Addressing the Scalability of Ethernet with MOOSE

Malcolm Scott, Daniel Wagner-Hall, Andrew Moore and Jon Crowcroft
University of Cambridge Computer Laboratory

{Malcolm.Scott, daw63, Andrew.Moore, Jon.Crowcroft} @cl.cam.ac.uk

Abstract

Ethernet does not scale well to large networks. The flat
MAC address space, whilst having obvious benefits for
the user and administrator, is the primary cause of this
poor scalability; other recent efforts to improve upon
Ethernet’s scalability have addressed symptoms, rather
than this underlying cause. In this paper we present
MOOSE, Multi-level Origin-Organised Scalable Ether-
net, an Ethernet switch architecture that performs in-
place rewriting of MAC addresses in order to impose
a hierarchy upon the address space without reconfigu-
ration or modification of connected devices. This re-
moves the need for switches to maintain large forward-
ing databases, is of direct use in implementing improved
routing, and allows for a variety of other scalability
and security innovations. We also present a globally-
scalable, distributed and resilient protocol for the auto-
matic assignment of addresses to switches, and for de-
tecting and cheaply resolving addressing conflicts.

1 Introduction

Ethernet has lasted well since its inception in the *70s [1]
with Ethernet frame-structure and addressing remaining
ubiquitous in the data centre environment as in many
others. Alongside IP and IP-transported services such as
iSCSI, it is now commonplace to see converged network
services such as physical disk interfaces and cluster in-
terconnects layered directly over Ethernet (e.g. ATA-
over-Ethernet and variants of Infiniband). However, Eth-
ernet exhibits scalability issues on networks of more
than a few thousand devices, such as costly and energy-
dense address table logic and storms of broadcast traffic.

Aside from more physical devices, virtualised infras-
tructure further increases the density of Ethernet ad-
dresses in data centres. Widely-used layer-2 virtualisa-
tion mandates a unique Ethernet address per virtual ma-
chine [2]. This means that each physical machine in a
data centre may represent many tens of Ethernet devices.

The traditional method of avoiding such problems is
the artificial subdivision of a network, but this introduces
an administrative burden, requires significant routing
equipment and also precludes seamless migration—a

necessity for virtualised infrastructure [3]. While IP Mo-
bility [4] addresses the problem of maintaining higher-
layer connections when roaming between subnets, it re-
quires client support that is neither ubiquitous or reli-
able. Common practice sees the provision of one phys-
ical Ethernet network covering an entire data centre, or
even an entire WAN of data centres.

Our approach, Multi-level Origin-Organised Scalable
Ethernet (MOOSE), provides all the advantages of an
Ethernet network without the capital and running costs
and administrative overhead of a IP router-based ap-
proach. MOOSE does this by providing a hierarchical
addressing scheme without requiring host reconfigura-
tion or modification.

Ethernet’s scalability is limited firstly by the forward-
ing database that every switch in an Ethernet network
must maintain [5, §7.8-7.9]. A switch’s forwarding
database contains one entry per source address seen in
any frame passing through that switch, and stores that
MAC address together with the learnt location of that
address—the port on which packets from that address
were last seen. This is later used to determine on which
port to transmit frames destined for that address. De-
vices frequently broadcast frames throughout the net-
work (e.g. ARP queries) so active devices on the net-
work are listed in most switches’ forwarding databases
most of the time.

In modern switches the capacity of this database is
generally of the order of 16,000 entries [6]. (Higher-
capacity forwarding databases exist but are currently
constrained to very high-end switches.) On a moderately
large network, full databases are a serious risk. If the
database becomes full, entries will be discarded; frames
for unknown addresses are flooded to all ports and the
resulting traffic storm could cause major problems, es-
pecially in the presence of low-capacity edge links.

Traditionally the forwarding database has been stored
in a content-addressable memory (CAM) as lookups
must be very fast, particularly as 10 Gbit/s Ethernet be-
comes ubiquitous. As networks grow, the number of en-
tries in a switch’s forwarding database must naturally in-
crease; however, increasing the capacity of CAMs with-
out sacrificing speed whilst constraining energy con-

mailto:Malcolm.Scott@cl.cam.ac.uk,daw63@cl.cam.ac.uk,Andrew.Moore@cl.cam.ac.uk,Jon.Crowcroft@cl.cam.ac.uk

sumption is proving to be challenging [7, 8]. Cheaper
switches use DRAM in place of a CAM, but this is likely
to remain slower especially for large tables.

Secondly, Ethernet’s inability to handle networks con-
taining loops also presents a scalability problem. The
Rapid Spanning Tree Protocol, RSTP [5, §17], must re-
move loops by disabling any redundant links. On a dense
mesh network, RSTP will disable a large proportion of
links; this constrains frames to suboptimal routes and
may introduce bottlenecks in the network, particularly
around the root of the spanning tree. In a data centre en-
vironment, this potentially amounts to a very large pro-
portion of capacity being wasted wherever redundant fi-
bres are installed, e.g. between cabinet switches and be-
tween data centres.

Thirdly, not only does Ethernet flood frames des-
tined for unknown hosts, but it also uses—and encour-
ages higher-layer protocols to use—broadcast for con-
trol messages. For example, ARP [9] performs address
resolution via broadcast queries, and DHCP [10] uses
broadcast messages for automatic configuration. Itisim-
practical to replace these protocols entirely as this would
require software upgrades to every device, but it would
be desirable for the network to minimise the amount of
broadcast traffic required to be forwarded.

In this paper we identify the relevant underlying prob-
lems in the design of Ethernet (section 2), review pre-
vious work (section 3) and present the MOOSE switch
architecture, which addresses inadequacies in the funda-
mental operation of Ethernet in a novel yet backwards-
compatible way (section 4). By revisiting the address-
ing scheme itself, rather than simply addressing symp-
toms of the problem as many previous proposed solu-
tions have done, we can go about solving all of the above
scalability problems and more.

A working high-level software implementation of
MOOSE is described and evaluated in section 6.

This work expands on our previous paper presented
at the First Workshop on Data Center — Converged and
Virtual Ethernet Switching (DC CAVES) [11]. We have
added a crucial piece of the architecture—an automatic
addressing scheme with cheap conflict resolution—and
have better addressed the key issue of compatibility with
existing protocols.

2 Ethernet’s Underlying Problem

The original Ethernet was a shared-medium network,
where every frame was broadcast and no switching took
place. Modern-day wired Ethernet-based networks in-
stead consist almost entirely of point-to-point links; as
a result of this, the distinction between unicast, broad-
cast and multicast has become more important. 802.11

wireless LAN are the one remaining vestige of Ethernet
operating over shared media, where one switch (access
point) serves many hosts on the same radio channel.

