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What Should Proof Tools Give Us?

Soundness — we can trust the result

Transparency — we can follow the reasoning

Power — the tool is mightier than the pen

Computer scientists often use pen and paper for proofs, as mathematicians have always
done. Informal proofs leave big gaps, gaps that human minds can overleap but computers
often cannot. Automatic proof tools require formal proof calculi, comprising a rigid syntax
of formulæ and rules for transforming them. Both tools and formal calculi can be hard to
use. They need to give us something in return, such as the benefits shown on the slide.

There are trade-offs among these benefits. A tool that puts all the emphasis on soundness
may sacrifice power, and vice versa. Transparency involves a combination of soundness
(the reasoning is correct) and power (the reasoning is expressed concisely, at a high level).
Even unsound tools can be valuable: consider floating-point arithmetic. If soundness is
not guaranteed then we need transparency, in order to check for ourselves that a particular
derivation is indeed sound.

In developing Edinburgh LCF, Robin Milner exploited abstract types to achieve sound-
ness without storing proofs. Several modern systems including HOL [11], use his technique.
These lectures concern Isabelle [30], which uses related but not identical methods.

Soundness can be obtained by recording proofs down to the level of inference rules, and
checking them with a separate tool. But this requires considerable storage, and does not
aid transparency, because detailed proofs are too big for people to understand. If the proof
tool is allowed to invoke external reasoners, such as model checkers or computer algebra
systems, then it could record all dependencies on such oracles without storing proofs in full.
Several modern systems store proofs in full, thereby suffering in efficiency. Others take a
relaxed view of soundness, omitting simple checks for inconsistent definitions.

The tool must let us prove things that we cannot using pen and paper. This is the most
important requirement of all, and is perhaps the hardest to attain. Tools are mainly valuable
for proofs about large objects such as hardware, or where we have chosen in advance to use
a formal calculus. Tools have been built just to investigate the potential of a new calculus,
but most tool users wish to solve problems.
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Flexibility and Genericity

Independence from details of formalization

Flexible treatment of notation

Ease of extension

There are many formal systems that differ only slightly. Changing just a few rules can
make a logic classical instead of constructive, higher-order instead of first-order. A well-
designed proof tool should let us share the implementation effort for the common part of
such logics. If the sharing cannot be realized explicitly, a uniform representation of inference
rule allows proof procedures to be written for classes of logics, instead of individual logics.

Users should not have to know which of the properties they use are axioms as opposed
to theorems. They should not have to know which operators are primitive as opposed to
derived. With most formal systems the choice of primitives is arbitrary. Proof tools should
not make it harder (or more expensive) to use non-primitive concepts. Minor changes to a
formalization should not force us to discover new proofs for our theorems.

Good notation matters. The pen can draw any symbols and figures; our tools cannot
match that, but they should be built to be as flexible as possible. We must not dismiss this
question as mere concrete syntax.

Most of us do not switch between formal systems, but any proof development requires
extending the formal system. Each definition may involve new notation, new laws to be
proved and new reasoning methods for those laws. Making a host of definitions has the
effect of creating a new formal system.



I Tool Support for Logics of Programs 3

Slide 103

Two Readings of Proof Rules

There are two ways of using inference rules of the form

X1 . . . Xm

X

forward : if X1, . . . , Xm then X

backward : to show X it suffices to show X1, . . . , Xm

Nearly all approaches to formal logic take rules of the form above as primitive. We call
X1, . . . , Xm the premises and X the conclusion. In the simplest logics, the premises and
conclusion are formulæ. They can be more complex objects, such as sequents (sequences
of formulæ). In the natural deduction style, proofs of premises may be allowed to depend
upon assumptions.

The forward reading is sometimes used in logic texts, especially in proofs organized as
a numbered list of formulæ. Forward reasoning is useful when applying a general law to a
specific case, and when simplifying the instance so obtained.

The backward reading is more useful in general; it concentrates on the given problem,
analysing it to simpler subproblems. The backward reading can be seen in early work such
as Gentzen’s cut-elimination theorem of the 1930s.

Hand proofs consist of a mixture of backward and forward proof. Backward proof forms
the main structure of the argument (such as induction followed by case analysis), while
forward reasoning may be used at lower levels. A proof tool should support both styles.
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A Typical Proof Tree

A ∩ B ⊆ A

P(A ∩ B) ⊆ P(A) P(A ∩ B) ⊆ P(B)

P(A ∩ B) ⊆ P(A) ∩ P(B)

assumptions

instances of axioms

instances of rules

Proof trees are constructed by composing rules. This example presumes a proof system
in which the subset properties of intersection are expressed as rules such as

C ⊆ A C ⊆ B

C ⊆ A ∩ B
(∩-greatest)

The root of the proof tree follows from this rule. And P(A∩B) ⊆ P(A) follows by another
rule, which says that P is monotonic:

A ⊆ B

P(A) ⊆ P(B)
(P-mono)

The occurrence of A ∩ B ⊆ A means that A ∩ B ⊆ A is inferred by an axiom. Here the
axiom has precisely this form; in general, we could infer any instance of the axiom: any
formula t ∩ u ⊆ u for terms t and u. Strictly speaking, A ∩ B ⊆ A is an axiom scheme.

The occurrence of P(A ∩ B) ⊆ P(B) means this formula has simply been assumed. In
this case the proof tree can be extended to prove the formula. In other cases, the derivation
might be regarded as depending upon the assumed formula.

Proving X from the assumptions X1, . . . , Xm derives the rule

X1 . . . Xm

X.

If m = 0 then we might call this a theorem instead of a rule. The axioms and rules used in
the proof above can be derived from the primitive axioms and rules of set theory. Derived
rules may be used exactly like primitive rules, resulting in shorter, more abstract proofs.
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Forward v Backward Proof

Theorem proved by forward proof:

A ∩ B ⊆ A

P(A ∩ B) ⊆ P(A)

Rule derived by backward proof:

A ∩ B ⊆ A P(A ∩ B) ⊆ P(B)

P(A ∩ B) ⊆ P(A) ∩ P(B)

Proof trees can be built from the root upwards (backward reasoning) or from the leaves
downwards (forward reasoning). Forward proof typically proves theorems. Applying the
rule P-mono to the axiom A∩B ⊆ A yields the theorem P(A∩B) ⊆ P(A). Forward proof
can also derive rules. Applying P-mono to itself derives the rule

A ⊆ B

P(P(A)) ⊆ P(P(B))

In the backward style we begin with the desired conclusion, P(A ∩ B) ⊆ P(A) ∩ P(B).
Call this the main goal. We observe that ∩-greatest can reduce it to P(A∩B) ⊆ P(A) and
P(A∩B) ⊆ P(B). Turning to the first subgoal, we reduce it by P-mono to A∩B ⊆ A. At
this point, we have reduced the main goal to two subgoals:

A ∩ B ⊆ A and P(A ∩ B) ⊆ P(B)

This is the derived rule shown on the slide. It is of no permanent interest. But it perfectly
captures the state of the backward proof.

The axiom A∩B ⊆ A proves the first subgoal, erasing the first premise of the rule above.
Applying P-mono to the remaining premise reduces it to A ∩ B ⊆ B. If we have an axiom
of this form, then this premise too can be erased. We are left with a proof state that has
no subgoals:

P(A ∩ B) ⊆ P(A) ∩ P(B).

This derived rule is of permanent interest, as it is the theorem we intended to prove.
Proof tools usually derive theorems. Perhaps they should instead derive rules. The

operation of joining two rules would then implement both forward and backward proof.
Isabelle is designed to operate on rules.
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A Simple Rule Calculus

Rules [[X1; . . . ;Xm]] =⇒ X (Horn clauses)

Trivial rule X =⇒ X

Resolution to join rules. Example: (X matches Y2)

[[X1; X2]] =⇒ X + [[Y1; Y2; Y3]] =⇒ Y

= instance of [[Y1; X1; X2; Y3]] =⇒ Y

We replace the traditional notation for inference rules by [[X1; . . . ;Xm]] =⇒ X. This
suits the computer implementation (where the two-dimensional syntax is inconvenient).
The brackets [[ ]] are optional if there is only one premise, and [[X1; . . . ;Xm]] =⇒ X is an
abbreviation for X1 =⇒ (· · · (Xm =⇒ X) · · · ). Here are two subset rules in the notation:

A ⊆ B =⇒ P(A) ⊆ P(B) [[C ⊆ A;C ⊆ B]] =⇒ C ⊆ A ∩ B

The trivial rule supports our use of rules as representing proof states, serving the same role
as zero does in arithmetic. At the very start of the backward proof, before we have applied
any rules, there is one subgoal to be proved, namely the main goal itself. If the main goal
is X then the initial proof state is X =⇒ X. The backward proof of the previous slide starts
with the trivial rule P(A ∩ B) ⊆ P(A) ∩ P(B) =⇒ P(A ∩ B) ⊆ P(A) ∩ P(B).

The most basic operation on rules is Horn clause resolution, which matches the conclusion
of one rule with the ith premise of another rule:

[[X1; . . . ;Xm]] =⇒ X + [[Y1; . . . ;Yi−1;Yi;Yi+1; . . . ;Yn]] =⇒ Y

= instance of [[Y1; . . . ;Yi−1;X1; . . . ;Xm;Yi+1; . . . ;Yn]] =⇒ Y

In the resulting rule, Yi is replaced by X1; . . . ;Xm. In general we unify the formulæ X
and Yi, applying the unifying substitution to the result — hence the words “instance of”
above. (The version on the slide is a special case with m = 2, i = 2 and n = 3.)

This is Horn clause resolution as found in Prolog. It is all we need to build proof trees.
It automatically instantiates rules and axioms so that they match the goal being proved.
We can even allow some variables in the goal to be instantiated. Such variables stand for
unknown parts of the goal. They let us extract information from proofs, say for interactive
program derivation. They also make it easier to implement proof procedures for quantifiers.
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Natural Deduction; Assumptions

[P ]
Q

P → Q

(→-intr)

[P ]

Q → P

P → (Q → P )

Natural deduction, devised by Gerhard Gentzen, is based upon three principles. (1)
Proof takes place within a varying context of assumptions. (2) Each logical connective is
defined independently of the others (possible because (1) eliminates the need for tricky uses
of implication). (3) Each connective is defined by introduction and elimination rules.

