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Abstract. Locales are a means to define local scopes for the interactive
proving process of the theorem prover Isabelle. They delimit a range in
which fixed assumption are made, and theorems are proved that depend
on these assumptions. A locale may also contain constants defined locally
and associated with pretty printing syntax.
Locales can be seen as a simple form of modules. They are similar to
sections as in AUTOMATH or Coq. Locales are used to enhance ab-
stract reasoning and similar applications of theorem provers. This paper
motivates the concept of locales by examples from abstract algebraic
reasoning. It also discusses some implementation issues.

1 Motivation

In interactive theorem proving it is desirable to get as close as possible to the
convenience of paper proof style, making developments more comprehensible
and self declaring. In mathematical reasoning, assumptions and definitions are
handled in a casual way. That is, a typical mathematical proof assumes propo-
sitions for one proof or a whole section of proofs and local to these assumption
definitions are made that depend on those assumptions. The present paper intro-
duces a concept of locales for Isabelle [Pau94] that aims to support the described
processes of local assumptions and definition.

In mathematical proofs, we often want to define abbreviations for big expres-
sions to enhance readability. These abbreviations might implicitly refer to terms
which are arbitrary but fixed values for the entire proof. Isabelle’s pretty print-
ing and definition possibilities are mostly sufficient for this purpose. But there
are still examples where a definition in a theory is too strong in the sense that
the syntactical constants used for abbreviations are of no global significance.
Definitions in an Isabelle theory are visible everywhere.

In the case study of Sylow’s theorem [KP99], we came across several such
local definitions. There, we define a set M as {S ⊆ G.〈cr〉 | order(S) = pα}
where G, p, and α are arbitrary but fixed values with certain properties. This is
just for one single big proof, and has no general purpose whatsoever. The formula
does not even occur in the main proposition. Still, in Isabelle98 as it is, we only
have the choice of spelling this term out wherever it occurs, or defining it on
the global level, which is rather unnatural. Then we would have to parameterize
over all variables of the right hand side. In our example we would get something
like M(G, p, α) which is almost as bad as the original formula.
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1.1 Related Work

There are several theorem provers that support modules, e.g. IMPS [FGT93],
PVS [OSRSC98], and Larch [GH93]. The authors of these systems suggest to
use their modules for the representation of mathematical structures, for exam-
ple abstract algebraic structures like groups. This representation by modules is
often not adequate because the modules have no representation in the logic. The
“little theories” of IMPS come closest to an adequate representation of math-
ematical structures by providing a transformation between types and sets (see
also [Kam99a, Chapt. 2]).

However, modules offer locality by providing local contexts in which formulas
can make use of local declarations and definitions. Locales provide the locality
that is part of a module concept. For adequate representation of mathematical
structures we propose the concept of Σ and Π-types as it is common in type
theories. The first author adapted this approach for Isabelle/HOL [Kam99b] set
theory. In general, type theories are more suited for the adequate representation
of mathematical structure than classical logics. But, not everyone wants to use
type theory.

Locales implement a sectioning device similar to that in AUTOMATH [dB80]
or Coq [Dow90]. In contrast to this kind of sections, locales are defined statically.
Also, optional pretty printing syntax and dependent local definitions are part
of the concept. Windley [Win93] describes abstract theories for HOL [GM93].
They are more adequate than classical modules, but do not offer the same no-
tational advantages as locales. Deviating from the other approaches, locales do
not have an instantiation mechanism, instead they enable exporting of theorems
for individual instantiation (cf. Sect. 3.2).

1.2 Overview

Subsequently, we explain a simple approach to sectioning for the theorem prover
Isabelle. In Sect. 2 we describe the locale concept and address issues of opening
and closing of locales. We present aspects concerning concrete syntax, including
a means for local definitions. We continue in Sect. 3 with the fundamental op-
erations on locales and their features. Section 4 describes the implementation of
the ideas. We give a simple example illustrating an application from algebra in
Sect. 5. Finally, we discuss more general aspects of locales in Sect. 6.

2 Locales — the Concept

Locales delimit a scope of locally fixed variables, local assumptions, and local
definitions. Theorems that are proved in the context of locales may make use of
these local entities. The result will then depend on the additional hypotheses,
while proper local definitions are eliminated.

