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Chapter 1

Introduction

Ethernet, a dominant network protocol, has been used in networks for several decades
and is beginning to show its age. No obvious general-purpose replacement has been
found for Ethernet. Scalability has long limited Ethernet deployments — Heathrow
Terminal 5 could not use Ethernet for its networking needs [1] and this motivated
the Intelligent Airport project [2]. Several properties are desirable in a replacement:
compatibility with existing systems, the ability to incrementally introduce replacement
hardware to networks, minimal equipment to be obsoleted or to require update, and
significant performance improvements. At the forefront of research, the Intelligent
Airport project has recently proposed Multi-level Origin-Organised Scalable Ethernet
(MOOSE) [3] as a replacement for Ethernet which meets all of these criteria. No
complete implementation of MOOSE exists, so no evidence has been given that these
criteria are met beyond conjecture. In this paper, I set out to create an implementation
of MOOSE to provide this evidence, so that MOOSE can be reasonably judged by the
research community and compared with incumbent Ethernet standards.

1.1 Background

Network architecture can be conceptually divided into layers of protocols, each forming
a separate level of abstraction. Layers interact with the layers directly above and below
themselves. The bottom layer is the physical layer — the physical means of connecting
computers to each other and encoding bits onto a medium, such as 10BASE-T. Above
this lies the data-link layer, providing basic addressing, and controlling access to the
physical layer. The ubiquitous data-link-layer protocol is Ethernet. Above the data-
link layer lies the network layer, providing for better large-scale routing, and more
control over network traversal. The principal network-layer protocol is IP. Above the
network layer lies the transport layer, providing multiplexing of network channels
for applications between hosts. Examples are TCP and UDP. The three layers above
these can be considered merged into a single layer of application data for the purposes
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2 CHAPTER 1. INTRODUCTION

of addressing and routing.

Each layer may add headers to the front of the data payload being transmitted, which
may be used by routers when deciding where to send packets, by firewalls when deciding
to drop packets, and by hosts when deciding which application(s) to notify when packets
are received. Figure 1.1 illustrates this layering.

Figure 1.1: The OSI model of network protocol layers. Amended from [4, Figure 1]

1.1.1 Ethernet

The principal data-link-layer protocol used in networks today is Ethernet. Ethernet was
first proposed in 1976 with the objective “to design a communication system which can
grow smoothly to accommodate several buildings full of personal computers” [5]. Orig-
inally, Ethernets were shared medium networks, using a single coaxial cable between
all computers. All computers on a network would receive every packet that was sent,
and a computer’s Ethernet controller would determine whether to notify the operating
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system of them based on their Ethernet destination address. The important property
of Ethernet addresses was uniqueness. No information was required from an Ethernet
address other than that it uniquely identify a destination (or source). The format of
Ethernet addresses, which are 6 bytes long, is that the first three bytes of the address are
unique to the manufacturer which created the device (as allocated by the IEEE), and
the last three bytes of the address are guaranteed by that manufacturer to be unique.
Ethernet addresses are typically written as six hex. pairs, e.g. 00:01:02:03:04:05. In
this example 00:01:02 indicates the manufacturer (here 3Com), and the whole address
00:01:02:03:04:05 is guaranteed by 3Com to be unique.

(a) A shared medium network (b) A switched network

Figure 1.2: Comparison of shared-medium and star network topologies
Bold links are those used (thus not free for other use) when 1 and 4 communicate

As scalability became an issue, and because coaxial cable was much more expensive
than twisted pair cable, Ethernet was updated in 1990 [6] to support switching; using
wires connected only to one host or switch at each end. Switches are used to join
multiple hosts, controlling where in the network packets need to be sent, as opposed
to having a long wire connecting all hosts. Whereas IP addresses (scalable, network-
layer addresses) are allocated in blocks of nearby nodes within a network, so that
routing decisions can be based on the addresses’ prefixes, Ethernet addresses (data-link-
layer addresses) give no such routing information. In Ethernet, therefore, a switch’s
forwarding table is built up by remembering the source address and physical port of
every packet which is seen. No aggregation of nearby nodes can take place because
Ethernet addresses have no hierarchy. These forwarding tables must be kept in fast,
expensive memory, particularly as physical layer speeds increase. Typically they are
stored in Content Addressable Memory (CAM), a specialist form of hardware which
performs lookups in parallel and gives O(1) rather than O(n) retrieval on unsorted
data. CAM is expensive, requires lots of power (a particular problem in datacentres),
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and does not efficiently scale to many entries [7], giving most switches a practical limit
of storing approximately 16,000 entries in this table [8]. This fundamentally limits
the size of networks. When the forwarding table becomes full, entries are discarded.
Packets with previously unseen or discarded destination addresses are flooded to all
ports, resulting in excessive traffic. This is particularly problematic for low-capacity
edge links, which can become congested. All of these problems arise because no useful
routing information is embedded within an Ethernet address.

One bit of Ethernet addresses indicates whether the address has been assigned by a
manufacturer to a physical device, and is thus universally unique, or has been manually
allocated by a network administrator. This feature is rarely used, and in practice
addresses almost always have this bit set to manufacturer-assigned.

Ethernet, a flat-address based protocol, has no routing protocol associated with it,
because its addresses give no scope for one. Issues naturally arise from networks con-
taining loops, because there is no way to detect loops, or select paths for packets to
avoid loops. Ethernet’s mechanism to cope with loops is to use the Rapid Spanning
Tree Protocol (RSTP) [9, §17] to form a spanning tree of the network before any traffic
is allowed on it, and disable redundant loop-causing links. This constrains packets to
suboptimal routes, reducing capacity. In datacentres, this is a particular problem where
redundancy is often planned to increase bandwidth and throughput, but is disabled.

Figure 1.3: Diagram showing issues with using RSTP

Figure 1.3 shows the problems with using RSTP — the dashed links having been dis-
abled by RSTP may not be used, so that if 1 wishes to communicate with 5, rather than
using the link directly between 1 and 5, the packets would need to travel via switches
2, 3 and 4, unnecessarily congesting those switches and links, and adding latency.
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1.1.2 MOOSE, a Proposed Improvement

Figure 1.4: Sequence diagram of request and response using MOOSE.
Amended from [3, Figure 2]

Multi-level Origin-Organised Scalable Ethernet (MOOSE) [3] alleviates the issues of
over-filling forwarding tables, as well as issues caused by the required use of RSTP, by
introducing hierarchy into the Ethernet address space. MOOSE preserves backwards
compatibility with Ethernet, and requires no host reconfiguration or modification. It
only requires that switches be replaced (or ideally, have software updates installed), and
this can be done incrementally through the network. Each switch is given an address of
length less than six bytes. Every host in a MOOSE network necessarily has a nearest
MOOSE switch. When this switch receives a packet from one of the hosts for which it is
the nearest switch, it rewrites the source address of the packet to that host’s MOOSE
address. A host’s MOOSE address is formed by concatenating the switch’s address
and some identifier for the host, decided by the switch. As an example, if our switch’s
address is 02:22:22:22, it may assign an attached host the identifier of AA:BB, and so
that host’s MOOSE address would be 02:22:22:22:AA:BB. The host is not aware of
its MOOSE address. The switch rewrites the source address on packets sent from the
host’s Ethernet address to its MOOSE address. It also rewrites the destination address
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of packets sent to the host’s MOOSE address to its true Ethernet address so that the
host’s network interface knows to receive the packet rather than discard it. When a
packet from a host enters the MOOSE network, only that host’s MOOSE address is
known to the rest of the network. The network does not ever see its Ethernet address,
but the host itself is unaware of this.

Unlike standard Ethernet addresses, MOOSE addresses contain routing information,
and so can be used in forwarding decisions. Switches need only to keep track of one
entry in their forwarding table per switch in the network, rather than per host in the
network, a massive reduction. Furthermore, a routing protocol such as OSPF [10] can
be used to provide shortest-path routing between switches without RSTP disabling
redundant links.

MOOSE addresses are distinguished from Ethernet addresses because MOOSE ad-
dresses have their administrator-assigned (i.e. not manufacturer-assigned) bit set,
whereas it is never set in natural Ethernet addresses. Any Ethernet device ignores
this distinction and the MOOSE address appears as any other Ethernet address, but
any MOOSE-aware device can differentiate between them.

1.2 Context of Work

The ideas behind MOOSE are summarised by Scott et al. in [3], and a pure-software
Python implementation of some parts of MOOSE has been created as a proof of concept.
This prototype was not designed to operate in realistic conditions due to its software
nature — though it could switch at 100Mb/s — it simply showed that the ideas behind
MOOSE were sound, and its addressing system could be used transparently without
modifying hosts. No detailed specification, reference implementation, or even realistic
partial implementation exists.