In the case of ∧, the introduction rule describes how to deduce P∧Q while the elimination
rules for ∧ describe what to deduce from P ∧ Q:

P Q

P ∧ Q
(∧-intr)

P ∧ Q

P
(∧-elim1)

P ∧ Q

Q
(∧-elim2)

The elimination rule for → says what to deduce from P → Q. It is just Modus Ponens:

P → Q P

Q
(→-elim)

The introduction rule for → says that P → Q is proved by assuming P and deriving Q.
The key point is that rule (→-intr) discharges its assumption: the assumption P is used to
prove Q → P , but is no longer available once we conclude P → (Q → P ). The notation [P ]
indicates that any uses of the assumption P are discharged.

Assumptions are used as one might expect, though their scope is sometimes unclear. In
the proof on the slide, assumption P is used to prove Q → P and then discharged in the
proof of P → (Q → P ). We could have assumed Q but did not need to.

The introduction rules for ∨ are straightforward. The elimination rule says that to show
some R from P ∨ Q there are two cases to consider, one assuming P and one assuming Q.

P
P ∨ Q

(∨-intr1)
Q

P ∨ Q
(∨-intr2)

P ∨ Q
[P ]
R

[Q]
R

R
(∨-elim)

Horn clauses can accommodate natural deduction and assumptions. We allow them to be
nested, extend resolution to nested clauses, and introduce a notion of proof by assumption.
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Generalized Horn Clauses

Formalize →-intr as (P =⇒ Q) =⇒ P → Q

Resolution, lifting over assumption H . Example:

[[X1; X2]] =⇒ X + [[Y1; H =⇒ Y2]] =⇒ Y

= instance of [[Y1; H =⇒ X1; H =⇒ X2]] =⇒ Y

Formalizing →-intr as (P =⇒ Q) =⇒ P → Q means we regard assumption discharge as
the same sort of entailment as that from premises to conclusion. Put another way, →-intr
takes a premise that is itself a rule, namely P

Q . This idea can be made formal [40].
We must augment resolution to allow for nesting of =⇒. Let us consider why. To prove

P → (Q → P ), resolution with →-intr yields the subgoal P =⇒ Q → P ; as expected,
the step adds P to the assumptions. Now we need to apply →-intr again, to add Q to
the assumptions. But the subgoal has the form · · · =⇒ · · · → · · · instead of just · · · →
· · · . Lifting in resolution allows a rule to be applied in any context. Lifting the rule
[[X1; . . . ;Xm]] =⇒ X over the assumption P transforms it to

[[P =⇒ X1; . . . ;P =⇒ Xm]] =⇒ (P =⇒ X).

Lifting and matching to our subgoal transforms →-intr into the Horn clause

(P =⇒ (Q =⇒ P )) =⇒ (P =⇒ Q → P ).

This replaces our subgoal by P =⇒ (Q =⇒ P ), which may be written more concisely as
[[P ;Q]] =⇒ P . We may generalize our notion of trivial rule from X =⇒ X to include
subgoals of the form above. Proof by assumption involves deleting a subgoal of the form
[[X1; . . . ;Xm]] =⇒ X where X matches Xi for some i between 1 and m; the matching
substitution must be applied to all other subgoals.

The resolution shown above is an instance of the following schema, where X matches Yi:

[[X1; . . . ;Xm]] =⇒ X + [[Y1; . . . ; Yi−1; [[ �H]] =⇒ Yi; Yi+1; . . . ; Yn]] =⇒ Y

= instance of [[Y1; . . . ; Yi−1; [[ �H]] =⇒ X1; . . . ; [[ �H]] =⇒ Xm; Yi+1; . . . ; Yn]] =⇒ Y

This augments Horn clause resolution to lift of the rule into the subgoal’s context; here
�H ≡ [[H1; . . . ; Hk]].
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Summary

Tools must be trustworthy, powerful and flexible.

They should support forward and backward styles.

Rules can be represented as nested Horn clauses.

Proofs can be built using Horn clause resolution.

Rules and assumptions can be matched automatically.

Please do not confuse Isabelle with classical resolution theorem provers such as Otter [20].
Isabelle does not employ proof by refutation, but instead derives rules in positive form. Horn
clause resolution is a special case of the sophisticated forms of resolution used in Otter. On
the other hand, Isabelle generalizes Horn clause resolution in unusual ways. It allows clauses
having nested implication, and resolves them using lifting.

The next lecture will discuss more radical generalizations of resolution. Isabelle uses the
typed λ-calculus as its syntactic framework, and therefore bases resolution on higher-order
unification.

As a matter of policy, Isabelle instantiates both rules and assumptions automatically.
Asked to prove a subgoal by assumption, Isabelle searches assumptions that match; we do
not have to specify one by number. Isabelle considers all matching assumptions, not just
the first one. The same holds for rules, if Isabelle is provided with a list of rules to match
against a subgoal. The aim is to allow the easy use of known facts.

Exercise 1 Starting with the right instance of the trivial rule, write down the Horn clause
resolution steps corresponding to the backward proof of P(A ∩ B) ⊆ P(A) ∩ P(B).

Exercise 2 Give the Isabelle forms of the rules ∨-intr1, ∨-intr2 and ∨-elim.

Exercise 3 Comment on these alternative introduction rules for ∧ and ∨. Why are they
correct? What are they good for?

P

[P ]
Q

P ∧ Q

[¬Q]
P

P ∨ Q
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Typed λ-Calculus

a, b, c, . . . constants

x, y, z, . . . variables

λx.M abstraction over x

M N application of M to N

Types prop, α, σ → τ , [σ1, . . . , σk] → τ

Isabelle uses the typed λ-calculus to represent the syntax of terms, formulæ and rules.
Here is a capsule review of the typed λ-calculus. Capital letters like L, M , N , . . . stand

for terms. In (λx.M), we call x the bound variable and M the body. Every occurrence of x
in M is bound by the abstraction. An occurrence of a variable is free if it is not bound by
some enclosing abstraction. For example, x occurs bound and y occurs free in (λz.(λx.(yx)).

Let M [L/y] be the result of substituting L for all free occurrences of y in M . The
β-conversion ((λx.M)N) →β M [N/x] substitutes the argument, N , into the abstraction’s
body, M . We shall assume that bound variables in M are renamed to prevent clashes with
free variables of N .

This λ-calculus is typed. The application MN has type τ if M has the function type
σ → τ and N has type σ. The abstraction λx.M has type σ → τ if M has type τ given
that x has type σ. The function type [σ1, . . . , σk] → τ abbreviates σ1 → · · · (σk → τ) · · · ;
by the standard treatment of curried functions, if M has this type and N1, . . . , Nk have
types σ1, . . . , σk, respectively, then MN1 . . . NK has type τ .

Isabelle uses a polymorphic type system. For example, the identity function λx.x gets
type α → α, where α is a type variable. In use, type variables can be replaced by any
types. The identity function may be regarded as having any type of the form τ → τ . Each
occurrence of it in an expression may have a different type. These instances are worked out
automatically, with no user intervention.

The type prop (short for proposition) is built-in. It is the type of inference rules, which
include theorems and axioms as special cases. Rules are sometimes called meta-level theo-
rems because Isabelle provides an inference system for them: the meta-logic. The meta-logic
represents other inference systems, the object-logics: HOL, ZF, etc.

Polymorphism involves some complications. Type variables need to be constrained,
using a mechanism similar to Haskell’s type classes [14, 26]. In typed logic, this supports
overloading, say to use +, − and × over a range of arithmetic types. But Isabelle does not
use polymorphism in its treatment of ZF set theory.
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Declaring Types and Connectives

type bool

isTrue : bool → prop

True,False : bool

And,Or, Implies : [bool,bool] → bool

isTrue(P ∧ Q) =⇒ isTrue(P )

To represent an object-logic in Isabelle we extend the meta-logic with types, constants,
and axioms. For example, take the predicate calculus.

To represent predicate calculus syntax, we introduce the type bool for meanings of
formulæ. It is preferable to avoid identifying bool with prop, the type of rules. So we
use the constant isTrue to convert one to the other; if A has type bool then isTrueA has
type prop.

The logical constants True, False, And, Or, etc., are declared in the obvious manner.
With Isabelle such declarations are made in a theory file, which may also specify the con-
stants as having special syntax (such as infix) and describe pretty printing. Let us ignore
such matters for now; assume that And, Or, Implies represent the infix operators ∧, ∨, →
with the usual precedences, and associating to the right. Thus the formula P ∧Q∧R → Q
can be represented by the λ-term

Implies(AndP (AndQR))Q.

We may continue to use the conventional syntax, keeping this representation hidden under-
neath.

Common to all theories is that of the meta-logic itself, which provides constants for
meta-level connectives such as =⇒, and special syntax such as [[X1; . . . ;Xm]] =⇒ X.

Strictly speaking, a rule such as (∧-elim1) should be written

isTrue(P ∧ Q) =⇒ isTrue(P )

but most people prefer to leave isTrue implicit:

P ∧ Q =⇒ P

The need for isTrue can be inferred from the context; above, both P ∧ Q and P must have
type bool since conjunction has type [bool,bool] → bool.
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Declaring Quantifiers

type i

All,Ex : (i → bool) → bool

∀x.P as All(λx.P )

∃x.P as Ex(λx.P )

New quantifiers whenever we like!

Notations involving free and bound variables exist throughout mathematics. Consider
the integral

∫ b

a
f(x)dx, where x is bound, and the product Πn

k=0 p(k), where k is bound.
The quantifiers ∀ and ∃ also bind variables. Isabelle uses λ-notation to represent all such
operators uniformly.

Here i is some arbitrary type of individuals. For now it does not matter what these
individuals are — numbers, sets, etc. Isabelle actually uses polymorphic declarations:

All,Ex : (α → bool) → bool

Here α ranges over some but not all types. Precisely which types depends upon type
classes, which we are not going to discuss here. But the choice determines whether we allow
quantifications over booleans and functions. If we allow them, we get higher-order logic;
otherwise we get many-sorted first-order logic [23].

Write ∀x.P for All(λx.P ) and ∃x.P for Ex(λx.P ). As with ∧, ∨, →, Isabelle hides the
representation from the user. Example:

∀x. Px ∧ Qx �→ All(λx. Px ∧ Qx) �→ All(λx.And(Px)(Qx))

The original formula might conventionally be written ∀x. P [x] ∧ Q[x]. Here P and Q are
really formulæ that have a hole, and P [t] is the result of putting t into the hole — or
substituting t for x in P [x]. Isabelle represents such formulæ by function variables, with
types like i → bool, and uses β-conversion to perform substitutions.

