
past year in this new context, and it will form a part of my thesis.

This work was originally described in a workshop paper [Scott et al., 2009].

2.1 Hierarchical Addressing

Ethernet’s poor scalability arises in various guises, as discussed in Section 1.2. It would
seem at first glance that these are entirely distinct and unrelated. However, there is a
common underlying cause: that MAC addresses provide no location information.

Globally-unique MAC addresses are structured such that the first three bytes of a
device’s address contain an organisationally unique identifier (OUI) allocated to the
device’s manufacturer by the IEEE, with the remaining three bytes allocated by the
manufacturer. This hierarchy exists solely for the purpose of allocating unique ad-
dresses in a decentralised fashion, and is of no use to Ethernet switches, which must
treat the unicast address space as flat.

A flat address space has the advantage that no configuration of devices is required;
a device can use its unique, manufacturer-assigned MAC address anywhere on any
network. However, this leaves each switch with the task of discovering and storing
the location of every addressable device individually.

If the MAC address space were not flat, but instead contained enough information
to locate the owner of an address, two major advantages would be gained. Firstly,
large forwarding databases would no longer have to be maintained on every switch.

8

2. SCALABLE ETHERNET ADDRESSING: MOOSE

Address location data could instead be distributed across the network so that frames
are directed towards their destinations according to successive stages of a hierarchy.

Secondly, a hierarchical MAC address space would also make the addition of
shortest-path routing considerably easier. Flat addressing does not lend itself to easy
routing: any address can be situated anywhere on the network, which would necessi-
tate advertising every host’s MAC address via the routing protocol or location service;
this scales very poorly. The use of hierarchical addresses, with each switch handling a
block of sequential addresses akin to an IP subnet, would reduce the routing problem
to one which is already solved by existing routing protocols.

The facility for network administrators to assign locally administered addresses
(LAAs) to devices has existed for as long as Ethernet. However, configuring and
maintaining the LAA on every device based upon where they are connected would
be a considerable and unwelcome administrative overhead. I am therefore developing
MOOSE, a system for applying hierarchical addressing to an Ethernet transparently
and without any configuration to edge devices.

2.2 MOOSE Architecture

The basic operation of MOOSE is to assign a hierarchical MAC address to each host
on the network, allocated dynamically and automatically from the unicast LAA space.
This address is referred to as a MOOSE address to avoid confusion with hosts’ existing,
static, manufacturer-assigned MAC addresses.

Every frame entering the network has its source address rewritten in-place to the
sending host’s MOOSE address by the first MOOSE-aware switch it traverses. The
switch that performs address rewriting for a host—i.e. the closest MOOSE switch to
that host—is the host’s home switch and is responsible for assigning a MOOSE address
to that host. (If non-MOOSE switches or hubs are in use, a host may have more than
one “closest” MOOSE switch simultaneously, in which case an election protocol must
be used to select a home switch for each edge segment.)

The destination address is left intact in the expectation that it already is a MOOSE
address. Hosts’ ARP caches will already contain the MOOSE addresses of any hosts
being communicated with as any packet received will already have had its source ad-
dress rewritten; a host’s manufacturer-assigned MAC address is never seen outside of
the segment containing that host. This is a crucial point since encapsulation-based
technologies such as MPLS do not reveal to the destination host the address used
for routing; as a result, switches must also convert destination as well as source ad-
dresses of frames entering the network. In other words, once again switches must
maintain large tables of remote hosts on the network. The only destination rewriting
that MOOSE switches perform is of frames destined for local hosts, which must be ad-

9

2. SCALABLE ETHERNET ADDRESSING: MOOSE

switch
02:22:22

switch
02:33:33

02:33:33:00:00:01

02:33:33:00:00:04

02:33:33:00:00:02

02:33:33:00:00:03

hosts
02:22:22:00:00:01

02:22:22:00:00:02

02:22:22:00:00:03

...

...
switch

02:11:11

Figure 2.1: Assignment of MOOSE addresses by switches

dressed to the host’s manufacturer-assigned MAC addresses in order to pass the NIC’s
MAC address filter; this is simple as the required information is already known by that
switch.

A MOOSE address consists of a switch identifier followed by a host identifier. The for-
mer indicates the location of this address on the network, as illustrated in Figure 2.1.
Since these two identifiers when concatenated must form a unicast LAA, the settings of
two bits in the first byte of the switch identifier are fixed: the least significant bit must
be 0 to indicate a unicast address, and the second-least significant bit must be 1 to in-
dicate a LAA. It is hence possible to route frames through the network to remote hosts
by simply inspecting the switch identifier in the destination address, and ignoring the
host identifier until the frame reaches the destination host’s home switch. Switches no
longer need to keep a table of all MAC addresses; they only need store the locations of
other switches and of any directly-connected hosts.

In the simple case, the switch identifier and host identifier can both be three bytes in
length. However, as part of his undergraduate project to implement MOOSE, Wagner-
Hall [2010] proposed an extension which would allow switches to automatically ac-
quire unique, variable-length switch identifiers using a class-based scheme in which
the first three bits of the address indicate how many of the following 5-bit blocks make
up the switch prefix. Depending on requirements, the switch identifier may itself be a
hierarchical address—for example six bits to identify a network area followed by two
bytes to identify a switch within that area—which could then be used to aid routing
decisions.

Each host is assigned a host identifier by its home switch from the pool of identifiers
available to that switch. Only a host’s home switch ever bases a switching decision on
the host identifier, so the detail of how these are allocated can vary from switch to
switch. Suitable schemes include:

• sequential assignment;

• the port number followed by a sequential portion;

10

2. SCALABLE ETHERNET ADDRESSING: MOOSE

• a hash of the host’s real MAC address.

The latter two approaches are preferable to a simple sequential assignment, as they
better isolate certain kinds of denial-of-service attack in which a malicious host at-
tempts to use up all available host identifiers on the switch. They also require less state
to be shared between ports.

As well as reducing the amount of data that must be consulted in order to make
switching decisions, MOOSE provides extra resilience by making this much more pre-
dictable. The number of MAC addresses in a network can increase unexpectedly in
the event of an address flooding attack [Sipes, 2000] or even under normal operation
in some cases such as an open wireless network; relying on the MAC address database
for forwarding leads to some of the vulnerabilities of Ethernet. The set of switch iden-
tifiers participating in MOOSE switching, on the other hand, can be kept predictable
and manageable by ensuring that neighbouring switches are authenticated. This au-
thentication could be achieved at layer 3 using the security features found in most pop-
ular routing protocols or at layer 2 using 802.1X [IEEE Computer Society, 2004b]. As
the switch identifier is the only address consulted for forwarding decisions, a MOOSE
switch is likely to remain reliable in the face of attacks that could have brought down
a traditional Ethernet. Furthermore, attacks based upon MAC address spoofing can-
not function on a MOOSE network as the user-provided MAC address is translated
immediately.