1.3 Aims

I aimed to implement a MOOSE switch using an FPGA to give realistic operating con-
ditions and constraints, and evaluate MOOSE’s proposed improvements. Specifically, I
aimed to show that MOOSE reduces the size of switches’ forwarding tables, and permits
shortest path routing without disabling any links. I also aimed to verify that resolution
of conflicts of MOOSE addresses could be handled smoothly, and that hosts could move
transparently from one switch to another.

I used NetFPGA [11] as the platform to do this. A NetFPGA is a PCI card with a
single Xilinx Virtex-II Pro 50 FPGA, four 1Gb/s Ethernet ports, and several banks of
fast memory [12], as well as DMA access to the host computer’s main memory. The
NetFPGA platform was created to enable rapid prototyping of network protocols at
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gigabit speeds. Before its inception, no similar platform existed, and researchers had
to either rely on slow software prototypes, or create expensive custom hardware. The
NetFPGA provided a natural platform for prototyping MOOSE.

1.4 Relevant Courses

I used knowledge gained from the following courses: Advanced System Topics and Digi-
tal Communication 1 and 2 (for network concepts), Algorithms I and II (for algorithmic
design and implementation principles), Programming in C and C++, Software Design
and Software Engineering (for programming design and implementation techniques),
ECAD and Computer Design, (for hardware and FPGA ideas), and Unix Tools. The
MPhil ACS Network Architecture course was also helpful.

The tripos does not, however, offer any instruction in the practicalities of implementing
network protocols. The NetFPGA platform and MOOSE, a research protocol, are also
entirely outside the tripos. I learnt about each of these areas of my own accord. I
taught myself not only technologies but also language skills, and gained expertise in
implementing efficient network applications.
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Chapter 2

Preparation

2.1 Research

Research into the development technologies available on NetFPGA was required.

2.1.1 NetFPGA and OpenFlow

Some time was initially spent investigating project development, deployment and test-
ing on NetFPGAs [11]. Projects on NetFPGAs are programmed using Verilog. Though
a huge improvement on pure hardware implementation, and much more performant
than a software implementation, development is a slow, intricate and error-prone pro-
cess, relying heavily on simulation for low-level testing, and Perl scripts to generate
sample packets for higher-level unit testing.

OpenFlow [13] has been conceived as a way for researchers to experiment with new
network protocols. It is a specification which switches can support to provide a simple
mechanism for experimentation with network protocols. OpenFlow allows protocol logic
to be implemented in software, but run on native hardware.

OpenFlow operates by keeping a table in memory of flows, with associated actions. A
flow is defined in terms of some fields from data-link-layer, network-layer and transport-
layer headers (see Figure 1.1). These fields are listed in Table 2.1.

A flow is defined as a set of exact matches on any number of these fields, and/or
partial matches on IP Source and Destination Addresses. An action is defined as any
combination of:

� Send out packet on a specific physical port.

� Rewrite any header fields.

9
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� Drop packet.

When an OpenFlow switch receives a packet, its headers are inspected. If the headers
match an existing flow, the associated action is taken. If the packet’s headers don’t
match any flow, the packet is sent to a software controller. The software controller then
determines the proper action to be taken for the packet, and may add this action to
the hardware flow-table to be used for this packet, for future matching packets, or for
both.

Some switches made by HP, Cisco, Juniper and NEC support OpenFlow, and any
Linux computer with multiple network interfaces can support OpenFlow. Hardware
fulfilling the OpenFlow specification has been written in Verilog and can be loaded
onto NetFPGAs, so these too can be used as OpenFlow-compliant switches.

There are many benefits to using OpenFlow on NetFPGA, rather than synthesising a
custom Verilog switch. OpenFlow allows for rapid prototyping without having to worry
about tedious and irrelevant low-level hardware details, such as managing buffers of
incoming packets while others are being processed. Much better testing frameworks
and debugging tools exist for writing software than Verilog, and statistics can be much
more easily recorded, as they can be saved in files on the controller computer rather than
having to manually synthesise a data-collection interface on the hardware switch. The
benefits of many people working on the existing Verilog implementation of OpenFlow
on NetFPGA also make the core hardware-interface code more reliable. NetFPGAs
only have four network ports, few compared with the standard 24- or 48-port switches
that are ubiquitous in commercial deployment. Using OpenFlow allows a much larger
range of hardware to be used in experiments than writing very platform-specific Verilog,
overcoming some of NetFPGA’s limitations.

OpenFlow also allows for much easier sharing and collaboration with the research com-
munity. Researchers are often more comfortable with the languages supporting Open-
Flow controller development (C++ and Python), than Verilog, which permits little

Layer Protocol Field Size
Physical Physical Physical port 16 bits (with special values)
Data Link Ethernet Source Address 48 bits
Data Link Ethernet Destination Address 48 bits
Data Link Ethernet Type/Length 16 bits
Data Link Ethernet VLAN 16 bits
Network IP Source Address 32 bits
Network IP Destination Address 32 bits
Network IP Protocol 8 bits
Transport TCP/UDP Source Port 16 bits
Transport TCP/UDP Destination Port 16 bits

Table 2.1: Headers used for OpenFlow matches
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abstraction over irrelevant concerns and makes it hard to focus on the important fea-
tures being demonstrated by a prototype. Also, any PC can run a supplied OpenFlow
prototype, whereas only 150 institutions worldwide actually have NetFPGA cards to
run a Verilog implementation, and using them is a rare specialism.

Using OpenFlow adds only a small amount of latency to packet processing. This per-
formance hit (from sending the packet to the software controller) only affects the first
packet of each flow, as subsequent packets are handled with the fast hardware lookup
table. For the metrics being considered: size of forwarding table, optimality of routing,
ease of host migration, and functionality of conflict resolution, the impact of this small
one-off latency is minimal and insignificant. The benefits of using OpenFlow far out-
weigh the advantage of writing the whole switch in Verilog (a small decrease in latency
on a few packets).

As outlined in Section 1.4, MOOSE, hardware implementation and network practicali-
ties are not included in the tripos. NetFPGA and OpenFlow are also topics outside of
the tripos which I had to learn about entirely on my own.

2.2 Modifications to Project Proposal

I decided to use OpenFlow to create my MOOSE switch on NetFPGA, rather than
using Verilog. This combined a hardware and software implementation, taking the
advantages of both, with the only limitation being a small amount of latency.

2.2.1 Decision to Use OpenFlow

Using OpenFlow required modification to my project proposal. Originally I was going to
gather information relating to end-to-end latency of transmission. This measurement,
however, would no longer give fair comparisons because the software implementation
would be slower than custom hardware. As well as this, OpenFlow only supports exact
matches on whole Ethernet addresses. OpenFlow rules must therefore be generated
between pairs of hosts, rather than simply keeping a look-up table of swiches and ports
as would be expected in a purely hardware switch. Using OpenFlow, all of the other
metrics can still be gathered and the added benefits outlined above are also introduced.

I also decided early on that rather than simply sending lots of arbitrary IP traffic
through large networks in arbitrary topologies, as originally envisaged, gathering specif-
ically targetted benchmarks, and comparing these with standard Ethernet performance
would be more insightful. These benchmarks are described in Section 4.1.
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2.3 Learning

Before programming could begin, I had to learn more about the systems I was going
to be working with. This involved setting up a working development platform and
learning a new programming language, Python.

2.3.1 Compiling NetFPGA, OpenFlow and NOX

Very few people use OpenFlow with NetFPGAs because both are very specialised tools,
and not many NetFPGAs exist. Unfortunately, this means that developments in one
are occasionally not entirely compatible with the other. Several weeks were spent
identifying a version of OpenFlow compatible with the NetFPGA hardware, tracking
down undocumented dependencies of OpenFlow, and creating patches to compile it
on CentOS, the only operating system which NetFPGAs support. These patches were
contributed back to the community. I also learnt how to use the distributed version
control system git, to allow me to work with the OpenFlow repository.

NOX is a library for creating OpenFlow controllers in C++ or Python in order to
handle packets for which no flow exists in hardware flow-tables. It is by far the most
commonly used and stable project for this purpose, and was a natural choice for this
project. Unfortunately, a suitable version of NOX then had to be identified which
would interoperate with the identified version of OpenFlow. Again, undocumented
dependencies were tracked down and patches created to enable compilation.

NOX’s website claims that “Unfortunately there currently isn’t extensive API docu-
mentation so you should expect to get comfortable with the source.” [14]. I became
comfortable with the source, including extensive use of Boost C++ paradigms (e.g.
boost::function and boost::bind) with which I was not familiar, through lots of
investigation and many experiments.

