
Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Machine learning for first-order theorem proving

Learning to select a good heuristic

James P. Bridge · Sean B. Holden · Lawrence C.
Paulson

Received: date / Accepted: date

Abstract We applied two state-of-the-art machine learning techniques to the problem of
selecting a good heuristic in a first-order theorem prover. Our aim was to demonstrate that
sufficient information is available from simple feature measurements of a conjecture and
axioms to determine a good choice of heuristic, and that the choice process can be auto-
matically learned. Selecting from a set of 5 heuristics, thelearned results are better than any
single heuristic. The same results are also comparable to the prover’s own heuristic selection
method, which has access to 82 heuristics including the 5 used by our method, and which
required additional human expertise to guide its design. One version of our system is able to
decline proof attempts. This achieves a significant reduction in total time required, while at
the same time causing only a moderate reduction in the numberof theorems proved. To our
knowledge no earlier system has had this capability.

Keywords Automatic theorem proving· Machine learning· First-order logic with equality·
Feature selection· Support vector machines· Gaussian processes

J. P. Bridge
University of Cambridge, Computer Laboratory, William Gates Building, 15 JJ Thomson Avenue, Cambridge
CB3 0FD, UK
Tel.: +44-1223-763705
Fax: +44-1223-334678
E-mail: jpb65@cl.cam.ac.uk

S. B. Holden
University of Cambridge, Computer Laboratory, William Gates Building, 15 JJ Thomson Avenue, Cambridge
CB3 0FD, UK
Tel.: +44-1223-763725
Fax: +44-1223-334678
E-mail: sbh11@cl.cam.ac.uk

L. C. Paulson
University of Cambridge, Computer Laboratory, William Gates Building, 15 JJ Thomson Avenue, Cambridge
CB3 0FD, UK
Tel.: +44-1223-334623
Fax: +44-1223-334678
E-mail: lp15@cl.cam.ac.uk

2 James P. Bridge et al.

1 Introduction

Theorem provers for first-order logic (FOL) with equality have the potential to be largely
automatic, but at present significant expert human input canbe required to optimize fully the
performance of a prover on a given problem. While the underlying approach to proof search
employed by a given prover is based on one or more core algorithms, performance can be
affected by a number of parameter values and other decisionsregarding the detail of the
operation of these algorithms. Provers often incorporate one or more collections of standard
settings for such parameters and other details; such a collection is known as aheuristic.
The best heuristic to use will depend on the form of the conjecture to be proved and the
accompanying axioms, however the relationship between these and the best heuristic is not
obvious even to those with extensive experience, let alone to users who wish only to use the
prover as a tool.

In this paper we apply two machine learning methods (see for example Bishop [3], Duda
et al. [11] and Mitchell [32]) to the problem of heuristic selection. The approach taken is to
use existing, well-established heuristics and to automatically learn to select a good heuristic
using simple features of the conjecture to be proved and the associated axioms. This is
related to the method available to the existing E theorem prover (Schulz [40]), which is able
to select a heuristic using features but uses a less sophisticated approach: the features are
used simply to divide problems into separate groups, each associated with a best heuristic
selected using prior experimental results. The key differences between this approach and
our work are as follows. First, in the former the division into groups restricts features to be
binary or ternary. Second, it must be assumed rather than determined that problems within
a group are best solved with the same heuristic. Our application of machine learning to
the problem allows real-valued features to be used, and determines in a rigorous manner
and with fewer preconceptions the possible connections between feature values and the best
heuristic to use.

The task of heuristic selection lends itself well to machinelearning. The connection
between input feature values and the associated preferred heuristic is too complex to be
derived directly; yet for any given sample problem the preferred heuristic may be found by
running all heuristics. Obtaining labelled training data is thus straightforward given a good
selection of trial problems. In the area of first-order logicwith equality theThousands of
Problems for Theorem Provers (TPTP)library (Sutcliffe [43]) provides a readily available
collection of trial problems from many different subject areas, and it is this library that we
use to construct a training set from which to learn.

While attempts have been made by several researchers to incorporate machine learning
methods into FOL theorem provers, we take a different approach to those attempted previ-
ously. Also, we apply learning methods known to be among the most powerful available, and
which have not been applied in this context before:support vector machines (SVMs)(Shawe-
Taylor and Cristianini [41]) andGaussian processes (GPs)(Rasmussen and Williams [36]).
A review of work prior to 1999 can be found in Denzinger et al. [9] and, for example, the
TEAMWORKsystem of Denzinger et al. [8] employs case based reasoning,Fuchs [14] uses
instance-based learning and Goller [16] folding architecture networks. TheMaLAReasys-
tem of Urban [45] makes use of a method based on naive Bayes learning (Mitchell [32]).
The prior work most similar in its approach to our own has concentrated on learning novel
heuristics; see for example Erkek [12], Fuchs and Fuchs [15]and Schulz [39]. Our work
differs in that, rather than learning the form of the heuristic itself, we make use of known
good heuristics and learn to select an appropriate one.

Machine learning for first-order theorem proving 3

It is of note that to date simple machine learning methods have been employed with
more success in SAT solvers. We provide a brief review of relevant work in Appendix A.

Section 2 explains in detail the problem addressed, the selection of a theorem-prover
and heuristics, and the construction of our data set.1 Section 3 introduces the performance
measures used and explains in detail how our learners were trained. Section 4 explains the
overall experimental method and how we applied our trained classifiers to the selection of
heuristics within the theorem-prover. Section 5 discussesour results and Section 6 presents
a comparison with the prover’s own automatic heuristic selection method. Section 7 gives
a brief discussion of possible further work, and Section 8 concludes the paper. Appendix A
briefly reviews related work for SAT solvers, Appendix B provides a summary of the ma-
chine learning methods used and the notation used in the paper, and Appendix C presents
some results not included in the main part of the paper.

2 The Problem

Initially we chose an extensive set of proof problems taken from the TPTP library2 [43], and
a suitable automated theorem prover with which to solve them. Sample problems were taken
from the entire TPTP library at the time the work was done. Theonly filtering applied was
to remove problems that were proved before the proof search had progressed to the point
where dynamic features3 could be measured, and to remove problems for which the prover
reached saturation, as these were generally pathological cases. This gave us a collection of
6118 problems from which to produce training, validation and test data.

The theorem prover was capable of employing a number of different heuristics. For
reasons discussed below we confined our experiments to a subset of these heuristics. The
prover was run on every problem using each heuristic in this subset in turn and the time
taken to find a proof recorded. A CPU time limit of 100 seconds was set during this process.
This provided for each problem a measurement of how effective each possible heuristic was
when applied to that problem. Throughout the following we denote byn the total number of
problems employed.

Our aim was to find a method for automatically selecting the appropriate heuristic for a
given problem. The data collected as described naturally lends itself to being used within a
standard supervised learning framework, provided that a set of features—that is, a vectorx
in some sense characterising the problem—can be extracted from any given problem. Once
this is achieved there are several potential ways in which each vector can be labelled with a
classificationy to produce the labelled data

sT =
[

(x1,y1) (x2,y2) · · · (xn,yn)
]

. (1)

The approach used in the present work is to produce a separatesetsh of labelled data for
each heuristich, such that eachx has a binary label—+1 for class 1 or−1 for class 2—
indicating whether or noth was the best heuristic, in the sense that it led to the fastestproof,
for that problem.4

1 The full sets of training, validation and test data used in our work can be obtained from the UCI Machine
Learning Repository (Bache and Lichman [1]).

2 We used version 3.2.0 (July 2006) of the TPTP library.
3 Some of our features—referred to in what follows asdynamic features—were measured only after the

proof search had run for some time. This is explained in greater detail in Subsection 2.2.
4 An alternative way in which to construct a machine learning problem involves learning to predict the

actual time takenby a given heuristic to produce a proof. We performed some initial experiments using GP

4 James P. Bridge et al.

Table 1 The five heuristics used and their identifying labels withinthe E theorem prover. The final column
states the number of times each was selected by E for the test set used in its design

Heuristic Labelling within E Selections

1 G E 021 K31 F1 PI AE S4 CS SP S2S 2442
2 H 081 B31 F1 PI AE S4 CS SP S0Y 437
3 H 047 K18 F1 PI AE R4 CS SP S2S 377
4 G E 008 K18 F1 PI AE CS SP S0Y 329
5 G E 008 K18 F1 PI AE R4 CS SP S2S 321

In the following subsections we provide some further detailregarding our experimental
method.

2.1 Theorem Prover and Heuristics

Our work is based on the E theorem prover (version 0.99 Singtom, Schulz [40]). This prover
is widely used and has been found in competition to have good performance. Importantly
for the present work it is also open source and actively supported by its author; these were
significant issues in choosing to employ it as, while many potential features and related
measures were available in the code, it was necessary to modify the code in order to measure
some of our features both before and during the proof search process.

The E theorem prover used has 82 built-in heuristics. This presents a problem in that to
attempt to learn to select from among all possible heuristics would represent an insurmount-
able computational effort; we need at the very least to run the prover using each possible
heuristic on a large number of problems from the TPTP library, in addition to then training
classifiers for each heuristic. We therefore focused on a smaller set of heuristics; namely,
the five heuristics most often selected by E for the TPTP problems being used.5 Table 1
lists the five heuristics chosen using this approach according to their labelling within E.
While this labelling is rather uninformative to the non-expert—for example, in the labelling
for heuristic 1, PI denotes a preference for initial clauses andSP denotes simultaneous
paramodulation—we refer the reader to Bridge [4] and Schulz[40] for a more detailed de-
scription of these heuristics.

Our aim was to predict automatically which of the five heuristics was best for any given
problem, in the sense that it would lead to a proof most quickly. However for some problems
none of the five heuristics could find a proof within the time limit allowed. We therefore in-
troduced a further heuristic—referred to as heuristic 0—torepresent this case. The selection
of heuristic 0 for a given problem is interpreted as an indication that the problem is too
difficult for any of the heuristics available, and that we should therefore reject the problem
without devoting time to a proof search. Heuristic 0 is thus the heuristic that immediately
gives up, and is considered the best heuristic when none of the heuristics 1 to 5 are able
to find a proof within the allowed time of 100 CPU seconds. In the following we refer to
heuristics 0 to 5 using the notation H0,H1, . . . ,H5.

regression, which suggested that this approach is unlikelyto prove feasible for this data, although it has been
used successfully in applying machine learning to SAT solvers (see Appendix A).