2.2.1 Shortest Path Routing

As described so far, MOOSE switches must still forward frames along a spanning tree.
The foundations are in place to do much better than this using shortest-path routing.

For the purpose of frame forwarding, a MOOSE switch can be considered akin to
a layer 3 router; it has one locally-connected subnet—containing all addresses starting
with its switch identifier—and delivers frames to other subnets by passing them to
an appropriate neighbouring switch. Bearing this in mind, the switch can run a rout-
ing protocol of the kind normally used for IP, such as a variant of OSPF [Moy, 1998].
This allows frames to be routed along the shortest available path, rather than being
constrained to a spanning tree. OSPF-OMP [Villamizar, 1999] may be particularly de-
sirable due to its ability to make use of multiple equal-cost routing paths in order to
improve performance [Schneider and Nemeth, 2002].

2.2.2 Broadcast

Since Ethernet does still need to support arbitrary existing protocols, broadcast frames
must still be forwarded along a spanning tree in order that they reach each host without

11

2. SCALABLE ETHERNET ADDRESSING: MOOSE

Host
A

Host
B

MAC address:
00:16:17:6D:B7:CF

MAC address:
00:0C:F1:DF:6A:84

Switch ID:
02:11:11

Switch ID:
02:22:22

Switch ID:
02:33:33

Ti
m

e

Query:
00:16:17:6D:B7:CF


broadcast

Query:
02:11:11:00:00:01


broadcast

source
rewritten

Response:
00:0C:F1:DF:6A:84


02:11:11:00:00:01

source
rewritten

broadcast along spanning tree

Response:
02:33:33:00:00:01


02:11:11:00:00:01

routed to 02:11:11destination
rewritten

Response:
02:33:33:00:00:01


00:16:17:6D:B7:CF

Figure 2.2: Sequence diagram of a broadcast query and subsequent unicast response

causing a broadcast storm. An explicit spanning tree protocol such as RSTP is not
required however, as the tree can be deduced from the routing information.

In order to avoid the overhead of computing a spanning tree on every switch, this
could use reverse path forwarding in a similar manner to Protocol-Independent Mul-
ticast [Adams et al., 2005]. In his evaluation of MOOSE, Whitehouse [2011] concluded
that this results in considerably increased broadcast traffic compared with RSTP since
rather than reaching every switch exactly once, broadcast frames traverse every link
with duplicate copies discarded by the receiver. Instead, then, an explicit spanning
tree will be used but this can be computed from the routing protocol’s link state graph
so long as the root is deterministically chosen.

2.2.3 Example

To illustrate the basic behaviour of MOOSE switches, I will describe the steps involved
in forwarding a broadcast frame containing a query in some higher-layer IPv4-based
protocol, and subsequent unicast frame containing the response, between two hosts A
and B via three MOOSE switches 02:11:11, 02:22:22 and 02:33:33; see Figure 2.2.

12

2. SCALABLE ETHERNET ADDRESSING: MOOSE

Query

1. Host A transmits the broadcast query frame as it would on any Ethernet net-
work, with its own manufacturer-assigned MAC address in the Ethernet header’s
source field and the broadcast address (FF:FF:FF:FF:FF:FF) as the destination.

2. The frame is received by switch 02:11:11, which observes the non-MOOSE ad-
dress in the frame’s source field, and rewrites the source field into a MOOSE
address containing the switch identifier and the appropriate host identifier. As
this is Host A’s first frame, the switch must allocate a host identifier (in this case
00:00:01, making Host A’s complete MOOSE address 02:11:11:00:00:01).

3. The three switches broadcast the frame using reverse path forwarding away from
Host A.

4. The frame is received by Host B (and any other hosts on the network) in its cur-
rent form; no further rewriting is performed.

Response

1. Host B looks up Host A’s IP address in its ARP cache to determine a suitable des-
tination address for the response frame. Since the rewritten query frame arrived
at Host B with the source field containing the MOOSE address 02:11:11:00:00:01,
this is the address returned by the cache lookup.

2. As above, switch 02:33:33 assigns a MOOSE address to Host B (02:33:33:00:00:01)
and rewrites the source address of the frame.

3. The frame is now routed through the network based solely on the destination
switch identifier—the host identifier is ignored for now. The routing table is con-
sulted for the location of switch 02:11:11 and the frame is forwarded accordingly.

4. On receiving the frame, switch 02:11:11 observes that it is destined for a directly-
connected host (02:11:11:00:00:01). It prepares the frame for transmission along
its final hop by rewriting the destination address to Host A’s manufacturer-
assigned MAC address. The source field of the frame is again left as the MOOSE
address of Host B in order that this address is used for any further communica-
tion with Host B.

2.2.4 Mobility

A consequence of introducing location-based hierarchy into MAC addresses is the
need to explicitly handle host mobility. In a traditional Ethernet, hosts can migrate

13

2. SCALABLE ETHERNET ADDRESSING: MOOSE

Host
B

Host
A

host migrated to new switch


data forwarded

by care-of switch

gratuitous ARP
sent by new
home switch





Figure 2.3: Mobility options: two ways to handle a host A roaming onto another switch
whilst maintaining communication with another host B

between switches as the switches will learn the host’s new location as soon as it sends
a frame. With MOOSE, if a host relocates to a new switch its address changes and any
ARP cache entries on other hosts pertaining to the migrated host become incorrect;
frames will continue to be sent to the host’s old location for a while. There are two
strategies for dealing with this, as illustrated in Figure 2.3, which can be used sepa-
rately or in conjunction:

1. The previous home switch of the migrated host can forward frames sent to the
host’s old address until outdated ARP cache entries expire. This is similar to IP
Mobility [Perkins, 2002]: the previous home switch essentially becomes a care-
of agent for the host. However, unlike IP Mobility, it requires no host support.
A handover protocol is necessary for the old and new home switches to set up
such forwarding: on the arrival of a new host at a switch, that switch would ask
all other switches (via multicast) whether any had seen this host before, identi-
fying it using its manufacturer-assigned MAC address, and would instruct such
switches to redirect frames.