2.3.2 Learning and Evaluating Python

The NOX development team recommend:

NOX components can be written in either C++ or Python (or both). At
the time of this writing, the Python API to the network is more mature and
therefore more friendly for new NOX developers. We recommend that unless
the component being developed has serious performance requirements, that
developers start with Python. [14]

Because the only traffic affected by the chosen language is the first packet from each
host, the work done there is minimal, and the only significant effects of using Python
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should be the number of flows that can be processed concurrently, I followed the advice
of the NOX development team and used Python. I spent some time learning this new
language, very different in nature from any programming language I had used before
with its dynamic typing, and exploring NOX’s Python APIs from NOX’s source code.
I created a MOOSE switch in Python which could perform all of my core project
requirements (see Appendix C §Work to do—Have attached hosts).

I ran some performance tests on this Python controller to verify that my approach was
suitable and found that rates of around 100Mb/s were achieved, far below the expected
1Gb/s. Further investigation showed that the sample NOX Ethernet switch written in
Python also operated at about 100Mb/s, whereas the C++ version operated at about
1Gb/s. The approach of using Python to write the switch should certainly not have had
such a significant performance impact, and the slowness was caused by a bug in NOX
encountered when crossing language boundaries between Python and C++. Rather
than track down the cause of this inherent slowness across language boundaries in the
NOX library, I opted to re-write my MOOSE controller in C++. This required learning
a new API (as using NOX in C++ and Python are somewhat different), and rewriting
some work in C++ that I had already written in Python, but seemed the best approach.
I re-wrote an equivilent controller in C++ and found that it was switching at 1Gb/s as
expected. This speed was comparable to the rate achievable by the NetFPGA hardware
running with an Ethernet controller.

I give no further details of the Python implementation, though the state of the code
when I abandoned this approach is included in my source code submission for reference.
All work referred to henceforth is in relation to the C++ controller.

2.4 Strategies for success

I made decisions about how I would implement my project to ensure its success.

2.4.1 Test-Driven Development

I decided to adopt a test-driven development paradigm to ensure that all code worked
reliably. Unit tests would be written for every method before writing the method’s
implementation. This means that time has to be spent considering the desired effects
of code and distinguishing between the separate classes of input to the methods and how
they should be handled. It also forces the independence of modules, and encourages
modules to be as state-free as possible, as this makes testing easier. Occasionally, when
some aspects of code are refactored, or the implementation behind their interface is
changed (as described in Section 3.2.1), this means that there is a good suite of tests
written in advance which would show whether the refactoring was correct and complete.
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This also means that an exhaustive test suite is built up as code is written, rather than
allowing testing to be put off until the end of the project (where memory of the code
is hazy), and possibly even neglecting it due to time pressure. Having an exhaustive
test suite makes debugging much easier, because the debugging is done as the code is
written rather than when trying to explain obscure emergent properties of the whole
complex system.

2.4.2 Source Control

I frequently committed my code to a Subversion repository held on the PWF, of which
I had a backup in London. This ensured that I could look through historical changes
to my code, and revert changes if needed.



Chapter 3

Implementation

3.1 Extending MOOSE

To implement a fully functioning switch, I needed to better formalise some details of
the MOOSE protocol that had only been outlined in the existing paper [3]. I developed
these myself, and describe them in this section. I have also discussed them with the
MOOSE team, leading to their inclusion in an as-yet unpublished paper [15].

3.1.1 Status And Management Interface

I specified Status and Management Interface (SAMI), the format of inter-switch mes-
sages, and intended behaviours upon receiving them, for MOOSE. I briefly describe
these messages below, but leave byte-level format details for Appendix A. My MOOSE
switch implementation supports all of these messages.

Conflict Resolution

So that switches don’t have to be manually allocated addresses by a network administra-
tor, and to prevent requiring universally unique switch addresses (artificially restricting
the number of switches which could be made, and any future additional hierarchies in
MOOSE addresses), it is desirable for switches to choose their own addresses when join-
ing a network. Switches could choose the same addresses, introducing the potential for
conflicting switch addresses which must be able to be autonomously resolved. I devised
a scheme, fully detailed in [15, §4.2], whereby all switches listen out for packets which
appear from known switches on ports other than where they have been seen before. If
they find such a packet, they check whether the previously known switch is online. If
it is online, the switch instructs the newly found switch to change its address. If the

15
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previously known switch is not online, the switch updates its view of the network to
reflect where the discovered switch is now, and notifies its neighbours of this. Controls
are also in place to prevent denial of service attacks.

This protocol requires the ability to send echo requests to switches to see whether they
are online, to respond to such requests, and to instruct switches to change their address.
I specified SAMI messages for these purposes.

Host Mobility

In basic operation, when a host moves from one switch to another and the host is
allocated a new MOOSE address, any traffic sent to the host’s old MOOSE address
will be lost. The old address will be used for a short time by those who had in the
past communicated with the host, as it will be present in their ARP caches. Scott et
al. [3, §IV.E] propose that the new switch could notify other switches of the Ethernet
addresses of hosts as they connect to it, by multicast, so that the old switch can forward
traffic destined for the host’s old MOOSE address to its new MOOSE address. Again,
I specified a SAMI message to notify switches of new hosts’ attachment.

3.1.2 Variable Length Prefixes

Scott et al. [3] define MOOSE switch identifiers as exactly three bytes long in their initial
research paper (which is not a full specification). This unnecessarily limits the number
of switches in any network, and increases the likelihood of conflicting identifiers in a
network. This may pose constraints on practical deployment. I devised an addressing
scheme which allows for variable length switch identifiers, significantly raising this limit.

The scheme operates similarly to class-based IP addressing [16, §3.2]. The six byte
MOOSE address is split up into a switch identifier and a host identifier. The bitwise
negation of the most significant two bits of the address indicate how many of the bytes
form the switch identifier (the remaining bytes being the host identifier). This gives
four classes of switch identifier — 1, 2, 3 and 4 bytes, giving approximately a 32-fold
increase in available switch identifiers. This also restricts switch prefixes to 32-bits,
which is a common word-size for content addressable memory as used for IP addresses,
potentially allowing existing IP routers to be re-purposed as MOOSE switches with
a simple firmware upgrade, and allowing for existing manufacturing of CAM to be
exploited. This address format is well suited for hardware because the length of the
switch identifier is directly encoded in a predictable way in the address.
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Figure 3.1: Examples of address classes, maximum length prefix (above) and minimum
length prefix (below)

3.1.3 Routing Protocol

The expected number of switches in a MOOSE network is expected to be small relative
to the number of hosts, and of the scale not to require much manual management or
routing policy in the network. Accordingly, I choose to use a link-state routing protocol
with MOOSE. I adapted Open Shortest Path First [10], the Internet link state protocol,
to use MOOSE addresses, and removed unrequired complexities of the protocol. I call
this protocol Open Shortest Path First for MOOSE (OSPFM).

3.2 Approach to Implementation

I detail the guiding principles of my implementation, and give an outline of my code.

3.2.1 Modularity

A modular design form was used so that code could be reused where possible. This also
allowed unit-testing without having to search for high-level properties of the actions of
switches when exposed to actual network traffic in order to verify behaviour.
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Separation of Concerns

The interface with OpenFlow/NOX was kept separate from the MOOSE-specific logic
by keeping all OpenFlow-related code in its own class, NoxMooseSwitch.
NoxMooseSwitch has a single MooseSwitchImplManager member, which contains all of
the MOOSE logic. When a packet is received, NOX passes an OpenFlow event to the
NoxMooseSwitch containing a copy of the packet. The NoxMooseSwitch works out the
correct action to perform on the packet by consulting the MooseSwitchImplManager.
The NoxMooseSwitch then sends the proper OpenFlow messages back to the hardware
which performs that action.

This separation of concerns meant that development could be done without needing the
NetFPGA machines until late in the process. When the machines were unavailable due
other commitments, work could still be done because most of the logic being performed
is independent of the actual NetFPGA-OpenFlow interface. These tests also provided
demonstrations of the correctness of the building blocks of the project, giving a firm
foundation for the correctness of the whole project.

The OSPFM routing protocol behaviour was also kept separate from the other compo-
nents. Dijkstra’s algorithm [17] and OSPFM were implemented in their own classes,
and so could be tested entirely separately from the rest of MOOSE.

Key Modules

The key abstractions for the MOOSE-related logic are a MooseSwitchImpl class which
manages the locally attached hosts for a switch (with a single switch-identifier prefix),
and a MooseSwitchImplManager class which deals with inter-switch communication. A
MooseSwitchImplManager has one or more MooseSwitchImpls — possibly more than
one if a switch is in the process of migrating from one prefix to another, e.g. if it had ex-
hausted its host address space. It also has an OSPFMModule, which keeps track of other
switches and provides a forwarding table. It delegates to a particular MooseSwitchImpl
where relevant, i.e. when a packet is sent to or from a directly attached host. This pro-
vides for good separation of concerns, avoiding entangling different address rewrites and
port lookups in the same functions. It also means that a particular MooseSwitchImpl
needn’t worry about changing its prefix, or keeping any state with respect to more
than just its own prefix. This additionally meant that much of a MooseSwitchImpl, for
instance its prefix, could be kept immutable. This immutability provides compile-time
guarantees that programmer assumptions about unchanging variables are upheld, giv-
ing more confidence in the program, and allowing for some optimisations which would
not otherwise be possible.