5 An alternative, which we have not explored, might be to choose a subset of heuristics that as a collection
solve the largest number of problems.

Machine learning for first-order theorem proving 5

Table 2 Description of the static features used

Feature number Description

1 Fraction of clauses that are unit clauses.
2 Fraction of clauses that are Horn clauses.
3 Fraction of clauses that are ground Clauses.
4 Fraction of clauses that are demodulators.
5 Fraction of clauses that are rewrite rules (oriented demodulators).
6 Fraction of clauses that are purely positive.
7 Fraction of clauses that are purely negative.
8 Fraction of clauses that are mixed positive and negative.
9 Maximum clause length.
10 Average clause length.
11 Maximum clause depth.
12 Average clause depth.
13 Maximum clause weight.
14 Average clause weight.

2.2 Features of Conjectures and Axioms

A problem is initially presented to a theorem prover as a conjecture and a set of axioms. we
need to extract a vectorx of features from the problem description. In fact the problem is
presented as a set of clauses derived from the axioms and the negation of the conjecture to
be proved. There are many ways in which a set of features can bedefined over a collection
of clauses; for example, one feature might denote the proportion of clauses that are Horn
clauses. Our first set of features is summarized in Table 2; these features were derived from
the size and structure of the clauses, but no meaning was attached to elements such as the
function or variable names. As these features are derived entirely from the description of the
problem, prior to the start of any proof search, we refer to them asstatic features.

We also explored the possibility that running a proof searchfor a short period of time
might yield new information that is relevant to choosing a good heuristic. The E theo-
rem prover employs thegiven clause algorithm(see for example Denzinger et al. [10]).
A search is conducted based on the negated conjecture and theaxioms, the aim being to de-
rive the empty clause and thus demonstrate inconsistency (Davis and Putnam [7], Huth and
Ryan [24]). During the search for the empty clause, two sets of clauses are maintained. One
set—theprocessed clauses—consists of clauses for which all possible inferences within the
clause set have been tried. The second set is that ofunprocessed clauses. The unprocessed
clauses initially consist of the negated conjecture and theaxioms. As the proof search pro-
gresses new clauses arise from inferences and these are placed in the unprocessed clause
set. In the given clause algorithm clauses are selected one at a time from the unprocessed
set and then all inferences possible between the selected orgiven clause and the processed
clause set are made.6

It seems reasonable to expect that features obtained based on the contents of the two
sets of clauses after a certain degree of inference has been completed might yield useful in-
formation for selecting a heuristic.7 We therefore also explored the use ofdynamic features,
which are measured using the proof state some time after the proof search has commenced.

6 There is a variation of the given clause algorithm that was introduced by the Otter (now superseded by
Prover9) theorem prover (McCune [30]). We only consider theversion employed by E in this paper.

7 We acknowledge Stephan Schulz (private email communication) who suggested to us that our dynamic
feature number 2 might be relevant. This conjecture is discussed further in Section 7.

6 James P. Bridge et al.

Table 3 Description of the dynamic features used. The set of processed clauses is denoted byP and the set
of unprocessed clauses byU . The set of axioms is denoted byA. context sr count, factor count and
resolv count are variables within E

Feature number Description

1 Proportion of generated clauses kept. (Subsumed or trivial clauses are discarded.)
2 Sharing factor. (A measure of the number of shared terms.)
3 |P|/|P∪U |
4 |U |/|A|
5 Ratio of longest clause lengths inP andA.
6 Ratio of average clause lengths inP andA.
7 Ratio of longest clause lengths inU andA.
8 Ratio of average clause lengths inU andA.
9 Ratio of maximum clause depths inP andA.
10 Ratio of average clause depths inP andA.
11 Ratio of maximum clause depths inU andA.
12 Ratio of average clause depths inU andA.
13 Ratio of maximum clause standard weights inP andA.
14 Ratio of average clause standard weights inP andA.
15 Ratio of maximum clause standard weights inU andA.
16 Ratio of average clause standard weights inU andA.
17 Ratio of the number of trivial clauses to|P|.
18 Ratio of the number of forward subsumed clauses to|P|.
19 Ratio of the number of non-trivial clauses to|P|.
20 Ratio of the number of other redundant clauses to|P|.
21 Ratio of the number of non-redundant deleted clauses to|P|.
22 Ratio of the number of backward subsumed clauses to|P|.
23 Ratio of the number of backward rewritten clauses to|P|.
24 Ratio of the number of backward rewritten literal clausesto |P|.
25 Ratio of the number of generated clauses to|P|.
26 Ratio of the number of generated literal clauses to|P|.
27 Ratio of the number of generated non-trivial clauses to|P|.
28 context sr count/|P|.
29 Ratio of paramodulations to|P|.
30 factor count/|P|.
31 resolv count/|P|.
32 Fraction of unit clauses inU .
33 Fraction of Horn clauses inU .
34 Fraction of ground clauses inU .
35 Fraction of demodulator clauses inU .
36 Fraction of rewrite rule clauses in|U |.
37 Fraction of clauses with only positive literals inU .
38 Fraction of clauses with only negative literals inU .
39 Fraction of clauses with positive and negative literals in U .

Dynamic features were measured using both the processed andunprocessed clause sets af-
ter a specified number (in this work 100) of given clauses had been selected and processed.
Table 3 summarizes the dynamic features used. The fact that we have two distinct sets of
clauses—processed and unprocessed—from which to draw provides some increase in flex-
ibility in designing potentially useful features, and hence the set of dynamic features is
somewhat larger than the set of static features.

In generating the dynamic features we need to run the theoremprover, and hence we
need to decide which heuristic to use. We used heuristic 1 in all cases to generate the dy-
namic features; this is the heuristic most often selected byE in auto mode. Using a fixed
heuristic leads to consistency in the generation of features. While there is some possibility

Machine learning for first-order theorem proving 7

Table 4 Imbalance in the training, validation and test sets. This table shows the proportion of positive exam-
ples in each set of examples used

Heuristic Training set Validation set Test set All examples

0 0.420 0.421 0.408 0.417
1 0.182 0.170 0.178 0.178
2 0.075 0.087 0.081 0.079
3 0.122 0.122 0.123 0.122
4 0.099 0.095 0.110 0.101
5 0.102 0.104 0.100 0.102

that this introduces a bias8, note that any system will need to face this problem. It is hoped
that running the prover for only a short time to generate dynamic features will limit any
adverse effects due to the use of a single heuristic.

After gathering the data it was found that static feature 5 and dynamic feature 21 were
redundant, in the sense that they took the same value for all problems. These features were
deleted from the data.9

2.3 Training, Optimization and Test Data

The prover was applied to each problem using each of the five fixed heuristics in turn,
producing for each heuristic the time in seconds required tofind a proof, or 100 if no proof
was found. This data was then used to construct six further sets. For each fixed heuristich,
a corresponding set was derived with each feature vector labelled+1 if h found a proof for
the corresponding problem and was the fastest to do so, or−1 if h failed to find a proof or
was not the fastest. The sixth data set corresponded to heuristic 0; problems were labelled
+1 if none of the five heuristics found a proof or−1 otherwise.10

Each data set of 6118 problems was then split into three subsets. The first half formed
a training setof 3059 examples. The second half was split into two further sets in the usual
manner: avalidation set of 1529 examples used for parameter optimization, and atest set
of 1530 examples used for computing performance. Note that the manner in which the data
is generated, with one set for each heuristic, naturally leads to sets containing relatively few
positive examples: with six possible outcomes representedby the six heuristics each indi-
vidual classifier might be expected to have five times as many negative samples as positive
ones. Table 4 summarizes the actual degree of imbalance in the data.

The data were normalized such that each feature in each training set had zero mean and
unit variance across the set. Features in the validation andtest sets were then normalized
using the same offsets and scalings as applied to their corresponding training sets.

Table 5 provides basic performance data for the five fixed heuristics. This data denotes
the number of theorems in the third subset of problems—that is, the subset reserved for
computing performance—that each heuristic is able to prove, and the total time required

8 The values obtained for dynamic features might depend strongly on the heuristic used to generate them.
For example, say heuristic A generates 100 clauses and simplifies 1000 in the relevant time period, but
heuristic B generates 1000 and simplifies 100. We might expect that heuristic A is the more likely to be
successful.

9 This has also been observed in related work on applying machine learning to SAT solvers (see Xu et
al. [47]).

10 An alternative method, which we have not explored, would be to label all successful heuristics positively.

8 James P. Bridge et al.

Table 5 Performance of the individual heuristics in terms of the number of theorems proved within the time
limit and the total time taken in seconds. Numbers are provided for the test set (1530 examples) and for the
combination of validation and test sets (3059 examples)

Test set only Combined set

Heuristic Number proved Time Number proved Time

1 774 79,336 1,514 162,029
2 695 87,005 1,352 177,530
3 722 83,409 1,424 168,593
4 726 83,438 1,421 169,598
5 673 88,130 1,339 176,959

to do so, including 100 seconds for each problem not solved within the time limit. It also
contains equivalent data for the combination of the second (validation) and third sets.

For the purposes of placing our results in context it is of interest also to note the perfor-
mance that would be obtained using a system capable of alwayschoosing the best possible
heuristic. For the test set this would result in 906 theoremsproved in 65,593 seconds, and
for the combined set 1,791 theorems proved in 133,464 seconds.

3 Machine Learning Methods

The machine learning algorithms used are complex and the details of their operation are
extensively documented elsewhere. We will not describe them in great detail; Appendix B
provides a brief introduction to both SVMs and GP classifiers, and definitive references for
the interested reader. We do however present in this sectionaspects of our experiments that
are specific to our own work, particularly regarding the measurement of performance and
the selection of algorithm-specific parameters.