A locale consists of a set of constants (with optional pretty printing syntax),
rules and definitions. Defined as named objects of an Isabelle theory, locales can
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be invoked later in any proof session. By virtue of such an invocation, any locale
rules and definitions are turned into theorems that may be applied in proof
procedures like any other theorem. Similarly, the definitions may abbreviate
longer terms, just like ordinary Isabelle definitions. On the other hand, the rules
and definitions are only local to the scope that is defined by a locale.

Theorems proved in the scope of a locale can be exported to the surrounding
theory context. In that case, rules employed for the proof become meta-level
assumptions of the exported theorem. For the case of actual definitions, these
hypotheses are eliminated via generalization and reflexivity. Thus the proof result
becomes an ordinary theorem of the enclosing Isabelle theory.

Subsequently, we explain several aspects of locales. There are basically two
ideas that form the concept of locales: one is the possibility to state local as-
sumptions, and the other one is to make local definitions which can depend on
these assumptions, and may use pretty printing. With those two main ideas the
notion of a locale constant is strongly connected.

2.1 Locale Rules

To explain what locales are it is best to describe the main characteristics of
Isabelle that lead to this concept and are the basis of their realization. The
feature of Isabelle that builds the basis for the locale rules is Isabelle’s concept
of meta-assumptions.

In Isabelle each theorem may depend upon meta-assumptions. They are the
antecedents of theorems of Isabelle’s meta-logic — a form of the predicate cal-
culus defined by a system of natural deduction rules. Meta-assumptions usually
remain fixed throughout a proof and may be used within it in any order. The
judgment that φ holds under the meta-assumptions φ1, . . . , φn is written as

φ [φ1, . . . , φn]

A more conventional notation for this would be φ1, . . . , φn ` φ. Note that this
implicit ` is different from the implication of the meta-logic ==> (cf. Sect. 5).

The first main aspect of locales is to build up a local scope, in which a set of
rules, the locale rules, are valid. The local rules are realized by using Isabelle’s
meta-assumptions as an assumption stack. Logically, a locale is a conjunction of
meta-assumptions; the conjuncts are the locale rules. Opening the locale corre-
sponds to assuming this conjunction.

In Isabelle98 as it is, a meta-assumption can be introduced in proofs at
any time, but by the end of the proof, Isabelle would complain about extrane-
ous hypotheses. With the locale concept added to Isabelle, locale rules become
meta-assumptions when the locale is invoked. A theorem proved in the scope of
some locale, can use these rules. The result extraction process at the end of a
proof has been modified accordingly to cope with this: the additional premises
stemming from the locale are entailed in the conjunction; the proof result is
admitted with the additional premises attached as meta-assumptions of the the-
orem. Hence, if this theorem is used in the same locale, the locale rules will be
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matched automatically, rather than producing new subgoals. All locale rules can
be used throughout the life time of the locale. The life time is determined by the
interactive operations of opening and closing (cf. Sect. 3.2).

2.2 Locale Constants

There is a notion of a locale constant that is integral part of the locale concept. A
locale implements the idea of “arbitrary but fixed” that is used in mathematical
proofs. We can assume certain terms as fixed for a certain section of proofs,
and we can state further rules or define other terms depending on them. These
arbitrary but fixed terms are the locale constants. The locale constants may
be viewed from the outside as parameters, because they become universally
quantified variables, when a result theorem is exported.

The idea of the locale constant is to use the locale as a scope such that inside
the locale a free variable can be considered as a constant. Technically, locale
constants behave like logical constants while the locale is open. In particular, they
may be subject to the standard Isabelle pretty printing scheme, e.g. equipped
with infix syntax.

A locale corresponds to a certain extent to modules in a theorem prover, with
some notable restrictions of declaring items, though. In particular, a locale may
not contain type constructor declarations and the constants are not persistent.
The outside view of locales is realized in a different way. Instead of presenting
the entire locale similar to a parameterized module that can be instantiated, one
can export theorems from inside the locale. This export transforms a theorem
into a general form whereby the locale is represented in the assumptions of the
theorem.