Ethernet’s poor scalability arises in various guises, as
outlined in section 1. It would seem at first glance that
these are entirely distinct and unrelated. However, there
is a common underlying cause: that MAC addresses pro-
vide no location information.

Globally-unique MAC addresses are structured such
that the first three bytes of a device’s address contain an
organisationally unique identifier (OUI) allocated to the
device’s manufacturer by the IEEE, with the remaining
three bytes allocated by the manufacturer. This hierar-
chy exists solely for the purpose of allocating unique ad-
dresses in a decentralised fashion, and is of no use to
Ethernet switches, which must treat the unicast address
space as flat.

A flat address space has the advantage that no configu-
ration of devices is required; a device can use its unique,
manufacturer-assigned MAC address anywhere on any
network. However, this leaves each switch with the task
of discovering and storing the location of every address-
able device.

If the MAC address space were not flat, but instead
contained enough information to locate the device pos-
sessing the address, several advantages would be gained.
Firstly, large forwarding databases would no longer have
to be maintained on every switch. This location infor-
mation could instead be distributed across the network
so that frames are directed towards their destinations ac-
cording to successive stages of a hierarchy.

Secondly, a hierarchical MAC address space would
also make the addition of shortest-path routing consid-
erably easier. Shortest-path routing is clearly a desir-
able property for a network, yet it is one that Ethernet
does not provide. Flat addressing does not lend itself
to easy routing: any address can be located anywhere on
the network, which means either advertising every host’s
MAC address via the routing protocol—which scales
very poorly—or providing some other location lookup
service. The use of hierarchical addresses, with each
switch handling a block of sequential addresses akin to
an IP subnet, would reduce the routing problem to the
one that routing protocols were designed to solve.

Thirdly, this would allow for reduction of broadcast
traffic in a variety of different ways. Hierarchical MAC
addresses could, for example, be mapped directly and
deterministically onto the IP address space, if appro-
priate for the specific deployment. This would allow
switches to respond directly and simply to DHCP and
ARP queries, avoiding the need to forward the most
common sources of broadcast frames. Alternatively, a

distributed directory service can be used, which is less
limiting and is thus our preferred approach as detailed in
section 4.5.

The facility for network administrators to assign lo-
cally administered addresses (LAAs) to devices has ex-
isted for as long as Ethernet. However, configuring and
maintaining the LAA on every device based upon where
they are connected would be a considerable and unwel-
come administrative overhead. In this paper we there-
fore present MOOSE, a system for applying hierarchical
addressing to an Ethernet transparently and without any
configuration to edge devices.

3 Related Work

It is well-known that traditional Ethernet scales poorly,
and there have been various attempts in recent years
to rectify this. The most widely-used of these in
real-world networks is MPLS-VPLS (Multiprotocol La-
bel Switching—Virtual Private LAN Service) [12].
This connects Ethernet islands together through tunnels
across a MPLS cloud. MPLS works by adding one or
more labels to the start of every frame, i.e. encapsulat-
ing the frame inside its own protocol.

In MPLS-VPLS, the label edge routers (LERs) must
determine the frame’s initial label(s) based upon the des-
tination address via a lookup table. Frames follow prene-
gotiated label-switched paths (LSPs) that, unlike Ether-
net, are not constrained to follow a spanning tree; LSPs
are precomputed at connection setup time and the rele-
vant next hop is stored in a lookup table on each interme-
diate switch. Each switch must hence use each frame’s
label to index into this lookup table to determine how to
switch the frame.

The effect, once the connection has been negotiated,
is to provide what appears to be one or more large
Ethernet networks, transparently overlaid on the MPLS
cloud. Whilst this solves effectively the problem of
shortest-path routing across the MPLS cloud, the over-
lay Ethernets are still susceptible to the usual scalability
problems—and in fact VPLS adds further large lookup
tables on every switch that can in some configurations
scale even worse than Ethernet’s forwarding databases.
LERs must map every MAC address to a LSP; label
switch routers (LSRs) must store the next hop for ev-
ery LSP in which they participate, which in the core of
the network could scale as O (hosts?).

A similar scheme is proposed by Hadzi¢ [13], with the
difference that Ethernet-inside-Ethernet encapsulation is
used rather than a new protocol. This has the advantage
that less processing is required on intermediate switches
in the backbone network. However, routes across the
backbone are constrained to a spanning tree, and encap-

sulating switches must obtain a new destination address
for every frame using a lookup table that—like Ether-
net’s forwarding database—must contain every transmit-
ting MAC address. Due to its heavy basis on Ethernet,
this shares many of Ethernet’s scalability problems.

SmartBridge [14] and Rbridges [15] both encapsu-
late Ethernet frames in a new inter-switch protocol, and
run a link-state routing protocol between switches. The
link state graph includes the location of every MAC
address—necessary because the address space remains
flat and any address could appear anywhere—i.e. it again
contains every host. Furthermore, switches must per-
form expensive computation to update routing tables
whenever a MAC address joins or leaves the network.

Myers et al. [16] suggest that Ethernet’s main failing
is its broadcast service, and propose a new architecture
in which hosts make explicit use of directory services
operated by switches rather than broadcasting queries.
It is clear that switches’ participation is necessary in
order to deal with the broadcast problem; however the
modifications to Ethernet suggested are not backwards-
compatible and would require at least software modifi-
cations to all connected devices. Ethernet is, perhaps un-
fortunately, too widespread for this to be practical; trans-
parent interception of broadcast frames and subsequent
local handling or redirection via multicast or unicast re-
mains the only practical solution. The use of hierarchical
addressing is a useful stepping-stone to such a system,
and our architecture includes a transparent directory ser-
vice (ELK, section 4.5) for this purpose.

SEATTLE [17] takes a more scalable approach. A
routing protocol is operated between switches, but in
contrast to the approaches described above and in com-
mon with MOOSE, the routing protocol only propagates
switch location information, rather than every MAC ad-
dress on the network. Flat MAC addresses are still
used, and hence a mechanism is required to look up the
switch to which a given address is connected. This is
achieved by using a distributed hash table (DHT) op-
erating on participating switches with local caching to
alleviate load. This is certainly a step in the right direc-
tion but introduces considerable complexity to switches,
since they now must maintain and update the DHT con-
tinually, and it is clear that a SEATTLE switch would
have a significant software component in the data path.
MOOSE alleviates some of the complexity of SEATTLE
by a combination of hierarchical addresses and delega-
tion to a separate directory service.