2. A broadcast ARP announcement (or “gratuitous ARP”) can be sent by the new
home switch to immediately update remote ARP caches (and the ELK directory—
see Section 3.2) with the new MOOSE address. This is the technique used by Xen
when migrating live virtual machines [Clark et al., 2005]. Unlike the previous ap-
proach, this works even if the previous switch is no longer reachable, for example

14

2. SCALABLE ETHERNET ADDRESSING: MOOSE

if this host migration was as a result of a switch failure. This is a simpler approach
as a handover protocol is not required, but results in additional broadcast traf-
fic. It also introduces a requirement for switches to violate layer boundaries and
track IP addresses, but many commercial switches already have this capability.

Unless the frequency of host migrations is very high, the additional load introduced
by either mobility approach is expected to be negligible.

2.3 Interoperability Considerations

2.3.1 Layer-violating Protocols

In an ideal world, free from layering violations, all layer 3 protocols would operate
correctly on top of MOOSE as on Ethernet with no higher-layer rewriting necessary
in the switch. In reality, however, protocols abound which use hosts’ MAC addresses
for purposes other than layer 2 addressing: the MAC address serves as a convenient
unique host identifier in protocols such as DHCP. ARP, the glue between IP and MAC
addresses, must naturally be handled specifically—especially since it places MAC ad-
dresses in the frame payload. Conveniently, the rewriting required in order to have
DHCP and ARP function correctly in the presence of MOOSE rewriting is trivial.

Of concern however are recent standards for layering on top of Ethernet protocols
which were previously used solely on dedicated hardware interconnects, such as Fibre
Channel over Ethernet (FCoE) [T11 FC-BB-5 working group, 2009]. In order to sup-
port FCoE and similar protocols on a MOOSE network, each edge switch will need
to be able to interpret and rewrite individual protocols that are in use. A production
MOOSE switch would, therefore, need to be implemented such that it is possible to
add rewriting support for additional protocols after manufacture.

Ultimately, in the general case, this problem could be addressed more satisfactorily
by extending the Ethernet standard to provide a protocol-agnostic method for a layer 2
network to inform hosts of their own addresses; LLDP [IEEE Computer Society, 2009]
would make a good basis for this extension. This would allow the use of dynamic MAC
addresses with any protocol, with some rewriting performed either partially (within
the frame payload) or fully by the host itself, and furthermore would allow higher-
layer protocols to respond to changes of the host’s network-assigned address. This is,
however, a very long-term solution, and protocol-specific rewriting on the switch is
likely to be required for the foreseeable future.

FCoE is particularly unusual as it already does its own dynamic allocation of MAC
address to devices. It is conceivable that an extension to FCoE could be developed
which allows a network-wide dynamic address assignment scheme such as MOOSE
to be exploited to provide addresses directly to fibre channel devices.

15

2. SCALABLE ETHERNET ADDRESSING: MOOSE

2.3.2 Edge Virtual Bridging

The rise of virtualisation has caused a proliferation of software switches, usually in the
host operating system or hypervisor which provides network connectivity to multiple
virtual machines. Since software switches are rarely as manageable or as performant as
hardware switches, there are efforts elsewhere—Port Extension [Pelissier and Raeber,
2010], Edge Virtual Bridging [Jeffree et al., 2009] and VEPA [Congdon et al., 2010]—to
create a means of making these software switches act merely as additional ports which
are logically part of a more central hardware switch. This reduces the work required by
a virtual edge switch: frames from local virtual edge ports can be forwarded straight
out via the uplink to a physical switch without consideration, and frames from the
uplink will arrive simply tagged with a virtual edge port identifier.

(The scope of Port Extension in particular is greater than this, and allows for phys-
ical port extenders to replace switches where a large number of ports is required, but
virtualisation is likely to be the most significant use case.)

These extensions would require very little adaptation to be implemented on a
MOOSE switch. It is unlikely, although too early in the standardisation process to say
for certain, that the virtual bridge will need to be MOOSE-aware. A virtual-bridging-
aware physical MOOSE switch will thus simply need to take into account the possi-
bility that one physical port may hide a large number of virtual ports when allocating
host identifiers, as it would if it had an Ethernet switch connected on that port. If, how-
ever, the virtual bridge is made MOOSE-aware, the hierarchical addressing of MOOSE
could be exploited to allow the virtual bridge to allocate host identifiers itself, given
that it is likely to be aware of the exact nature of virtual edge ports. The parent MOOSE
switch would accordingly delegate an address prefix to each child virtual bridge.

2.3.3 Other uses of LAA space

MOOSE is not the only application to make use of locally-administered MAC ad-
dresses (LAAs). For example, Citrix XenServer assigns by default a randomly-
generated LAA to each virtual machine. This practice is not universal across virtu-
alisation products, however; VMware instead has an IEEE-assigned OUI which allows
it to assign globally-administered MAC addresses.

Unfortunately, it may not be possible for two conflicting uses of LAA space to co-
exist. If MOOSE is used with XenServer, switches would be unable to differentiate
between MOOSE addresses and those which had not yet been rewritten. Solving this
problem may require the involvement of standards bodies; if VMware’s use of an OUI
is considered best practice, the current behaviour of XenServer could be deprecated.
It may also prove necessary to reserve one or more OUIs for MOOSE, in order to en-
sure conflicts do not occur, although this would result in a smaller number of bytes

16

2. SCALABLE ETHERNET ADDRESSING: MOOSE

available for the hierarchical address.

2.4 Implementation and Evaluation

There are currently three implementations of MOOSE in various stages of complete-
ness. The most complete—the result of an undergraduate project by Wagner-Hall
[2010]—is based on the OpenFlow platform [McKeown et al., 2008] with a NOX con-
troller and will operate on commercial switches which support OpenFlow. This imple-
mentation has gained some interest from switch vendors at the IETF, and although its
original author is no longer continuing to develop it I intend to keep it up-to-date with
the current state of MOOSE as I enhance it. There is also a separate implementation
for the ns3 network simulator due to an undergraduate project by Whitehouse [2011]
which will be used for evaluation and a Python-based software implementation for
rapidly prototyping new features.

The implementations have been tested for functional correctness on simple topolo-
gies running representative IPv4 traffic and paying particular attention to the effect on
unmodified hosts’ operation. MOOSE was found to be transparent with the only vis-
ible effect being the presence of MOOSE addresses in place of manufacturer-assigned
MAC addresses in hosts’ ARP caches. Inspection of switches’ internal state has vali-
dated the expectation that the storage requirement has been reduced from O(hosts) to
O(switches), assuming that the number of locally-connected hosts is a small constant;
this is a significant improvement.

Whitehouse presented preliminary simulation data which validates the prediction
that the amount of state required in MOOSE switches is considerably less than in Eth-
ernet switches on a large topology; the simulation is able to operate using much larger
topologies than a real test rig, even one using virtualisation.