2.3 Local Definition and Pretty Printing

A major reason for having a sectioning device like locales are user requirements to
make temporary abbreviations in the course of a proof development. As pointed
out in Sect. 1, there are large formulas that are used in proofs and do not
have a global significance. Moreover, they might not even occur in the final
conjecture of the theorem that we want to use. Conceptually, the definition of
such logical terms is not a persistent definition. Nevertheless, we want to use such
definitions to make the theorems readable, and the proof process clear. Hence,
one aspect is the locality of these definitions. The other aspect, as illustrated by
the introductory example as well, is that the local definitions might depend on
terms that are constants in a certain scope. For example, we want to write M
only, not a notation like M(G, p, α) as it would be necessary, if we wanted to
refer to the terms that form the other premises in this particular proof [KP99].

Another common thing in abstract algebra are formulas which are not so big,
but suppress implicit information, e.g. we write Ha for the right coset of a with
respect to the subset H of a group G. Since the group G containing this coset is
a parameter to this definition we would have to define something like r coset G
H a. This is partly the same problem as with the parameters of the definitionM.
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Note that the normal pretty printing mechanism would not solve this problem
either: neither definitions nor pretty printing syntax can hide arguments, like G
here, although these are fixed in a local context.

These features are realized by locales. In a locale where G is an arbitrary but
fixed group for a series of theorems we can use a syntax like H #> a instead
of r coset G H a. We create a simple locale definition mechanism for concrete
syntax which implements the concept of a local definition with optional pretty
printing syntax. The concept of such local definitions is based on the locale
constant: inside a locale, a locale constant can be used to abbreviate longer
terms. The terms we define can even be dependent on other locale constants if
those are contained in the scope of the locale. Since locale constants are only
temporarily fixed the latter feature realizes dependent definitions, i.e. the defined
terms may omit implicit information of the context. This concrete syntax may
only be used as long as the locale is open. Viewed from outside the locale, this
syntax does not exist. The theorems proved inside the locale using the syntax can
be transformed into global theorems with the syntactical abbreviations unfolded
and the locale constants replaced by free variables.

In a locale where we want to reason about a group G and its right cosets, we
declare G as a locale constant. Then we can define another locale constant #>,
and define this in terms of the underlying theory of groups where the operation
r coset is defined generally.

rcos_def "H #> x == r_coset G H x"

If the locale containing this definition is open, we can use the convenient syntax
H #> x for right cosets, and it is defined as the sound operation of right cosets
with the parameter G fixed for the current scope. If we finish a theorem and
want to use it as a general result, we can export it. Then, the locale constant G
will be turned into a universally quantified variable, and the definition will be
expanded to the underlying adequate definition of right cosets.

3 Operations on Locales

Locales are introduced as named syntactic objects within Isabelle theories. They
can then be opened in any theory that contains the theory they are defined for.

3.1 Defining Locales

The ideas of locale definitions, rules, and constants can be combined together to
realize a sectioning concept. Thereby, we attain a mechanism that constitutes
a local theory mechanism. To adjust this rather dynamic idea of definition and
declaration to the declarative style of Isabelle’s theory mechanism, we integrate
the definition of locales into the theories as another language element of Isabelle
theory files. The concrete syntax of locale definitions is demonstrated by ex-
ample below. Locale group assumes the definition of groups as a set of records
[NW98,Kam99b] as follows (cf. Sect. 5).
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locale group =

fixes

G :: "’a grouptype"

e :: "’a"

binop :: "’a => ’a => ’a" (infixr "#" 80)

inv :: "’a => ’a" ("i (_)" [90] 91)

assumes

Group_G "G : Group"

defines

e_def "e == (G.<e>)"

binop_def "x # y == (G.<f>) x y"

inv_def "i x == (G.<inv>) x"

The above part of an Isabelle theory file introduces a locale for abstract reasoning
about groups.

The subsection introduced by the keyword fixes declares the locale con-
stants in a way that closely resembles Isabelle’s global consts declaration. In
particular, there may be an optional pretty printing syntax for the locale con-
stants. As illustrated in the example, the user can define syntactical notations
for operators, by defining a pattern for the application, as for the prefix syntax
of inv. Alternatively, one can use the keywords infixr or infixl, as in the
example of binop, to define a right or left associative infix syntax.

The subsequent assumes specifies the locale rules. They are defined like Is-
abelle rules, i.e. by an identifier followed by the rule given as a string. Locale
rules admit the statement of local assumptions about the locale constants. The
assumes part is optional. Non-fixed variables in locale rules are automatically
bound by the universal quantifier !! of the meta-logic. In the above example, we
assume that the locale constant G is a member of the set Group, i.e. is a group.