4 MOOSE Architecture

The basic operation of MOOSE is to assign a new hier-
archical MAC address to each host on the network, as-

signed dynamically and automatically from the unicast
LAA space. This dynamically-assigned address is re-
ferred to as a MOOSE address to avoid confusion with
hosts’ static, manufacturer-assigned MAC addresses.

Every frame entering the network has its source ad-
dress rewritten in-place to the sending host’s MOOSE
address by the first MOOSE-aware switch it traverses;
the new source address becomes the sending host’s
MOOSE address. The switch that performs address
rewriting for a host—i.e. the closest MOOSE switch to
that host—is the host’s home switch and is responsible
for assigning a MOOSE address to that host. (If non-
MOOSE switches or hubs are in use, a host may have
more than one “closest” MOOSE switch, in which case
an RSTP-like protocol must be used to elect a switch to
handle each edge segment.)

The destination address is left intact in the expecta-
tion that it already is a MOOSE address. Hosts” ARP
caches will already contain the MOOSE addresses of
any hosts being communicated with as any packet re-
ceived will already have had its source address rewritten;
a host’s manufacturer-assigned MAC address is never
seen outside of the segment containing that host. This
is a crucial point since encapsulation-based technolo-
gies such as MPLS do not reveal to the destination host
the address used for routing; as a result, switches must
also convert destination as well as source addresses of
frames entering the network. In other words, once again
switches must maintain large tables of remote hosts
on the network. The only destination rewriting that
MOOSE switches perform, however, is of the destina-
tion addresses of frames destined for local hosts back to
their manufacturer-assigned MAC addresses; this is sim-
ple as the required information is already known, and
necessary because otherwise that host’s network inter-
face card would discard the frame as misaddressed.

A MOOSE address consists of a switch identifier fol-
lowed by a host identifier. For our examples, we sim-
ply use a fixed three-byte switch identifier followed by a
fixed three-byte host identifier, as illustrated in figure 1.
Since these two identifiers when concatenated must form
a unicast LAA, the settings of two bits in the first byte
of the switch identifier are fixed: the least significant bit
must be O to indicate a unicast address, and the second-
least significant bit must be 1 to indicate a LAA. To cater
for variable length switch identifiers, some means of in-
troducing separation between the switch and host iden-
tifiers is required. Two possible implementations would
be for:

o the first three bits of the address indicate how many
of the following 5-bit blocks make up the switch
prefix;

02:22:22:00:00:01
02:22:22:00:00:02] hosts

x 02:22:22:00:00:03 [53,33:33.00:00:01
| .

X

02:33:33:00:00:02

switch switch
02:11:11 02:22:22 x 02:33:33:00:00:03
02:33:33:00:00:04
switch
02:33:33

Figure 1: Assignment of MOOSE addresses by switches

e some constant delimiter to appear between the
switch identifier and host identifier, with switch
identifiers not allowed to contain the delimiter.

The former is simple and gives 8 classes of switch
identifier. Because the size of a MOOSE network is lim-
ited by the placement of IP routers, these classes should
be sufficient. Additionally, because switches are free
to change their identifier, they may trivially switch to
a larger class if they have too many attached hosts, or a
smaller class becomes full.

The latter removes the fixed classes, allowing for
more flexibility with the sizes of switch identifiers, at
the cost of complexity, and a reduction in the available
address space.

Each switch can select for itself a unique switch
identifier, as identifier conflict resolution is cheap (sec-
tion 4.2). When first joining the routing protocol (sec-
tion 4.1), conflict should be very unlikely, as the switch
will in the process gain an up-to-date list of in-use iden-
tifiers. Depending on requirements, the switch identi-
fier may itself be a hierarchical address—e.g. six bits to
identify a network area followed by two bytes to identify
a switch within that area—which could then be used to
aid routing decisions.

Each host is assigned a host identifier by its home
switch from the pool of identifiers available to that
switch. Only a host’s home switch ever bases a switch-
ing decision on the host identifier, so the detail of how
these are allocated can vary from switch to switch. Suit-
able schemes include:

e sequential assignment;

e the port number followed by a sequential portion
(to allow for multiple hosts connected to one port);

e a hash of the host’s real MAC address.

The latter two approaches are preferable to a sim-
ple sequential assignment, as they better isolate certain
kinds of denial-of-service attack in which a malicious
host attempts to use up all available host identifiers on
the switch. They also require less state to be shared be-
tween ports. The third option has the further advantage
that it is deterministic and hence can be recovered easily
in the event of a crash.

It is hence possible to route frames through the net-

work to remote hosts by simply inspecting the switch
identifier in the destination address, and ignoring the
host identifier until the frame reaches the destination
host’s home switch. Switches no longer need to keep a
table of all MAC addresses seen recently; they only need
store the locations of other switches and of any directly-
connected hosts.

As well as reducing the amount of data that must be
consulted in order to make switching decisions, this pro-
vides extra resilience by making this data much more
predictable. The number of MAC addresses in a net-
work can increase unexpectedly in the event of an ad-
dress flooding attack [18] or even under normal opera-
tion if the network contains open wireless access points;
relying on the MAC address list for forwarding leads
to some of the vulnerabilities of Ethernet. The set of
switch identifiers participating in MOOSE switching, on
the other hand, is kept predictable and manageable by
ensuring that neighbouring switches (discovered using
LLDP [19]) are authenticated before they can partici-
pate in the routing protocol. This authentication can be
achieved at layer 3 using the security features found in
most popular routing protocols and/or at layer 2 using
802.1X [20]. As the switch identifier is the only address
consulted for forwarding decisions, a MOOSE switch
is likely to remain reliable in the face of attacks that
could have brought down a traditional Ethernet. Fur-
thermore, any attacks based upon MAC address spoof-
ing cannot function on a MOOSE network as the user-
provided MAC address is translated immediately.

4.1 Shortest Path Routing

As described so far, MOOSE switches must still forward
frames along a spanning tree. As discussed in section 1,
this is an undesirable property of Ethernet as it can cause
frames to take a highly suboptimal path through the net-
work. The foundations are in place to do much better
than this using shortest-path routing.

For the purpose of frame forwarding, a MOOSE
switch can be considered akin to a layer 3 router; it has
one locally-connected subnet—containing all addresses
starting with its switch identifie—and delivers frames to
other subnets by passing them to an appropriate neigh-
bouring switch. Bearing this in mind, the switch can
run a routing protocol of the kind normally used for IP,
such as a variant of OSPF [21]. This allows frames to
be routed along the shortest available path, rather than
being constrained to a spanning tree. OSPF-OMP [22]
may be particularly desirable due to its ability to make
use of multiple equal-cost routing paths in order to im-
prove performance [23].