In the following, we denote byx a vector of features corresponding to a single problem
as described in Section 2.2, and byy the corresponding label. We denote a data set having
n labelled examples bys as in Equation 1. We will denote the heuristic to which a set
corresponds by adding a numerical subscript, and the partition to which it corresponds by
adding the superscript ‘train‘, ‘val’ or ‘test’ so, for example, the validation set for heuristic
2 is denotedsval

2 .

3.1 Measurement of Performance

We use three measures of performance in our experiments. Denote byP+ the number of
true positives obtained using a validation or test sets of sizem. Similarly, denote byP−

the number of false positives,N+ the number of true negatives, andN− the number of false
negatives. The first measure is theaccuracy

acc(s) =
P++N+

m
.

While this is a common performance measure, it is not the mostinformative when applied
to problems having unbalanced classes, such as the problemsconsidered here. We therefore
also employ theMatthews correlation coefficient(Baldi et al. [2])

M(s) =
P+N+−P−N−

√

(P++P−)(P++N−)(N++P−)(N++N−)

Machine learning for first-order theorem proving 9

where the denominator is set to 1 if any sum term is zero. This measure has the value 1
if perfect prediction is attained, 0 if the classifier is performing as a random classifier, and
−1 if the classifier exactly disagrees with the data. Finally,we use theF1 score(He [22]).
Define theprecision p= P+/(P++P−) and therecall r = P+/(P++N−). The F1 score is

F1(s) =
2pr
p+ r

and takes values between 0 (worst) and 1 (best).

3.2 Support Vector Machines

We used the softwareSVMLight(Joachims [25]) in our experiments. In order to apply an
SVM, a specific kernel function must be chosen. (See AppendixB.1 for further information.)
On the basis of preliminary experiments (see Bridge [4]) theradial basis function (RBF)
kernel, defined as

K(x,x′) = exp
(

−γ ||x−x′||2
)

(2)

was selected. The RBF kernel function has a single parameterγ , and the SVM fitting pro-
cess is controlled by two further parameters. The parameterC governs the trade-off between
margin and training error, and thus the extent to which we arewilling to tolerate misclas-
sified training examples. (This is discussed further in Appendix B.1; it is an example of a
regularizationparameter.) Thecost factor jsets the relative weights for positive and neg-
ative samples; settingj appropriately is important when dealing with imbalanced data as
mentioned above and illustrated in Table 4. In our experiments the cost factor was set using
the method of Morik et al. [33] as

j =
Number of negative examples
Number of positive examples

.

A grid-search optimisation procedure was used to find valuesfor γ andC; the procedure
used is essentially a standard one for the experimental training of SVMs (Hsuet al. [23])
and involves searching over a range of(γ ,C) values, selecting the pair leading to a maximum
in an estimate of the corresponding performance; in this case the accuracy, F1 or Matthews
score. In order to estimate performance we applied 10-fold stratified cross-validation (Ko-
havi [27]) to the combination of the training and validationsets as follows. The combined
setsCV = strain∪ sval was split into 10 subsets of approximately equal size, maintaining the
relative numbers of positive and negative examples in each subset. Denote bysCV

i the ith
subset and bysCV

−i the combination of the remaining subsets when theith has been removed.
Then, for each subset in turn, an SVM was trained usingsCV

−i andP+, P−, N+ andN− were
found usingsCV

i as a test set. The latter values were accumulated over the 10 splits and the
final values used to obtain a performance estimate for a pair(γ ,C).

The final classifiers in each case were produced by settingC and γ to their optimal
values, and then training a single SVM using the whole ofsCV. Testing to establish a final
performance value was performed usingstest.

The value ofγ was varied between 2−15 and 25 in logarithmic steps, the value doubling
at each step. Similarly, the value ofC was varied between 2−5 and 215. The process was
not repeated with finer steps in the values ofC andγ as the results indicated that the peaks
in estimated performance were not sharp. Additionally, dueto the use of a finite number
of samples for both learning and validation the variation ofthe performance measure on a

10 James P. Bridge et al.

small scale is not smooth, and so it is not possible to continuously refine the values ofC
andγ in the same manner as might be used to find the maximum of a smooth mathematical
function.

This procedure was repeated for the full feature set, the static feature set alone and for
the dynamic feature set alone.

3.3 Gaussian Process Classifiers

We used theGPML library (Rasmussen and Williams [36]) in our experiments. Some ini-
tial experiments suggested that results were rather insensitive to the mean and covariance
functions used. We therefore used the zero mean function in conjunction with thesquared
exponentialfunction

cov(x,x′) = σ 2 exp

(

−||x−x′||2
2l2

)

as it appears to be a common and effective choice, and as its similarity to the RBF kernel
provides for some degree of comparability with the SVMs used. It has already been noted
that we conduct our experiments using the full set of features, and also the static or dynamic
features only. With the selection of good features in mind, we in fact employed the squared
exponential covariance function withautomatic relevance determination (ARD)

cov(x,x′) = σ 2exp

(

−1
2
(x−x′)TH−2(x−x′)

)

whereH = diag[h1 h2 . . . hm] andm is the number of features. The ARD principle involves
estimating themhyperparametershi (see Appendix B), which then provide an indication of
the importance of the corresponding features. If a large value is obtained forhi , this is an
indication that the similarity measure between a pair of feature vectorsx andx′ is insensitive
to differences in theith feature. The feature is therefore of limited relevance, and the value
of 1/hi provides a direct measure of the relevance of featurei.

We used the Laplace inference method as this proved more stable than the Expectation
Propagation alternative and moderately better performingthan Variational Bayes. We used
the logistic likelihood function. Hyperparameters[σ 2 h1 . . . hm] were initialized to 0 for
the purposes of optimization, and optimization was limitedto 100 function evaluations;
increasing this limit offered little improvement.

The model selection and hyperparameter estimation tasks for a GP classifier are typically
addressed by maximizing the marginal likelihood. This is the approach taken here, and it
does not require us to use a validation set as is the case when constructing an SVM. We did
however find that a validation set was useful for the following reason. As a GP classifier
produces an output indicating the probability that somex should be classified+1 it is usual
to choose a thresholdt for the output and to assignx to+1 when the output is greater thant
or−1 otherwise. Oftent is set to 0.5, however we found that this is often a suboptimal value
and therefore used the validation set to optimize it. Specifically, for a given performance
measure the value oft was varied between 0 and 1 and the corresponding measure computed
for the validation set. The value fort maximizing this performance was then used as a final
value for testing. It is unusual to see this method applied inthe design of SVMs, where
outputs produced are arbitrary reals and a threshold of 0 is used as standard. Consequently
optimization of the threshold was not applied to the SVMs. Appendix C provides some
further discussion of this method, demonstrating that: theuniform use oft = 0.5 leads to

Machine learning for first-order theorem proving 11

reduced performance; optimal values oft for measuresM(s) and F1(s) tend to coincide; and
accuracy is, as expected, an inappropriate performance measure for this data.

4 Experiments

4.1 Experiment 1: Classifier Performance

Our first experiment was a direct application of the classifiers to the data, resulting in a set of
six classifiers, each predicting whether or not the corresponding heuristic should be selected
for a given problem. At this stage the aim is merely to show that the learned predictions can
be better than if a random classifier were used; that is, that something has been gained from
the learning process.

In addition to training the classifiers using all features wetrained classifiers using only
the static features, and using only the dynamic features in order to establish whether one set
appeared more useful than the other.

4.2 Experiment 2: Combining Classifiers for Heuristic Selection

In order to meaningfully be applied to general theorem proving problems, the separate clas-
sifiers need to be combined into a heuristic selection process. If the classifiers were perfect
then for any problem one, and only one, classifier would return a positive result, with heuris-
tic 0 indicating a problem that cannot be proved within the time limit by any of heuristics 1
to 5. With perfect classifiers, selecting a heuristic is justa case of observing which heuristic
classifier gives a positive result.

In practice the classifiers are very unlikely to be perfect. For some problems more than
one classifier will return a positive result, while for others no classifiers may return a positive
result. A mechanism is needed to deal with such cases. With both SVM and GP classifiers
there is a natural way to achieve this. The outputf (x) is in both cases a real value; arbitrary
in the case of SVMs, and in the interval[0,1] for GPs. In both cases we choose a threshold
t, typically 0 for SVMs or 0.5 for GPs, and assign an inputx to +1 if f (x) > t or to −1
otherwise. The distance

dt(x) = f (x)− t

provides a natural measure of the commitment a classifier makes to labellingx as+1, and
thus in choosing which of heuristics 1 to 5 to employ we simplyselect the one for which
dt(x) is largest. In our experiments this includes cases wheredt(x) is negative for all five
classifiers.

Incorporating heuristic 0 introduces some further complication. Preliminary experiments
showed that treating it in common with the other heuristics,and thus selecting it when it had
the largestdt(x) even when that value was negative, led to far too many problems being re-
jected. Heuristic 0 was therefore only selected ifdt(x) was positive as well as being greater
than that for all other classifiers. Experiments were run both with and without heuristic 0
being a candidate for selection.

12 James P. Bridge et al.

Table 6 Performance measured using accuracy, F1 score and Matthewscoefficient of individual SVM and
GP classifiers, using optimized(γ ,C) for SVMs and optimized thresholds for GPs. Results are shownusing
all features, and the static and dynamic features individually. In the GP results, italic text indicates that the
result is equal to the SVM result, and bold text indicates that the result improves on the SVM result

Support vector machines

All features Static Dynamic

Heuristic Acc F1 Matt Acc F1 Matt Acc F1 Matt

0 0.81 0.77 0.61 0.80 0.75 0.59 0.79 0.74 0.57
1 0.76 0.48 0.35 0.77 0.45 0.31 0.81 0.36 0.26
2 0.92 0.30 0.23 0.92 0.29 0.22 0.92 0.29 0.22
3 0.86 0.47 0.39 0.82 0.43 0.35 0.87 0.42 0.33
4 0.89 0.40 0.32 0.87 0.42 0.34 0.89 0.42 0.34
5 0.88 0.39 0.32 0.85 0.40 0.34 0.88 0.38 0.30

Gaussian process classifiers

All features Static Dynamic

Heuristic Acc F1 Matt Acc F1 Matt Acc F1 Matt

0 0.80 0.73 0.57 0.79 0.72 0.56 0.71 0.71 0.47
1 0.84 0.45 0.34 0.83 0.44 0.32 0.83 0.45 0.29
2 0.92 0.23 0.19 0.92 0.23 0.15 0.92 0.21 0.12
3 0.88 0.44 0.35 0.88 0.39 0.28 0.88 0.40 0.32
4 0.90 0.37 0.31 0.89 0.37 0.33 0.89 0.38 0.31
5 0.90 0.33 0.27 0.90 0.32 0.26 0.90 0.24 0.17

5 Results

5.1 Classifier Performance

Table 6 shows the best performance measures obtained when training SVMs and GPs as de-
scribed above. Here, we assessed the performance of the classifiers on the test set, employing
values for(γ ,C) and thresholds chosen using the validation set.