To define a new quantifier such as ∀x ∈ A. P , meaning ∀x. x ∈ A → P , we must declare
a new constant, specify its notation, and make a logical definition like the one above. No
programming is required, and only four lines in a theory file.
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Quantifier Rules Involving Substitution

∀x.P

P [t/x]
(∀x.P x) =⇒ P t (∀-elim)

P [t/x]

∃x.P
P t =⇒ (∃x.P x) (∃-intr)

Applying ∃-intr creates an unknown derived from t

The typed λ-calculus handles the substitution in these rules. All Isabelle rules are
schematic: we may instantiate their variables to generate new rules. In both the rules
shown above, P has type i → bool and stands for a formula with a hole. We may replace it
by the abstraction of any formula over x, say λx. Qx∧Rxy. The corresponding instance of
∀-elim is then

(∀x.(λx. Qx ∧ Rxy)x) =⇒ (λx. Qx ∧ Rxy)t

or equivalently, by β-reduction,

(∀x. Qx ∧ Rxy) =⇒ Qt ∧ Rty.

We thus obtain all instances of the traditional rule.
Isabelle can instantiate and simplify such rules automatically. Users do not need to be

aware that β-reductions are occurring. In backward proof, ∀-elim generalizes a formula of
the form P [t], yielding the subgoal ∀x. P [x]. There are usually countless ways of doing so;
to constrain the choices, Isabelle lets you specify P or t.

A rule like ∀-elim is normally applied in the forward direction, mapping a theorem such
as ∀x . 0+x = x to the new theorem 0+ t = t. Here t is a variable that can be instantiated;
this theorem is schematic.

In Isabelle, such schematic variables are normally written ?t for emphasis. These notes
often omit question marks, to avoid clutter; should be present on all the free variables in
Isabelle rules discussed here.

The rule ∃-intr is represented in precisely the same way. In backward proof it replaces
the goal ∃x. Qx ∧ Rxy by the subgoal Q ?t ∧ R ?t y. We need not specify ?t, but leave it as
an unknown. Then we can split the subgoal in two (by applying ∧-intr). Proving Q ?t will
probably instantiate ?t to something, say 3. The other subgoal will become R 3 y.

Thus we can strip quantifiers without specifying how to instantiate the bound variables.
During the proof, the variables may get instantiated automatically. This is a boon in
interactive proof; it is also the foundation of automatic proof procedures for quantifiers.



II Tool Support for Logics of Programs 14

Slide 205

Quantifier Rules Involving Parameters

P

∀x.P
(x not free in assumptions)

Premise: ‘P is true for all x’

(!!x. P x) =⇒ (∀x. P x)

Applying the rule creates a parameter

A logic may attach provisos to certain of its rules, especially quantifier rules. We cannot
hope to formalize arbitrary provisos. Fortunately, quantifier rules typically have provisos of
the form ‘x not free in . . . (some set of formulæ)’, where x is a variable (called a parameter
or eigenvariable) in some premise. Isabelle treats provisos using !!, its inbuilt notion of
‘for all’.

The proviso aims to ensure that the premise may not make assumptions about the value
of x, and therefore holds for all x. We formalize ∀-intr by

(!!x.isTrue(P x)) =⇒ isTrue(∀x.P x).

This means, ‘if Px is true for all x, then ∀x.Px is true’. Hiding isTrue, we get the axiom
shown on the slide.

Applying this rule in backwards proof creates a subgoal prefixed by !!, binding a param-
eter. Resolution must be able to lift rules over parameters, as well as over assumptions.
A subgoal’s parameters and assumptions form a context; all subgoals resulting from it will
have the same context, or one derived from it.

We have defined the object-level universal quantifier (∀) using !!. But we do not require
meta-level counterparts of all the connectives of the object-logic! Consider the existential
quantifier rule

∃x.P

[P ]
Q

Q

x not free in Q or assumptions (∃-elim)

The Isabelle version is [[∃x.P x; !!x.P x =⇒ Q]] =⇒ Q.
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Induction Rules and Parameters

P (0)
[P (x) ]

P (x + 1)

P (n)

(x not free . . . )

[[P (0); !!x. P (x) =⇒ P (x + 1)]] =⇒ P (n)

Like the HOL formula

P (0) ∧ (∀x. P (x) =⇒ P (x + 1)) → P (n)

This is another example of the use of !!. In higher-order logic (HOL) one can quantify
over formulæ and predicates, and therefore can express induction as shown above. We could
also have used !! at the outer level, to close the rule over its free variables:

!!P n. [[P (0); !!x. P (x) =⇒ P (x + 1)]] =⇒ P (n)

This, again, is analogous to the closed HOL formula

∀P n. P (0) ∧ (∀x. P (x) =⇒ P (x + 1)) → P (n).

Isabelle provides the meta-level connectives !! and =⇒ so that users are not forced to
work in HOL. Sometimes HOL is too strong, as in this version of set theory’s separation
axiom:

∀P x. x ∈ {x ∈ A. P (x)} ↔ x ∈ A ∧ P (x)

This would make P range over higher-order predicates. Isabelle can express the axiom in
first-order logic, which is normal usage:

!!P x. x ∈ {x ∈ A. P (x)} ↔ x ∈ A ∧ P (x)

Because Isabelle provides !! and =⇒, we can add this axiom or the induction rule to weak
logics, such as equational or quantifier-free logic.

Isabelle’s treatment of rules recognizes !! and =⇒ but not ∀ and →. Thus it behaves
properly even if the induction formula itself contains → and ∀.
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Higher-Order Unification

To join rules, Isabelle must solve equations like

?f(t)
?≡ g u1 . . . uk

Isabelle makes guesses like

?f ≡ λx.g(?h1 x) . . . (?hk x)

?f ≡ λx.x(?h1 x) . . . (?hm x)

Isabelle resolves rules by unifying λ-terms. Unification is equation solving; the solution

of f(?x, c)
?≡ f(d, ?y) is ?x ≡ d and ?y ≡ c.

Higher-order unification is equation solving for typed λ-terms. To handle β-
conversion, it must reduce (λx.t)u to t[u/x]. But it must guess the unknown function ?f in
order to solve equations such as that shown on the slide. Huet’s [15] search procedure solves
equations by guessing the leading symbol of ?f , simplifying, then recursively unifying the
result.

Isabelle’s unification procedure is polymorphic: it solves for type unknowns as well as
for term unknowns. But it is incomplete, never guessing that a type unknown may be a
function type. (Huet’s procedure is complete, as it does not handle type unknowns.) A
more serious problem is that higher-order unification is undecidable; there may be infinitely
many unifiers, and the search need not terminate.

Such problems seldom arise in practice. But do be careful with function unknowns.
Terms such as ?f ?x ?y and ?f(?g x) match anything in countless ways. They obviously
should be avoided. Isabelle lets you instantiate unknowns before attempting unification.

The term ?f a matches a+a in four ways. Isabelle generates them lazily. Solutions that
use the function’s argument appear first, as they are usually preferable:

?f ≡ λx. x + x ?f ≡ λx. a + x ?f ≡ λx. x + a ?f ≡ λx. a + a

Terms like ?f x y z, where the arguments are distinct bound variables, cause no difficulties.
They can match another term in at most one way. If the other term is x + y × z then the
only unifier is

?f ≡ λxyz. x + y × z
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Two Quantifier Proofs

A good one:

ALL x. EX y. x = y

1. !!x. x = ?y1 x

A bad one:

EX y. ALL x. x = y

1. !!x. x = ?y

These tiny examples provide a glimpse of Isabelle’s syntax. Both proofs involve stripping
two quantifiers from an initial goal. Due to the order of the quantifiers, one goal is provable
and the other is not. We see how Isabelle handles quantifiers in backward proof.

In the good proof, we start with the goal ∀x.∃y. x = y. The first inference applies ∀-intr.
This yields the subgoal ∃y. x = y, where x is bound (by !!) in that subgoal.

Next we should remove the existential quantifier, to get a subgoal containing unknown.
Applying ∃-intr does this. But lifting has the effect of making the unknowns depend on
the subgoal’s parameters. Our subgoal has the form x = ?y1 x, where ?y1 is a function
unknown. The unknown ?y1 x may be instantiated to any term containing x. The term we
require is x itself, with ?y1 instantiated to λx.x. Here is the last step, which proves the goal
by reflexivity.

by (resolve_tac [refl] 1);

Level 3

ALL x. EX y. x = y

No subgoals!

In the bad proof, we start with the invalid goal ∃y.∀x. x = y. The first inference applies
∃-intr, yielding the subgoal ∀x. x = ?y. The unknown is just ?y; it may not be instantiated
to terms containing x, as x is a bound variable.

Removing the universal quantifier, by ∀-intr, yields the subgoal x = ?y. Still x is bound,
though by !! instead of ∀. If we attempt to use reflexivity, unification will fail.

The workings of lifting and higher-order unification are complicated, but we do not need
to know about them. We see ordinary formulæ, and instantiations happen automatically.
The method can be proved correct [27]. It is reasonably fast: Isabelle can do hundreds of
such steps per second. It works however deeply quantifiers are nested. And it works just as
well for user-defined quantifiers like ∀x ∈ A. Px or

⋃
x ∈ A. Bx. This is the foundation for

Isabelle’s automatic proof procedures for quantification.
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Logical Frameworks

Theories Implementations

Schroeder-Heister

Martin-Löf type theory ALF

Edinburgh Logical Framework Elf, LEGO, Coq

Higher-order Harrop formulæ λProlog, Isabelle

Logical frameworks are theories of proofs in general logics. Best known is the Edin-
burgh Logical Framework [12], which is based on unpublished work by Per Martin-Lf. The
proof assistants LEGO [18] and Coq [7] implement related type theories, but to formalize
mathematics directly, rather than to formalize logics.

Isabelle’s representation of rules was originally naive, partly inspired by Schroeder-
Heister’s [40] ‘rules of higher level’ in natural deduction. The current version borrows ideas
from type-theoretic logical frameworks. It is essentially the higher-order hereditary Harrop
(hohh) formulæ of Felty and Miller, who have exhibited [9] a translation between it and the
Edinburgh Logical Framework.

λProlog is a logic programming language based on higher-order unification and hohh.
Felty [8] has used it to implement theorem provers. This work is closely related to Isabelle.
Elf [36] is an analogous language based on the Edinburgh Logical Framework.

The most visible difference between hohh and type-theoretic frameworks is that the latter
represent propositions as types. Instead of having the assumption P you have the bound
variable x ∈ P . The additional bound variables make it impractical to handle quantifier
reasoning as Isabelle does. Type-theoretic frameworks require a more complicated form of
higher-order unification, and their models are hard to visualize.