A full evaluation, likewise based primarily on the ns3 implementation, is ongoing
work and will be presented in my thesis. I intend to compare MOOSE quantitatively
with Ethernet in as many dimensions as are relevant. It may also be possible to com-
pare MOOSE in simulation with other proposed extensions to Ethernet, such as SEAT-
TLE [Kim et al., 2008].

2.5 Ongoing Work

The foundations of MOOSE are largely complete. However, various parties including
the chairs of the IETF ARMD working group have expressed an interest in working
with me to develop MOOSE further. This will be an opportunity to gain input from
switch vendors and data centre operators, and I expect that this will lead to architec-
tural adaptations to MOOSE to fit real rather than idealised scenarios.

17

2. SCALABLE ETHERNET ADDRESSING: MOOSE

The IETF operates on long timescales, so ongoing development of MOOSE is likely
to proceed slowly. Evaluation and some further development can continue indepen-
dently of any collaborations however.

18

CHAPTER 3

Broadcast Traffic Optimisation

3.1 The Broadcast Problem

Large Ethernet networks suffer from an excess of broadcast traffic. It is normal for all
IPv4 hosts to routinely emit broadcast packets for a variety of reasons. First and fore-
most, the standard behaviour of ARP [Plummer, 1982] in resolving the MAC address
for a given IPv4 address is to emit a broadcast query. Each host must perform at least
one such resolution for each address to which it intends to transmit unicast packets,
and for the default gateway for destinations outside the local subnet.

A wide range of other protocols, common and obscure, also make use of the broad-
cast facility. For example:

DHCP: used for automatic configuration of hosts with IPv4 addresses and other de-
tails necessary for connection to a network;

NetBIOS, SMB: used by Windows filesharing and domains;

Common UNIX Printing System (CUPS): a printer client and server which can ad-
vertise and discover printers via broadcast messages;

Dropbox: a proprietary file synchronisation tool with a broadcast-based host discov-
ery protocol.

Furthermore, there are non-IP sources of broadcast traffic, even on current net-
works, such as NetWare (which traditionally used IPX) and various protocols layered
on top of Logical-Link Control (LLC).

Myers et al. [2004] have predicted that on a million-node network, ARP traffic
alone may peak at 239 Mbps. Although this number was reached from an extrapo-
lation of dubious validity from an experiment involving 2,456 hosts, this does illus-
trate the scale of the problem; this volume of traffic could entirely saturate slower links

19

3. BROADCAST TRAFFIC OPTIMISATION

(100 Mbps Ethernet is still commonplace, and 802.11a/b/g wireless has even-lower
capacity) which would make a network effectively unusable.

Modern service discovery protocols such as Apple mDNS and Microsoft UPnP
SSDP use multicast instead of broadcast. This is considerably more efficient than
broadcast as packets of a particular protocol will only reach hosts which have explic-
itly expressed an interest in that protocol, assuming the Ethernet switches support
IGMP snooping [Christensen et al., 2006]. However it is not feasible to entirely re-
place existing widely-deployed broadcast protocols with multicast or unicast versions
as suggested by Myers et al..

3.1.1 Experiment

I have undertaken an experiment to illustrate some of the current uses of broadcast.
A sample of slightly over 20,000 broadcast packets was obtained from each of two

small campus networks over the course of a few minutes at an off-peak time, during
which time around 25 broadcast packets per second were received by the measuring
hosts. The aggregate per-protocol packet counts are presented in Figure 3.1.

Several conclusions can be drawn from this data. Firstly, despite the brief sam-
pling window and small sample networks, several broadcast protocols were detected
including some which could not be decoded by Wireshark. Secondly, and quite alarm-
ingly, it is clear that not all broadcast traffic consists of legacy protocols. Dropbox was
a major contributor of broadcast traffic on both measured networks; this is a recently-
developed product (initially released in 2008) and yet its authors chose to make sub-
stantial use of broadcast despite the industry’s trend towards multicast. This suggests
either that the problems of broadcast are not well-understood in the industry or that
multicast was determined to be unreliable for this purpose. Since Dropbox is a pro-
prietary system, it could hypothetically switch to a multicast-based protocol as part
of a software update, but this may be a sign of a wider lack of understanding of best
practice.

The majority of broadcast packets are ARP; removing this source of broadcast
would substantially improve the situation.

3.2 Address Directory Service: ELK

I propose a directory service, Enhanced Lookup (ELK), which runs with switches’ in-
volvement to learn mappings from IPv4 to MAC addresses and subsequently handle
ARP queries from hosts in a broadcast-free manner. Similarly to MOOSE, no modi-
fication to hosts is required; switches intercept ARP packets broadcast by hosts and
convert them into unicast queries into the ELK directory service.

20

3. BROADCAST TRAFFIC OPTIMISATION

Protocol Packets Bytes
ARP 63.92 % 25 614 44.21 % 1 529 716
IPv4 26.20 % 10 500 40.69 % 1 407 928

UDP 26.20 % 10 500 40.69 % 1 407 928
Dropbox LAN sync Discovery 10.13 % 4 058 19.48 % 674 073
NetBIOS Name Service 7.44 % 2 983 8.05 % 278 594
NetBIOS Datagram Service 1.54 % 619 4.25 % 146 976
CUPS Printer Browsing 0.59 % 238 1.55 % 53 554
DHCP / BOOTP 0.16 % 65 0.66 % 22 851
other 6.33 % 2 537 6.70 % 231 880

Logical-Link Control (LLC) 6.82 % 2 731 6.54 % 226 381
IPX in LLC 0.58 % 234 0.41 % 14 136

Service Advertisement Protocol 0.34 % 138 0.24 % 8 280
IPX Routing Information Protocol 0.24 % 96 0.17 % 5 856

other 6.32 % 2 497 6.13 % 212 245
IPX 3.05 % 1 221 8.55 % 295 656

Service Advertisement Protocol 1.98 % 793 7.61 % 263 452
IPX Routing Information Protocol 0.93 % 372 0.78 % 26 940
NetBIOS over IPX 0.14 % 56 0.15 % 5 264

other 0.01 % 3 0.01 % 180
Total 100.00 % 40 069 100.00 % 3 459 861

Figure 3.1: Broadcast traffic breakdown by protocol, aggregated across two samples of
a few minutes each on separate small campus networks

ELK then acts in a manner akin to a caching proxy ARP gateway [Carl-Mitchell
and Quarterman, 1987]: if the MAC address sought by the querier is already known,
the reply can be sent immediately via unicast, otherwise ELK emits a broadcast query.
When the reply is received from the target, the address mapping is cached before being
repackaged for the original querier; if another host sends a similar query, it can now be
answered directly from the cache. Although this method does not entirely eliminate
broadcast ARP, it is expected to reduce it considerably, especially if the cache entries are
periodically renewed by means of unicast queries so that the cache will likely contain
all active hosts.