Two conclusions can be drawn from these results. First, there is little difference in per-
formance between SVMs and GPs, although we might argue that SVMs appear slightly
preferable for F1 and Matthews scores while GPs appear preferable in terms of accuracy.
Second, the performance changes only negligibly accordingto which of the three sets of fea-
tures is used, although we might argue that there is some degradation when using dynamic
features only, particularly in the Matthews score.

We chose not to analyse these results further, for example byexamining the statistical
significance of the apparent changes according to which set of features is used, as it is not
our aim here to focus on classifier performance, either relative (SVM versus GP) or absolute;
rather, we want to know how the choices made by the classifiersaffect theorem proving, and
we address this in the next subsection.

Two final points are perhaps noteworthy. First, while optimization of the threshold for
GP classifiers is rarely undertaken in the literature, it turns out to be a critical step for this
problem. We will not elaborate further on this point here, however Appendix C presents a
full discussion. Second, while it appears that little is to be gained by the inclusion of dynamic
features, this is perhaps to be expected given our earlier discussion in Section 2.2 regarding
the need to use a single heuristic to generate them.

Machine learning for first-order theorem proving 13

Table 7 Performance of classifiers when used for selection of heuristics. Numbers are explained within the
text

SVM with γ andC optimized onsval
i ∪strain

i and performance assessed usingstest
i only.

No H0 With H0 H0, positive margin

Number Time Number Time Number Time

All 827/827 73,549/73,549 700/709 22,003/23,005 716/741 23,178/25,593
Static 833/822 72,845/74,350 726/718 26,784/28,093 739/728 28,608/29,116

Dynamic 810/809 75,268/75,286 667/666 23,152/23,075 702/703 27,946/27,815

GP with thresholds optimized usingsval
i and performance assessed usingstest

i only.

No H0 With H0 H0, positive margin

Number Time Number Time Number Time

All 816 74,973 720 35,264 724 36,467
Static 804 75,590 698 34,937 702 35,339

Dynamic 812 75,551 536 18,679 592 21,622

5.2 Combining Classifiers for Heuristic Selection

Table 7 shows how the classifiers perform when used to select heuristics. Once again we
provide results for classifiers trained using all features,static features only, and dynamic
features only. We also give results when heuristic 0 is not used, when it is treated in common
with heuristics 1 to 5, and when it is only selected if in addition it has positivedt(x). The
time in seconds includes 100 seconds for each failed proof. For the SVM the results are
shown in pairs. In each pair the first result was obtained with(γ ,C) optimized using F1, and
the second with(γ ,C) optimized using Matthews.

Comparing first with the performance of individual, fixed heuristics as shown in the rel-
evant (test set only) columns of Table 5, we see that when our learners are forced to make
a choice of heuristic—that is, H0 is not available—they outperform any fixed heuristic in
terms of both the number of theorems proved and the total timetaken. The SVM trained us-
ing static features is the best-performing combination here, proving 833 theorems in 72,845
seconds.

Overall, the dynamic features once again appear to perform worse than the static or
combined sets, the static features being preferable with the SVM and all features preferable
with the GP. We might argue that the SVM performs slightly better than the GP, although
there is no clear distinction.

When H0 is available, such that our system can decline to attempt a proof, we see only
a moderate reduction in the number of theorems proved, but a much larger reduction in
the time spent. Our classifiers are therefore effectively identifying problems for which the
available heuristics are likely to be of limited effectiveness; to our knowledge, this ability
has not previously been demonstrated. Selecting H0 only when it has positive margin leads,
as expected, to more theorems being proved with a corresponding increase in total time
taken.

6 A further experiment: comparison with E’s auto mode

It seems reasonable to ask how our approach compares with E’sautomatic selection of
heuristics. This is complicated somewhat by the fact that E chooses from 82 possible heuris-

14 James P. Bridge et al.

Table 8 Comparison of heuristic selection using SVMs trained with all features and limited to heuristics H1
to H5, versus E’s auto mode using all 82 heuristics. Numbers in brackets show the size of the corresponding
set. See the text for a detailed explanation of the remainingnumbers

Number proved Time taken

E auto SVM E auto SVM
82 heuristics 5 heuristics 82 heuristics 5 heuristics

H1 (281) 270 259 1,670 3,084
H2 (124) 114 107 1,127 1,883
H3 (200) 198 195 497 799
H4 (135) 126 123 1,346 1,650
H5 (166) 152 146 1,969 2,410

H1 (122) 12 1 11,123 12,157
H2 (105) 3 1 10,258 10,501
H3 (105) 4 3 10,213 10,418
H4 (86) 3 0 8,477 8,600
H5 (206) 0 1 20,600 20,593

Totals 882 836 67,278 72,094

tics whereas we have limited our work to 5. Any comparison is further complicated by the
fact that we wished to use the same training, validation and test data as in the experiments
already described. Recall that these data were generated using the times taken for heuristics
H1 to H5 to prove each theorem, within an upper limit of 100 seconds. The data are there-
fore dependent on both the machine and the version of E used. The comparison we now
describe was performed at a much later date than the construction of the three sets of data;
consequently we no longer had use of the original hardware, and what follows has been
constructed with this in mind in order to obtain a meaningfulcomparison.

For n= 1, . . . ,5 let SVMn be the SVM trained to predict whether heuristicn is the best
to use and let SVMn(x) be its output before thresholding when applied to a feature vectorx.
Also, define

Cn = {x ∈ stest|SVMn(x)> SVMm(x) for m 6= n},

the set of theorems in the test set that should, according to the SVMs, be addressed using
thenth of the heuristics H1 to H5. We partitionCn into two further sets

Hn = {x ∈Cn|at least one of H1 to H5 provesx}

and
Hn =Cn\Hn = {x ∈Cn|none of H1 to H5 provesx}

denoting theorems provable by at least one of the SVM-selected heuristics, and theorems
not provable by any of them, respectively when the data set was originally constructed.

Table 8 compares heuristic selection using SVMs trained with all features and limited
to heuristics H1 to H5, versus E’s auto mode using all 82 heuristics. LetS be the set cor-
responding to each row in the table; that is,S= H1 for the first row and so on. Also, letH
denote the SVM-selected hypothesis corresponding to the row, so for example on the row
for S= H3 we haveH = H3. The columns in Table 8 are interpreted as follows:

– For the E in auto mode columns, we show the number of theorems in S that E can
prove, and the time taken by E to prove these theorems, including 100 seconds each for
theorems inS that it fails to prove.

Machine learning for first-order theorem proving 15

– For the SVM columns, we show the number of theorems inS that theH can prove, and
the corresponding time taken, again including 100 seconds for each unproved theorem.

Note that while the data used to define the setsHn andHn was the original data, as described
above, the entries on the table were generated using the currently available machine. For this
reason, the number of theorems proved by the SVMs for theHn sets can be non-zero—in a
small number of cases the faster machine allows a theorem to be proved within 100 seconds
using one of heuristics H1 to H5, which previously could not.

It is immediately apparent that, while E outperforms our method in this comparison, the
difference is in fact rather slight; in particular, it should be noted that E has at least three
significant advantages in this experiment:

– E’s auto mode has access to 82 heuristics, and our method has reduced this to 5. Some
of the 82 will have been indispensable for proving certain theorems, and it is likely that
many of E’s full complement are there to address rare specialcases within the TPTP
library.

– Our approach is fully automatic: there is no human intervention in the tuning process,
whereas such intervention was required in constructing E’smethod for selecting heuris-
tics.

– E was optimized using an earlier version of the entire TPTP library, potentially including
problems instest, whereas our method learns without access to any ofstest.

The last of these points merits further explanation. In effect, the test set used by E in this
case is not independent; E has a built in advantage, having had access to at least some of
the test set during its design, whereas our method is selecting heuristics for TPTP problems
of which it has no prior knowledge. (We are assuming here thatour split of the data did
not result in a test set containing no problems from the version of the TPTP library used in
optimizing E; this would seem to be extremely unlikely.) In machine learning terms, it is
likely that some of E’s performance lead is the result ofoverfitting(see Bishop [3]).

7 Discussion and Further Work

7.1 Finding Optimal Feature Sets

The work presented in this paper was originally motivated bya discussion regarding appli-
cations of machine learning to theorem proving that might fruitfully be explored (Schulz,
private email communication). Specifically:

“Use meta-learning on the proofstate to recognize . . . strategies over time . . . there is
a tantalizing result that proof states leading to a proof have, after a few seconds, a
much lower sharing factor (on average) than proof searches that fail.”

We have demonstrated that machine learning can effectivelybe applied to theorem proving.
While we have not studied the sharing factor (dynamic feature number 2) specifically in
terms of its effectiveness in identifying a heuristic, we have found that dynamic features in
general have provided little or no increase in performance when used in addition to static
features. However, it would be interesting to conduct more general further work on the
selection of good features.

Modern machine learning methods can be tolerant to the use oflarge numbers of fea-
tures, even if some are redundant. Even so, results may be improved by selecting an optimal
set of features to use. Determining which features are significant may also provide useful

16 James P. Bridge et al.

information as to which aspects of a problem are important inheuristic development. From
the results above it is clear that the full set of features canbe reduced without making a ma-
jor negative impact on performance, either in terms of classification or theorem-proving. It
is also clear that the possible reduction in the number of features may be considerable—51
features for the full set versus 13 for the static features only.