Finally, the defines part of the locale introduces the definitions that shall
be available in this locale. Here, locale constants declared in the fixes section
can be defined using the Isabelle meta-equality ==. The definition can contain
variables on the left hand side, if the defined locale constant has appropriate
type. This improves natural style of definition, for example for constants that
represent infix operators, e.g. binop. The non-fixed variables on the left hand
side are considered as schematic variables and are bound automatically by uni-
versal quantification of the meta-logic. The right hand side of a definition must
not contain variables that are not already on the left hand side. In so far locale
definitions behave like theory-level definitions. However, the locale concept real-
izes dependent definitions in that any variable that is fixed as a locale constant
can occur on the right hand side of definitions. For example, a definition like

e_def "e == (G.<e>)"

contains the locale constant G on the right hand side. In principle, G is a free
variable. Hence, this is a dependent definition. In Isabelle defs this would cause
an error message “extra variable on right hand side”. Naturally, definitions can
already use the syntax of the locale constants in the fixes subsection. The
defines part is, as the assumes part, optional.
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Note also, that there are two different ways a locale constant can be used:
one is to state its properties abstractly using rules, and one is to declare it as a
name for a definition.

3.2 Invocation and Scope

After definition, locales may be opened and closed in a block-structured manner.
The list (stack) of currently active locales is called scope. The operation for
activating locales is open, the reverse one is close.

Scope The locale scope is part of each theory. It is a dynamic stack containing
all active locales at a certain point in an interactive Isabelle session. The scope
lives until all locales are explicitly closed. At any time there can be more than
one locale open. The contents of these various active locales are all visible in the
scope. Locales can be built by extension from other locales (cf. Sect. 3.3), i.e.
they are nested. If a locale built by extension is open, the nesting is reflected in
the scope, which contains the nested locales as layers. To check the state of the
scope during a development the function Print scope may be used. It displays
the names of all open locales on the scope. The function print locales applied
to a theory displays all locales contained in that theory and in addition also the
current scope.

Opening Locales can be opened at any point during an Isabelle session where
we want to prove theorems concerning the locale. Opening a locale means making
its contents visible by pushing it onto the scope of the current theory. Inside a
scope of opened locales, theorems can use all definitions and rules contained in
the locales on the scope. The rules and definitions may be accessed individually
using the function thm. This function is applied to the names assigned to locale
rules and definitions as strings. The opening command is called Open locale
and takes the name of the locale to be opened as its argument. In case of nested
locales the opening command has to respect the nested structure (cf. Sect. 3.3).

Closing Closing means to cancel the last opened locale, pushing it off the scope.
Theorems proved during the life time of this locale will be disabled, unless they
have been explicitly exported, as described below. However, when the same locale
is opened again these theorems may be used again as well, provided that they
were saved as theorems in the first place, using qed or ML assignment. The
command Close locale takes a locale name as a string and checks if this locale
is actually the topmost locale on the scope. If this is the case, it removes this
locale, otherwise it prints a warning message and does not change the scope.

Export of Theorems Export of theorems transports theorems out of the scope
of locales. Locale rules that have been used in the proof of a theorem inside a
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locale are carried by the exported form of the theorem as its individual meta-
assumptions. The locale constants are universally quantified variables in the
exported theorems, hence such theorems can be instantiated individually. Def-
initions become unfolded; locale constants that were merely used on the left
hand side of a definition vanish. Logically, exporting corresponds to a combined
application of introduction rules for implication and universal quantification.
Exporting forms a kind of normalization of theorems in a locale scope.

According to the possibility of nested locales there are two different forms of
export. The first one is realized by the function export that exports theorems
through all layers of opened locales of the scope. Hence, the application of export
to a theorem yields a theorem of the global level, that is, the current theory
context without any local assumptions or definitions.

The other export function Export transports theorems just one level up in
the scope. When locales are nested we might want to export a theorem, but
not to the global level of the current theory, i.e. not outside all locales in the
nesting, instead just to the previous level, because that is where we need it as a
lemma. If we are in a nesting of locales of depth n, an application of Export will
transform a theorem to one of level n − 1, i.e. into one that is independent of
the definitions and assumptions of the locale that was on level n, but still uses
locale constants, definitions and rules of the n− 1 locales underneath.