The orthodox viewpoint is that the λ-calculus terms are just syntactic codes of logical
formulæ. Isabelle’s approach lends itself to a semantic viewpoint. Hohh is a fragment of
higher-order logic, which (ignoring polymorphism) has simple models based on ordinary set
theory. We may regard bool as denoting the two-element set of truth values. Connectives
∧, ∨, → denote the obvious functions over truth values. Even All and Ex, which represent
quantification, are just infinitary truth tables. The Isabelle formulations of the usual rules
can be seen to be true under this semantics.
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Summary

• λ-abstraction expresses variable binding.

• Application expresses substitution; β-reduction

performs it.

• Meta-quantification expresses quantifier provisos.

• Unknowns arise in quantifier proofs.

Isabelle provides both free variables x, y, . . . , and unknowns ?x, ?y, . . . . From a
logical point of view they are all free variables. The difference between the two kinds of
variables is pragmatic. Unknowns may be instantiated during unification; free variables
remain unchanged. Having two kinds of variables allows us to distinguish, when stating a
goal, which parts of it should be regarded as fixed.

Quantifier proofs frequently produce unknowns of function type, applied to bound vari-
ables. This assures correct treatment of alternating quantifiers. Informally, it is best to
regard a term like ?y1(x) as standing for any term, including terms containing occurrences
of x. Isabelle takes care of the function unknowns automatically.

Exercise 4 Express this substitution rule, where P serves as a template for substitution,
in Isabelle form:

t = u P [t/x]

P [u/x]

Exercise 5 Suggest a possible representation of ∀x ∈ A. P in the λ-calculus, where oc-
currences of x in P are bound.

Exercise 6 Express this rule for a bounded universal quantifier in Isabelle form:

[x ∈ A]
P

∀x ∈ A. P

(x not free in assumptions other than x ∈ A)
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Tactics, for Backward Proof

Tactics are functions: state -> state sequence

Provide primitive tactics . . .

. . . and operators to build new ones

A general framework for automatic search

Tactics are the basic unit of backward proof. They can be expressed by combining
primitive tactics, using operators called tacticals. Robin Milner introduced these concepts
in Edinburgh LCF. Regarding automatic proof as impossible, he intended instead to provide
a convenient language in which users could express their proof methods, which might be
variations on the built-in tactics, or heavy-duty strategies. Although Milner had developed
an elegant high-level language for this purpose (ML), he sought an even higher level language
just for proof.

Isabelle tactics differ from those of LCF and its successor HOL in many respects. Isabelle
represents proof states by theorems of the form “subgoals imply goal”, so there is no need to
reconstruct the actual proof at the end of the top-down development (in HOL terminology,
there are no validations). An Isabelle tactic looks at the entire proof state: at all outstanding
subgoals instead of just one. This is inherent in the representation of proof states by
theorems. While it sacrifices the tree structure of the tactical proof, something like this
is essential in order to support unification, where proving one goal may affect others. An
Isabelle tactic can instantiate unknowns in other subgoals or the main goal; it can search
for proofs of all remaining subgoals.

Isabelle tactics return sequences (lazy lists) of next states, enumerating alternatives
for backtracking. Operations on sequences can express many kinds of searches. (See my
ML book [33], chapters 5 and 10.) Because of all this, Isabelle’s tactics and tacticals are
considerably more powerful than HOL’s. We shall discuss applications below — especially
the classical reasoner, which is a general tool for quantifier reasoning.
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Proof Checking Tactics

assume tac: prove a subgoal by assumption

resolve tac: refine a subgoal using rules

eresolve tac: eliminate an assumption using rules

res inst tac: instantiate rule, then refine

cut facts tac: add theorems as new assumptions

These provide proof checking at the lowest level. Proofs expressed entirely in terms
of these would be extremely lengthy. Sometimes they are used in this form, but mostly
they are invoked via higher-level strategies. The first lecture described the concepts behind
assume_tac and resolve_tac. The others are essentially variations on those themes; there
are quite a few of them.

resolve_tac applies rules, which may be primitive or user-derived, searching for those
that match the subgoal. Backtracking searches for other matches and other rules. Discrim-
ination nets are available to speed up the search, if there are hundreds of rules.

eresolve_tac is suitable when a rule applies to an assumption and makes it obsolete.
The tactic uses and then deletes the assumption. Its effect with ∨-elim is to search for an
assumption of the form P ∨ Q and create two new subgoals with assumptions P and Q
respectively. Backtracking makes eresolve_tac search for another matching assumption.

res_inst_tac lets us partly instantiate a rule explicitly during refinement. It is needed
when applying rules like ∀-elim, whose conclusion is too general to allow automatic matching.

As for assume_tac: shouldn’t Isabelle do proof by assumption automatically? One
can arrange for tactics of any sort to be applied after any proof command. But proof by
assumption is less trivial than it looks. Consider this proof state:

Level 1

(P(a) & P(b) → P(?x)) & (P(b) & P(c) → P(?x))

1. [| P(a); P(b) |] =⇒ P(?x)

2. [| P(b); P(c) |] =⇒ P(?x)

Both subgoals have two proofs, but only one of the four combinations proves both goals
simultaneously. If backtracking occurs, assume_tac searches for another matching assump-
tion. Assumptions are not referred to by number.

Resolution performs the most basic step in mathematics: appeal to a previous result.
Many proof checkers make this difficult.
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Tacticals: Control for Tactics

THEN: sequential execution

ORELSE, APPEND: alternative execution

DETERM: deterministic execution

REPEAT: repetition

DEPTH FIRST, BEST FIRST, . . . : searches

Isabelle’s tacticals provide a rich control language for tacticals. They express new tactics
that can combined further. They achieve the desired behaviour by operating on lazy lists:

tac1 THEN tac2 returns all states reachable by applying tac1 then tac2

tac1 ORELSE tac2 tries tac1 ; if this fails, uses tac2

tac1 APPEND tac2 calls both tac1 and tac2, appending their results

DETERM tac returns the first state reachable by applying tac

REPEAT tac returns all states reachable by applying tac as long as possible

DEPTH FIRST satp tac returns all states satisfying satp reachable by applying tac in depth-first
search

Explicit control of backtracking can help keep the search space small. Using DETERM
prevents backtracking inside its argument; it is appropriate when the choice is between
operations that have the same effect when applied in any order. The difference between
ORELSE and APPEND is that ORELSE forbids backtracking from its first argument to its second;
it is appropriate when the second argument specifies operations to be tried only as a last
resort.

There are tacticals for several other search strategies: iterative deepening [16], best-first,
etc. The argument satp is a boolean-valued function specifying what kind of state to search
for, typically in terms of how many subgoals are left. Artificial Intelligence textbooks [39]
discuss these strategies. Depth-first search is fastest but often gets stuck down an infinite
path; iterative deepening is safe but much slower; best-first search can be fast, but must be
guided by an accurate heuristic function.
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Sequential v Alternative Execution

THEN

tac1          tac2

ORELSE/APPEND

tac1

tac2

Consider tac1 THEN tac2. Here tac1 returns a sequence of three possible next states.

1. Given the first of these, tac2 returns two next states.

2. Given the second of these, tac2 returns no next states; thus this possibility contributes
nothing to the final sequence of outcomes.

3. Given the third of these, tac2 returns one next state.

A total of three states can arise from this call to tac1 THEN tac2.
Consider tac1 ORELSE tac2. Here tac1 returns a sequence of two possible next states.

As this sequence is nonempty, it becomes the full output of tac1 ORELSE tac2; had it been
empty, then the output would have been that of tac2.

Similar is tac1 APPEND tac2, but its output comprises those of both tac1 and tac2.
Variations on THEN and APPEND could interleave sequence elements instead of putting all

possibilities from one sequence first. That would give more of a depth-first flavour.
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Simple Example of Tacticals

(P ∨ Q) ∨ R → P ∨ Q ∨ R

1. P =⇒ P ∨ Q ∨ R

2. Q =⇒ P ∨ Q ∨ R

3. R =⇒ P ∨ Q ∨ R

by (DEPTH_SOLVE

(assume_tac 1 ORELSE

resolve_tac [disjI1, disjI2] 1));

(P ∨ Q) ∨ R → P ∨ Q ∨ R

No subgoals!

Here is a demonstration of our primitives. Trying to prove that ∨ is associative has
yielded three subgoals, each to prove P ∨ (Q ∨ R) from the assumption P , Q or R. At our
disposal are Isabelle versions of the disjunction rules:

P =⇒ P ∨ Q Q =⇒ P ∨ Q

The command shown above attempts proof by assumption, if possible, and otherwise applies
one of the disjunction rules. The first disjunction rule is always chosen initially, the second
after backtracking. Tactical DEPTH SOLVE uses DEPTH FIRST to search for a fully solved proof
state: no subgoals.

We often reach a point where the result clearly follows by repeated application of certain
rules. We can then compose a command like the one above. We could have used APPEND
instead of ORELSE, or used other search tacticals. Isabelle’s classical reasoner is a set of
tactics designed to handle the most common cases automatically, so that we do not have to
make such decisions.
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The Classical Reasoner

fast tac, best tac: prove goal using supplied rules

• Safe rules can be applied at any time.

• Unsafe rules lose information or create unknowns.

Negated assumptions simulate sequents.

Tactics work with analytic rules.

Analytic rules are those that break up a conclusion or assumption into smaller parts.
We may distinguish between safe and unsafe rules. Safe rules do not require backtracking;
they represent logical equivalences, and are analogous to rewrite rules such as m× (i+ j) =
m × i + m × j. Unsafe rules may require backtracking.

Safe rules lose no information; they may be attempted on any subgoal. For predicate
calculus they include the following:

P Q

P ∧ Q

[P ]
Q

P → Q

P

∀x.P

The following rules are unsafe because their premises are stronger than their conclusion.
(They are sound, but in backward proof they discard information.) The latter rule is also
unsafe in the operational sense that repeated application of it could run forever.

m < n

m < n + 1

x < y y < z

x < z

The sequent calculus is better than natural deduction for reasoning about ∨ and ∃. The
classical reasoner simulates the sequent calculus, representing the sequent P1, . . . , Pm �
Q1, . . . , Qn by

[[P1; . . . ;Pm;¬Q2; . . . ;¬Qn]] =⇒ Q1

The classical reasoner can handle large numbers of rules, packaged together using dis-
crimination nets for fast retrieval. It is implemented using Isabelle tactics and tacticals. It
is less efficient than hard-wired tautology checkers, but is more flexible. We may apply it
in the predicate calculus, set theory, and in specialized theories. It is particularly good at
reasoning about inductively defined relations. When it fails, it often fails quickly, and can
be single-stepped to locate the trouble spot.
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Examples of the Classical Reasoner

(∃y∀x. Pxy ↔ Pxx) → ¬∀x∃y∀z. Pzy ↔ ¬Pzx

( ⋃

i∈I

Ai ∪ Bi

)
=

( ⋃

i∈I

Ai

)
∪

( ⋃

i∈I

Bi

)

{p} ∪ H � q =⇒ H � implies p q

diamond parcontract

The first theorem is #40 from Pelletier’s problem set [35]. It is rather easy; its proof
requires only 0.5 seconds on a fast SPARCstation. The harder problems from this set are
too big to fit on the slide.