It is infeasible to consider all possible subsets of features in a systematic way. However
there are a number of approaches that may be taken to feature selection (Guyon and Elisse-
eff [18]). With the SVM machine learning approach, the selection of optimal features was
investigated in our early work by removing features one at a time, observing the effect this
had on the whole machine learning and heuristic selection process, and then determining
which feature to permanently remove. One conclusion was that only a few features appear
necessary, and it thus became feasible to do an exhaustive test of all subsets of up to 3 fea-
tures. The results of this investigation can be found in [4].We do not reproduce them here
as they were obtained using an incompatible experimental setup.

It was with these early results in mind that the GP classifiersin our experiments were
trained using the squared exponential ARD kernel—this kernel can provide an automatic
assessment of the significance of each feature. However, in the results obtained to date there
is little clear indication that any fixed small, subset of good features is identified by this
approach. Nonetheless, feature selection in this problem remains an interesting area for fu-
ture work, with both SVMs and GPs. We would particularly liketo apply the more robust
approach of Chu et al. [5] in the context of GPs, and theMultiple Kernel Learning (MKL)
technique (Lanckriet et al. [28]) as a means of identifying good related sets of features,
rather than individual features, as in the work of Pilkington et al. [35].

In addition to determining the best subset of features from our existing set it would be
interesting to consider adding further features to those under consideration; for example,
properties of the signature such as maximum and average arity or number of symbols, or the
use of absolute values rather than ratios in defining dynamicfeatures.

7.2 Alternative Class Labels

The learning methods used in our work were designed from the outset to perform binary
classification using two specified labels to denote the classes. It is of interest to ask whether
improved results might be obtained if a more subtle labelling of classes were used, either
by modifying the SVM and GP algorithms, or by applying algorithms designed specifically
with such labellings in mind. For example, rather than labelling an example as+1 if a
heuristic is fastest and−1 otherwise, we could perhaps explore a real-valued labelling that
is more informative in the case where two heuristics solve a problem in very similar times.
Alternatively, as this problem can also be seen as a multi-class classification problem it
might be of interest to explore methods such as the multi-class GP classifier of Williams and
Barber [46].

7.3 Further Comparison with E’s Auto Mode

In Section 6 we compared our learned selection of a heuristicwith E’s auto mode. It would
perhaps be interesting to extend this by examining how our learner compares with E on the
set of examples for which E itself only selects from our set ofheuristics. This would provide

Machine learning for first-order theorem proving 17

an indication of whether the problems for which E selects a heuristic outside of our set are
also problems for which our heuristics are ineffective.

7.4 Application of Heuristic H0

It would be interesting to explore whether our approach to learning heuristic H0—indicating
that a problem is too difficult to be attempted—might be used in a manner similar to the way
in which machine learning has been used by portfolio SAT solvers. (Portfolio SAT solvers
are discussed in Appendix A.) Specifically, by learning to select such a heuristic for each
of a collection of different FOL provers, we might use the resulting classifiers to select
automatically a suitable solver for a given problem.

8 Conclusions

We applied two powerful machine learning techniques to the task of heuristic selection
within a theorem-prover. We find that our learners perform better than any single heuris-
tic to which they have access, in terms of both the number of theorems proved and the
overall time taken. In addition, we find that their performance remains comparable to that
of the prover’s own selection method despite the fact that the latter has several advantages:
significant human expertise was required in its design whereas our learners require no inter-
vention; it has access to 82 heuristics whereas we use a subset of only 5 of these; and it is
likely that it had access during the tuning process to at least some of the problems on which
it was tested, whereas the learners are assessed only on problems not seen during training. If
we allow our system to decline to attempt a proof, we see only amoderate reduction in the
number of theorems proved but a much larger reduction in the time required; to our knowl-
edge this is an ability that has not previously been demonstrated. Finally, evidence is found
to suggest that smaller subsets of features might provide comparable performance; this is a
subject for future work.

A Machine Learning for SAT Solvers

Severalportfolio solvershave used simple methods—typically some form of linear regression (see for ex-
ample Bishop [3] and Hastie et al. [21])—in order to select a solver from a portfolio. Many use features
ultimately derived from those suggested by Nudelman et al. [34].

Haim and Walsh [19] use a simple approach based on linear ridge regression to predict the cost of solving
an instance. They divide their features into two kinds. First, features related to the structure of an instance
and based on measures such as the average size of a clause or the fraction of binary clauses. Second, features
related to the behaviour of the search process, and based on measures such as the size of the backjumps or
the fraction of the variables unassigned when backtrackingoccurs.

SATzilla2007 (Xu et al. [47]) is a portfolio solver using ridge regression to predict the running time
of a given algorithm. (This is often referred to as anempirical hardnessapproach.) It uses 48 features de-
rived from those presented in [34] and a hierarchical learning method combining ridge regression with sparse
multinomial logistic regression, the latter for predicting whether or not an instance is satisfiable. (A similar
method is used by Haim and Walsh [20] who, instead of learningto select from a portfolio of solvers, learn
to select from a portfolio of 9 restart strategies.) Furtherdevelopments of SATzilla2007 employ a more so-
phisticated performance measure as an alternative to running time, and a more complex hierarchical classifier.
SATzilla2012 (Xu et al. [49]) introduces further features (Xu et al. [48]); there are 138 features in total derived
from the preprocessed CNF formulae, and including measurements related to size, graph structure, balance,
presence of Horn formulae, DPLL probing, clause learning, survey propagation and other relevant properties.

18 James P. Bridge et al.

It again departs from the empirical hardness approach by employing multiple instances of the cost-sensitive
classification model of Ting [44] to predict which of a pair ofsolvers is preferred.

Kadioglu et al. [26] describe a portfolio method that uses the same 48 basic features as SATzilla2007 in
conjunction with thek-nearest neighbour (k-NN) learning algorithm [21]. They also explore the use of dis-
tance weighting in thek-NN approach, and a further method by which examples are clustered and a different
value ofk assigned to each cluster.

Finally, Samulowitz et al. [38] explore the use of multinomial logistic regression for solvingquantified
Boolean formulae (QBFs). They address the problem of choosing variable selection heuristics while executing
a modified version of the Davis-Putman-Logemann-Loveland algorithm (Davis et al. [6]). They employ 78
features including many that are also appropriate for SAT problems [34] but also some more specific to QBFs.

B Machine Learning Methods

We use a standard notation when describing machine learningtechniques, corresponding essentially to that
of Bishop [3]. Scalarsx∈R are denoted using lower case, vectorsx ∈R

n using bold lower case and matrices
X ∈ R

n×m using upper case and an alternative font. The transpose ofx is denotedxT and vectors are column
vectors by default.

We denote a data set11 havingn labelled examples by

sT =
[

(x1,y1) (x2,y2) . . . (xn,yn)
]

and we define the corresponding
X=

[

x1 x2 . . . xn
]

and
yT =

[

y1 y2 . . . yn
]

.

B.1 Support Vector Machines

Support vector machines (SVMs)are kernel-based sparse classifiers, and are described in detail in [41]. In this
appendix we give a brief introduction. We try to keep the technical requirements to a minimum, assuming
that the interested reader will refer to the suggested sources; in particular we do not describe in detail the
theory of constrained optimization (see for example Luenberger [29]) required to fully understand the training
algorithm.

The SVM method is based on transforming the feature space containing the feature vectorsx to a new
space, typically of much higher dimension, using a mappingΦ. The underlying idea is that by making a good
choice ofΦ we make it easier to separate the two classes using a hyperplane in the larger space. Further, we
select the hyperplane that, in addition to separating the two classes, is as far away as possible from anyxi in
the training sets.

The general expression for the distance of a pointΦ(x) to a hyperplanef (x) = 0 in the transformed
space is| f (x)| where

f (x) = wT
Φ(x)+b. (3)

Here,w is normal to the hyperplane, and when||w|| = 1 the offsetb is the distance from the origin to the
hyperplane. An SVM classifies a new inputx by computing

y= sgn(f (x)) (4)

where the sgn function tales the value+1 for arguments greater than 0, and−1 otherwise. We can alternatively
define themarginof a training example(xi ,yi) as

M(xi) = yi f (xi).

This quantity is positive when sgn(f (xi)) = yi and negative otherwise; its magnitude corresponds to the
distance ofxi from the hyperplane. The training process therefore involves choosing appropriate values for
w andb, such that the corresponding hyperplane separates the classes and is as far away as possible from any

11 It is common in the machine learning literature to refer to a training setwhen the object in question is
more correctly asequence. This should not however be the cause of any confusion in whatfollows.

Machine learning for first-order theorem proving 19

training feature vectorxi . This corresponds to maximizing the smallest margin, and thus can be described as
an optimization procedure

arg max
w,b

[

min
i

M(xi)

]

.

While this optimization problem is not in a form that is convenient to solve, we can rewrite it as

arg min
w,b

[

1
2
||w||2

]

(5)

subject to the constraints
M(xi)≥ 1 for i = 1, . . . ,n. (6)

This is a quadratic optimization with linear inequality constraints and can be solved by the standard method
(Luenberger [29]) of introducing Lagrange multipliersαi ≥ 0 and forming the Lagrangian

L(w,b,α) =
1
2
||w||2−

n

∑
i=1

αi(M(xi)−1).

Differentiating with respect tow andb and setting to zero yields the dual problem

arg max
α

[

n

∑
i=1

αi −
n

∑
i=1

n

∑
j=1

αiα jyiyjΦ
T(xi)Φ(x j)

]

subject to the constraints
αi ≥ 0 for i = 1, . . . ,n

and
n

∑
i=1

αiyi = 0.

This dual problem can be solved forα using any suitable numerical solver. One consequence of setting
∂L(w,b,α)/∂w = 0 is that we obtain the condition

w =
n

∑
i=1

yiαiΦ(xi). (7)

It should in fact not be surprising thatw admits such a representation. Informally, assume thats contains
samples in both the positive and negative classes. Label thetransformed vectorsΦ(x) for the positive class
z+i and those for the negative classz−j . Any vector joining a pointz+i to a pointz−j must pass through the
dividing hyperplane, so there must be a point lying in the dividing hyperplane given by

zk = z+i +βk(z−j −z+i)

whereβk lies between 0 and 1. Taking all pairsz+i andz−j we can find a set of values forβk such that the
resulting points are on the dividing hyperplane. We can thenrepresent any point on the dividing hyperplane as
a linear combination of thezk, and this includes the vectorw normal to and lying on the dividing hyperplane.
A linear combination of thezk is also a linear combination of the transformed vectorsΦ(xi), and thus theαi
in (7) exist as claimed. We could of course restrict this argument to using only examples near the dividing
hyperplane, in contrast to methods such as Rosenblatt’s perceptron [37] where all examples are used, and this
idea is made rigorous below.