Interface was separated from implementation for all major components of the project.
This gave obvious interfaces to test, and ensured that modules could not interfere with
the internal state of other modules (for instance, data fields were kept private within
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classes, and access was only allowed through a controlling method). This also enabled
easy replacement of implementation while keeping interfaces unchanged, and refactoring
of code.

Advantages of this Approach

An example of useful separation of interface from implementation is the AttachedHosts
class. This class keeps a mapping between locally attached Ethernet addresses and
their associated MOOSE addresses. MOOSE addresses need to be looked up from
Ethernet addresses when a packet is received from that host, but a lookup in the
opposite direction is needed when a packet destined for that host is received. I used
a single bidirectional map to store this mapping because it was memory efficient, and
ensured that changes in one direction were consistently enforced in the other direction.
Originally, to get something working and usable, I wrote an implementation which
kept two std::maps, one from MOOSE addresses to Ethernet addresses and the other
from Ethernet addresses to MOOSE addresses. Adding, removing, or modifying entries
to these maps was closely controlled in the methods which other classes could call,
and the only actions supported were to atomically add, remove, update, or look up
entries, which affected both maps. I then replaced this simple implementation with
an implementation which used a single bidirectional map. This allowed me to work
out the operations required and logic behind them, and then learn the more complex
bidirectional map interface when this was established. I also already had an exhaustive
test suite for AttachedHosts and so had confidence that when I replaced the two maps
implementation with the one bidirectional map implementation, my changes would
work consistently.

3.2.2 Platforms of Development

To learn about the operation of NOX and OpenFlow without getting confused by new
platforms, a VirtualBox image of a Debian virtual machine was used to experiment
with NOX. This image contained within it a full development environment to use
NOX and several QEMU virtual machines to act as hosts connected to the virtual
NOX switch. This virtual machine image was distributed after use in a hands-on
tutorial at SIGMETRICS 2009 [18]. First, an Ethernet switch was built. This was
expanded to a standalone MOOSE switch which could have several hosts attached, but
not interoperate with other switches as this environment was not set up to support
multiple switches communicating with each other.

Then, having some experience with NOX, a development environment was set up on the
actual NetFPGAs to be used, and the basic MOOSE switch was deployed and tested.

Using virtual machines to learn about NOX gave a very easy debugging environment
and allowed changes to be quickly tried, enabling a rapid development cycle. Irrelevant
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issues, such as concerns over how hardware worked, could be ignored, and concentration
given to learning about NOX. This was a very helpful stage.

3.3 Main Areas of Code

The code written falls under four categories, which I shall describe separately.

3.3.1 Novel algorithms, Data Structures and Types

I wrote the code to implement my novel conflict resolution algorithm, as well as some
useful data structures and types:

Conflict When it is detected that two switches have the same address, this conflict
must be resolved using the conflict resolution algorithm which I devised (Section
3.1.1). This class autonomously holds all of the state (addresses, ports, etc.)
relating to a conflict, and sends packets when the algorithm mandates that it
should.

ConflictListener As part of the conflict resolution algorithm, a switch must keep
state about when it was last notified that it was in conflict. This class stores that
state.

OSPFM Several constants and classes were defined to help with the OSPFM rout-
ing protocol. The OSPFMNeighbour class keeps state about particular neigh-
bouring switches of the current switch, OSPFMPortList keeps a list of which
neighbouring switches of the current switch are connected to which ports, and
OSPFMLinkStateForSingleSwitch keeps state about the neighbouring switches
of other switches.

AttachedHost This simple type embodies all information about each locally attached
host, initially its Ethernet address and attachment port, but potentially extend-
able to include things like last received packet time.

I also wrote code to rewrite ARP queries as they were received. This involved get-
ting a good knowledge of the types of ARP requests and replies used, and carefully
implementing address rewriting based on the nature of the message.

In storing some custom data-types, it was incredibly important that network and host
byte order were used correctly.
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Figure 3.2: Class diagram outlining code. Some features omitted for clarity and brevity.
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3.3.2 Implementations of Existing Algorithms and Data Struc-
tures

I implemented several existing algorithms and data structures as part of the routing
protocol for MOOSE:

OSPFMDijkstra Here I implemented Dijkstra’s algorithm [17] for efficiently find-
ing the shortest paths to other switches and storing them in the form of a
SwitchTable.

PriorityQueue Dijkstra’s algorithm requires a priority queue [19] for storage of nodes,
and relies on being able to decrease the distances to nodes after adding them to the
queue. Unfortunately, the C++ STL implementation of std::priority queue

does not allow decreasing of distances. Accordingly, I implemented my own
PriorityQueue class using a heap.

3.3.3 Wrappers and Abstractions

I wrote several classes to provide useful interfaces to existing data structures, and to
allow communication with hardware using the OpenFlow protocol:

OpenflowRule To keep track of what rules and actions have been put in the hardware
tables of the NetFPGA, so that they can be modified or deleted in the future,
a convenient abstraction for these rules was created. Rules were stripped down
to the minimum relevant for my application — source and destination address to
match to incoming packets, source and destination address to put on outgoing
packets, and relevant ports. This helped overcome some of the limitations of
OpenFlow described in Section 4.3.

OpenflowRuleManager This wrapper around a std::set keeps track of the
OpenflowRules, taking care of generating, modifying and deleting rules based
on meaningful events such as a new host being attached, or another switch mov-
ing from one port to another. This wrapper class enforced consistency of rules,
e.g. if a switch moved from one port to another, all rules associated with that
switch would atomically be updated.

OpenflowRuleBridge To send OpenFlow messages to the NetFPGA so that it would
modify its hardware tables, instructions to add, modify or remove OpenflowRules
need to be translated into OpenFlow packets. Utility functions were written to
create these packets.

SwitchTable The SwitchTable interface facilitates the lookup and storage of which
port other switches are connected to. The wrapper keeps the implementation
loosely coupled from the interface, and allows the return of a special no port
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value if no port is stored for a switch, rather than relying on the caller checking
for the case of a missing entry and having to know the correct value to substitute
in. This wrapper around a std::map achieved this.

AttachedHosts To store and look up details about locally attached hosts (Ether-
net address, MOOSE address, port), a similar interface to that of SwitchTable

was used. This is a wrapper around a boost::bimap, and its development was
described in Section 3.2.1.

3.3.4 Glue

I wrote some classes which tied together the other written code, constructed and kept
the required objects, and enforced relationships between objects:

OSPFMModule This class keeps state relating to a switch as outlined in the OSPFM

data structures. It has a public interface to handle OSPFMPackets, to (if required
compute using OSPFMDijkstra, and) return a SwitchTable, and to return a list
of neighbouring switches.

MooseSwitchImpl This class is used to encapsulate the state of a single prefix of
a MOOSE switch. It keeps track of attached hosts using an AttachedHosts

member, allocates new suffixes to newly attached hosts, and gives an interface to
look up information about locally attached hosts.

MooseSwitchImplManager This class is used to encapsulate the state of an en-
tire MOOSE switch, which may have multiple prefixes. It wires together an
OSPFMModule (and accordingly, a SwitchTable), a list of Conflicts managed
by the switch, a ConflictListener for the switch, mobility rules for formerly
attached hosts, and some number of MooseSwitchImpls. It provides an inter-
face for translating between MOOSE and Ethernet addresses, looking up ports of
switches and hosts, filling in ARP packets, and handling inter-switch packets.

NoxMooseSwitch This class acts as a bridge between OpenFlow and a
MooseSwitchImplManager. It receives packets, gets relevant information from
its MooseSwitchImplManager, keeps and updates an OpenflowRuleManager, and
issues OpenFlow commands to the NetFPGA.