4.2 Address Selection and Conflict Resolution

For reasons akin to those of the flaws of Ethernet,
it is undesirable to guarantee universally unique pre-
determined MOOSE switch identifiers. Due to the re-
duced size of the switch ID space compared to the MAC
address space, this would also be infeasible. We there-
fore propose that each switch selects an initial address
for itself during startup. This could result in more than
one switch claiming an address, which would be un-
desirable, so to mitigate the potential for MOOSE ad-
dresses to find themselves in conflict we additionally
propose a simple and inexpensive conflict resolution
protocol.

Suppose two switches each have the same identifer.
We note that if these switches are on separate MOOSE
networks (on disconnected networks, or separated by an
IP router), this situation brings no issue. Should they be
on the same MOOSE network, however, a conflict ex-
ists and must be resolved. Any routing protocol would
require a switch to know which port other switches are
connected to, for instance by OSPF neighbour lists, or
simply by receiving frames and noting the switch port
and source MOOSE address. When a switch receives
a MOOSE frame, it looks up the source switch in its
forwarding database, which is likely in fast Content Ad-
dressable Memory. If it finds that source switch to be on
a port other than that which it recognises from its table,
one of three situations may be possible:

e the source switch may be the same as the known
switch, and have physically moved, or a topology
change has occurred;

e the source switch may be a different one to the
known switch, and they are in conflict;

e the source switch may be the same as the known
switch, but is sending frames down a different route
to the last used route.

To avoid disruption to the network in the first case,
and to give scope for switches to migrate within the net-
work, the switch which detected the possible conflict
should ascertain whether the known switch is still alive
and present. The conflict-resolving switch thus attempts
to send a unicast frame to the known switch, via the port
stored in the forwarding database, asking whether it is
there at a regular interval until a timeout. This will reach
the known switch rather than the new switch if it is still
present as other switches beyond that port must not have
detected the conflict yet. The nature of the timeout we
leave unspecified, and can be implementation specific.
It may, for instance, be a pre-defined constant, or it may
vary based on QoS information gathered if such capa-
bilities are supported. When a MOOSE switch receives

such a frame, it should promptly respond with an ac-
knowledgement frame, showing that it is alive.

If, within the timeout period, the conflict resolver
finds the known host not to be alive, no conflict exists, so
the switch updates its view of the network by removing
the old entry from its forwarding database and triggering
a routing protocol refresh.

If, on the other hand, the host is found to be alive, a
conflict exists. The conflict resolver then sends a frame
to the more recently found switch indicating that it is
in conflict and should change its address. That switch,
upon receiving this frame, changes its address and sends
a gratuitous ARP for each of its connected hosts, so that
the rest of the network is aware of the change. To mit-
igate the risks of a denial of service attack, or faulty
equipment sending out conflict frames, an exponential
backoff algorithm should be used when receiving con-
flict notification frames.

A switch should have a timer, and counter influenc-
ing the maximum value of the timer, both initialised to
0. When a conflict notification frame is received, the
counter is incremented (subject to a saturation value to
avoid excessive timeouts). After a conflict has been
resolved—i.e. the switch has changed its address—a
timer starts counting down from some time exponential
in that counter; subsequently the switch will only change
its address if the timer has returned to O by the time the
conflict frame is received. The counter should be re-
set to 0 when the timer reaches 0. Using this scheme
the event of true conflict is handled quickly, even in the
unlikely case that the newly acquired address is also in
conflict. Any node emitting malicious or erroneous con-
flict notifications, however, is rate-limited enough that
their damage potential is much restricted, subject to a
sufficient timer being chosen.

Algorithm 1 Conflict resolution backoff

if timer > 0 then

if counter < counter_max then
counter = counter + 1;

end
// Discard conflict notification frame
else
timer = kcounter;
change_address();
end

This could be further enhanced by detecting repeated
conflicts involving the same switch or switches, in
a manner similar to BGP Route Flap Damping [24],
and performing more aggressive steps to avoid further
conflicts—for example using a significantly increased

Algorithm 2 Conflict resolution timer

foreach clock tick do
if timer > 0 then
timer = timer — 1;
else
counter = 0;
end

end

timeout, and/or having both switches in conflict select
new addresses.

The conflict resolution algorithm brings a marked im-
provement on the equivilent vulnerability of Ethernet,
that MAC addresses can be spoofed. We build in a flex-
ible, well-defined system of recovery. The decentralised
nature of the system makes it much less open to denial
of service attack than any centralised directory may be.
Having every MOOSE switch acting as a barrier to the
propagation of packets from addresses in conflict pro-
vides a strong separation between recently bridged net-
works with conflicting addresses, so that communica-
tion within the individual networks may continue with-
out modification, until bridge-crossing traffic appears, at
which point resolution quickly happens. We also re-
move the possibility for forwarding databases to fre-
quenty have to switch their entry for a conflicted ad-
dress, which can happen with MAC conflicts in tradi-
tional Ethernet. Additionally, in the case of a switch
identifier spoofing attack, the conflict resolver acts as a
hard boundary for the effects of such an attack.

It is possible that the switch performing conflict res-
olution could send a suggested replacement switch ad-
dress to the switch in conflict, known by the conflict
resolver to have a low probability of being present on
the network (because it is not present in its forwarding
database). This would reduce the chance of repeated col-
lisions, and potentially allow for longer backoff periods,
but may be premature optimisation.

Because multi-path routing is often desirable, we
could introduce an extra datum during the source ad-
dress rewriting performed by MOOSE switches. When
an ingress MOOSE switch rewrites the source address
of an Ethernet frame to a MOOSE address, it could also
prepend some hash of its manufacturer-assigned MAC
address to the data field, and increment the length field
as necessary. The egress switch, when rewriting the
MOOSE destination address to a host’s MAC address,
then strips out this added datum. This allows the conflict
resolver to check whether conflicts actually exist by lo-
cal lookup, rather than probing other switches, at the cost
of added memory requirements in every switch. This

MAC address: Switch ID: Switch ID: Switch ID: MAC address:
00:16:17:6D:B7:CF 02:11:11 02:22:22 02:33:33 00:0C:F1:DF:6A:84
Host :)C :) C :)C Host
A B

Query: 5
00:16:17:6D:B7:CF Y source
J rewritten

broadcast

02:11:11:00:00:01

\

broadcast

«<—Time—

L frame routed to 02:11:
destination

rewritten

Response:
02:33:33:00:00:01

J
00:16:17:6D:B7:CF

Query: f

/

rame broadcast using re

erse path forwarding

Response:
00:0C:F1:DF:6A:84
%

source
rewritten
02:11:11:00:00:01

Response:
02:33:33:00:00:01
N

02:11:11:00:00:01

Figure 2: Sequence diagram of a broadcast query and subsequent unicast response

may push the frame to be larger than Ethernet’s maxi-
mum, so may require fragmenting the packet into two, at
small added cost. Alternatively, assuming jumbo frames
are permitted by the hardware, the maximum frame size
could be marginally reduced to allow for this in the same
manner as for 802.1Q VLAN tags.