In its simplest form, the ELK directory service can run as an application on a single
ordinary host. On larger networks it may be preferable to distribute it on multiple syn-
chronised servers in order both to reduce the load on a single server and to reduce the
number of hops which must be traversed between a querier and the directory server.
If ELK is used in combination with MOOSE, features of the MOOSE routing protocol
can be leveraged: assuming a suitable modern routing protocol is used, multicast and
anycast features may be available at layer 2. ARP queries could then be converted

21

3. BROADCAST TRAFFIC OPTIMISATION

by switches from broadcast into anycast, and thus reach the nearest server participat-
ing in ELK. ARP replies and gratuitous ARP announcements could be converted into
multicast updates directed at the entire herd of ELK simultaneously.

The reduction in ARP traffic, and hence the benefit to the network from ELK, is pro-
portional to the size of the network [Aggarwal, 2011]. Let H be the number of hosts,
S the number of switches and L the number of links; given the number of ports per
switch is fixed by the manufacturer (assuming a wired network, and that if virtual-
isation is in use there is a fixed maximum number of virtual machines per physical
machine), S ∝ H. On a simple topology L ∝ S + H, and thus L ∝ H2. The total
amount of broadcast traffic generated throughout the network when every host is try-
ing to resolve the address of every other host would therefore be O(H2L) = O(H4) for
ARP and O(H2) for ELK (after the learning phase): there are inevitably O(H2) broad-
cast queries emitted by hosts but on ELK they only transit a single hop whereas with
traditional ARP they each traverse every link.

As a proof of concept, Aggarwal has implemented a single-server version of ELK
using OpenFlow and a NOX-based controller to instruct switches to intercept the rele-
vant packets and forward them to a ELK server written in Java. His evaluation (sum-
marised by Figure 3.2) validates the expected behaviour, that ELK significantly reduces
the volume of ARP traffic and in particular on the network tested entirely eliminates
broadcast ARP traffic once the cache has been established.

3.2.1 Related Work

SEATTLE [Kim et al., 2008] also includes an ARP optimisation; since their switching
architecture is based upon a distributed hash table (DHT), this DHT is also used to
store ARP mappings with switches intercepting and answering ARP messages directly
if the answer can be found from a DHT query. A DHT may indeed be a practical way
to distribute such mappings and could be used in a multi-server ELK environment;
however I feel that adding a DHT to switches will, as previously discussed, be too
costly. Thus I prefer an approach which keeps the ARP processing logic and directory
separate from the switch hardware, requiring only OpenFlow support on the switches.

3.3 IPv6 Neighbour Discovery

The undesirability of broadcast traffic was already apparent by the time IPv6 was be-
ing developed, and (despite ARP being a general-purpose protocol, not tied to IPv4
nor to Ethernet) the IPv6 authors replaced ARP with a new, multicast-based protocol:
Neighbour Discovery (ND) [Narten et al., 2007]. IPv6 hosts join at least one solicited-
node multicast group [Hinden and Deering, 2006] with an address formed from the low-

22

3. BROADCAST TRAFFIC OPTIMISATION

(a)

(b)

Figure 3.2: Rate of ARP messages exchanged by a host on a small test network with and
without ELK: (a) all ARP messages exchanged; (b) broadcast ARP messages received

23

3. BROADCAST TRAFFIC OPTIMISATION

order 24 bites of each of their IPv6 addresses, which are in turn mapped onto layer-2
multicast addresses. Other hosts querying for an address will send the query to the
solicited-node multicast address formed from their query. Thus the intention is that
only small groups of hosts will receive each other’s queries. This is expected to be
more scalable than ARP [Mack-Crane et al., 2010].

However, this only helps at all when the switches support Multicast Listener Dis-
covery (MLD) snooping (the IPv6 equivalent to IGMP snooping, and not yet widely
supported); furthermore since it potentially imposes a large number of multicast
groups on the network, if several addresses are in use on the same physical system
due to virtualisation the capacity of the NIC’s MAC filter table may be exceeded, caus-
ing layer-2 multicast filtering at the NIC level to break down and potentially requiring
the use of promiscuous mode.

3.4 Ongoing Work

ELK is an ongoing development and I intend to extend it for my thesis. Once the
infrastructure to gather mappings from IPv4 to MAC addresses is in place, this data
may be useful for other purposes such as administrative monitoring for duplicate ad-
dresses or misconfigured devices. Furthermore, it would be logical to integrate ELK
with DHCP: since DHCP hands out IPv4 address leases to specific MAC addresss, the
DHCP server could prepopulate the ELK directory with this mapping at the point of
allocation so that no broadcast query ever has to be made for any IPv4 address in the
DHCP pool. Indeed, it may prove worthwhile to build a combined ELK and DHCP
server so that broadcast DHCP messages can be converted into unicast through the
ELK infrastructure.

Aggarwal is no longer developing his ELK implementation (the implementation
and evaluation formed a standalone undergraduate project) but he and I will coauthor
a paper describing ELK in more detail for publication and for my thesis. ELK also
aligns directly with the remit of the IETF ARMD working group (see Section 1.3.1) and
I intend to write a draft standard for the working group’s consideration.

It should be noted that ARP is by no means the only source of broadcast traffic;
whilst ELK makes a significant contribution to reducing broadcast traffic, an optimisa-
tion restricted to ARP (and perhaps DHCP) may not be sufficient for larger networks.
I will continue to research other methods for reducing broadcast traffic more generally.

Kim et al. propose breaking the current 1:1 link between subnets and broadcast do-
mains by using a modification of VLANs termed groups; hosts are divided up between
multiple groups (broadcast domains) within a single IP subnet or multiple, in a man-
ner which allows unicast traffic to pass between groups within a subnet and so does
not limit reachability. Broadcast traffic within a group is forwarded as if it were multi-

24

3. BROADCAST TRAFFIC OPTIMISATION

cast, using reverse-path forwarding along a spanning tree containing only the switches
currently participating in that group; as noted in Section 2.2.2 reverse-path forwarding
proves to be inefficient. However there may be some merit in developing this into a
practical solution.