Substituting (7) into (3) we see that the trained SVM can be expressed entirely in terms ofα as

f (x) =
n

∑
i=1

yiαiΦ
T(xi)Φ(x)+b. (8)

It is possible to show using theKarush-Kuhn-Tuckerconditions [29] for the optimization problem that its
solution has the property

αi(M(xi)−1) = 0 for i = 1, . . . ,n.

Comparing with the constraint (6) this implies that we haveαi 6= 0 only for the examples—known assup-
port vectors—for which Φ(xi) is closest to the hyperplane. Consequently the SVM is in practice asparse
technique.

20 James P. Bridge et al.

Table 9 Some common SVM kernel functions

Linear Polynomial

xTx′
(

sxTx′+c
)d

Sigmoid tanh Radial Basis

tanh
(

sxTx′+c
)

exp
(

−γ‖x−x′‖2
)

Equation (8) hides a potential problem: valuesΦ(x) can exist in a space of high, perhaps even infi-
nite dimension, and consequently the inner productsΦT (xi)Φ(x) might be computationally intractable. We
therefore avoid the direct computation of such inner products by introducing akernel function

Kp(x,x′) =Φ
T(x)Φ(x′)

with associated parameter valuesp. While it might be supposed that this offers little or no benefit, a remark-
able theorem of Mercer (Mercer [31]) characterizes the functionsΦ for which a correspondingK exists, and
the kernel is usually much easier to compute than the explicit inner product. (We can in fact proceed without
knowing what functionΦ corresponds to a givenK.) In addition, there are well-defined transformations al-
lowing new kernels to be defined from known ones (see Shawe-Taylor and Cristianini [42]). Table 9 shows
four of the kernel functions most commonly employed in applying SVMs. The linear kernel corresponds to
an untransformed space such as that used by a linear perceptron. It has the advantage that no parameters need
be set, and the corresponding limitation of inflexibility. The polynomial kernel generalizes the linear kernel
but is still often insufficiently flexible for complex data. The sigmoid tanh and radial basis kernels provide
better flexibility; in preliminary experiments (Bridge [4]) the best results for our problem were obtained with
the radial basis kernel. Any parametersp associated with a kernel are usually learned by optimization using
a validation set of training data (Hsuet al. [23]) as explained in Section 3.2.

Our final expression for a trained SVM is

y= sgn

[

n

∑
i=1

yiαiKp(xi ,x)+b

]

.

We have until now assumed that it is possible to find a hyperplane in the extended space that separates the
positive from the negative examples. This is not always possible, and the SVM algorithm is therefore modified
by the introduction ofslack variablesεi . Rewriting the basic optimization problem (5) and (6) as

arg min
w,b

[

1
2
||w||2+C

n

∑
i=1

εi

]

subject to the constraints
M(xi)≥ 1− εi andεi ≥ 0 for i = 1, . . . ,n

allows misclassifications, withC setting the balance between maximizing margin and minimizing misclassi-
fications. The parameterC is typically learned along with any kernel parametersp using the search procedure
described above.

B.2 Gaussian Process Classifiers

Gaussian process classifiers (Rasmussen and Williams [36])provide an alternative kernel-based approach to
supervised learning forming part of the more general Bayesian framework (Bishop [3]). In this section we
give a brief introduction to Bayesian supervised learning and Gaussian process classifiers. The presentation
is deliberately brief, and the interested reader can find thedetails in [3,36]; the relevant material on random
processes and on probability can be found in Grimmett and Stirzaker [17].

Many supervised learning techniques are primarily a means of choosing a vectorz of parameters associ-
ated with some functionf (x;z); in the case of an SVM, the parameters are

zT =
[

α b p
]

Machine learning for first-order theorem proving 21

and the associated function is

f (x;z) = sgn

(

n

∑
i=1

yiαiKp(xi ,x)+b

)

.

A training algorithm can be regarded as a functionT : s 7→ z mapping the training examples to the parameters.
This is however by no means the only way in which the problem can be cast.

The Bayesian framework takes a fundamentally probabilistic approach to learning. It can be shown (Duda
et al. [11]) that to obtain the best possiblegeneralisation error, defined as the probability of misclassifying a
new example(x,y), we should use theBayes-optimal classifier

fBayes(x) =
{

+1 if Pr(y=+1|x,s)≥ 1/2
−1 otherwise .

A simplification is usually made at this point whereby we consider the feature vectorsx to befixed, rather
than random variables. If we now wish to classify a new pointx then the expression of interest becomes
Pr(y=+1|y); however we will commit a slight abuse of notation in the hopeof increasing the clarity of what
follows for the non-specialist. We will write Pr(y=+1|y;x,X)—the semicolon indicating that what follows
are not to be considered random variables.

If we have a model such as an SVM or a neural network, having parametersz, then we can compute the
desired expression by noting that by the usual operation of computing a marginal distribution

Pr(y|y;x,X) =
∫

p(y,z|y;x,X) dz.

Using the definition of conditional probability we can splitthe integrand to obtain

Pr(y|y;x,X) =
∫

Pr(y|z,y;x,X)p(z|y;x,X) dz

=
∫

Pr(y|z;x)p(z|y;X) dz
(9)

where the simplification in the second line follows becausesprovides no additional information abouty if we
knowx andz, andx provides no additional information aboutz if we knows. We know from Bayes’ theorem
that

p(z|y;X) =
1
Z

Pr(y|z;X)p(z;X) (10)

Z =
∫

Pr(y|z;X)p(z;X) dz. (11)

It is usually assumed that examples are independent and identically distributed (i.i.d.) and hence

Pr(y|z;X) =
n

∏
i=1

Pr(yi |z;xi). (12)

Comparing (9), (10) and (12) we see that (dropping the abusive notation) two fundamental quantities are
required: theprior p(z) and thelikelihood Pr(y|z). The prior quantifies our uncertainty about what the pa-
rameter vector might be in the absence of any data, and generally corresponds to aregularisationterm in the
non-Bayesian approach. The likelihood quantifies our uncertainty about how labels might appear, and gener-
ally modelsnoisein the data. Having specified these two quantities a classifier is constructed by evaluating
the integral in (9). This is in general a non-trivial process. The details of how the prior and likelihood can be
chosen, and how the task of integration can be achieved, can be found in [3].

Gaussian process classifiers begin with the following observation: given that any parameter vectorz
specifies a functionf (x;z), and we need to specify a priorp(z) and a likelihood Pr(y|z), why not simply
circumvent the need for parameters and work in terms of a prior p(f) and a likelihood Pr(y| f) defined directly
in terms of functions?

Definition 1 Let cov(x,x′) denote a covariance function12 and letµ(x) denote amean function. A random
function f is called aGaussian processif for any fixed, finite sequence(x1,x2, . . . ,xn) the vector

fT = [f (x1), f (x2), . . . , f (xn)]

12 The covariance function takes the place of the kernel function used by an SVM. There are certain condi-
tions that the covariance function must posses; see [36] fordetails.

22 James P. Bridge et al.

Table 10 Some common Gaussian process covariance functions

Squared exponential γ-exponential

exp
(

− ||x−x′ ||2
2l2

)

exp
(

−
(

||x−x′ ||
l

)γ)

Rational quadratic Neural network
(

1+ ||x−x′||2
2α l2

)−α
2
π sin−1

(

2xTSx′√
(1+2xTSx)(1+2x′TSx′)

)

−5 0 5
−2

−1

0

1

2
SE prior, l = 1

x

f
(x
)

−5 0 5
−4

−3

−2

−1

0

1

2

3
γ-E prior, l = γ = 1

x

f
(x
)

−5 0 5
−4

−3

−2

−1

0

1

2
RQ prior, l = α = 1

x

f
(x
)

−5 0 5
−3

−2

−1

0

1

2
NN prior, σ1 = 9, σ2 = 25

x

f
(x
)

Fig. 1 Examples of functions drawn at random from Gaussian processpriors using the covariance functions
in Table 10. In the case of the NN prior the parameter matrix isS= diag(σ1,σ2)

has Gaussian density

p(f) = (2π)−n/2|C|−1/2 exp

(

−1
2
(f−µ)T

C
−1(f −µ)

)

whereC is thecovariance matrix Ci j = cov(xi ,x j) and

µT = [µ(x1),µ(x2), . . . ,µ(xn)]

is themean vector. We write f ∼ N(µ ,cov) to denote thatf is a Gaussian process.

Table 10 specifies four commonly-encountered covariance functions, and Figure 1 shows, for each of these

Machine learning for first-order theorem proving 23

covariance functions, four samples from the correspondingGP with meanµ(x) = 0. These now correspond
to the priorp(f) introduced above.

For the case of regression (rather than classification) the process of inference is now quite straightfor-
ward. Assume that examples are modified by additive i.i.d. Gaussian noiseε with mean 0 and varianceσ2

n ,
so

y= f (x)+ ε .
If f is a Gaussian process with meanµ and covariance cov then anyy value generated in this way must
have meanµ(x) and variance cov(x,x)+σ2

n . Similarly, starting with any finite sequence of feature vectors
(x1,x2, . . . ,xn) and generating the correspondingy values leads to a vectory having a Gaussian density with
meanµ whereµ i = µ(xi) and covariance matrixC whereCi j = cov(xi ,x j)+σ2

n δi, j .
Assume now we have a training sequences and we wish to predict the output required for a new input

xnew. By the same argument as in the previous paragraph, the jointdensityp(ytest,y) is Gaussian with mean
(µ(xtest),µ) and covariance

C
′ =
(

cov(xnew,xnew) cT

c C

)

wherec= (cov(xtest,x1), . . . ,cov(xtest,xn)). Referring back to (9), we want to compute the conditional dis-
tribution p(ytest|y). However, as we have just shown that the jointp(ytest,y) is Gaussian,the conditional
distribution is Gaussian also. The identities required to compute the relevant mean and covariance are as
follows. Letx be a vector ofn jointly Gaussian-distributed random variables, having meanµ and covariance
matrixΣ such that

p(x) = (2π)−n/2|Σ|−1/2 exp

(

−1
2
(x−µ)T

Σ
−1(x−µ)

)

.