3.3 Other Aspects

Proofs The theorems proved inside a locale can use the locale rules as ax-
ioms, accessing them by their names. The used locale rules are held as meta-
assumptions. Hence, subgoals created in a proof matching locale assumptions
are solved automatically. Theorems proved in a locale can be exported as theo-
rems of the global level under the assumption of the locale rules they use. If a
theorem needs only a certain portion of the locale’s assumptions, only those will
be mentioned in the global form of the theorem.

Polymorphism Isabelle’s meta-logic is based on a version of Church’s Simple
Theory of Types [Chu40] with schematic polymorphism. Free type variables are
implicitly universally quantified at the outer level of declarations and statements.
For example, a constant declaration

consts f :: ’a => ’a

basically means that f has type ∀α.α⇒ α. So, if there is a subsequent constant
declaration using the same type variable α, those are different type variables.
That is, they can be instantiated differently in the same context.

Now, for locales the scope of polymorphic type variables is wider. The quan-
tification of the type variables is placed at the outside of the locale. On the one
hand, this difference allows us to define sharing of type domains of operators
at an abstract level. This is important for the algebraic reasoning that we are
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focusing on in the examples. On the other hand, locale definitions may not be
polymorphic within the locale’s scope.

This feature solves the problem we encountered in case studies from abstract
algebra, most prominently in the proof of Sylow’s theorem [KP99]. There we had
to choose a fixed type i in order to model the fixing of a polymorphic type of
groups to enable readable formulas. Thereby, we lost the generality of the result.

Augmenting Locales As locales are defined statically in an Isabelle theory,
operations on locales may be used to construct locales from other predefined
ones statically in an Isabelle theory. A locale can be defined as the extension
of a previously defined locale. This operation of extension is optional and is
syntactically expressed as

locale foo = bar + ...

The locale foo builds on the constants and syntax of the locale bar. That is, all
contents of the locale bar can be used in definitions and rules of the correspond-
ing parts of the locale foo. Although locale foo assumes the fixes part of bar it
does not automatically subsume its rules and definitions. Normally, one expects
to use locale foo only if locale bar is already active. The opening mechanism is
designed such that in the case of a locale built by extension it opens the ancestor
automatically. If one opens a locale foo that is defined by extension from locale
bar the function Open locale checks if locale bar is open. If so, then it just
opens foo, if not, then it prints a message and opens bar before opening foo.
Naturally, this carries on, if bar is again an extension. The locales bar and foo
become separate layers on the scope; foo has to be closed before bar can be
closed (cf. Sect. 3.2).

In case of name clashes always the innermost definition is visible. That is, a
name defined in a locale hides an equal name of a theory during the life time of
the locale. When locales are built by extension, names may be hidden similarly.
This is not possible if unrelated locales are opened simultaneously.

Another interesting device (which has not yet been implemented) is renaming
of locale constants. This can be very useful if we want to have more than one
instance of the same locale in the scope, for example when we reason with two
different groups. The following illustrates a possible renaming mechanism: loc r
is created from loc c by renaming all occurrences of locale constant c by r.

locale loc_r = loc_c [r/c]

Merging of locales by naming them could be another operation for locales. It
can be explained through extension.

4 Implementation issues

In this section we briefly highlight some of the implementation issues of locales.
In particular, we outline some key features of recent versions of Isabelle that
enable to implement new theory definition features properly.
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Extending the Isabelle theory language by any kind of new mechanism typi-
cally consists of the following stages:

(1) providing private theory data,
(2) writing a theory extension function,
(3) installing a new theory section parser.

For our particular mechanism of locales, we also have to adapt parts of the
Isabelle goal package to cope with scopes as discussed in the previous section:

(4) modify term read and print functions,
(5) modify proof result operation.

4.1 Theory Data

Basically, any new theory extension mechanism boils down to already existing
ones, like constant declarations and definitions. For example, the standard Is-
abelle/HOL datatype package could be seen just as a generator of huge amounts
of types, constants, and theorems. This pure approach to theory extension has
a severe drawback, though. It is like compiling down information, losing most
of the original source level structure. E.g. it would be extremely hard to figure
out any datatype specification (the set of constructors, say) from the soup of
generated primitive extensions left behind in the theory.

The generic theory data concept, introduced in Isabelle98 and improved in
later releases, offers a solution to this problem by enabling users to write pack-
ages in a structure preserving way. Thus one may declare named slots of any
ML type to be stored within Isabelle theory objects. This way new extensions
mechanisms may deposit appropriate source-level information as required later
for any derived operation.