One further avenue towards generalised broadcast optimisation would be to at-
tempt to infer multicast groups automatically by tracking sources of different kinds of
broadcast traffic. For example, in the case of Dropbox it is trivial to identify which hosts
are running Dropbox by watching for the regular broadcast announcements. There is
no need for these announcements to reach hosts which are not running Dropbox, and
so a layer-2 multicast group could be formed containing only those hosts which have
been observed to emit Dropbox packets. Any subsequent broadcast messages from the
Dropbox application could be transparently converted into multicast and delivered
only to interested parties. It may be possible, using simple heuristics, to perform this
conversion without any specific knowledge of the behaviour of Dropbox; applications
can be identified by their protocol headers—in the case of Dropbox and several similar
protocols, the UDP port number can be used.

25

CHAPTER 4

Layer-3 Virtual Machine Migration

It is well-known that large subnets are problematic, and accepted wisdom amongst
network operators in the IETF—seemingly stemming from the days of shared-medium
Ethernets on which all traffic was broadcast—is that a good network design will in-
volve small broadcast domains [Hinden and Carpenter, 2010] and that anything else is
“wrong”. There is a surprising prevalence of the opinion that all current virtualisation
platforms must be fundamentally broken since they require large subnets. However,
philosophical arguments aside, virtualisation and live migration are extremely pop-
ular; the unfortunate fact is that the only way to enable live migration given current
network protocols is to use large broadcast domains.

The same reasoning can lead people of this mindset towards rejection of the en-
hancements to Ethernet switching that I have proposed in previous chapters, since
they are seen as further encouraging large subnets which have always been “wrong”.
The reality, of course, is that large subnets were only ever wrong due to specific fail-
ings of Ethernet and IP, and that MOOSE and ELK go some way towards fixing a long-
standing problem in a manner which could be deployed in a backwards-compatible
way on real (OpenFlow-compatible) switches in the near future.

Nevertheless, it seems prudent to investigate the possibility of a higher-layer solu-
tion to the problem of addressing a large collection of migratable virtual machines—
one which could be deployed as a software modification to a virtualisation platform
such as XenServer or VMware in order to add live migration on top of an existing
routed network with small subnets.

There is, furthermore, an understandable prevailing attitude in the IETF against
further development of IPv4-based technologies and for promotion of advantages of
IPv6 over IPv4. It is certainly the case that since the exhaustion of IANA’s pool of
IPv4 addresses, IPv6 is being deployed on a wide range of networks; it will be in the
interest of content providers—and therefore of data centre operators—to operate dual-
stacked IPv6 and IPv4 services in the near future in order to best serve clients whose

26

4. LAYER-3 VIRTUAL MACHINE MIGRATION

IPv4 connectivity is encumbered by multiple layers of NAT. With this in mind, and
considering the improvements which IPv6 brings, I believe it is reasonable for this
solution to be built on IPv6.

Such a solution appears to be feasible, and I am in the early stages of an experimen-
tal implementation. If this is a success, it will form a part of my thesis. I will describe
the current design, although the details are liable to change depending on the outcome
of the investigation.

4.1 Transparent IPv6 Address Persistence1

When a host is moved across a subnet boundary, it will gain a new address. This in
itself is not a problem; if the old address remained reachable and the host is capable
of correctly operating on multiple addresses (which is handled by IPv6 multihoming)
then the host’s connections would not be interrupted and the host would have suc-
cessfully migrated between layer-2 networks. The challenge therefore is in ensuring
that packets addressed to a host’s old location are forwarded on to its new address in
a scalable manner—that is to say, without maintaining a list of migrated addresses in
any one host or router.

IPv6 Mobility exists to address a similar problem of maintaining a static address
whilst moving between locations. However, two issues make it impractical in this
case:

1. Each host would have to be assigned permanently to, and obtain an address from,
a home agent. The naı̈ve implementation would contain a single home agent;
however in such a scenario, the home agent would have to maintain bindings
and forward packets for every mobile node which is not scalable. If instead a
collection of several home agents were used, another abstraction layer would
likely be needed to automatically configure mobile nodes with the details of a
home agent with sufficient spare capacity. This system would rapidly become
overcomplicated.

2. IPv6 Mobility requires support in the IPv6 stack of the node being migrated (the
mobile node). Despite this being a core part of the IPv6 standard, this has been
implemented in few operating systems to date. There are two known implemen-
tations IPv6 Mobility in Linux, the first an implementation of a very early draft
of the protocol by Lancaster University as a patch for Linux 2.1.90 (current circa
1998) and the second by Helsinki University of Technology which appears to
have been abandoned since 2006. The websites of both implementations are no

1Since this is very early work, it has not yet gained an antlered acronym.

27

4. LAYER-3 VIRTUAL MACHINE MIGRATION

control domain

virtual
router

A
virtual servers

Machine
A

control domain

virtual servers

Machine
Bvirtual

router
B

DHCP
v6

server

Figure 4.1: Virtual network topology

longer accessible, although the final state of the HUT implementation has been
preserved by the Internet Archive.2

A better solution would be decentralised and would not require any modification
to virtual machines’ operating systems.

4.1.1 Components and Interconnections

The prototype implementation is being built on the Citrix XenServer platform, but for
ease of maintenance and to aid transfer to other platforms the platform itself has not
been modified. Instead, the intelligence is being implemented in lightweight virtual
routers, minimal Linux virtual machines instantiated once per physical server.

Virtual networks are used to place all other virtual machines behind the virtual
router. Logically, the virtual routers are interconnected with each other, either directly
at layer 2 or via intermediate routers. Traffic to a virtual server on host A passes
through virtual router A; the virtual router has an uplink towards the internet and
a downlink to an entirely-virtual layer-2 network for the virtual servers currently run-
ning on that host. This is illustrated in Figure 4.1.

The virtual routers also communicate with a configuration host (another virtual
server, running anywhere in the cluster). This runs a DHCPv6 server [Droms et al.,
2003] and assigns a unique /64 subnet to each virtual router for its local virtual servers

2http://web.archive.org/web/20080509070021/http://www.mobile-ipv6.org/

28

http://web.archive.org/web/20080509070021/http://www.mobile-ipv6.org/

4. LAYER-3 VIRTUAL MACHINE MIGRATION

using prefix delegation [Troan and Droms, 2003]. Linux DHCPv6 client support has
proven immature, but workable with some bug-fixing.

In turn, the virtual routers are responsible for configuring the virtual servers cur-
rently residing locally. This is achieved using the the simpler stateless autoconfigura-
tion mechanism, SLAAC [Thomson et al., 2007] as the stateful features of DHCPv6 are
not needed in this case; SLAAC client support is mature in every mainstream operating
system so clients do not need to install any additional software.

4.1.2 Actions upon Migration

When a virtual server migrates from machine A to machine B, virtual routers A and/or
B must become aware of this. This mechanism is not yet finalised and multiple options
exist, including:

Integration with the virtualisation control plane: The virtual routers, or the config-
uration server, could maintain a connection to the virtualisation layer (for ex-
ample using XAPI if running on XenServer) and detect the migration of virtual
machines. Virtual machines can be identified by MAC address, which remains
persistent.