If we partitionx such thatx = (x1 x2) and writeµ = (µ1 µ2) and

Σ=

(

Σ1 Σ2

ΣT
2 Σ3

)

in the corresponding partitioned form, then both the marginal density p(x1) and the conditional density
p(x1|x2) are also Gaussian. Specifically,p(x1) has meanµ1 and covarianceΣ1, andp(x1|x2) has mean

µ ′ = µ1+Σ2Σ
−1
3 (x2−µ2)

and covariance
Σ

′ =Σ1−Σ2Σ
−1
3 Σ

T
2 .

Applying these results gives the mean and variance forytest, conditioned on the training examples, as

µtest= µ(xtest)+cT
C
−1(y−µ)

σ2
test= cov(xtest,xtest)−cT

C
−1c.

Figure 2 shows a simple example of GP regression in one dimension, using the same covariance functions
as illustrated in Figure 1. In this figure the training data were generated by selectingx values uniformly at
random in the interval[−2,2]. The correspondingy values were then obtained by evaluating the polynomial

p(x) = x3− 1
2

x2− 7
2

x+2

and adding Gaussian noiseε of zero mean and variance 0.1 such thaty= p(x)+ ε . Each graph shows the
same 20 training examples. The solid line shows the resulting interpolatorµtest for values ofx in the relevant
range, and the dashed lines show an interval of 2σtest above and belowµtest. Note that the latter widen in
areas where there is little data, and thus give an indicationof the confidence of our prediction.

Just as for SVM kernels, GP covariance functions may posses one or more parametersp. These are
typically set by maximizing themarginal likelihoodor evidence

E(p) = logp(y|p;X)

using some variant of conjugate gradient search; details can be found in [36].
In order to extend the method to classification problems we begin with a Gaussian processf and define

Pr(y=+1| f ;x) = σ(f (x))

whereσ can be any function that sensibly maps the range off to the interval[0,1]. This new process is
then used much as above, although we have the added complication that asf itself is not directly observed
it must be integrated out of the equations. Unfortunately the resulting computations are rarely analytically
tractable and we therefore need to resort to approximation techniques; again we invite the interested reader
to consult [36] for the details.

24 James P. Bridge et al.

−2 −1 0 1 2
−2

−1

0

1

2

3

4

5
SE prior, l = 1

x

f
(x
)

−2 −1 0 1 2
−2

−1

0

1

2

3

4

5
γ-E prior, l = γ = 1

x

f
(x
)

−2 −1 0 1 2
−2

−1

0

1

2

3

4

5
RQ prior, l = a= 1

x

f
(x
)

−2 −1 0 1 2
−2

−1

0

1

2

3

4

5
NN prior, σ1 = 9, σ2 = 25

x

f
(x
)

Fig. 2 The mean and variance of the predictive distribution for Gaussian process regression using the co-
variance functions in Table 10. The dotted line shows the polynomial p(x) and the crosses show the training
examples. See the text for an explanation of the solid and dashed lines

Table 11 Performance measured using accuracy, F1 score and Matthewscoefficient of individual GP clas-
sifiers using a fixed threshold oft = 0.5. Results are shown using all features, and the static and dynamic
features individually

All features Static Dynamic

Heuristic Acc F1 Matt Acc F1 Matt Acc F1 Matt

0 0.75 0.71 0.50 0.77 0.73 0.53 0.72 0.70 0.45
1 0.84 0.28 0.27 0.83 0.16 0.18 0.83 0.31 0.27
2 0.91 0.16 0.19 0.92 0.04 0.09 0.92 0.14 0.17
3 0.88 0.28 0.28 0.88 0.22 0.23 0.88 0.29 0.28
4 0.90 0.04 0.08 0.90 0.10 0.16 0.90 0.04 0.09
5 0.90 0.04 0.07 0.90 0.01 0.01 0.90 0.06 0.11

C The effect of optimizing the GP threshold

Tables 11 and 12 show results corresponding to Tables 6 and 7 for GP classifiers when a fixed threshold of
t = 0.5 is used, as is generally the case in the literature. Note that classification performance is reduced, par-
ticularly when measured by the F1 and Matthews scores, whichin this work are more relevant than accuracy
as we have imbalanced data. Comparing also with Table 5 we seethat while we still outperform any fixed
heuristic if H0 is not included as an option, performance is reduced when H0 is included.

Figures 3, 4 and 5 show how the accuracy, F1 and Matthews measures vary with the thresholdt when
measured using the validation sets, for the six individual classifiers, and for the three sets of features. Fig-

Machine learning for first-order theorem proving 25

Table 12 Performance of GP classifiers with fixedt = 0.5 when used for selection of heuristics

GP with fixedt = 0.5 with performance assessed usingsval
i andstest

i combined.

No H0 With H0 H0, positive margin

Number Time Number Time Number Time

All 1582 153,434 958 20,882 1235 50,075
Static 1571 154,429 884 19,264 1257 49,345

Dynamic 1586 154,853 948 22,324 1139 41,821

GP with fixedt = 0.5 with performance assessed usingstest
i only.

No H0 With H0 H0, positive margin

Number Time Number Time Number Time

All 810 74,742 490 10,289 631 22,794
Static 806 75,129 457 9,241 634 23,661

Dynamic 807 75,976 491 10,194 583 20,241

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Threshold

Heuristic 1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Threshold

Heuristic 2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Threshold

Heuristic 3

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Threshold

Heuristic 4

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Threshold

Heuristic 5

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Threshold

Heuristic 0

Fig. 3 Variation of performance measures with thresholdt, evaluated using the validation sets, for classifiers
trained using all features. The solid line shows accuracy, the dotted line F1 and the dashed line Matthews

26 James P. Bridge et al.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Threshold

Heuristic 1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Threshold

Heuristic 2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Threshold

Heuristic 3

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Threshold

Heuristic 4

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Threshold

Heuristic 5

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Threshold

Heuristic 0

Fig. 4 Variation of performance measures with thresholdt, evaluated using the validation sets, for classifiers
trained using only static features. The solid line shows accuracy, the dotted line F1 and the dashed line
Matthews

ures 6, 7 and 8 show the ROC curves (Fawcett [13]) for the classifiers, again evaluated using the validation
sets, and for all three sets of features. Clearly the imbalance in the data leads to accuracy being a somewhat
uninformative performance measure; however it is also clear that the peaks in F1 and Matthews scores tend
to correspond, and thus both measures lead to the same choiceof threshold.

Acknowledgements James Bridge acknowledges the support of the Engineering and Physical Sciences Re-
search Council (EPSRC) under a Doctoral Training Account Studentship EP/P502365/1. We acknowledge
the UCI Machine Learning Repository [1] for their efforts inmaking available such a valuable resource. We
thank two anonymous reviewers for their careful reading andconstructive criticism.

References

1. Bache, K., Lichman, M.: UCI machine learning repository (2013). URL http://archive.ics.uci.edu/ml
2. Baldi, P., Brunak, S., Chauvin, Y., Anderson, C.A.F., Nielsen, H.: Assessing the accuracy of prediction

algorithms for classification: an overview. Bioinformatics (2000)
3. Bishop, C.M.: Pattern Recognition and Machine Learning.Springer-Verlag (2006)
4. Bridge, J.P.: Machine Learning and Automated Theorem Proving. Tech. Rep. UCAM-CL-TR-792, Uni-

versity of Cambridge, Computer Laboratory (2010). URL http://www.cl.cam.ac.uk/techreports/UCAM-
CL-TR-792.pdf

5. Chu, W., Ghahramani, Z., Falciani, F., Wild, D.L.: Biomarker discovery in microarray gene expression
data with Gaussian processes. Bioinformatics21(16), 3385–3393 (2005)

Machine learning for first-order theorem proving 27

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Threshold

Heuristic 1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Threshold

Heuristic 2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Threshold

Heuristic 3

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Threshold

Heuristic 4

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Threshold

Heuristic 5

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Threshold

Heuristic 0

Fig. 5 Variation of performance measures with thresholdt, evaluated using the validation sets, for classifiers
trained using only dynamic features. The solid line shows accuracy, the dotted line F1 and the dashed line
Matthews

6. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM5(7),
394–397 (1962). DOI 10.1145/368273.368557. URL http://doi.acm.org/10.1145/368273.368557

7. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM7(3), 201–215 (1960).
DOI 10.1145/321033.321034. URL http://doi.acm.org/10.1145/321033.321034

8. Denzinger, J., Fuchs, M., Fuchs, M.: High performance ATPsystems by combining several AI methods.
In: Proc. Fifteenth International Joint Conference on Artificial Intelligence (IJCAI) 1997, pp. 102–107.
Morgan Kaufmann (1997)

9. Denzinger, J., Fuchs, M., Goller, C., Schulz, S.: Learning from Previous Proof Experience. Technical
Report AR99-4, Institut für Informatik, Technische Universität München (1999)

10. Denzinger, J., Kronenburg, M., Schulz, S.: Discount - a distributed and learning equational prover. Jour-
nal of Automated Reasoning18, 189–198 (1997). URL http://dx.doi.org/10.1023/A:1005879229581.
10.1023/A:1005879229581

11. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley (2000)
12. Erkek, C.A.: Mixture of experts learning in automated theorem proving. Master’s thesis, Bogazici Uni-

versity (2010)
13. Fawcett, T.: An introduction to ROC analysis. Pattern Recognition Letters27, 861–874 (2006)
14. Fuchs, M.: Automatic selection of search-guiding heuristics for theorem proving. In: Proc. of the 10th

FLAIRS, Daytona Beach, pp. 1–5. Florida AI Research Society(1998)
15. Fuchs, M., Fuchs, M.: Feature-based learning of search-guiding heuristics for theorem proving. AI