Picking up the datatype example again, there may be a generic induction
tactic, that figures out the actual rule to apply from the type of some variable.
This would be accomplished by doing a lookup in the private datatype theory
data, containing full information about any HOL type represented as inductive
datatype.

Note that traditionally in the LCF system approach, such data would be
stored as values or structures within the ML runtime environment, with only
very limited means to access this later from other ML programs. Breaking with
this tradition, the recent Isabelle approach is more powerful, internalizing generic
data as first-class components of theory objects.

The ML functor TheoryDataFun that is part of Isabelle/Pure provides a fully
type-safe interface to generic data slots1. The argument structure is expected to
have the following signature:
1 This is achieved by invoking most of the black-magic that Standard ML has to

offer: exception constructors for introducing new injections into type exn, private
references as tags for identification and authorization, and functors for hiding. We
see that ML is for the Real Programmer, after all!
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signature THEORY_DATA_ARGS =

sig

val name: string

type T

val empty: T

val merge: T * T -> T

val print: Sign.sg -> T -> unit

end

Here name and T specify the new data slot by name and ML type, while empty
gives its initial value. The merge operation is called when theories are joined, as
should be the private data. Finally, print shall display the theory data in some
human readable way; the function obtains the signature of the current theory
(“self”) as additional argument.

The result structure of TheoryDataFun is as follows:

signature THEORY_DATA =

sig

type T

val init: theory -> theory

val print: theory -> unit

val get: theory -> T

val put: T -> theory -> theory

end

The new data slot has to be made known via above init operation. This is much
like a run-time type declaration within a theory. Afterwards any derived theory
knows about the print, get and put functions as given above.

For locales, we have defined a data slot called “Pure/locales” that con-
tains a table of all defined locales, together with their hierarchical name space.
There is also a reference variable of the current scope, containing a list of locales
identifiers.

4.2 Theory Extension Function

Employing above private theory data slot, we have implemented the actual locale
definition mechanism on top of usual Isabelle primitives (e.g. add modesyntax).
The ultimate result is the ML function add locale, which is the actual theory
extender that does all the hard work:

val add locale: . . . -> theory -> theory

Here the dots refer to the locale specification, including fixes, assumes, defines
arguments. After preparing these by parsing, type checking etc., we store the
information via above get and put operations in our theory data slot, updating
the table of existing locales. We also invoke a few other Isabelle primitives to
extend the theory’s syntax, for example.
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4.3 Theory Section Parser

Another part of the scheme of adding a theory section to Isabelle is to provide
a parsing method. The actual parser locale decl for the locale definitions is
just one ML-term constructed from parser combinators as are well-known in
the functional programming community. Using Isabelle’s ThySyn.add syntax
operation we can now associate our function add locale with the locale decl
parser and plug it into the main theory syntax.

4.4 Interface

Apart from the actual theory extension function discussed above, there are a
few more things to be done for the locale implementation.

The read and print functions of terms have to be adjusted to locales: if a
locale is open, we want any term that is read in, to respect the bindings of
types and terms of that locale. We augment the basic function read term such
that it checks if a locale is open, i.e. if the current scope is nonempty, and then
bases the type inference on this information. Similarly, we adjust the function
pretty term. It is used to print proof states. Isabelle’s goal package has been
modified to use these read and print functions.

5 Examples from Abstract Algebra

We illustrate the use of the implementation by examples with the abstract al-
gebraic structure of groups. We use a representation of groups that we found to
be the most appropriate for abstract algebraic structures [Kam99b]. The base
theory is Group. It contains the theory for groups. We define a basic pattern type
for the simple structure of groups, by an extensible record definition [NW98]2.

record ’a grouptype =

carrier :: "’a set" ("_ .<cr>" [10] 10)

bin_op :: "[’a, ’a] => ’a" ("_ .<f>" [10] 10)

inverse :: "’a => ’a" ("_ .<inv>" [10] 10)

unit :: "’a" ("_ .<e>" [10] 10)

Now, we have defined a record type with four fields that gives us the projection
functions to refer to the constituents of an element of this type. The class of
all groups is defined as a typed HOL set over this record type [Kam99b]. This
definition entails all the properties of a group and enables to state the group
property quite concisely as