From the cheapness of conflict resolution, certain
other address management tasks become simple. A
switch is free to choose its address when it joins the net-
work however it wishes—attempting to re-use its last-
used address, from a list of preferred addresses, or by
generating an address entirely at random. More intricate
addressing schemes may be used on managed networks
if desired, perhaps encapsulating deeper layers of hier-
archy.

4.3 Broadcast and Multicast

Since Ethernet does still need to support arbitrary broad-
cast frames, these must still be forwarded along a span-
ning tree in order that they reach each host exactly once.
An explicit spanning tree protocol is not required how-
ever, as the tree can be deduced from the routing ta-
ble via reverse path forwarding in a similar manner to
Protocol-Independent Multicast (PIM) [25]. In other
words, broadcast packets are routed as if they had been
sent to the all-hosts multicast group.

More general multicast groups can be implemented
using a combination of IGMP snooping [26] as used
by modern Ethernet switches, and participation of the
MOOSE switches in PIM routing.

4.4 Example

To illustrate the basic behaviour of MOOSE switches,
before we go on to describe further features, we will
offer a simple example. We will describe the steps in-
volved in forwarding a broadcast frame containing a
query in some higher-layer IPv4-based protocol, and
subsequent unicast frame containing the response, be-
tween two hosts A and B via three MOOSE switches
02:11:11, 02:22:22 and 02:33:33; see figure 2.

4.4.1 Query

i) Host A transmits the broadcast query frame as
it would on any Ethernet network, with its own
manufacturer-assigned MAC address in the Ether-
net header’s source field and the broadcast address
(FF:FF:FF:FF:FF:FF) in the destination field.
The frame is received by switch 02:11:11, which
observes the non-MOOSE address in the frame’s
source field, and rewrites the source field into a
MOOSE address containing the switch identifier
and the appropriate host identifier. As this is Host
A’s first frame, the switch must allocate a host iden-
tifier (in this case 00:00:01, making Host A’s com-
plete MOOSE address 02:11:11:00:00:01).
iii) The three switches broadcast the frame using re-
verse path forwarding away from Host A.
iv) The frame is received by Host B (and any other
hosts on the network) in its current form; no fur-
ther rewriting is performed.

4.4.2 Response

i) Host B looks up Host A’s IP address in its ARP
cache to determine a suitable destination address
for the response frame. Since the rewritten query
frame arrived at Host B with the source field con-
taining the MOOSE address 02:11:11:00:00:01,
this is the address returned by the cache lookup.

ii) As above, switch 02:33:33 assigns a MOOSE ad-
dress to Host B (02:33:33:00:00:01) and rewrites
the source address of the frame.

iii) The frame is now routed through the network based
solely on the destination switch identifier—the host
identifier is ignored for now. The routing table is
consulted for the location of switch 02:11:11 and
the frame is forwarded accordingly.

iv) On receiving the frame, switch 02:11:11 observes
that it is destined for a host directly connected to
itself (02:11:11:00:00:01). It prepares the frame
for transmission along its final hop by rewriting
the destination address to Host A’s manufacturer-
assigned MAC address. The source field of the
frame is again left as the MOOSE address of Host
B in order that this address is used for any further
communication with Host B.

4.5 Directory Service

A directory service, Enhanced Lookup (ELK), runs in
conjunction with the basic MOOSE switch described so
far. ELK exists to handle ARP and DHCP queries in
a broadcast-free manner by learning mappings from IP
addresses to MOOSE addresses. The master ELK direc-
tory is served by one or multiple systems for resilience
and is reached using an anycast MOOSE address; the
layer-2 anycast feature is a convenient side-effect of run-
ning a routing protocol. Slave copies of the directory can
be held nearer the edge of the network in order to take
load away from the masters; slaves can be reached for
lookups via a separate anycast address, and the entire
herd of ELK can be kept synchronised via the masters
using a combination of multicast and unicast.

MOOSE switches intercept ARP and DHCP packets
broadcast by hosts and convert them into anycast ELK
queries to the nearest slave (for ARP) or master (for
DHCP). (DHCP handling could make use of the proto-
col’s existing DHCP relay mechanism.) The ELK slave
answers ARP queries directly using information in the
directory; as it does so, if the query is from a host not in
the directory, it learns the sender’s IP address to MOOSE
address mapping. The ELK master can also act as a
DHCEP server, populating the ELK directory as it grants
IP address leases to clients.

The one case in which the ELK directory will not con-

gratuitous ARP
® sentby new
home switch

@

data forwarded
by care-of switch

x X
; ®\

peedunns

host relocated to new switch ﬁ

Figure 3: Two ways to handle a host A roaming onto another
switch whilst maintaining communication with another host B

tain the answer to a query is when answering an ARP re-
quest for a host that is not configured to use DHCP and
that has not yet itself sent an ARP packet (i.e. has not yet
communicated via IP). This must be dealt with by flood-
ing the query to every active switch port, in a manner
akin to current Ethernet switches, and caching the result
in the ELK directory. Although this is not ideal, it is nec-
essary in order to deal with this scenario in a compatible
manner, and is unlikely to happen frequently.

4.6 Mobility

A consequence of introducing location-based hierarchy
into MAC addresses is the need to explicitly handle host
mobility. In a traditional Ethernet, hosts can migrate be-
tween switches as the switches will learn the host’s new
location as soon as it sends a frame. With MOOSE, if
a host relocates to a new switch its address changes and
any ARP cache entries on other hosts pertaining to the
migrated host become incorrect; frames will continue to
be sent to the host’s old location for a while. There are
two strategies for dealing with this, as illustrated in fig-
ure 3, which can be used separately or in conjunction:

i) The previous home switch of the migrated host can
forward frames sent to the host’s old address until
outdated ARP cache entries expire. This is simi-
lar to IP Mobility [4]: the previous home switch
essentially becomes a care-of agent for the host.
However, unlike IP Mobility, it requires no host
support. A handover protocol is necessary for the
old and new home switches to set up such forward-
ing: on the arrival of a new host at a switch, that
switch would ask all other switches (via multicast)
whether any had seen this host before, identifying it
using its manufacturer-assigned MAC address, and
would instruct such switches to redirect frames.

ii) A broadcast ARP announcement (or “gratuitous
ARP”) can be sent by the new home switch to im-
mediately update remote ARP caches and the ELK
directory with the new MOOSE address. This is
the technique used by Xen when migrating live vir-
tual machines [3]. Unlike the previous approach,
this works even if the previous switch is no longer
reachable, for example if this host migration was as
a result of a switch failure. This is a simpler ap-
proach as a handover protocol is not required, but
results in additional broadcast traffic.