Detection of packet from wrong subnet: If the migrated host has connections open it
will likely send a packet using its old address as the source. This will be received
by virtual router B which can refer to the upper 64 bits of the address to determine
the host’s previous location, i.e. that this host was previously the responsibility
of virtual router A.

Virtual router A must then be instructed to set up a forwarding rule: any packets
which arrive for the migrated host’s old address must be redirected to the host’s new
location instead of to the local virtual network. This will most likely involve virtual
router B impersonating A to the migrated host, with packets arriving from the real
virtual router A via a tunnel. Outbound packets from the migrated host can be deliv-
ered directly, without having to pass through A again, if the routers explicitly do not
attempt to perform source address filtering.

29

CHAPTER 5

Conclusion and Thesis Plan

I have described my three current avenues of research into data centre network scala-
bility:

• MOOSE, a scalable addressing and switching architecture for Ethernet;

• Optimisations for reducing broadcast traffic, including ELK;

• A wholly-software, layer-3 virtual machine migration enabler.

These were presented in descending order of completeness at the time of writing;
all three will be developed further for conference papers and ultimately for my thesis.
It is likely that further avenues will be added to the list as they are discovered. I expect
to have completed this work within the time available.

5.1 Thesis Structure

My thesis will approximately follow the structure of this report, with the following
chapters:

1. Introduction

2. Data Centre Networking: Background and Related Work

3. Scalable Ethernet Addressing: MOOSE

4. Broadcast Traffic Optimisation: ELK and Inferred Multicast

5. Layer-3 Virtual Machine Migration: Transparent IPv6 Address Persistence

6. Conclusions and Future Work

30

5. CONCLUSION AND THESIS PLAN

Chapters 3, 4 and 5 will be derived from separate papers and will each contain a
separate evaluation section, as my three major contributions address different parts of
the problem space and can be implemented and used separately.

It is quite likely that my work on transparent IPv6 address persistence will extend
into the realm of IPv6 transition technologies in a data centre context. If this work
produces any significant findings, it may warrant an additional chapter.

5.2 Timeline
Period Primary goal Secondary goals

Summer
2011

Complete design and implemen-
tation of Transparent IPv6 Ad-
dress Persistence

Write preliminary ELK paper; re-
view recent developments, in-
cluding IETF ARMD work

Michaelmas
2011

Write paper on Transparent IPv6
Address Persistence

Extend ELK to integrate with
DHCP; preliminary investigation
of inferred multicast

First half
2012

Design and implement inferred
multicast

Evaluate MOOSE; complete ELK
paper

Second half
2012

Write paper on broadcast optimi-
sation

Depending on status of ARMD,
prepare updates to MOOSE and
initial internet draft of ELK

First half
2013

Thesis Continue working with IETF if
appropriate

31

Bibliography

H. Abu-Libdeh, P. Costa, A. Rowstron, G. O’Shea, and A. Donnelly. Symbiotic routing
in future data centers. ACM SIGCOMM Computer Communication Review, 40(4):
51–62, Aug. 2010.

A. Adams, J. Nicholas, and W. Siadak. Protocol Independent Multicast - Dense Mode
(PIM-DM): Protocol Specification (Revised). RFC 3973 (Experimental), Jan. 2005.
URL http://www.ietf.org/rfc/rfc3973.txt.

I. Aggarwal. Implementation and evaluation of ELK, an ARP scalability
enhancement. Computer Science Tripos Part II, Corpus Christi College, University
of Cambridge. Dissertation, May 2011.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,
and A. Warfield. Xen and the art of virtualization. In Proc. SOSP, pages 164–177,
New York, NY, USA, 2003. ACM. ISBN 1-58113-757-5. doi: 10.1145/945445.945462.

S. Carl-Mitchell and J. Quarterman. Using ARP to implement transparent subnet
gateways. RFC 1027, Oct. 1987. URL http://www.ietf.org/rfc/rfc1027.txt.

D. Chrapaty. The reality of the cloud: Microsoft’s data center strategy. Microsoft
Management Summit keynote address, May 2008.

M. Christensen, K. Kimball, and F. Solensky. Considerations for Internet Group
Management Protocol (IGMP) and Multicast Listener Discovery (MLD) Snooping
Switches. RFC 4541, May 2006. URL http://www.ietf.org/rfc/rfc4541.txt.

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield.
Live migration of virtual machines. In Proc. USENIX NSDI, 2005.

P. Congdon, A. Fischer, and P. Mohapatra. A case for VEPA: Virtual Ethernet Port
Aggregator. In ITC 22 Second Workshop on Data Center – Converged and Virtual
Ethernet Switching (DC CAVES), Sept. 2010.

32

http://www.ietf.org/rfc/rfc3973.txt
http://www.ietf.org/rfc/rfc1027.txt
http://www.ietf.org/rfc/rfc4541.txt

BIBLIOGRAPHY

R. Droms. Dynamic Host Configuration Protocol. RFC 2131 (Draft Standard), Mar.
1997. URL http://www.ietf.org/rfc/rfc2131.txt. Updated by RFCs 3396, 4361.

R. Droms, J. Bound, B. Volz, T. Lemon, C. Perkins, and M. Carney. Dynamic Host
Configuration Protocol for IPv6 (DHCPv6). RFC 3315 (Proposed Standard), July
2003. URL http://www.ietf.org/rfc/rfc3315.txt. Updated by RFC 4361.

L. Dunbar and B. Schliesser. Address resolution for massive numbers of hosts in the
data center (armd). IETF Working Group charter, Mar. 2011. URL
http://www.ietf.org/dyn/wg/charter/armd-charter.

I. Hadžić. Hierarchical MAC address space in public Ethernet networks. In Proc. IEEE
Global Telecommunications Conference (GLOBECOM), volume 3, 2001.

B. Hinden and B. Carpenter. Discussion at ARMD BoF. IETF 79, Beijing, Nov. 2010.

R. Hinden and S. Deering. IP Version 6 Addressing Architecture. RFC 4291 (Draft
Standard), Feb. 2006. URL http://www.ietf.org/rfc/rfc4291.txt.

IEEE Computer Society. Std 802.1D: Standard for local and metropolitan area
networks: Media access control (MAC) bridges, 2004a.

IEEE Computer Society. Std 802.1X: Port based network access control, 2004b.

IEEE Computer Society. Std 802.1ab: Station and media access control connectivity
discovery, 2009.