3.4 Testing

Testing was important to ensure my implementation worked as specified. I detail the
forms of testing used, and frameworks exploited to get to high confidence in the cor-
rectness of the written code, and thus the results gathered with it.
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3.4.1 Testing Framework

Having adopted a test-driven development strategy, choosing a testing framework was
important. The available options, none of which I had used before, were surveyed.
CxxTest1 was chosen because its simple interface enabled rapid prototyping. C++ has
no introspection capabilities, which means that most C++ testing frameworks require
manual registration of test cases, and use of ugly macros in defining tests. CxxTest
uses Python to parse tests, rather than itself being written in C++, and so has none of
these restrictions inherent in C++. This removes complexity and adds flexibility to the
testing process. The cruft required to write a test suite is minimal — a class is simply
defined which extends the CxxTest::TestSuite class, and any methods within whose
names start with the word test are automatically registered as tests. The framework
is distributed as a set of header files, so no other compilation is required. Assertions are
handled very well — again, the parsing stage means that if an equality assertion fails,
both the original assertion and the values present when checking the assertion can be
outputted, adding convenience and aiding debugging.

3.4.2 Testing Strategy

Other than for the NoxMooseSwitch class, unit tests were written for all methods
before writing the method itself. The different classes of input to the method were
determined, and tests written to exercise the methods with each of those classes of
input, verifying the expected behaviour. More integration tests were then written for
the MooseSwitchImplManager class, which exercised all of the relevant subroutines
required to process packets.

The NoxMooseSwitch class was very hard to test in an automated fashion because it
relied on being run in the full NOX event framework, which would be complicated to
interact with in a simple enough manner to write reliable and useful tests. My modular
design meant that explicit unit testing of this class could be avoided. Periodically, I set
up test networks of NetFPGAs and generated real traffic using ping and wget. I verified
that packets were being sent properly, with the correct addresses being rewritten, and
to the correct hosts using the packet capture software Wireshark. I manually inspected
the sent and received packets using Wireshark, and verified (and, where suitable, filled
in) the contents of hosts’ ARP tables with the Unix ifconfig and arp commands.
I also inspected OpenFlow control messages sent to the NetFPGA cards, again using
Wireshark.

1http://cxxtest.tigris.org
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3.4.3 Mocking

I wrote my own mocking system because the amount of mocking required was small
and restricted only to methods which were passed callback functions (a small amount
of conflict resolution and OSPFM code). Writing my own system took less time than
would have been needed to identify a suitable existing framework and learn how to use
it. This code records calls that are made to callbacks, and the arguments passed, and
makes it easy to verify that the correct calls to these callbacks were made, and to fail
tests if any incorrect calls were made.

3.4.4 Valgrind

When tests were run, they were run in a valgrind memory checker environment.
Valgrind keeps track of every memory read and write, ensuring unassigned memory
is never read from or written to, and that all memory is correctly freed after it is allo-
cated. This again helped to verify the code, and ensured that it would not encounter
unforseen errors at runtime, because my tests exercised all of the non-trivial code.
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Chapter 4

Evaluation

4.1 Experiments and Results

Data was gathered to compare the behaviour of MOOSE with that of Ethernet, and to
evaluate the effectiveness of host mobility and conflict resolution in MOOSE.

Unless otherwise noted, all experiments used computers with NetFPGA cards as
switches. These computers have two Ethernet interfaces. The two interfaces were
assigned IP addresses on separate subnets, and one computer was never asked to com-
municate with its other interface, to ensure that packets were always being sent through
the network.

The switches used were statically assigned the (hexadecimal) prefixes: 02:01:01:01,
02:02:02:02, . . . , 02:0D:0D:0D. In the early stages of testing, the hardware in the
switch assigned 02:03:03:03 was found to be faulty, so was removed from the experi-
ments before data was gathered. 12 switches were therefore used.

Before each experiment, the ARP caches of all hosts were cleared, so that no stale
addresses could be used.

In all topology diagrams, ellipses indicate switches and rectangles indicate hosts.

4.1.1 Forwarding Table Size

In the common case, MOOSE offers to reduce the number of entries in switches’ for-
warding tables, allowing more entries in the same amount of memory. Also, the entries
being stored are smaller, so again more entries can be kept.

Let H be the number of hosts present on the network. This will vary between around 1
and 16,000 on existing networks, though could be much larger. Multiple interfaces in the

27
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same device would each appear as an individual host to the network. A recent trend has
been towards devices having many interfaces, for instance most modern mobile phones
now have 4 or more modems (GPRS, 3G, HSDPA, etc.). Virtualisation techniques also
add extra hosts to the network. One of the objectives of the design of MOOSE was to
deal with this case of dense networks, with many more hosts than switches.

Let A be the average number of hosts attached to a single switch. Switches tend to
have between 4 and 96 ports, most commonly 24 or 48.

Let S be the number of switches present on the network. This will again vary, but
values between 1

96
H and 1

8
H are expected.

Ethernet switches require O(H) 6-byte entries in their forwarding table, because they
keep track of every Ethernet address they see.

MOOSE switches are claimed by Scott et al. [3, §V.E] to require on average O(A) entries
of at most 12 bytes1, and O(S) entries of at most 4 bytes2, aggregating to O(A + S)
entries.

Though the expected number of entries is different, O(H) is normally expected to be
greater than O(A + S). An experiment was performed with two constrasting configu-
rations, one where MOOSE would be expected to decrease the size of the forwarding
table, and one where MOOSE would be expected to increase the size of the forwarding
table. My MOOSE switch periodically recorded the contents of its forwarding table.
I adapted the standard OpenFlow Ethernet switch (included in the OpenFlow source)
so that it would record the contents of its forwarding table whenever it changed.

Best Case for MOOSE

The best case for MOOSE should be where the number of hosts on the network is large
in comparison to the number of switches, as is expected in commercial deployment. To
test this case, a line of switches was set up, each connected to the previous and next
switch in the line. Each switch had exactly two hosts attached — a restriction due to
NetFPGAs only having 4 ports, the true best case for MOOSE would have many hosts
per switch. Every host sent packets to every other host in the network3. Every switch
therefore saw at least one packet from every host, and accordingly at least one packet
via each other switch on the network.

16 bytes for the Ethernet address of the attached host, and at most 6 bytes for the MOOSE address
of the attached host, though only the suffix needs storing, so this could be reduced to between 8 and
10 bytes per host

2For simplicity and consistency in memory, each entry would likely be padded to a full 4-byte entry,
though some prefixes are shorter than four bytes. In memory-constrained environments, this could be
reduced.

3The command ping -c 5 <destination IP> was used
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Figure 4.1: Network topology of first MOOSE forwarding table size experiment, 12
switches in total. Ellipses indicate switches, boxes indicate hosts

This first configuration was run using the MOOSE switches. All of the hosts were then
reset, and the same configuration was run using the Ethernet switches. The comparison
of the switch table size of switch 02:02:02:02 is illustrated below.

(a) Ethernet (b) MOOSE

Figure 4.2: Forwarding tables of Ethernet and MOOSE switches in first forwarding
table size experiment

The experiment was run several times, and each time every Ethernet switch’s forwarding
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table contained 24 6-byte entries, one for each host on the network, agreeing with
the expected H entries. Every MOOSE switch’s forwarding table contained 11 4-
byte entries, one for each other switch, and two Ethernet-address-to-MOOSE-address
entries, one for each attached host. This agreed with the expected O(A + S) entries.
The predicted improvement was observed — per-hosts entries were aggregated into
per-switch entries in forwarding tables. Had my prototype switches had more (say, 24)
ports, the total amount of memory used for forwarding tables in the network would be
a useful comparison, unfortunately this could not be tested using NetFPGAs.

Worst Case for MOOSE

The worst case for MOOSE should be where the number of hosts on the network is small
in comparison to the number of switches — a very sparse network with many switches,
which is rare in deployment. To test this case, the same line of switches was set up,
but with only two hosts attached to switch 02:01:01:01, and no other hosts attached
to any switch. The switch table of the switch with connected hosts, 02:01:01:01, was
monitored, as well as that of one switch with no connected hosts, 02:0D:0D:0D.

Figure 4.3: Network topology of second MOOSE forwarding table size experiment, 12
switches in total. Ellipses indicate switches, boxes indicate hosts

(a) Switch with attached hosts (b) Switch without attached hosts

Figure 4.4: Forwarding tables of Ethernet switches
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(a) Switch with attached hosts (b) Switch without attached hosts

Figure 4.5: Forwarding tables of MOOSE switches in second forwarding table size
experiment

After running this configuration, the forwarding table of the MOOSE switch with at-
tached hosts contained 11 4-byte entries, one for each other switch, and two Ethernet-
address-to-MOOSE-address entries, one for each attached host. The other switches’
forwarding tables each contained 11 4-byte entries, one for each other switch, and no
other entries, again O(A + S) entries.

The Ethernet switches had much smaller forwarding tables present. The forwarding
table of the Ethernet switch with attached hosts contained two 6-byte entries, one for
each attached host, and the other switches’ forwarding tables each contained a single
6-byte entry (from the broadcast ARP packet sent as part of the ping command).
MOOSE brought a significant increase, as expected, to the number of entries in the
forwarding table. This kind of topology is expected to be uncommon in practice.
MOOSE, however, has been shown to be deterministic, and provide improvement in
the expected common case.