Unless the frequency of host migrations is very high,
the additional load introduced by either mobility ap-
proach is expected to be negligible.

S Interoperability Considerations
5.1 Layer-violating Protocols

In an ideal world, free from layering violations, all layer
3 protocols would operate correctly on top of MOOSE in
exactly the same way that they currently operate on top
of Ethernet, with no protocol-specific handling neces-
sary in the switch. In reality, however, protocols abound
which use hosts” MAC addresses for purposes other than
layer 2 addressing or which place MAC addresses in the
frame payload. DHCP and ARP have already been men-
tioned as such protocols which must be specifically han-
dled by edge switches in order to operate; luckily, the
rewriting required for these important protocols is sim-
ple.

Of particular concern are recent standards for layering
on top of Ethernet protocols which were previously used
solely on dedicated hardware interconnects, such as Fi-
bre Channel over Ethernet (FCoE) [27]. In order to sup-
port FCoE and similar protocols on a MOOSE network,
each edge switch will need to be able to interpret and
rewrite individual protocols that are in use. A produc-
tion MOOSE switch would, therefore, need to be imple-
mented such that it is possible to add rewriting support
for additional protocols after manufacture, for example
by loading an additional software or FPGA configura-
tion module.

Ultimately, in the general case, this problem could
be addressed more satisfactorily by extending the Eth-
ernet standard to provide a protocol-agnostic method
for a layer 2 network to inform hosts of their own ad-
dresses; LLDP [19] would make a good basis for this ex-
tension. This would allow the use of network-assigned
MAC addresses for any protocol, with some rewriting
performed either partially (within the frame payload)
or fully by the host itself, and furthermore would al-
low higher-layer protocols to respond to changes of the
host’s network-assigned address (e.g. due to mobility).

Such a mechanism could be deployed incrementally as
needed, with switches able to perform address rewriting
for hosts which are not able to do this themselves. This
is, however, a very long-term solution, and protocol-
specific rewriting on the switch is likely to be required
for the foreseeable future.

FCoE in particular is unusual, however, as it already
does its own dynamic allocation of MAC address to de-
vices. It is conceivable that an extension to FCoE could
be developed which allows a network-wide dynamic ad-
dress assignment scheme such as MOOSE to be ex-
ploited to provide addresses directly to fibre channel de-
vices.

5.2 Edge Virtual Bridging

The rise of virtualisation has caused an unanticipated
proliferation of software switches, usually in the host
operating system or hypervisor which provides network
connectivity to multiple virtual machines. Since soft-
ware switches are almost always neither fast nor cen-
trally manageable in the same way as hardware switches,
there is ongoing work to standardise—by Cisco as Port
Extension [28] and by the IEEE as P802.1Qbg [29]—a
means of making these software switches act merely as
additional ports which are logically part of a more cen-
tral hardware switch. This reduces the work required
by a virtual edge switch: frames from local virtual edge
ports can be forwarded straight out via the uplink to a
physical switch without consideration, and frames from
the uplink will arrive simply tagged with a virtual edge
port identifier.

(The scope of Port Extension in particular is greater
than this, and allows for physical port extenders to exist
in place of switches where a large number of ports but
a small amount of processing is required, but virtualisa-
tion is likely to be the most significant use case.)

Edge Virtual Bridging and Port Extension require
very little adaptation to be implemented on a MOOSE
switch. It is unlikely, although too early in the standard-
isation process to say for certain, that the virtual bridge
will need to be MOOSE-aware. A virtual-bridging-
aware physical MOOSE switch will thus simply need
to take into account the possibility that one physical port
may hide a large number of virtual ports when allocating
host identifiers, as it would if it had an Ethernet switch
connected on that port. If, however, the virtual bridge
is made MOOSE-aware, the hierarchical addressing of
MOOSE could be exploited to allow the virtual bridge
to allocate host identifiers itself, given that it is likely to
be aware of the exact number and nature of virtual edge
ports. The parent MOOSE switch would accordingly al-
locate an address prefix to each child virtual bridge, and
hosts’ full MOOSE addresses could be formed as:

switch ID child ID host ID
(parent) allocated allocated
by parent by child

6 Implementation

We have implemented a MOOSE switch in threaded,
object-oriented Python as a proof-of-concept. The archi-
tecture is intended for clarity and modularity rather than
raw performance, but this implementation is still capa-
ble of switching data at 100 Mbps on a modern desktop
PC.

Data forwarding and control functions are kept sepa-
rate for clarity and to mimic a hardware implementation.

6.1 Data plane

The software MOOSE switch is intended to be run on
a Linux PC with several network interface cards, and
uses raw sockets to send and receive frames directly
in promiscuous mode, so that all frames are received
whether or not they are addressed to that PC.

Each network interface is managed by two indepen-
dent threads: a FrameReceiver and a FrameTransmit-
ter. A Port object is maintained in shared memory, con-
taining shared data structures such as a per-port for-
warding database (implemented as two Python dictio-
naries: one for locally-connected hosts and one for re-
mote switches). The relation between modules is out-
lined in figure 4.

The FrameReceiver thread does most of the work; the
main steps performed are:

i) A received frame is immediately packaged in a
Frame object, which provides methods for access-
ing individual fields within the frame’s headers.
Some checks are run so that unwanted frames
are dropped: for example, frames whose source
addresses indicate that they have already passed
through this switch, which could be a sign of a rout-
ing protocol malfunction or a misconfigured switch
elsewhere in the network with the same switch
identifier.

ii) If the frame is a DHCP or ARP query, it is trans-
ferred to the control plane for conversion into an
ELK query.

iii) Once the frame has been received and checked to
be valid, the source address is rewritten if it is
not already a MOOSE address. This process re-
quires a host identifier, which is reused or allocated
as appropriate; allocated identifiers are stored in a
Python dictionary (hash table). In this implemen-
tation, in order to allow each port to issue host
identifiers independently, each identifier starts with
a byte identifying to which port this host is con-

Port

---41= Forwarding database [é=---

T 4

Frame Frame
receiver ||transmitter

Source
rewriting

K

raw sockets

A 4

| Network interface card

Figure 4: Prototype data plane architecture

nected; for example, the host identifier of the first
host seen on port 3 will be 03:00:01.

iv) The locally-connected-host forwarding database is
updated where necessary based upon the frame’s
source address.

v) The frame is passed to the relevant forwarding
database, which obtains the correct destination Port
object from its internal dictionary. The frame is en-
queued with the FrameTransmitter of this port.