The second theorem is typical of many set-theoretic identities that fast tac proves
automatically. To do this, fast tac uses rules proved specifically about the primitives of
set theory, rather than expanding the definitions to primitive logical concepts. Thus it
reasons about unions and intersections at a high level. This allows users to follow what is
happening, should the proof fail. It also promotes efficiency; the theorem shown is proved
in 0.3 seconds.

The third example is the deduction theorem. It comes from a proof of the soundness
and completeness of propositional logic, by Tobias Nipkow and myself [32]. Unlike the other
examples, it is not proved by fast tac alone. The first step of the proof is induction on
the derivation of {p} ∪ H � q; this yields five subgoals. The second step is application of
the classical reasoner, equipped with basic rules of the embedded logic. All five subgoals
are proved in under 0.2 seconds.

Analogous but much harder is a proof of the Church-Rosser theorem for combinators.
A key lemma is the diamond property for parallel reduction [34]. Again it consists of
induction followed by classical reasoning. But this time fast tac (equipped with rules
about the behaviour of reductions) needs 43 seconds to prove the four subgoals.
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A Generic Simplifier

Rewriting can be conditional, permutative, . . .

. . . and take account of context :

P ↔ P ′
[P ′]

Q ↔ Q′

(P ∧ Q) ↔ (P ′ ∧ Q′)

User-supplied context and search strategies

Virtually all proof tools provide a simplifier that performs rewriting. Most of them handle
conditional write rules such as x �= 0 =⇒ x/x = 1. Some of them even do permutative
rewriting, to handle rules like x + y = y + x without looping; this can be used to sort the
terms in expressions of the form e1 + · · · + cn. But few of them provide generic support to
adapt rewriting to particular theories.

The rule shown on the slide describes a way of extracting context from conjunctions. To
rewrite P ∧Q, first rewrite P , yielding say P ′, and then assume P ′ while rewriting Q. Here
is a case where contextual information assists the simplifier:

f(1) = 2 ∧ x �= 0 ∧ f(x/x) = 2.

The first conjunct yields a rewrite rule for f ; the second allows conditional rewriting about
division, so that the third conjunct can be simplified to true.

If information about context is built in, then users cannot extend it. Isabelle’s simplifier
is supplied such information as inference rules. If we define bounded quantification over
sets, we can prove and install the analogous rule for it:

A = A′
[x ∈ A′]

P (x) ↔ P ′(x)

(∀x ∈ A. P (x)) ↔ (∀x ∈ A′. P ′(x))

This says, rewrite ∀x ∈ A. P (x) by first rewriting A to A′ and then assuming x ∈ A′ when
rewriting P (x). Rules of this form are known as congruence rules.

The simplifier can perform automatic case splits, and similar operations; these too are
described by inference rules. Isabelle’s simplifier also lets users describe how rewrite rules
are extracted from general formulæ. For example, a formula of the form ∀x ∈ A. P (x) might
yield rewrite rules conditional upon x ∈ A.

These extensions yield sound results because they work by performing proofs. A user
error cannot make the simplifer replace everything by true.
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Summary

• Built-in tactics support proof checking.

• Complex tactics can be built using tacticals.

• Several search strategies are available.

• The classical reasoner works with any analytic rules.

• The simplifier can be extended for new connectives.
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Zermelo-Fraenkel Set Theory

a ∈ A A ⊆ B A ∪ B A ∩ B P(A)

{x ∈ A. P (x)} {b(x). x ∈ A}

{a1, . . . , an} 〈a1, . . . , an〉 λx ∈ A. b(x)

A + B A × B A → B

dom(R) range(R) converse(R)

Isabelle implements two set theories. Isabelle/ZF [28] is built upon first-order logic using
the standard Zermelo-Fraenkel axioms [42]. Isabelle’s higher-order logic (Isabelle/HOL)
includes a polymorphically typed set theory, with sets represented by predicates. The two
theories are similar but not identical; below we shall consider only ZF set theory.

Why use set theory at all? We need collections of some sort and the only alternative is a
type theory. Simple type theories (such as HOL) are in themselves too rigid; one cannot, for
example, form the collection of lists of a given length. Predicate subtyping (as in PVS) can
help. But even in the Calculus of Constructions, a highly expressive type system, one usually
defines some sort of set theory. Set-theoretic primitives can express complex systems. They
are found in the Z and B specification languages; many practitioners have advocated their
use.

Finite sets are written {a1, . . . , an}, tuples 〈a1, . . . , an〉 and functions λx ∈ A. b(x).
Isabelle/ZF includes other primitives not shown above. There are bounded quantifiers

∀x∈AP (x) and ∃x∈AP (x). Indexed intersections
⋂

x∈A B(x) and unions
⋃

x∈A B(x) are
defined in terms of

⋂
(A) and

⋃
(A), where A is a set of sets. The operators × and → are

generalized to the dependent constructions
∑

x∈A B(x) and
∏

x∈A B(x).
The definite description ιx. P (x) provides a means of naming an object that is charac-

terized uniquely by P . It is like Hilbert’s ε-operator, found in the HOL system, but does
not assume the axiom of choice.

Note: Isabelle provides a choice of syntaxes for its underlying λ-calculus. In Isa-
belle/HOL, the application of term M to arguments N1, . . . , Nk is written M N1 Nk;
in Isabelle/ZF, it is written M(N1, . . . , Nk). The former syntax has the advantage of
(λ-calculus) tradition; it also facilitates partial application of curried functions, omitting
arguments from the right. The latter syntax has the advantage of (set theory) tradition;
it also forbids partial application, which does not make sense in first-order logic. The only
ambiguity arises in terms of the form M(a, b): in HOL there is one argument, an ordered
pair; in ZF there are two arguments.
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High-Level Rules

(!!x. x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B

[[A ⊆ B; a ∈ A]] =⇒ a ∈ B

[[a ∈ A; b ∈ B(a)]] =⇒ b ∈
(⋃

x∈A B(x)
)

[[f ∈ A → B; a ∈ A]] =⇒ f ‘a ∈ B

[[a ∈ A; P (a)]] =⇒ a ∈ {x ∈ A. P (x)}

These are examples of the rules used in Isabelle/ZF proofs. They have been derived from
the Zermelo-Fraenkel axioms. Proofs directly in terms of those axioms would be barbaric.
Some of the rules have long and complicated proofs. These are performed once and for all
when Isabelle/ZF is built. Such rules behave identically to built-in ones in use; there is no
efficiency penalty for using them, and they work with all the same commands.

The {x ∈ A. P (x)} notation deserves special mention. It is defined by the axiom of
separation, traditionally written a ∈ {x ∈ A. P (x)} ↔ a ∈ A ∧ P (a). Strictly speaking this
is an axiom schema, with a distinct instance for each first-order predicate P . Here is the
Isabelle version; for once, let us stop hiding the question marks:

?a ∈ {x ∈ ?A . ?P (x)} ↔ ?a ∈ ?A ∧ ?P (?a)

In Isabelle, the axiom above behaves as a scheme. We may instantiate ?P with various
λ-expressions, and the result is automatically β-reduced to obtain the required instances.

In the current version, the “axiom” of separation is actually a theorem. It is proved from
the axiom of replacement. With Isabelle we need not care whether something is an axiom
or a theorem. Theorem schemas pose no more difficulties than axiom schemas do.

The rules shown above are couched in terms of membership (∈). Rules involving ⊆ can
yield particularly high-level proofs, when they apply. Recall the first lecture’s use of rules
such as P-mono and ∩-greatest:

A ⊆ B =⇒ P(A) ⊆ P(B)
[[C ⊆ A; C ⊆ B]] =⇒ C ⊆ A ∩ B
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A Proof about Unions

goal ZF.thy "Union(A Int B) ⊆ Union(A)";

Union(A Int B) ⊆ Union(A)

1. Union(A Int B) ⊆ Union(A)

by (step_tac ZF_cs 1);

Union(A Int B) ⊆ Union(A)

1. !!x y. [| x∈ y; y∈ A; y∈ B |] =⇒
x∈ Union(A)

This theorem can be proved in one step using fast_tac. For demonstration, let us
prove it in smaller steps using a tactic called step_tac. This tactic is normally called via
fast_tac; calling it directly allows for “single-step” reasoning, especially useful when the
proof fails. I have slightly modified the output to improve readability.

Calling step_tac either applies “safe” inferences to the entire proof state, or applies one
“unsafe” inference to the specified subgoal. Safe inferences are analogous to rewriting by
rules such as

x ∈ A ∩ B ⇐⇒ x ∈ A ∧ x ∈ B

x ∈ A ∪ B ⇐⇒ x ∈ A ∨ x ∈ B

x ∈ A − B ⇐⇒ x ∈ A ∧ x �∈ B

〈x, y〉 ∈ A × B ⇐⇒ x ∈ A ∧ y ∈ B

x ∈ P(A) ⇐⇒ x ⊆ A

{x ∈ A. P (x)} ⇐⇒ x ∈ A ∧ P (x)

x ∈
⋃

(A) ⇐⇒ ∃y. x ∈ y ∧ y ∈ A

Typical natural deduction rules express each direction of such an equivalence separately.
Unsafe inferences are not equivalences at all.

Isabelle’s response to the initial goal command is to print an initial proof state, repre-
sented internally by an instance of the trivial clause X =⇒ X. Calling step_tac performs
the safe steps of assuming x ∈

⋃
(A∩B), then x ∈ y and y ∈ A∩B, replacing the latter by

y ∈ A and y ∈ B, where x and y are arbitrary. In this context we must show x ∈
⋃

(A).
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A Proof about Unions (Cont.)

by (step_tac ZF_cs 1);

Union(A Int B) ⊆ Union(A)

1. !!x y. [| x∈ y; y∈ A; y∈ B |] =⇒
?B3(x, y)∈ A

2. !!x y. [| x∈ y; y∈ A; y∈ B |] =⇒
x∈ ?B3(x, y)

by (step_tac ZF_cs 1);

Union(A Int B) ⊆ Union(A)

1. !!x y. [| x∈ y; y∈ A; y∈ B |] =⇒ x∈ y

The next two step_tac calls apply unsafe inferences to subgoal 1. The first of these is
the rule

⋃
-intr:

[[B ∈ C; A ∈ B]] =⇒ A ∈
⋃

(C)

To show x ∈
⋃

(A) we can exhibit some set U such at U ∈ A and x ∈ U . Isabelle displays
the unknown set U as ?B3(x,y). It appears in two goals; in general, different proofs of a
goal instantiate its unknowns differently, and we may have to search for an instantiation
that lets the other subgoals be proved.