4.1.2 Shortest Path Routing

No routing protocol can be used with Ethernet because Ethernet addresses have no
hierarchy and no concept of identifiers of switches which could act as way-points when
routing. The only way an Ethernet switch has of selecting which port to output a packet
to for a given destination is by remembering the last port from which each address was
seen as a source address. Because no routing protocol is used, no switch has knowledge
of the network topology, and so switches cannot know how to avoid loops. Broadcast
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packets which go around a loop will keep being sent around the loop endlessly, clogging
up the network, and also generating lots of traffic to all hosts on the loop. This means
that either a spanning tree protocol must be used, disabling some links and reducing
efficiency, or no spanning tree protocol is used, and any broadcast traffic (of which there
is plenty, as its use is required and indeed encouraged in Ethernet) will go around the
loop in perpetuum. As well as this, packets are received from hosts on the incorrect
port, putting corrupt data into switches’ forwarding tables and preventing any useful
throughput.

Loops

To show that broadcast traffic can traverse a MOOSE network containing loops, a small
network of three switches, each with one host attached, was set up. A broadcast packet
was sent from one of the hosts, as part of an ARP query from the utility ping, and the
packets received by the hosts not involved with the ping command were captured using
Wireshark. These switches were not operating with the inefficient Rapid Spanning Tree
Protocol. Though all Ethernet networks today use RSTP to avoid the issues which this
experiment shows, MOOSE requires no such protocol. This experiment was somewhat
artificial, as it did not compare MOOSE with a realistic Ethernet network deployment,
but it clearly illustrates one of the problems of Ethernet that MOOSE solves.

Figure 4.6: Network topology of loop experiment

In the Ethernet network, 10 seconds after 192.168.1.1 sent a broadcast message,
over 120,000 copies of the same broadcast packet had been received by each host.
Though only one packet was sent by 192.168.1.1, switch 02:01:01:01 forwarded this
packet to switches 02:02:02:02 and 02:04:04:04. As this was a broadcast packet,
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switch 02:02:02:02 sent this packet to 02:04:04:04, who in turn sent it to back to
02:01:01:01. Ethernet packets have no sequence number or unique identifier to show
which switch they originated at, so this switch sent it again to 02:02:02:02, and it
would continue to be sent around the loop ad infinitum. This congested the network
hugely, eating up all available bandwidth. When switches sent the packets to the
other switches, they also sent them to all attached hosts, which caused enough network
interrupts in those hosts to cause them to hang.

In the MOOSE network, no such problems were experienced. MOOSE’s multicast
mechanism between switches ensured that each switch only received each packet once,
discarding any further copies before passing them on. Switches distributed copies of
the packet directly to each host, rather than blindly flooding them to everyone.

Screenshots of these Wireshark captures are included in Appendix B for illustration.

Optimal Routes

To show that no links between switches were disabled in a MOOSE loop, where they
were in the equivalent Ethernet loop, 12 NetFPGA switches were set up in a loop, with
one host connected to one particular switch (02:01:01:01). Another host was plugged
in to each other switch in turn, and the average round trip time of ping packets between
the two hosts was calculated4.

This experiment was then repeated with the same configuration of Cisco Catalyst 3500-
48 switches, with the Rapid Spanning Tree Protocol (RSTP) enabled.

The raw data rates are not comparable because the Cisco Ethernet switches only operate
at 100Mb/s, slower than the 1Gb/s at which the MOOSE switches on NetFPGAs
operate. Unfortunately, 1Gb/s Ethernet switches were unavailable to me. Regardless,
the effect of the automatically disabled link in the Ethernet network is very much
observable.

4Specifically, the command ping -c 10000 -s 1400 -f <destination IP> was used
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Figure 4.7: Ethernet network topology of optimal routes experiment with RSTP —
Bold links show route taken, dashed links were disabled by RSTP
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Figure 4.8: MOOSE network topology of optimal routes experiment — Bold links show
route taken
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(a) Ethernet network (with RSTP) and MOOSE network (without RSTP)

(b) Enlarged version of just MOOSE network (without RSTP)

Figure 4.9: Graphs of ping times around a loop in both Ethernet network with RSTP
and MOOSE network without RSTP (above), and enlarged version of graph with just
MOOSE network (below). Error bars indicate ±1 standard deviation.
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The unit of the horizontal axis is the smallest number of switch-to-switch hops between
the hosts. The value is positive if those hops are in a clockwise direction and negative
if they are in an anticlockwise direction, in the network topology shown in figures 4.7
and 4.8.

The error bars provide insight into the variation in marshalling delays as packets traverse
switches. These marshalling delays are caused by the buffering of packets in one or
more consecutive switches due to contention on the outgoing port. Recall that the ping
messages (from which these measurements are derived) share the network with other
data packets such as RSTP messages and background messages between hosts.

From the symmetry of the MOOSE graph it is clear that the same number of hops
were being traversed between hosts which are the same distance apart, regardless of
direction. From the asymmetry of the Ethernet graph, it is clear that longer paths
were being traversed where the shortest path would require crossing the link between
switches 02:01:01:01 and 02:0D:0D:0D than where this link was not on the shortest
path. The improvement in efficiency of use of links, and optimality of routing in the
MOOSE network has been very clearly shown.

4.1.3 Host Mobility

In an Ethernet network, when a host moves from one switch to another, connectivity
with any part of the network with which it was formerly connected is blocked for several
minutes as switches flush caches about the host’s location. Eventually, when the host
has not been seen by other hosts for some time, other hosts’ ARP caches will clear, and
to communicate with the host, they will need to send a new ARP request by broadcast,
finding its new location.

To demonstrate that moving a host from one switch to another did not have this delay
in a MOOSE network, three NetFPGA switches were set up in a line, each connected
to the next in the line. A host (A) was connected to the switch at one end of the line,
and another host (B) to the middle switch. A long TCP transfer, typical of an FTP
or web download5, was initiated between hosts A and B .

Static entries were put in the ARP tables of each host indicating the MOOSE address
of the other host. In this way it was ensured that when B was moved to another switch
and allocated a new MOOSE address by that switch, its old MOOSE address was being
used, with MOOSE mobility between switches, rather than an ARP request being sent
to get its new address, which happens in Ethernet as described above (except returning
the old address, as no new address is allocated in Ethernet).

5This transfer was large enough to ensure that it would not complete before the end of the experi-
ment
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(a) Before moving the host (b) While moving the host (c) After moving the host

Figure 4.10: Topology of network for host mobility experiment

Approximately two seconds after the TCP flow was initiated, the cable connecting
host B to switch 02:02:02:02 was unplugged, and was connected instead to switch
02:04:04:04.

This experiment was repeated multiple times and it was clear that results were con-
sistent in each experiment. When using MOOSE switches, the uninterrupted transfer
time was found to be 6.4s ± 0.5s. The interrupted transfer time was found to be
10.2s ± 0.9s. In the interrupted transfer, a pause of approximately three seconds was
observed between the disconnection of the cable and the resumption of the transfer.
This was due to a combination of the physical time that the cable was disconnected
(around one second), the time taken for switch 02:04:04:04 to send a multicast packet
notifying switch 02:02:02:02 of the newly connected host, the time taken for switch
02:02:02:02 to modify its OpenFlow rules to forward packets, and the time taken for
TCP Slow Start [20, §3.1] to resume the TCP flow.

When using Ethernet switches, the uninterrupted transfer time was comparable to the
MOOSE transfer time. The interrupted transfer, however, did not resume in over
five minutes. This is because when multiple retransmissions of TCP data are not
successfully delivered for five minutes (a global timeout set out in the TCP standard [21,
§3.8]), the TCP connection is closed. Though there was physical connectivity between
the hosts participating in the TCP session, by default Ethernet switches are specified
to cache the mapping between ports and addresses for 300 seconds [9, §7.9.2], thus any
host which is moved between switches will be disconnected from the network for at
least 300 seconds; the same amount of time as TCP’s retransmission timeout. These
effects combine pathologically so that the Ethernet switch blocks the TCP traffic for
long enough to cause TCP to close the session, and so abort the file transfer. MOOSE
encounters no such problems for host mobility as the network only interferes with TCP
retransmissions for two seconds.

To confirm that this was the cause of Ethernet’s failing, I set up a second Ethernet
network with a cache timeout of five seconds, rather than the specified 300. This
resulted in a total delay of about 10 seconds (including physical cable relocation time),
followed by a reliable resumption of TCP traffic. From this, it can be concluded that a
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cache timeout significantly lower than that specified (and too low for efficient network
functionality) would be required to permit mobility, yet MOOSE mobility just works.