The only processing the FrameTransmitter performs
before sending the frames over the relevant raw socket
onto the network is to rewrite the destination address to
be the target host’s manufacturer-assigned MAC address
if the destination switch ID is this switch’s, i.e. if that
host is directly connected to this switch.

The use of threads for parallel transmission to and re-
ception from each network interface makes this software
design analogous to a basic hardware design, with sev-
eral independently-operating ports interconnected by a
switch fabric. It is our eventual goal to produce a hard-
ware prototype as described in section 7.

6.2 Control plane

The control plane operates largely independently of the
data plane, in a separate thread, as it is much less timing-
sensitive than the data plane. In a production implemen-
tation, the control plane would likely run in software on
a microprocessor.

The main function of the control plane is to run the
routing protocol in order to determine the location of
and best route to every other switch. This implemen-
tation uses PWOSPF [30], a simple link state routing
protocol based on OSPF version 2 [21], as a proof of
concept—the authentication features of OSPF are not
required for a prototype implementation. A produc-
tion MOOSE switch would likely require a full-featured
OSPF implementation (or another routing protocol) to
ensure security and resilience, and in particular to pre-

Address HWtype HWaddress Iface
10.100.11.1 ether 02:00:0c:01:00:01 ethl
10.100.11.3 ether 02:00:0a:01:00:01 ethl
10.100.11.4 ether 02:00:0a:03:00:01 ethl
10.100.11.8 ether 02:00:0b:02:00:01 ethl

Figure 5: ARP cache of an unmodified Linux PC connected to
a network of MOOSE switches (02:00:0a, 02:00:0b, 02:00:0c)
showing the addresses automatically assigned to other hosts

vent the unauthorised spoofing of switches by end users.

As PWOSPF is designed to operate on 4-byte IP
addresses rather than the 3- or 6-byte identifiers used
in MOOSE, the fields intended for IP addresses are
retrofitted to contain a switch identifier followed by one
null byte of padding. Each switch handles all addresses
starting with its switch identifier, which is equivalent to
each switch routing a subnet of length 24 bits.

The routing protocol calculates the shortest path to ev-
ery other switch using Dijkstra’s algorithm [31]. The
results are used to update the remote-switch forwarding
database maintained in each Port object of the local data
plane with the best Port on which to output frames des-
tined for each switch.

The control plane would also be responsible for oper-
ating the mobility handover protocol; however this pro-
tocol was unimplemented in the prototype.

6.3 Evaluation

The prototype MOOSE switch was found to behave
transparently to a variety of unmodified devices commu-
nicating via IP with each other and with other hosts on
the Internet, both with physical and wireless connections
to a network of three MOOSE switches. The only vis-
ible effect was, as intended, that hosts’ individual ARP
caches show MOOSE addresses, as shown in figure 5.

A second test was run on a virtual network compris-
ing six virtual switches each connected to ten Xen virtual
machines acting as client hosts. This allows for compar-
ison with a traditional Ethernet switch (as implemented
by the Linux bridging driver). The forwarding database
of each switch was inspected during a period when all
clients were actively transmitting broadcast packets. In
the case of Ethernet, the switches’ forwarding databases
each contained sixty entries. In the case of MOOSE,
each switch’s two forwarding database dictionaries con-
tained five entries for the other switches and ten entries
for the locally-connected hosts respectively. The storage
requirement of the forwarding has been reduced from
O(hosts) to O(switches), assuming that the number of
locally-connected hosts is a small constant; this is a sig-
nificant improvement.

7 Conclusions and Future Work

Ethernet remains popular due to its simplicity and ubig-
uity, but is showing its age and exhibits serious scala-
bility issues in large deployments. Previously-proposed
improvements address either a few of the problems in a
simple way, or most of the problems in a highly complex
or backwards-incompatible way. We have demonstrated
a simple, novel and easily-implementable approach for
significantly boosting the scalability of Ethernet, along
with a working software implementation.

Our next step will be to produce a true hardware
prototype. This will be built using the NetFPGA plat-
form [32]. The NetFPGA card comprises four gigabit
Ethernet interfaces connected directly to an FPGA with
full control over everything from the Ethernet PHY and
MAC inwards, plus a PCI interface to allow frames to
be passed to a PC for processing in software (e.g. for
running the control plane).

We also intend to implement a more extensive set
of additional Ethernet features, including in particular
802.1Q VLANS and Quality-of-Service provision.

8 Acknowledgements

We acknowledge the support of the UK EPSRC which
funded this project through grant EP/D076803/1. We
are also grateful for David Simner’s invaluable secu-
rity insight, and for the countless comments and sug-
gestions made by him, Ian Abel, Dave Eyers, Malte
Schwarzkopf, Laurence Aitchison and Derek Murray.
Useful feedback and suggestions were provided by
several attendees of the ITC 21 First Workshop on Data
Center — Converged and Virtual Ethernet Switching.

References

[1] R. M. Metcalfe and D. R. Boggs, “Ethernet: dis-
tributed packet switching for local computer net-
works,” Commun. ACM, vol. 19, no. 7, pp. 395—
404, 1976.

[2] P. Barham, et al., “Xen and the art of virtualiza-
tion,” in SOSP, 2003, pp. 164-177.

[3] C. Clark, et al., “Live migration of virtual ma-
chines,” in USENIX NSDI, 2005.

[4] C. Perkins, “IP Mobility Support for IPv4,”
RFC 3344 (Proposed Standard), Aug. 2002,
updated by RFC 4721. [Online]. Available:
http://www.ietf.org/rfc/rfc3344. txt

[5] IEEE, “802.1D: Standard for local and metropoli-
tan area networks: Media access control (MAC)
bridges,” 2004.

http://www.ietf.org/rfc/rfc3344.txt

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

3Com Corporation, “Switch 5500G 10/100/1000
family data sheet.” [Online]. Avail-
able: http://www.3com.com/other/pdfs/products/
en_US/400908.pdf

F Yu, et al., “Efficient multimatch packet classifi-
cation and lookup with tcam,” IEEE Micro, vol. 25,
no. 1, Jan. 2005.

K. Pagiamtzis and A. Sheikholeslami, “Content-
Addressable Memory (CAM) circuits and architec-
tures: a tutorial and survey,” IEEE Journal of Solid-
State Circuits, vol. 41, pp. 712727, 2006.