A. Jeffree, P. Congdon, and J. Pelissier. P802.1Qbg: Edge virtual bridging. PAR, Dec.
2009.

C. Kim, M. Caesar, and J. Rexford. Floodless in SEATTLE: a scalable Ethernet
architecture for large enterprises. In Proc. SIGCOMM, pages 3–14, 2008. doi:
10.1145/1402958.1402961.

B. Mack-Crane, L. Dunbar, and S. Hares. IPv6 Neighbour Discovery scalability for
large data centers. draft-mackcrane-armd-ipv6-nd-scaling-00, Oct. 2010. URL
http://tools.ietf.org/html/draft-mackcrane-armd-ipv6-nd-scaling-00.
(Expired).

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner. Openflow: enabling innovation in campus networks.
ACM SIGCOMM Computer Communication Review, 38(2):69–74, 2008.

R. M. Metcalfe and D. R. Boggs. Ethernet: distributed packet switching for local
computer networks. Commun. ACM, 19(7):395–404, 1976. ISSN 0001-0782. doi:
10.1145/360248.360253.

33

http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc3315.txt
http://www.ietf.org/dyn/wg/charter/armd-charter
http://www.ietf.org/rfc/rfc4291.txt
http://tools.ietf.org/html/draft-mackcrane-armd-ipv6-nd-scaling-00

BIBLIOGRAPHY

J. Moy. OSPF Version 2. RFC 2328 (Standard), Apr. 1998. URL
http://www.ietf.org/rfc/rfc2328.txt.

A. Myers, E. Ng, and H. Zhang. Rethinking the service model: Scaling Ethernet to a
million nodes. In Proc. ACM SIGCOMM Workshop on Hot Topics in Networking, Nov.
2004.

T. Narten, E. Nordmark, W. Simpson, and H. Soliman. Neighbour Discovery for IP
version 6 (IPv6). RFC 4861, Sept. 2007. URL
http://www.ietf.org/rfc/rfc4861.txt.

K. Pagiamtzis and A. Sheikholeslami. Content-Addressable Memory (CAM) circuits
and architectures: a tutorial and survey. IEEE Journal of Solid-State Circuits, 41:
712–727, 2006.

J. Pelissier and R. Raeber. Introduction to Port Extension (IEEE P802.1Qbh). In ITC 22
Second Workshop on Data Center – Converged and Virtual Ethernet Switching (DC
CAVES), Sept. 2010.

C. Perkins. IP Mobility Support for IPv4. RFC 3344 (Proposed Standard), Aug. 2002.
URL http://www.ietf.org/rfc/rfc3344.txt. Updated by RFC 4721.

R. Perlman. Rbridges: transparent routing. In Proc. IEEE INFOCOM, volume 2, 2004.

D. C. Plummer. Ethernet Address Resolution Protocol. RFC 826, Nov. 1982. URL
http://www.ietf.org/rfc/rfc826.txt.

T. L. Rodeheffer, C. A. Thekkath, and D. C. Anderson. SmartBridge: a scalable bridge
architecture. In Proc. SIGCOMM, 2000.

E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label Switching Architecture.
RFC 3031 (Proposed Standard), Jan. 2001. URL
http://www.ietf.org/rfc/rfc3031.txt.

G. M. Schneider and T. Nemeth. A simulation study of the OSPF-OMP routing
algorithm. Computer Networks, 39(4):457–468, 2002. ISSN 1389-1286. doi:
DOI:10.1016/S1389-1286(02)00231-1.

M. Scott, A. Moore, and J. Crowcroft. Addressing the scalability of Ethernet with
MOOSE. In ITC 21 First Workshop on Data Center – Converged and Virtual Ethernet
Switching (DC CAVES), Sept. 2009.

S. Sipes. Why your switched network isn’t secure. In Intrusion Detection FAQ. The
SANS Institute, Sept. 2000. URL
http://www.sans.org/resources/idfaq/switched_network.php.

34

http://www.ietf.org/rfc/rfc2328.txt
http://www.ietf.org/rfc/rfc4861.txt
http://www.ietf.org/rfc/rfc3344.txt
http://www.ietf.org/rfc/rfc826.txt
http://www.ietf.org/rfc/rfc3031.txt
http://www.sans.org/resources/idfaq/switched_network.php

BIBLIOGRAPHY

T11 FC-BB-5 working group. Fibre channel backbone – 5, June 2009.

S. Thomson, T. Narten, and T. Jinmei. IPv6 stateless address autoconfiguration. RFC
4862, Sept. 2007. URL http://www.ietf.org/rfc/rfc4862.txt.

O. Troan and R. Droms. IPv6 Prefix Options for Dynamic Host Configuration Protocol
(DHCP) version 6. RFC 3633 (Proposed Standard), Dec. 2003. URL
http://www.ietf.org/rfc/rfc3633.txt.

C. Villamizar. OSPF optimized multipath (OSPF-OMP). IETF Internet Draft, Feb.
1999. URL http://tools.ietf.org/html/draft-ietf-ospf-omp-02.

D. Wagner-Hall. NetFPGA implementation of MOOSE. Computer Science Tripos Part
II, Homerton College, University of Cambridge. Dissertation, May 2010.

R. Whitehouse. Implementation of data link layer protocols for a network simulator.
Computer Science Tripos Part II, Homerton College, University of Cambridge.
Dissertation, May 2011.

F. Yu, R. H. Katz, and T. V. Lakshman. Efficient multimatch packet classification and
lookup with TCAM. IEEE Micro, 25(1):50–59, Jan. 2005. ISSN 0272-1732. doi:
10.1109/MM.2005.8.

35

http://www.ietf.org/rfc/rfc4862.txt
http://www.ietf.org/rfc/rfc3633.txt
http://tools.ietf.org/html/draft-ietf-ospf-omp-02

	Contents
	List of Figures
	1 Introduction
	1.1 Data Centre Network Design Challenges
	1.2 Scalability Limitations of Ethernet
	1.3 Related Work

	2 Scalable Ethernet Addressing: MOOSE
	2.1 Hierarchical Addressing
	2.2 MOOSE Architecture
	2.3 Interoperability Considerations
	2.4 Implementation and Evaluation
	2.5 Ongoing Work

	3 Broadcast Traffic Optimisation
	3.1 The Broadcast Problem
	3.2 Address Directory Service: ELK
	3.3 IPv6 Neighbour Discovery
	3.4 Ongoing Work

	4 Layer-3 Virtual Machine Migration
	4.1 Transparent IPv6 Address Persistence

	5 Conclusion and Thesis Plan
	5.1 Thesis Structure
	5.2 Timeline

	Bibliography