The second unsafe step proves subgoal 1 by assumption; this amounts to guessing that
?B3(x,y) is y.

The remaining subgoal (now numbered 1) has changed to x ∈ y, and is trivially provable
as there is an identical assumption.

It is rather hard to find examples simple enough to present on a slide, and hard enough
to require more than one call to step_tac. More interesting, but with a slightly longer
proof, is the monotonicity rule for

⋃
:

A ⊆ B =⇒
⋃

(A) ⊆
⋃

(B)

Its fast_tac proof takes about 0.2 seconds. Recall that such rules, once proved, can them-
selves be used in later proofs as atomic inferences.
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Functions and Injections

func(f) ≡ ∀x y.〈x, y〉 ∈ f →
∀z.〈x, z〉 ∈ f → y = z

A → B ≡ {f ⊆ A × B. A ⊆ dom(f) ∧ func(f)}

inj(A, B) ≡ {f ∈ A → B.

∀w, x ∈ A.f ‘w = f ‘x → w = x}

These definitions are taken from the standard Isabelle/ZF libraries. The representation
of functions in terms of ordered pairs is cumbersome; most proofs are conducted in terms of
higher-level rules about λ-abstraction and function application. Users need only know the
third definition, which defines in the standard way the set of injections from A to B. These
definitions illustrate the use of the notation and form the basis for the examples following.

Here f ‘x denotes application to the function f to the argument x. It is object-level
application, just as → is object-level implication. These differ from meta-level application,
written f(x), and meta-level implication, written =⇒. There is a real distinction between
the two levels. With object-level application, the function is a set of pairs; with meta-level
application, it is just a term of function type. Many meta-level functions, such as

⋃
and P,

are defined over the entire universe of sets and thus cannot be represented as object-level
functions.

Due to space limitations I have abbreviated the operators “function” and “domain”, and
written f ⊆ A×B instead of f ∈ P(A×B). To simplify the presentation I use the function
space A → B where Isabelle/ZF uses the general product

∏
x∈A B(x). The general product,

and the general sum
∑

x∈A B(x), are as useful in set theory as their counterparts are in
dependent type theories.
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Inverse of an Injection

goalw Perm.thy [inj_def]

"!!f. f∈ inj(A,B) =⇒ f−1 ∈ range(f)->A";

!!f. f∈ inj(A, B) =⇒ f−1 ∈ range(f) -> A

1. !!f. f ∈
{f ∈ A -> B .

∀ w∈ A. ∀ x∈ A.

f ‘ w = f ‘ x → w = x} =⇒
f−1 ∈ range(f) -> A

Injections, surjections and bijections are fundamental to discrete mathematics and com-
puter science. Many papers on formal methods take a simple databases as their example.
Most databases label each record by a unique primary key; thus there is an injection from
records to primary keys. The theorem above implies that the inverse of injection is a function
from primary keys to records. (In fact it is a bijection, but we don’t prove that here.)

This example illustrates use of Isabelle’s simplifier and classical reasoner on nontrivial
theorems. Here we see the initial proof state after expanding the definition of inj(A, B).
I have inserted some mathematical symbols (like ∀ for ALL and f−1 for converse(f)) to
improve readability and save space.
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Initial Simplification

by (asm_simp_tac . . .Pi_iff, function_def. . .);

!!f. f∈ inj(A, B) =⇒ f−1 ∈ range(f) -> A

1. !!f. [| f ∈ A -> B;

∀ w∈ A. ∀ x∈ A.

f ‘ w = f ‘ x → w = x |] =⇒
(∀ x y.

<y,x>∈ f →
(∀ z. <z,x>∈ f → y = z)) &

f−1 ⊆ range(f) × A

The full command given to Isabelle was

by (asm_simp_tac (ZF_ss addsimps [Pi_iff, function_def]) 1);

by (eresolve_tac [CollectE] 1);

The new proof state is the result of unfolding the definitions of function space and the
“function” predicate, and then splitting up an assumption of the form {f ∈ A → B. . . . }.
Here, rewriting affects only the subgoal’s conclusion, not its assumptions; an occurrence of
the function space operator remains in the assumptions as A → B.

Default rules (stored in ZF_ss) perform most of the reasoning. Furthermore we use
Pi_iff and function_def as rewrite rules, to expose the representation of functions. Nor-
mally we should not want to do that but this proof needs it.

Rewriting has proved part of the unfolded subgoal, namely dom(f−1) ⊆ range(f). We
still have to show that f−1 is a function and is included in range(f) × A.
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A Further Simplification

by (asm_simp_tac . . . apply_iff . . .);

!!f. f∈ inj(A, B) =⇒ f−1 ∈ range(f) -> A

1. !!f. [| f ∈ A -> B;

∀ w∈ A. ∀ x∈ A.

f ‘ w = f ‘ x → w = x |] =⇒
(∀ x y.

y∈ A & f ‘ y = x →
(∀ z. z∈ A & f ‘ z = x →

y = z)) &

f−1 ⊆ range(f) × A

The command shown above rewrites with apply_iff, which stands for the clause

f ∈ A → B =⇒ 〈a, b〉 ∈ f ↔ (a ∈ A ∧ f ‘a = b).

The effect is to replace 〈a, b〉 ∈ f by f ‘a = b when we know that f is a function. The
connection between the quantified assumption and the first conjunct is now clear. We still
have to prove it, and the second conjunct, f−1 ⊆ range(f)×A. It sounds hard but it turns
out to be trivial:

by (fast_tac (ZF_cs addDs [fun_is_rel]) 1);

!!f. f∈ inj(A, B) =⇒ f−1 ∈ range(f) -> A

No subgoals!

The rule fun_is_rel stands for

f ∈ A → B =⇒ f ⊆ A × B.

Again, it is not the sort of rule that one would normally use, but this proof is about how
functions are represented as sets of pairs. Isabelle’s fast_tac can manage with quantified
formulæ such as those on the slide, and returns quickly if they are reasonably simple. With
the present subgoal, fast_tac needs only 1.3 seconds, of which one second is devoted to
the first conjunct.
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Survey of Isabelle/ZF

Recursive functions — using well-founded relations

Recursive data structures — with infinite branching

Several computational case studies

Standard set theory: ordinals, cardinals, . . .

Proofs in advanced set theory: equivalents of AC

Slide 410

Summary

• Set theory constructs are useful in specifications.

• Reasoning about sets requires high-level rules.

• Unknowns arise naturally in set theory proofs.

• The simplifier and classical reasoner are effective in

set theory.
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Exercise 7 Using high-level rules such as those demonstrated above, prove the mono-
tonicity of

⋃
:

A ⊆ B =⇒
⋃

(A) ⊆
⋃

(B)

Exercise 8 Use the theorem [[f ∈ inj(A, B); b ∈ range(f)]] =⇒ f ‘(f−1‘b) = b to
strengthen our result to

f ∈ inj(A, B) =⇒ f−1 ∈ inj(range(f), A).
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Declaring Recursive Types

datatype (α1, . . . , αm)t = constr1 | . . . | constrn

Each constr has the form C τ1 . . . τk

For lists, trees, . . . , equipped with primitive recursion

Example, binary trees:

datatype ’a bt = Lf | Br ’a (’a bt) (’a bt)

A datatype is a disjoint sum, which may be recursive. The syntax is based upon that of
Standard ML [33]. Datatypes can model lists, trees, finite enumerations, etc.

[For this lecture we switch back from ZF to HOL. ZF has similar facilities (more general
in fact) but HOL’s type checking makes the declarations more concise. Even with this, I
have had to simplify much of the Isabelle text in order to fit it on the slides.]

Datatype declarations may be placed in theory files along with declarations of other
types, constants, definitions, etc. Each declaration causes Isabelle to make appropriate
definitions and derive the properties usually expected of a datatype. We can refer to the
properties as Isabelle rules, which are bound to ML identifiers.

The slide declares a polymorphic type of labelled binary trees. The ML identifier
bt.distinct is bound to a list of theorems stating that the constructors are distinct (leaves
are not branches):

Lf ~= Br a t1 t2 Br a t1 t2 ~= Lf

The identifier bt.inject is bound to a list of theorems stating that the constructors are
injective (we can extract a branch’s subtrees):

(Br a t1 t2 = Br a’ t1’ t2’) = (a = a’ & t1 = t1’ & t2 = t2’)

The identifier bt.induct is bound to a rule for structural induction:

[| P Lf;

!!a t1 t2. [| P t1; P t2 |] =⇒ P(Br a t1 t2)

|] =⇒ P bt



V Tool Support for Logics of Programs 40

Slide 502

Recursive Functions

Recursive calls for subtrees only

consts nodes, leaves :: ’a bt => nat

nodes Lf = 0

nodes(Br a t1 t2) = Suc(nodes t1+nodes t2)

leaves Lf = 1

leaves(Br a t1 t2) = leaves t1+leaves t2

Isabelle (in ZF or HOL) supports function definition by well-founded recursion. Any
relation that can be proved to be well-founded may be used to show termination of recursive
calls. We may even interleave the proofs of termination and those of other correctness
properties; this is essential for reasoning about certain nested recursive functions, such as
the unification algorithm. Konrad Slind has recently written a tool to automate much of
this process; its accepts function definitions expressed using pattern-matching [41].

The overhead shows a simpler form of function definition: primitive recursion. Isa-
belle/HOL provides special syntax for declaring functions that make recursive calls only to
immediate subparts of their argument. Examples of immediate subparts are the predecessor
of a natural number, the tail of a list or the two children of a binary tree.

Most algorithms can be expressed as recursive functions, using the techniques of func-
tional programming. The chief exceptions are concurrent algorithms and those that are
inherently imperative, such as the union-find data structure.
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Proving a Classic Identity

goal BT.thy "leaves(t) = Suc(nodes(t))";

by (bt.induct_tac "t" 1);

leaves t = Suc (nodes t)

1. leaves Lf = Suc (nodes Lf)

2. !!a t1 t2.