D. C. Plummer, “Ethernet Address Resolution Pro-
tocol,” RFC 826 (Standard), Nov. 1982. [Online].
Available: http://www.ietf.org/rfc/rfc826.txt

R. Droms, “Dynamic Host Configuration Proto-
col,” RFC 2131 (Draft Standard), Mar. 1997,
updated by RFCs 3396, 4361. [Online]. Available:
http://www.ietf.org/rfc/rfc2131.txt

M. Scott, A. Moore, and J. Crowcroft, “Addressing
the scalability of Ethernet with MOOSE,” in ITC
21 First Workshop on Data Center — Converged
and Virtual Ethernet Switching (DC CAVES), Sep.
2009.

E. Rosen, A. Viswanathan, and R. Callon, “Multi-
protocol Label Switching Architecture,” RFC
3031 (Proposed Standard), Jan. 2001. [Online].
Available: http://www.ietf.org/rfc/rfc3031.txt

I. HadZi¢, “Hierarchical MAC address space in
public Ethernet networks,” in IEEE GLOBECOM,
vol. 3, 2001.

T. Rodeheffer, C. Thekkath, and D. Anderson,
“SmartBridge: a scalable bridge architecture,” in
SIGCOMM, 2000.

R. Perlman, “Rbridges: transparent routing,” in /N-
FOCOM, vol. 2, 2004.

A. Myers, E. Ng, and H. Zhang, “Rethinking
the service model: Scaling Ethernet to a million
nodes,” in ACM SIGCOMM Workshop on Hot Top-
ics in Networking, Nov. 2004.

C. Kim, M. Caesar, and J. Rexford, “Floodless
in SEATTLE: a scalable Ethernet architecture for
large enterprises,” in SIGCOMM, 2008, pp. 3—14.
S. Sipes, “Why your switched network isn’t se-
cure,” in Intrusion Detection FAQ. The SANS In-
stitute, Sep. 2000. [Online]. Available: http://www.
sans.org/resources/idfag/switched_network.php
IEEE, “802.1AB: Station and media access control
connectivity discovery,” 2009.

, “802.1X: Port based network access con-
trol,” 2004.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

J. Moy, “OSPF Version 2,” RFC 2328 (Standard),
Apr. 1998. [Online]. Available: http://www.ietf.
org/rfc/rfc2328.txt

C. Villamizar, “OSPF optimized multipath
(OSPF-OMP),” IETF Internet Draft, Feb. 1999.
[Online]. Available: http://tools.ietf.org/html/
draft-ietf-ospf-omp-02

G. M. Schneider and T. Nemeth, “A simulation
study of the OSPF-OMP routing algorithm,” Com-
puter Networks, vol. 39, no. 4, pp. 457-468, 2002.

C. Villamizar, R. Chandra, and R. Govindan,
“BGP Route Flap Damping,” RFC 2439 (Proposed
Standard), Nov. 1998. [Online]. Available: http:
/Iwww.ietf.org/rfc/rfc2439.txt

A. Adams, J. Nicholas, and W. Siadak, “Protocol
Independent Multicast - Dense Mode (PIM-DM):
Protocol Specification (Revised),” RFC 3973
(Experimental), Jan. 2005. [Online]. Available:
http://www.ietf.org/rfc/rfc3973.txt

M. Christensen, et al.,, “Considerations for
Internet Group Management Protocol (IGMP)
and Multicast Listener Discovery (MLD)
Snooping Switches,” RFC 4541 (Informa-
tional), May 2006. [Online]. Available: http:
/Iwww.ietf.org/rfc/rfc4541 txt

T11 FC-BB-5 working group, “Fibre channel
backbone — 5,” Jun. 2009.

J. Pelissier, “Introduction to port extension,” in ITC
21 First Workshop on Data Center — Converged
and Virtual Ethernet Switching (DC CAVES), Sep.
2009.

A. Jeffree, P. Congdon, and J. Pelissier,
“P802.1Qbg: Edge virtual bridging,” Un-
approved PAR, Sep. 2009. [Online]. Avail-

able: http://ieee802.org/1/files/public/docs2009/
new-qbg-draft-par-0909-V2.pdf

Stanford University High-Performance
Networking Group, “Pee-Wee OSPF
protocol details.” [Online]. Available:

http://web.archive.org/web/20070708180017/http:
/lyuba.stanford.edu/cs344 _public/docs/pwospf_ref.
txt

E. Dijkstra, “A note on two problems in connexion
with graphs,” Numerische Mathematik, vol. 1, pp.
269-271, 1959.

J. W. Lockwood, et al., “NetFPGA—an open plat-
form for gigabit-rate network switching and rout-
ing,” in IEEE MSE, 2007, pp. 160-161.

http://www.3com.com/other/pdfs/products/en_US/400908.pdf
http://www.3com.com/other/pdfs/products/en_US/400908.pdf
http://www.ietf.org/rfc/rfc826.txt
http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc3031.txt
http://www.sans.org/resources/idfaq/switched_network.php
http://www.sans.org/resources/idfaq/switched_network.php
http://www.ietf.org/rfc/rfc2328.txt
http://www.ietf.org/rfc/rfc2328.txt
http://tools.ietf.org/html/draft-ietf-ospf-omp-02
http://tools.ietf.org/html/draft-ietf-ospf-omp-02
http://www.ietf.org/rfc/rfc2439.txt
http://www.ietf.org/rfc/rfc2439.txt
http://www.ietf.org/rfc/rfc3973.txt
http://www.ietf.org/rfc/rfc4541.txt
http://www.ietf.org/rfc/rfc4541.txt
http://ieee802.org/1/files/public/docs2009/new-qbg-draft-par-0909-V2.pdf
http://ieee802.org/1/files/public/docs2009/new-qbg-draft-par-0909-V2.pdf
http://web.archive.org/web/20070708180017/http://yuba.stanford.edu/cs344_public/docs/pwospf_ref.txt
http://web.archive.org/web/20070708180017/http://yuba.stanford.edu/cs344_public/docs/pwospf_ref.txt
http://web.archive.org/web/20070708180017/http://yuba.stanford.edu/cs344_public/docs/pwospf_ref.txt

	Abstract
	1 Introduction
	2 Ethernet's Underlying Problem
	3 Related Work
	4 MOOSE Architecture
	4.1 Shortest Path Routing
	4.2 Address Selection and Conflict Resolution
	4.3 Broadcast and Multicast
	4.4 Example
	4.4.1 Query
	4.4.2 Response

	4.5 Directory Service
	4.6 Mobility

	5 Interoperability Considerations
	5.1 Layer-violating Protocols
	5.2 Edge Virtual Bridging

	6 Implementation
	6.1 Data plane
	6.2 Control plane
	6.3 Evaluation

	7 Conclusions and Future Work
	8 Acknowledgements