G : Group

2 We use pretty printing facilities for records that are not yet available. The example
remains the same, because one can achieve the same syntax using separate syntax

declarations manually.
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Given that the Isabelle theory for groups contains the locale displayed in Sect.
3 we can now use it in an interactive Isabelle session. We open the locale group
with the ML command

Open_locale "group";

Now the assumptions and definitions are visible, i.e. we are in the scope of the
locale group. ML function print locales shows all information about locales
in the theory:

print_locales Group.thy;

This returns all information about the locale group and the current scope.3

locale name space:

"Group.group" = "group", "Group.group"

locales:

group =

consts:

G :: "’a set * ([’a, ’a] => ’a) * (’a => ’a) * ’a"

e :: "’a"

binop :: "[’a, ’a] => ’a"

inv :: "’a => ’a"

rules:

Group_G: "G : Group"

defs:

e_def: "e == (G.<e>)"

binop_def: "!!x y. binop x y == (G.<f>) x y"

inv_def: "!!x. inv x == (G.<inv>) x"

current scope: group

Note, how the definitions with free variables have been bound by the meta-level
universal quantifier (!!). The locale print function also gives information about
the name spaces of the table of locales in the theory Group and displays the
contents of the current scope.

As an illustration of the improvement we show how a proof for groups works
now. Assuming that the theory of groups is loaded we demonstrate one proof
that shows how the inverse can be swapped with the group operation.

Goal "[|x : (G.<cr>); y : (G.<cr>)|] ==> i(x # y) = (i y)#(i x)";

Isabelle sets the proof up and keeps the display of the dependent locale syntax.

1.!!x y.[|x : (G.<cr>); y : (G.<cr>)|] ==> i(x # y) = (i y)#(i x)

We can now perform the proof as usual, but with the nice abbreviations and
syntax. We can apply all results which we might have proved about groups
inside the locale. We can even use the syntax when we use tactics that use
explicit instantiation, e.g. res inst tac. When the proof is finished, we can
assign it to a name using result(). The theorem is now:
3 The print function is mainly for inspecting and debugging, so the output of terms is

in their actual internal form without locale syntax.
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val inv_prod = "[| ?x : (G.<cr>); ?y : (G.<cr>) |]

==> inv (binop ?x ?y) = binop (inv ?y) (inv ?x)

[!!x. inv x == (G.<inv>) x, G : Group,

!!x y. binop x y == (G.<f>) x y, e == (G.<e>)]" : thm

As meta-assumptions annotated at the theorem we find all the used rules and
definitions, the syntax uses the explicit names of the locale constants, not their
pretty printing form. The question mark ? in front of variables labels free
schematic variables in Isabelle that may be instantiated later. The assumption e
== (G.<e>) is included because during the proof it was used to abbreviate the
unit element.

To transform the theorem into its global form we just type export inv prod.

"[| ?G : Group; ?x : (?G.<cr>); ?y : (?G.<cr>) |] ==>

(?G.<inv>)((?G.<f>) ?x ?y) = (?G.<f>)((?G.<inv>) ?y)((?G.<inv>) ?x)"

The locale constant G is now a free schematic variable of the theorem. Hence,
the theorem is universally applicable to all groups. The locale definitions have
been eliminated. The other locale constants, e.g. binop, are replaced by their
explicit versions, and have thus vanished together with the locale definitions.

The locale facilities for groups are of course even more practical if we carry
on to more complex structures like cosets. Assuming an adequate definition for
cosets and products of subsets of a group (e.g. [Kam99b])

r_coset G H a == (λ x. (G.<f>) x a) ‘‘ H

set_prod G H1 H2 == (λ x. (G.<f>) (fst x)(snd x)) ‘‘ (H1 × H2)

where ‘‘ yields the image of a HOL function applied to a set — we use an
extension of the locale for groups thereby enhancing the concrete syntax of the
above definitions.

locale coset = group +

fixes

rcos :: "[’a set, ’a] => ’a set" ("_ #> _" [60,61]60)

setprod :: "[’a set, ’a set] => ’a set" ("_ <#> _" [60,61]60)

defines

rcos_def "H #> x == r_coset G H x"

setprod_def "H1 <#> H2 == set_prod G H1 H2"

This enables us to reason in a natural way that reflects typical objectives of
mathematics — in this case abstract algebra. We reason about the behaviour of
substructures of a structure, like cosets of a group. Are they a group as well?4