[| leaves t1 = Suc (nodes t1);

leaves t2 = Suc (nodes t2) |] =⇒
leaves (Br a t1 t2) =

Suc (nodes (Br a t1 t2))

This example illustrates how inductive proofs are performed in Isabelle. The user must
specify the induction variable and rule. Isabelle does not contain heuristics for inventing
induction schemes, as they are difficult to implement do not save users much effort. The
correct induction scheme is usually obvious.

The slide shows the proof state after applying induction. Isabelle’s simplifier, using de-
fault rewrites, can prove both subgoals automatically. Many properties of recursive functions
are proved with equal ease.
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Inductive Definitions

Example: permutations of lists, xs � ys

[] � [] y#x#l � x#y#l

xs � ys

z#xs � z#ys

xs � ys ys � zs

xs � zs

Q. How do we show that xs � ys implies ys � xs?

A. Since � is the least relation satisfying these rules!

An inductive definition specifies the least set closed under a given collection of rules [1].
The set of theorems in a logic is inductively defined. A structural operational semantics [13]
inductively defines an evaluation relation on programs. Dually, a coinductive definition
specifies the greatest set closed under given rules. Equivalence of concurrent processes is
often defined coinductively, in terms of bisimulation relations [21].

A desired collection of rules may be given to Isabelle (ZF and HOL) to specify a
(co)inductive definition. Isabelle reduces it to a fixedpoint definition, using the Knaster-
Tarski theorem. An inductive definition is a least fixedpoint; a coinductive definition is a
greatest fixedpoint. The rules may involve any operators that have been proved monotone.
Definitions may be iterated: one (co)inductive set may be used to define another.

Given a (co)inductive definition, Isabelle returns (as theorems bound to ML identifiers)
the main properties of the (co)inductively defined set. These include the rules specified in
the definition: the set’s introduction rules. They include a rule for case analysis over the
definition: the elimination rule. Finally, they include an induction or coinduction rule.

To demonstrate inductive definitions, the slide defines the “permutation of” relation
for lists. We could model permutations more generally using bijections, but the inductive
definition is easy to use.

Here x#l stands for the list with head x and tail l.
The upper two rules say that [] is a permutation of itself and that swapping the first

two elements of a list creates a permutation. Of the lower two rules, one says that adding
identical elements to both lists preserves the “permutation of” relation; the other says that
“permutation of” is transitive.

“Permutation of” is an equivalence relation. Transitivity is given. Reflexivity is trivial:
prove xs � xs by list induction, using the two left-hand rules. Symmetry seems harder;
we can prove it using rule induction.
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Rule Induction for Permutations

xs � ys implies P xs ys if P satisfies the � rules!

• P [] []

• P (y#x#l) (x#y#l)

• if P xs ys then P (z#xs) (z#ys)

• if P xs ys and P ys zs then P xs zs

Rule induction [45] is a powerful inference rule for proving consequences of xs � ys.
Recall that � is the least set closed under the given rules. If some predicate P is also
closed under those rules then xs � ys implies P xs ys for all x and y. The slide shows the
corresponding subgoals. (Isabelle actually derives a stronger induction rule, but the details
don’t concern us here.)

Let us use rule induction to prove that xs � ys implies lengthxs = length ys. The four
subgoals are easily proved:

• length[] = 0 = length[]

• length (y#x#l) = 2 + length l = length (x#y#l)

• If lengthxs = length ys then

length(z#xs) = 1 + lengthxs = 1 + length ys = length(z#ys)

• if lengthxs = length ys and length ys = length zs then lengthxs = length zs by tran-
sitivity of equality

Symmetry of � is another example. We can show that xs � ys implies ys � xs by
simple rule induction; just put ys � xs for P xs ys. Equivalently, observe that all the rules
are preserved if we swap the operands of �. The Isabelle versions of the declaration of �
and the proof of symmetry appear on slides below.
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Declaring Inductive Sets in a Theory

consts perm :: (’a list × ’a list) set

inductive perm

Nil [] � []

swap y#x#l � x#y#l

Cons xs � ys =⇒ z#xs � z#ys

trans [| xs � ys; ys � zs |] =⇒ xs�zs

This illustrates Isabelle’s syntax, though details have been simplified. The theory file
declares the constant perm to stand for the relation. Three omitted lines inform Isabelle to
use xs <~~> ys as notation for (xs,ys):perm. We specify the inductive definition using
this notation.

(Co)inductive definitions can specify other information. If the definition involves other
operators then they must be monotonic; Isabelle must be given the corresponding mono-
tonicity theorems. In ZF, the definition requires rules to perform a kind of type checking.

Isabelle returns the list of introduction rules, bound to the ML identifier perm.intrs:

[] � [] y#x#l � x#y#l other two as above

The elimination rule, bound to perm.elim, allows case analysis.

[| a ∈ perm;

a = ([], []) =⇒ Q;

!!l x y. a = (y#x#l, x#y#l) =⇒ Q;

!!xs ys z. [| a = (z#xs, z#ys); xs � ys |] =⇒ Q

. . .
|] =⇒ Q

This rule resembles induction but has no induction hypotheses, and is generated even for
coinductive definitions. Variants of it can be used with fast_tac to perform a kind of
backward reasoning known as rule inversion.

The induction rule, as described on a previous slide, is bound to perm.induct.
(Co)inductive definitions are conservative. The rules they return are proved as the

consequences of a low-level definition — they are not merely asserted. Most definitions can
be processed in a few seconds.
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Example: Proving Symmetry of �

goal Perm.thy "!!xs. xs � ys =⇒ ys � xs";

by (etac perm.induct 1);

1. !!xs. [] � []

2. !!xs l x y. x # y # l � y # x # l

3. !!xs ws ys z.

[| ws � ys; ys � ws |] =⇒
z # ys � z # ws

4. !!xs ws ys zs.

[| ws�ys; ys�zs;

ys�ws; zs�ys |] =⇒ zs�ws

Here we see the result of using rule induction to prove symmetry. Compare the subgoals
shown above with those described earlier. They are all instances of the introduction rules.
We can prove them trivially using a single command:

by (REPEAT (assume_tac 1 ORELSE resolve_tac perm.intrs 1));

This repeatedly attempts proof by assumption or one of the introduction rules. We need
only mention subgoal 1, as other subgoals are moved up when the first subgoal is proved.
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Applications of (Co)Inductive Definitions

Operational semantics of imperative languages

Church-Rosser theorems for λ-calculus

A coinductive type correctness proof

Proving Ackermann’s function is not primitive recursive

Refinement of Prolog to the Warren Abstract Machine

Several large studies use inductive definitions. Ltzbeyer, Sandner and Nipkow [17, 24]
have proved several properties relating the operational and denotational semantics of
Winskel’s toy programming language imp [45]. Using different techniques, Nipkow [25]
and Rasmussen [38] have both proved the Church-Rosser theorem. A datatype specifies the
set of λ-terms, while inductive definitions specify several reduction relations.

To demonstrate coinductive definitions, Frost [10] has proved the consistency of the
dynamic and static semantics for a small functional language. The example, by Milner and
Tofte [22], concerns a coinductively defined typing relation.

Isabelle/ZF supports codatatypes, which are like datatypes but admit infinitely deep
nesting: trees need not be well-founded. (Doing this in the presence of the foundation
axiom requires the use of variant pairs and function [31].) Frost uses a codatatype definition
to specify values and value environments in mutual recursion. Non-well-founded values
represent recursive functions; value environments are functions from variables into values.

The Ackermann’s function proof [29] demonstrates the flexibility of inductive definitions
in Isabelle. The set of primitive recursive functions is difficult to define formally, because the
composition operator combines a function with a list of functions. The “list of” operator
is monotonic, however, and Isabelle allows monotonic operators to appear in inductive
definitions.

Cornelia Pusch [37] is proving the correctness of a compiling algorithm from Prolog to
the Warren Abstract Machine (WAM). She uses datatypes to formalize Prolog’s syntax
and data structures involved in the interpretation, and inductive definitions to formalize
the semantics of Prolog and the WAM. The proof involves around ten refinement steps
from Prolog to the WAM; five of these steps have been verified using Isabelle. Each step
introduces some low-level feature, such as pointers or optimizations of backtracking, and
proves semantic equivalence.
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Summary

• A datatype can model trees, finite sets, . . .

• Functions can use well-founded recursion.

• Theories can declare inductive and coinductive sets.

• An inductive set can model inference systems, . . .

• A coinductive set can model bisimulations, . . .

Exercise 9 Using recursion and an if-then-else construct, define a function count l z to
count how many times z occurs in the list l.

Exercise 10 Using rule induction, prove that xs � ys implies countxs z = count ys z.
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Cryptographic Protocols

Agents wish to communicate over a network, with . . .

• confidentiality: eavesdroppers cannot “listen in”

• authenticity: agents are who they say they are

Encryption can thwart eavesdroppers

Nonce challenges can prevent replay attacks

We look at two applications in detail. Safety properties of cryptographic protocols can
be proved using Isabelle’s support for inductive definitions. Interactive program derivation
makes use of Isabelle’s treatment of unknowns in goals. Finally we have a brief survey of
other work.

There are too many combinations for each agent to have a shared key with each potential
partner. Instead a Key Server assigns fresh keys for this purpose. Each agent shares a
key with the server.

Authenticity involves assuring somebody at the other end of the network of your identity.
What if an enemy reads a message sent by agent A, and later replays it (or something
composed from it) to agent B? He might manage to fool B into thinking he is really A, and
then cause havoc in A’s name.

A nonce is a sort of password, used to prevent such replay attacks. An agent can include
a fresh nonce in a message, expecting the other party to send that nonce back again (as
part of a new message). If the nonces do not agree then the attempted connection will fail.
Old messages previously seen by the enemy will have out-of-date nonces, and thus will be
useless.

We do not suppose that agents are conscious, capable of being “fooled” or “convinced”.
Rather they operate a protocol and behave precisely as the protocol dictates.

Encryption does not guarantee authenticity or security. Many protocols based on en-
cryption have been shown to be vulnerable, often in subtle ways. Rigorous correctness
proofs seem essential. One popular method is based upon logics of belief [4]. The method
outlined below is entirely different. Inductive definitions are used to specify the elements of
messages and possible traces of protocol runs.
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Agents and Messages

datatype agent = Server | Friend nat | Enemy

datatype msg = Agent agent

| Nonce nat

| Key key

| MPair msg msg (* {|X,Y|} *)

| Crypt msg key

rules invKey "invKey (invKey K) = K"

Agents include the Server, the friendly agents and the Enemy. We can model attacks in
which the Enemy takes part in protocols is if he were a friendly agent. A more restrictive
alternative is to build the Enemy into the network.