4.1.4 Conflict Resolution

Because MOOSE addresses are guaranteed in uniqueness only if switches allocate them-
selves unique addresses on the network, I had devised a system to resolve conflicting
switch addresses (described in Section 3.1.1). To test this, I set up a network of two
switches, 02:01:01:01 and 02:02:02:02, each with one host attached. The hosts were
set to continually ping each other. A third switch was attached to 02:02:02:02, also
with the address 02:01:01:01. This new switch’s host attempted to ping the host
attached to 02:02:02:02. The conflict resolution protocol was immediately observed
(using Wireshark) to segregate the new switch from the rest of the network, and send
the correct packets to each switch. This, in turn lead to the new switch assigning itself
a new address, and its host having connectivity to the network.

(a) Before conflicting switch was
connected

(b) During conflict (c) After conflict was resolved

Figure 4.11: Topology of network before conflicting switch was connected (left), during
conflict (middle), and after conflict was resolved (right)

The test was run again, but instead of attaching a new switch to the network, switch
02:01:01:01 was moved to be connected to a different port on switch 02:02:02:02.
Again, the conflict resolution protocol properly segregated the switch from the network,
and when 02:01:01:01 was found not to be online on its old port, switch 02:02:02:02

updated its forwarding table to reflect the new topology, and pings started to be suc-
cessful once again.

(a) Before moving switch (b) After moving switch

Figure 4.12: Topology of network before (left) and after (right) switch 02:01:01:01

was moved
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The devised conflict resolution protocol was demonstrated to work as expected in these
cases.

4.1.5 Summary of Results

I successfully gathered conclusive, unequivocal results showing the research into
MOOSE to be worthwhile. The forwarding table size evaluation demonstrated that
the forwarding tables grew exactly as predicted. The shortest path routing evaluation
demonstrated incredible improvements in the behaviour of MOOSE over Ethernet. The
host mobility evaluation showed again a clear improvement in the behaviour of MOOSE
over Ethernet.

I was implementing a preliminary protocol specification. As an unintended but desirable
outcome of my project, I have tested how implementable the specification is and found
some areas which could be improved, which I describe in section 5.1. These have been
put to the MOOSE research team, and are currently being used to modify the MOOSE
proposal.

I also encountered several limitations in the OpenFlow research project. I have put some
potential solutions to the OpenFlow developement team and they are being considered
for inclusion in future specifications of OpenFlow. These will be useful to network
researchers in the future, and I describe them in section 4.3.3.

4.2 My Project

Subject to the modifications made to my proposal to accommodate using OpenFlow as
my prototyping platform (meaning that absolute latency would no longer be considered
as an evaluation metric, and that specific targetted metrics rather than general network
traffic would be used), my project succeeded in every goal that I set, as well as every
extension suggested. I produced a fully functioning MOOSE switch on the NetFPGA
platform, and deployed it in test networks to compare MOOSE’s performance to that of
Ethernet. A great deal more work than originally expected was done, such as learning
a new programming language (Python) and prototyping platform (OpenFlow), both
outside the scope of the tripos, and writing two versions of the switch.

The improvements of MOOSE as predicted in [3] were all shown to be correct, and
MOOSE was shown to be a protocol worth further investigation. Some areas for future
work have been suggested, and these are summarised in Section 5.1.
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4.3 Limitations

Several factors limited which areas could be evaluated, and how effective evaluation of
some areas could be.

4.3.1 Number of NetFPGA Ports

NetFPGAs have only four network ports, limiting the size and topologies of networks
which can be modelled with them. This was particularly noticeable when evaluating
the size of the forwarding table in Section 4.1.1, where having 24- or 48-port switches
would give much more useful and realistic results. I had hoped to be able to obtain
some commercial switches with OpenFlow support for this testing, but this did not
eventuate. The choice to use OpenFlow, however, makes this an easy evaluation to
perform as such hardware becomes available.

4.3.2 Use of OpenFlow

Using OpenFlow, rather than a Verilog implementation, meant that the latency of
MOOSE could not be fairly compared with that of Ethernet, as outlined in Section 2.2.1.
Areas for further investigation include the latency introduced by the address re-writes on
the first and last MOOSE switches that a packet encounters and the latency introduced
by the check for whether the incoming packet is destined for a locally attached host.
These could not be feasibly tested using OpenFlow, and would require a more native
implementation.

4.3.3 Limitations of OpenFlow

OpenFlow only supports exact matches for Ethernet addresses in the hardware flow-
table, so many more rules needed to be created than were strictly necessary: between
every pair of hosts and pair of switches, rather than simply between pairs of switches,
and between locally attached hosts and switches. This artificially restricted the size of
test networks. Support for partial matches for Ethernet addresses, as is present for IP
addresses, would mitigate this.

Better still would be the facility to pipeline hardware action lookups. If actions could
be performed in stages, the rewrite source address if necessary, rewrite destination
address if necessary, and lookup output port operations could have taken part separately,
simplifying the programming model, and reducing the number of flow-table entries.

These suggestions for improvements have been received warmly by the OpenFlow de-
velopment team.
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4.4 Changes with Hindsight

My project was very successful. The decision to use OpenFlow was, I believe, the right
one, as having a useful and clear reference implementation with the easy ability to
make small changes and gather data was incredibly useful, and will continue to be in
the future, especially as more hardware becomes available.

Had I had more time, I would have made some modifications to OpenFlow to implement
some of the suggestions in Section 4.3.3. Unfortunately, these modifications were well
beyond the scope of this project.

Toward the end of the implemention procedure, when finishing off and tidying up my
code, I found it to be messier and more complicated than it needed to be. First I wrote
a standalone switch. I then modified it to learn about other switches’ locations as
Ethernet does for hosts, to test that my implementation was working on the hardware.
Thereafter, I modified this switch so that it would interact with other switches and
participate in a routing protocol. This meant that I could concentrate on MOOSE
during implementation, and provided a useful way to learn about OpenFlow, but meant
that the routing protocol was not a built-in part of my code, and had to be bolted
on. I believe that this is why issues with conflict resolution were not found until the
experiments were being performed. Now that I understand OpenFlow and MOOSE
more fully, if I were to start again, I would write the routing protocol and inter-switch
communication first, because this is the primary network function. I would then add
in the host-specific functionality, which is more special-case behaviour.

4.5 MOOSE

MOOSE has been shown to be an improvement over Ethernet in many important areas.
Clearly more research must be done into areas such as latency of implementation, but
the protocol warrants this further research, and has been shown to be a viable and
worthwhile replacement for Ethernet. Specific areas for further research have been
summarised in Section 5.1.
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Conclusions

5.1 Future Work

I have identified several areas for future research:

5.1.1 Multicast Traffic

There was a significantly higher amount of background traffic in the MOOSE networks
than the Ethernet networks because OSPFM is a protocol with a relatively high use of
multicast traffic. OSPF is known to run into issues in networks of over approximately
1000 routers [22], so a similar order of magnitude limit could be reasonably expected
to be placed on OSPFM. Unfortunately, this restricts MOOSE’s scalability. Using a
Designated Router in OSPFM, another link state routing protocol with less reliance on
multicast traffic (such as IS-IS [23]), or a distance-vector routing protocol could remove
(or at least significantly raise) this limit.

5.1.2 Discovery of Hosts

To be allocated a MOOSE address at all, a host needs to send a packet. In this way,
the switch will become aware of the existence of the host. Until a host sends a packet,
it will not be able to receive packets. I forced packets to be sent by having each host
which was being used in any particular experiment ping some other host before the
experiment began. In real deployment, some DHCP or ARP packet is almost certain
to be sent by any host within seconds of connection to the network, getting around this
problem, but some thought should go towards solving this problem, perhaps by use of
the Link Layer Discovery Protocol [24].

43



44 CHAPTER 5. CONCLUSIONS

5.1.3 MOOSE-Ethernet Interaction

Networks containing both MOOSE and Ethernet switches were not considered in this
work. Such networks could cause issues. My prototype switch can be used for research
into these networks in the future.

5.1.4 Conflict Resolution and Loops

In the network-loop test, it was noted that as soon as OSPFM packets started going
around the network, conflicts started being detected. Some investigation showed that
the multicast link-state update packets, sent as part of the OSPFM protocol to notify
switches of the network topology, were being sent both ways around the loop, and so
conflict was detected. This conflict could not be resolved as when a switch was informed
to change its address, a new conflict would be detected for its new address in the same
fashion. Accordingly, for that set of tests, I disabled conflict detection. I offer several
potential solutions to this problem below.

Only detect conflict in HELLO packets
If the only switch to attempt to resolve conflict were to be one with a direct connection
to the switch, then the port to which the switch is connected could be known for certain,
and conflict detection would become more reliable.