Therefore, we welcome a notation like

(H #> x) <#> (H #> y) = H #> (x # y)

when we have to reason with such substructural properties. While knowing that
the underlying definitions are adequate and related properties derivable, we can
reason with a convenient mathematical notation. Without locales the formula
we had to deal with would be
4 They are a group if H is normal which is proved conveniently in Isabelle with locales.
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set_prod G (r_coset G H x)(r_coset G H y) = r_coset G H ((G.<f>) x y)

The improvement is considerable and enhances comprehension of proofs and the
actual finding of solutions — in particular, if we consider that we are confronted
with the formulas not only in the main goal statements but in each step during
the interactive proof.

6 Discussion

First of all, term syntax may be greatly improved by locales because they enable
dependent local definitions. Locale constants can have pretty printing syntax as-
signed to them and this syntax can as well be dependent, i.e. use everything that
is declared as fixed implicitly. So, locales approximate a natural mathematical
style of formalization. Locales are a simpler concept than modules. They do not
enable abstraction over type constructors (which rules out modeling monads, for
example). Neither do locales support polymorphic constants and definitions as
the topmost theory level does.

On the other hand, these restrictions admit to define a representation of a
locale as a meta-logical predicate fairly easily. Thereby, locales can be first-class
citizen of the meta logic. We have developed this aspect of locales elsewhere
[Kam99a]. In the latter experiment, we implemented the mechanical generation
of a first-class representation for a locale. This implementation automatically
extends the theory state of an Isabelle formalization by declarations and defi-
nitions for a predicate representing the locale logically. But, in many cases we
do not think of a locale as a intra-logical object, rather just an theory-level as-
sembly of items. Then, we do not want this overhead of automatically created
rules and constants. We prefer to perform the first-class reasoning separately in
higher-order logic, using an approach with dependent sets [Kam99b].

In some sense, locales do have a first-class representation: globally interest-
ing theorems that are proved in a locale may be exported. Then the former
context structure of the locale gets dissolved: the definitions become expanded
(and thus vanish). The locale constants turn into variables, and the assumptions
become individual premises of the exported theorem. Although this individual
representation of theorems does not entail the locale itself as a first-class citizen
of the logic, the context structure of the locale is translated into the meta-logical
structure of assumptions and theorems. In so far we mirror the local assump-
tions — that are really the locale — into a representation in terms of the simple
structural language of Isabelle’s meta-logic. This translation corresponds logi-
cally to an application of the introduction rules for implication and the universal
quantifier of the meta-logic. And, because Isabelle has a proper meta-logic this
first-class representation is easy to apply.

Generality of proofs is partly revealed in locales: certain premises that are
available in a locale are not used at all in the proof of a theorem. In that case the
exported version of the theorem will not contain these premises. This may seem a
bit exotic, in that theorems proved in the same locale scope might have different
premise lists. That is, theorems may generally just contain a subset of the locale
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assumptions in their premises. That takes away uniformity of theorems of a locale
but grants that theorems may be proved in a locale and will be individually
considered for the export. In many cases one discovers that a theorem that one
closely linked with, say, groups actually does not at all depend on a specific
group property and is more generally valid. That is, locales filter the theorems
to be of the most general form according to the locale assumptions.

Locales are, as a concept, of general value for Isabelle independent of abstract
algebraic proof. In particular, they are independent of any object logic. That is,
they can be applied merely assuming the meta-logic of Isabelle/Pure. They are
already applied in other places of the Isabelle theories, e.g. for reasoning about
finite sets where the fixing of a function enhances the proof of properties of a
“fold” functional and similarly in proofs about multisets and the formal method
UNITY [CM88]. Furthermore, the concept can be transferred to all higher-order
logic theorem provers. There are only a few things the concept relies on. In
particular, the features needed are implication and universal quantification —
the two constructors that build the basis for the reflection of locales via export
and are at the same time the explanation of the meaning of locales. For theorem
provers where the theory infrastructure differs greatly from Isabelle’s, one may
consider dynamic definition of locales instead of the static one.

The simple implementation of the locale idea as presented in this paper works
well together with the first-class representation of structures by an embedding
using dependent types [Kam99b]. Both concepts can be used simultaneously to
provide an adequate support for reasoning in abstract algebra.
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