Messages are agent names, nonces, keys, pairs and encryptions. Keys and nonces are
just natural numbers. Long messages, consisting of pairs nested to the right, have a special
notation.

Our datatype makes the assumption that encryption is injective. This is false in the real
world: one may “decrypt” a message using various keys. Standard practice, however, is to
include redundancy in all messages so that uses of the wrong key can be detected.

Constant invKey models public-key encryption. Each public key K has an inverse,
written K−1, which is kept private. To model conventional (shared key) encryption we just
assume K−1 = K.
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Processing Sets of Messages

parts — components of messages

CryptX K ∈ partsH =⇒ X ∈ partsH

analz — components that can be decrypted

[[CryptX K ∈ analzH;

invKeyK ∈ analzH]] =⇒ X ∈ analzH

synth — messages that can be built up

If H is a set of messages then

• partsH is the set of all components of H (going down recursively). It concerns the
structure of messages alone.

• analzH is similar, but one needs the key to get at the body of an encrypted message.
Thus it relates to security of messages.

• synthH is the set of all messages that can be built using elements of H as components

The set operations all have straightforward inductive definitions, e.g.

consts analyze :: msg set => msg set
inductive "analyze H"
intrs
Inj "X∈ H =⇒ X∈ analyze H"

Fst "|X,Y| ∈ analyze H =⇒ X ∈ analyze H"

Snd "|X,Y| ∈ analyze H =⇒ Y ∈ analyze H"

Decrypt "[| Crypt X K ∈ analyze H; Key(invKey K)∈ analyze H
|] =⇒ X ∈ analyze H"
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Simple Properties of parts, analz, . . .

parts(G ∪ H) = partsG ∪ partsH

analz(analzH) = analzH

analz(synthH) = analzH ∪ synthH

analz(insert (Agent a) H) =

insert(Agent a)(analzH)

Many properties of parts, analz, synth are easily proved by rule induction, classical
reasoning and rewriting. Rule inversion plays a minor role except with synth. The overhead
presents just a few of the approximately 70 theorems proved about these and similar set
operations.

Of the three set operations, parts is the easiest to reason about. It is the only one of the
operations that distributes over union. Given a specific argument it can be evaluated using
obvious rules. Atomic members of its argument are simply extracted, becoming members
of the result; other members are broken down and the new argument recursively evaluated.

On the other hand, analz is the hardest to reason about. During evaluation, we cannot
extract a key without first showing that there are no encrypted messages that it could
decrypt. Simiarly one cannot extract an encrypted message without knowing whether or
not there is a key available to decrypt it. The fourth equation on the slide shows the
treatment of agents names in the argument: they can be extracted.

We have several equations that help break down expressions in which the operations are
nested. All the operations are idempotent. The equation

analz(synthH) = analzH ∪ synthH

has a difficult (though largely automatic) proof. It is easily understood, especially with the
help of a diagram. An analogous equation holds for parts.

There is no equation to break down the combination synth(analzH), which is the set of
messages that can be built from everything that can be decrypted from H. “Fake” messages
from the Enemy are of this form.
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Specifying a Protocol

[[evs ∈ traces;

X ∈ synth (analz (sees Enemy evs))

]]=⇒ (Says EnemyB X)#evs ∈ traces

[[evs ∈ traces; A �= Server]] =⇒
(Says A Server · · · )#evs ∈ traces

An event is something of the form SaysA B X, namely A says X to B. Other events
could be envisaged, corresponding to internal actions of agents.

The function sees describes what an agent sees from a list of events. The enemy sees
all traffic; other agents see only what is intended for them. From the empty list, each agent
sees his initial state, which contains only the key shared with the Server.

A trace is a list of events that could occur during execution of a protocol. We try to
prove that all possible traces are safe — where safety is expressed in terms of keys the
Enemy can see, for instance.

Here are just two rules of the inductive definition of traces. The empty list is also a
trace: the initial trace. Further rules describe the protocol in terms of what message an
agent receives, and what message is sent in response.

The first rule shown describes Enemy behaviour. The enemy may say anything he can
say. We do not expect him to invent new nonces here, but he can also participate in protocol
runs as if he were friendly.

One normally assumes that the Enemy can block messages. We do not need to model
this, as nothing in the framework forces agents to respond to messages anyway.

In early experiments I have formalized part of the Needham-Schroeder protocol with
shared keys. Safety properties are proved by rule induction over traces. I have managed
to prove that, even if the Enemy knows a friendly agent’s key, session keys issued for other
agents remain secure for ever — from the Enemy and even from other agents. This amounts
to both a security property and an authenticity property.

One limitation of the present formalization is that protocol runs may not be interleaved.
This limitation could be restricted but it might make already difficult proofs harder still.
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Derivation of Functional Programs

Aim: derive correct programs from specifications

Prove a theorem like

?f ∈ {f | ∀x . P (x) → Q(fx)}

Derive a function with precondition P , postcondition Q

Interleave design and verification

Dijkstra [6] is usually credited with the idea that we should transform specifications
into correct programs, instead of writing programs and afterwards trying to prove their
correctness. The fact remains that people often have intuitions about correct code that is
not directly driven by such a formal process. An effective tool for correct-program derivation
should allow programmers to interleave programming with proving. Then, their guesses
about the program structure can immediately be submitted for verification, and used to
decompose the original specification to specifications of the remaining program components.

In the context of functional programming, there are two main approaches. Manna and
Waldinger’s deductive synthesis [19] is based on classical first order logic. The “proofs as
programs” paradigm is based on constructive type theories [43].

Research of this sort can be done in Isabelle, using its ability to prove goals containing
unknowns. The unknowns stand for parts of the program that remain to be written, and
can be instantiated incrementally. This might happen by direct user command, or perhaps
automatically, guided by a logical specification of what that piece of code has to accomplish.

An impressive implementation of Manna and Waldinger’s approach is Martin Coen’s
PhD work on interactive derivation of functional programs [5]. Also relevant is work done
at the Max Planck Institute, Saarbrcken [2, 3], on deriving logic and functional programs.
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The Elements of CCL

CCL = FOL + typed sets + functional language

Constructors for pairs, functions and recursion

Types defined set theoretically to include Π, Σ, recursion

– can express Bool, Nat, A + B, A × B, etc.

Tactics for type-checking, proving and instantiation

Examples: sorting, unification, etc.

One can easily use Isabelle to prove theorems of the form P (?f), where P is a spec-
ification, and instantiate ?f to some function in the logic. This is unsatisfactory for two
reasons: (1) typically P will mention ?f more than once, resulting in blow-up, and (2) not
all functions expressible in ZF or HOL are executable.

Point (1) can be addressed using the {f | ∀x . P (x) → Q(fx)} notation. Point (2) is
best dealt with by formalizing a programming language, instead of identifying programs
with mathematical functions.

Coen’s Classical Computational Logic (CCL) extends first-order logic with a functional
language, defined by an operataional semantics. His approach synthesis derives programs in
this language, rather than mathematical functions. Types are sets of equivalences classes of
terminating programs. They include the Π and Σ types found in constructive type theories,
recursive types and subset types. Their definitions are fairly routine, using set theory.

Termination arguments are expressed using well-founded relations, not in terms of the
restrictive framework of primitive recursion. Later, unpublished work extended the approach
to lazy functional programs. Termination is replaced the standard notion of canonical form
(or weak head normal form).

Coen did some extended examples, deriving functional programs for subtractive division,
insertion sort and unification. Subtractive division is a simple demonstration of why we need
well-founded recursion instead of primitive recursive, while unification is an example of a
short program with a complex correctness proof. Much of this work is distributed with
Isabelle.
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Survey of Other Work

• the hardware description language Ruby

• labelled deductive systems for modal logics

• Lamport’s Temporal Logic of Actions

• a logic for imperative programming, VTLoE

• the Z specification language

Ole Rasmussen has embedded the relational hardware description language Ruby in ZF.
David Basin, Sen Matthews and Luca Vigan are applying Isabelle to study combinations

of logics (via labelled deductive systems). As a first example of modular presentation of
logics, they have implemented a wide variety of modal logics (including K, D, T, B, KD45,
S4, S4.2 S5).

Sen Matthews is using Isabelle to implement Feferman’s theory of finitary inductive
definitions, FS0.

Krzysztof Gra̧bczewski has mechanized the first two chapters of Equivalents of the Axiom
of Choice by Rubin and Rubin, in ZF.

Ongoing work involving the Universities of Cambridge, Warwick and Nancy concerns
developing support for Lamport’s Temporal Logic of Actions and applying it to correctness
proofs for concurrent programs.

Jacob Frost has implemented the Variable-Typed Logic of Effects, which is intended to
support reasoning about imperative programming at a low level.

The TokiZ research project aims to build a toolkit that supports the use of the formal
specification language Z and to study the theoretical issues involved. They have implemented
a prototype including a deductive system for Z and a substantial part of the mathematical
library associated with Z. The prototype is a deep semantic embedding of Z in Isabelle.
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Proof Tools Should Provide . . .

• a higher-order syntax

• a generic proof framework

• generic, automatic proof tools

• set theory (typed or untyped)

• (co)inductive definitions

To conclude, let us recall those features of Isabelle that have turned out to be particularly
successful. They should be borne in mind when one designs a new tool.

A higher-order syntax is essential to support variable binding. This does not mandate
the use of higher-order logic, though it is not a bad choice.

Many formal methods involve specialized formalisms, so a generic framework is valuable.
This includes strong support for various notations, as well as an ability to mechanize various
forms of reasoning. Researchers using other tools (such as HOL and PVS) often embed
formalisms into them.

Automatic proof support is absolutely essential. Proof checking cannot cope with proofs
of realistic size. Decision procedures are useful, provided they are not too brittle. Isabelle’s
classical reasoner and simplifier cope with many classical logics.

PVS is an interesting experiment in the use of an elaborate type system. Its subtypes do
many of the same jobs as typed sets. PVS type-checking ensures that many checks are made
that users might otherwise forget about. Nonetheless, this type system is very complex, and
does not obviate the need for set-theoretic constructs. Users of higher-order logic have often,
in the past, reasoned about sets in ad-hoc ways in terms of predicate variables. We need
proper support for set theory, including all the usual operators, and the ability to reason
about their properties.

Many computational phenomena can be modelled using inductive or coinductive defini-
tions.
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