Globally unique switch identifiers
Routing information and identification needn’t be so closely tied together. Each switch
could be allocated a unique identifier on manufacture, which it would include alongside
its MOOSE prefix in OSPFM messages, so that switches could better distinguish be-
tween conflict and the presence of loops. This would increase the memory requirement
of switches, but that memory needn’t be particularly fast, as it is only accessed as part
of the control function of the switch, rather than in the path of packets.

A DHCP-like protocol
When hosts join a network, they either allocate themselves an IP address of their
choice, or request one from the network. This is typically done using the Dynamic
Host Configuration Protocol [25], whereby some computer (or router) acts as a DHCP
server for a certain subnet, responsible for allocating all IP addresses on the network.
A similar system could be introduced for MOOSE switches.

5.2 Summary

For this project, I taught myself many technologies outside of the tripos (MOOSE,
NetFPGA, OpenFlow, Python, protocol implementation and hardware implementa-
tion) to support knowledge from several courses (mostly networking and systems based).
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I successfully implemented a complete and fully-functioning MOOSE switch that
achieved all of the goals, as well as each of the ambitious extensions, in my proposal. I
designed experiments to show that MOOSE, a previously unimplemented research net-
work protocol, serves as an improvement over Ethernet, the dominant data-link layer
network protocol. These experiments showed significant measurable improvements in
the size of forwarding tables, utilisation of physical links in the network and migra-
tion of hosts between switches, as well as that shortest path routing was possible with
MOOSE. I also extended the current research agenda of MOOSE myself, introducing
a practical and useful scheme of using variable length prefixes and offering a way of
detecting conflicts of switch addresses. The insight gained from making and deploying
MOOSE switches and networks has enabled me to suggest several areas for future re-
search into MOOSE, which are being actively pursued by the MOOSE team. Alongside
specific contributions, I also put forward some areas of potential improvement in the
OpenFlow project which are being considered for inclusion in a future specification.
My project was successful in all of its aims, and showed MOOSE to be a worthwhile
protocol.
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Appendix A

Status and Management Interface
Frame Format

All Status and Management Interface (SAMI) frames are valid Ethernet frames. I have
tentatively used EtherType 0x4444 to indicate SAMI frames. The following format
should be used for SAMI frames:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|Destination MOOSE address ...|

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|... |Source MOOSE address ...|

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|... |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|EtherType = 0x4444 |MooseType |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|Reserved |Length |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| |

| ... |

| |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|CRC32 as per 802.3 specification |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Where length refers to the length of rest of the frame after the length field, not including
the CRC32 in bytes (i.e. the total length of the frame in bytes minus 48). If the total
length of the frame is less than 64 bytes, there must be sufficient padding before the
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CRC32 to pad it to exactly 64 bytes, but the length field should refer to the length of
the actual data without padding.

MooseTypes and expected additional data are specified as follows:

MooseType Meaning Additional
data

Notes

0x0000 Reserved None None
0x0001 Echo request None Must be responded to with

an echo reply when received
by the unicast destination ad-
dress.

0x0002 Echo reply None None
0x0003 Conflict notifica-

tion
None Advises unicast destination to

change its address on receipt.
Does not require that destina-
tion changes its address.

0x0004 Host attachment
notification

The host’s
MOOSE ad-
dress, followed
by the real Eth-
ernet address of
the host.

Normally sent to the All
MOOSE switch multicast ad-
dress FF:00:00:00:00:FF

0x0005 Encapsulated
broadcast mes-
sage

A 64-bit se-
quence number,
followed by the
entire broadcast
packet (includ-
ing full Ethernet
headers)

Sent to All MOOSE switch

multicast address. Should be
decapsulated and forwarded to
all hosts if it has not been re-
ceived before

0x0006 OSPFM Packet

Support for echo request, echo reply and conflict notification are required in any
MOOSE device.



Appendix B

Figures of Results

Loop test — wireshark screenshots

Figure B.1: Screenshot of Wireshark packet capture after broadcast on a loop using
Ethernet
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Figure B.2: Screenshot of Wireshark packet capture after broadcast on a loop using
MOOSE



Appendix C

Project Proposal

Part II Computer Science Project Proposal

NetFPGA Implementation of MOOSE

D. A. Wagner-Hall, Homerton College (daw63)

Originator: Malcolm Scott (mas90)

October 20, 2009

Special Resources Required

Duration of project:

� Two NetFPGAs

� Three gigabytes of PWF storage space

� Account on CUCL, NetFPGA, NetOS groups

� Account on MPhil machines in SW02

� Access to rooms SW02, SE18

Short period (End of February):

� As many NetFPGAs as can be obtained (hopefully 10)

� Up to six Ethernet switches

� Up to several dozen (12-50) general purpose non-virtual computers

Project Supervisor: Dr A. W. Moore (awm22)

Director of Studies: Dr R. K. Harle (rkh23)

Project Overseers: Dr S. B. Holden (sbh11) and Dr C. Mascolo (cm542)
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Introduction

MOOSE [3] is a proposed backwards-compatible replacement for Ethernet as a layer-2
network protocol, which claims to offer benefits over Ethernet in the following areas:

� reduction in size of routing table;

� better utilisation of physical links;

� reduced end-to-end latency of transmission in the common case;

� better migration of hosts between switches;

� shortest-path routing (subject to a routing protocol).

I will prototype a realistic, representative MOOSE switch using the NetFPGA plat-
form, in order to set up a test network of several NetFPGA switches, interspersed with
Ethernet switches. I will send IP traffic across this network over several hours. The
NetFPGA systems will then be set to operate as standard Ethernet switches, and the
traffic replayed. Data will be gathered during these runs to compare the above metrics
so that the effectiveness of MOOSE as a protocol can be evaluated.

Work to do

The project breaks down into the following main sections:

1. Create a NetFPGA MOOSE switch with the following capabilities:

Have attached hosts: The switch must:

� recognise hosts when they attach to it and send packets;

� listen for frames with a MAC source address and allocate a MOOSE
address to that host;

� rewrite the source address of all frames from that MAC address to its
MOOSE address;

� rewrite the destination address of any frame destined for that MOOSE
address to its MAC address.

Participate in a network: The switch must:

� receive frames;

� send frames;

� build up and update a routing table;

� interoperate flawlessly with Ethernet.

Some possible extensions:

Join a network without prior configuration: The switch could:
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� choose its switch identifier, rather than manually configure this;

� resolve address conflicts without administrative intervention;

� increase its available host address space by changing to a shorter prefix,
if it exhausts its current host address space.

Support host mobility: The switch could:

� send notifications of new host attachments to other MOOSE switches;

� receive those notifications;

� forward packets for that host accordingly, where relevant.

2. Finding or devising a routing protocol (likely some OSPF variant) to be used.

3. I will then set up a test network of these MOOSE switches, along with some
Ethernet switches and several attached PCs, and send traffic across the network
to measure the metrics listed above.

Initial Learning Tasks

The following main learning tasks will have to be undertaken before the project can be
started:

� learning about switching fabric;

� learning about NetFPGA as a tool;

� devising topologies and traffic patterns for reasonable evaluation of the metrics.

Starting Point

I have a thorough knowledge of MOOSE, having been working on it with Malcolm Scott
for some months.

I may modify an existing open-source routing protocol implementation, rather than
write my own.

There exists a reference NetFPGA Ethernet switch which I will likely modify, rather
than write the entire switch from scratch.

Resources

A NetFPGA system is required throughout the project on which to actually make the
prototype. A second NetFPGA system is required for testing switch-switch interaction
(the participate in a network work to be done) while prototyping.
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The other switches and machines will be used to set up a network in which to test traffic.

I intend to keep my code, documentation and write-up in a Subversion repository on the
PWF, which is automatically backed up. I will also keep an out-of-Cambridge working
copy, though not the entire history, in case of catastrophic disaster.

I have talked with Andrew Moore, my supervisor, and he is happy to arrange the
resources listed above.

Work Plan

Date Objective
2009-10-26 Start of work

1 2009-11-15 Finish experimenting with NetFPGA, Verilog, OpenFlow, the NetFPGA
reference switch, and NetFPGA PWOSPF implementation

2 2009-11-22 Put together skeleton Ethernet-based switch
3 2009-11-29 Source and destination address rewriting
4 2009-12-06 Automatic host identifier allocation
5 2009-12-27 Draft of introduction written
6 2010-01-08 Routing protocol implemented
7 2010-01-24 Draft of preparation written

2010-01-29 Progress report deadline
8 2010-01-31 Automatic switch identifier selection and conflict resolution
9 2010-02-07 Switch can update to shorter prefix to grow address space

10 2010-02-21 Host mobility implemented
11 2010-03-05 All test-network data collected
12 2010-03-31 Draft dissertation written

2010-05-14 Dissertation Deadline