Communications11(3–4), 175–189 (1998)
16. Goller, C.: Learning search-control heuristics for automated deduction systems with folding architecture

networks. In: Proc. European Symposium on Artificial NeuralNetworks. D-Facto publications (1999)
17. Grimmett, G., Stirzaker, D.: Probability and Random Processes. Oxford University Press (2001)
18. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal of Machine Learning

Research3, 1157–1182 (2003)

28 James P. Bridge et al.

0 0.5 1
0

0.2

0.4

0.6

0.8

1
ROC for set 1

False positive rate

T
ru

e
po

si
tiv

e
ra

te
0 0.5 1

0

0.2

0.4

0.6

0.8

1
ROC for set 2

False positive rate

T
ru

e
po

si
tiv

e
ra

te

0 0.5 1
0

0.2

0.4

0.6

0.8

1
ROC for set 3

False positive rate

T
ru

e
po

si
tiv

e
ra

te

0 0.5 1
0

0.2

0.4

0.6

0.8

1
ROC for set 4

False positive rate

T
ru

e
po

si
tiv

e
ra

te

0 0.5 1
0

0.2

0.4

0.6

0.8

1
ROC for set 5

False positive rate

T
ru

e
po

si
tiv

e
ra

te

0 0.5 1
0

0.2

0.4

0.6

0.8

1
ROC for set 0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

Fig. 6 ROC curves for the individual heuristic classifiers, evaluated using the validation sets, for classifiers
trained using all features. In each case, a circle indicatesthe optimal ROC operating point, a cross the point
corresponding to maximum accuracy, a star maximum F1, and a plus maximum Matthews

19. Haim, S., Walsh, T.: Online estimation of SAT solving runtime. In: H. Kleine Bning, X. Zhao (eds.)
Theory and Applications of Satisfiability Testing SAT 2008,Lecture Notes in Computer Science, vol.
4996, pp. 133–138. Springer Berlin Heidelberg (2008). DOI 10.1007/978-3-540-79719-712. URL
http://dx.doi.org/10.1007/978-3-540-79719-712

20. Haim, S., Walsh, T.: Restart strategy selection using machine learning techniques. In: O. Kullmann
(ed.) Theory and Applications of Satisfiability Testing - SAT 2009,Lecture Notes in Computer Science,
vol. 5584, pp. 312–325. Springer Berlin Heidelberg (2009).DOI 10.1007/978-3-642-02777-230. URL
http://dx.doi.org/10.1007/978-3-642-02777-230

21. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer Series
in Statistics. Springer (2009)

22. He, H.: Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering21(9),
1263–1284 (2009)

23. Hsu, C.W., Chang, C.C., Lin, C.J., et al: A practical guide to support vector classification. Tech. rep.,
Department of Computer Science, National Taiwan University (2003)

24. Huth, M., Ryan, M.: Logic in Computer Science: Modellingand Reasoning about Systems, 2nd edn.
Cambridge University Press (2004)

25. Joachims, T.: Making large-scale SVM learning practical. In: B. Schölkopf, C. Burges, A. Smola (eds.)
Advances in Kernel Methods - Support Vector Learning, chap.11, pp. 169–184. MIT Press, Cambridge,
MA (1999)

26. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz,H., Sellmann, M.: Algorithm selection and
scheduling. In: J. Lee (ed.) Principles and Practice of Constraint Programming CP 2011,Lecture Notes
in Computer Science, vol. 6876, pp. 454–469. Springer Berlin Heidelberg (2011). DOI 10.1007/978-3-
642-23786-735. URL http://dx.doi.org/10.1007/978-3-642-23786-735

Machine learning for first-order theorem proving 29

0 0.5 1
0

0.2

0.4

0.6

0.8

1
ROC for set 1

False positive rate

T
ru

e
po

si
tiv

e
ra

te
0 0.5 1

0

0.2

0.4

0.6

0.8

1
ROC for set 2

False positive rate

T
ru

e
po

si
tiv

e
ra

te

0 0.5 1
0

0.2

0.4

0.6

0.8

1
ROC for set 3

False positive rate

T
ru

e
po

si
tiv

e
ra

te

0 0.5 1
0

0.2

0.4

0.6

0.8

1
ROC for set 4

False positive rate

T
ru

e
po

si
tiv

e
ra

te

0 0.5 1
0

0.2

0.4

0.6

0.8

1
ROC for set 5

False positive rate

T
ru

e
po

si
tiv

e
ra

te

0 0.5 1
0

0.2

0.4

0.6

0.8

1
ROC for set 0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

Fig. 7 ROC curves for the individual heuristic classifiers, evaluated using the validation sets, for classifiers
trained using only static features. In each case, a circle indicates the optimal ROC operating point, a cross the
point corresponding to maximum accuracy, a star maximum F1,and a plus maximum Matthews

27. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In:
Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI’95), vol. 2, pp.
1137–1143. Morgan Kaufmann (1995)

28. Lanckriet, G.R.G., Bie, T.D., Cristianini, N., Jordan,M.I., Noble, W.S.: A statistical framework for
genomic data fusion. Bioinformatics20(16), 2626–2635 (2004)

29. Luenberger, D.G.: Linear and Nonlinear Programming. Kluwer Academic Publishers (2003)
30. McCune, W.: Prover9 and Mace4 (2005–2010).http://www.cs.unm.edu/~mccune/prover9/
31. Mercer, J.: Functions of positive and negative type and their connection with the theory of integral equa-

tions. Philosophical Transactions of the Royal Society of London209, 415–446 (1909)
32. Mitchell, T.: Machine Learning. McGraw Hill (1997)
33. Morik, K., Brockhausen, P., Joachims, T.: Combining statistical learning with a knowledge-based ap-

proach – a case study in intensive care monitoring. In: International Conference on Machine Learning
(ICML), pp. 268–277. Bled, Slowenien (1999)

34. Nudelman, E., Leyton-Brown, K., Hoos, H., Devkar, A., Shoham, Y.: Understanding random SAT: Be-
yond the clauses-to-variables ratio. In: M. Wallace (ed.) Principles and Practice of Constraint Program-
ming CP 2004,Lecture Notes in Computer Science, vol. 3258, pp. 438–452. Springer Berlin Heidelberg
(2004). DOI 10.1007/978-3-540-30201-833. URL http://dx.doi.org/10.1007/978-3-540-30201-833

35. Pilkington, N.C.V., Trotter, M.W.B., Holden, S.B.: Multiple kernel learning for drug discovery. Molec-
ular Informatics31(3–4), 313–322 (2012)

36. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processesfor Machine Learning. Adaptive Computation
and Machine Learning. The MIT Press (2006)

37. Rosenblatt, F.: Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Spartan
Books (1962)

38. Samulowitz, H., Memisevic, R.: Learning to solve QBF. In: Proceedings of the 22nd national con-
ference on Artificial intelligence - Volume 1, AAAI’07, pp. 255–260. AAAI Press (2007). URL
http://dl.acm.org/citation.cfm?id=1619645.1619686

30 James P. Bridge et al.

0 0.5 1
0

0.2

0.4

0.6

0.8

1
ROC for set 1

False positive rate

T
ru

e
po

si
tiv

e
ra

te
0 0.5 1

0

0.2

0.4

0.6

0.8

1
ROC for set 2

False positive rate

T
ru

e
po

si
tiv

e
ra

te

0 0.5 1
0

0.2

0.4

0.6

0.8

1
ROC for set 3

False positive rate

T
ru

e
po

si
tiv

e
ra

te

0 0.5 1
0

0.2

0.4

0.6

0.8

1
ROC for set 4

False positive rate

T
ru

e
po

si
tiv

e
ra

te

0 0.5 1
0

0.2

0.4

0.6

0.8

1
ROC for set 5

False positive rate

T
ru

e
po

si
tiv

e
ra

te

0 0.5 1
0

0.2

0.4

0.6

0.8

1
ROC for set 0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

Fig. 8 ROC curves for the individual heuristic classifiers, evaluated using the validation sets, for classifiers
trained using only dynamic features. In each case, a circle indicates the optimal ROC operating point, a cross
the point corresponding to maximum accuracy, a star maximumF1, and a plus maximum Matthews

39. Schulz, S.: Learning Search Control Knowledge for Equational Deduction. No. 230 in DISKI. Akademis-
che Verlagsgesellschaft Aka GmbH Berlin (2000)

40. Schulz, S.: E – a brainiac theorem prover. AI Communications15(2/3), 111–126 (2002)
41. Shawe-Taylor, J., Cristianini, N.: Support Vector Machines and Other Kernel-Based Learning Methods.

Cambridge University Press (2000)
42. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press

(2004)
43. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF and CNF Parts, v3.5.0.

Journal of Automated Reasoning43(4), 337–362 (2009)
44. Ting, K.M.: An instance-weighted method to induce cost-sensitive trees. IEEE Transactions on Knowl-

edge and Data Engineering14(3), 659–665 (2002)
45. Urban, J.: MaLARea: a Metasystem for Automated Reasoning in Large Theories. In: J. Urban, G. Sut-

cliffe, S. Schulz (eds.) Proceedings of the CADE-21 Workshop on Empirically Successful Automated
Reasoning in Large Theories, no. 257 in CEUR Workshop Proceedings, pp. 45–58 (2007)

46. Williams, C.K.I., Barber, D.: Bayesian classification with Gaussian processes. IEEE Tramsaction on
Pattern Analysis and Machine Intelligence20(12), 1342–1351 (1998)

47. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: Portfolio-based algorithm selection for SAT.
Journal of Artificial Intelligence Research32, 565–606 (2008)

48. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Featuresfor SAT (2012). Available at
www.cs.ubc.ca/labs/beta/Projects/SATzilla/

49. Xu, L., Hutter, F., Shen, J., Hoos, H., Leyton-Brown, K.:Satzilla2012: Improved algorithm slection based
on cost-sensitive classification models. In: A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo,
C. Sinz (eds.) Proceedings of SAT Challange 2012: Solver andBenchmark Descriptions,Department of
Computer Science Series of Publications B, vol. B-2012-2, pp. 57–58. University of Helsinki (2012)

