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Abstract. The reflection theorem has been proved using Isabelle/ZF.
This theorem cannot be expressed in ZF, and its proof requires reasoning
at the meta-level. There is a particularly elegant proof that reduces the
meta-level reasoning to a single induction over formulas. Each case of
the induction has been proved with Isabelle/ZF, whose built-in tools can
prove specific instances of the reflection theorem upon demand.

1 Introduction

A vast amount of mathematics has been verified using proof tools. The Mizar
Mathematical Library1 is probably the largest single repository, but others exist,
built using a variety of theorem-provers. An optimist might conclude that any
theorem can be verified given enough effort. A sufficiently large and talented
team could enter the whole of Wiles’s proof of Fermat’s Last Theorem [17] and
its mathematical prerequisites into a theorem prover, which would duly assert
the formula ∀nxyz (n > 2 → xn + yn 6= zn).

The flaw in this point of view is that mathematicians sometimes reason in
ways that are hard to formalize. Typical is Gödel’s proof [5] of the relative consis-
tency of the axiom of choice (AC). Gödel begins with a complicated set-theoretic
construction. At a crucial stage, he introduces operations on syntax. He defines
absoluteness in terms of the relativization φM of a first-order formula φ with re-
spect to a class M. He proceeds to apply absoluteness to his entire construction.
His proof is of course correct, but it mixes reasoning about sets with reasoning
about the language of sets.

Relativization [8, p. 112] replaces each subformula ∃xφ by ∃x (x ∈ M ∧ φ)
and dually ∀xφ by ∀x (x ∈ M → φ), bounding all quantifiers by M. In Zermelo-
Fraenkel (ZF) set theory, a class is simply a formula and x ∈ M denotes M(x).
So relativization combines the two formulas, φ and M, to yield a third, φM.
This suggests that we recursively define the set F of first-order formulas within
ZF. Relativization for elements of F is trivial to formalize, but it is useless—we
cannot relate the “formulas” in F to real formulas. More precisely, no formula
χ expresses the truth of elements of F . If for each formula φ we write pφq for
the corresponding element of F , then some formula ψ is handled incorrectly:

1 Available via http://mizar.org

http://mizar.org


ψ ↔ ¬χ(pψq) can be proved in ZF. This fact is Tarski’s theorem on the non-
definability of truth [8, p. 41].

Gödel introduced meta-level reasoning in order to make his consistency proof
effective. He could have worked entirely with sets and demonstrated how to
transform a model of set theory into a model of set theory that also satisfied
AC. In the latter approach, if we found a contradiction from the axioms of set
theory and AC, then we would know that there existed a contradiction in set
theory, but we would have no idea how to find the contradiction. Gödel’s methods
let us transform the contradiction involving AC into a contradiction involving
the axioms of set theory alone.

One way to handle meta-level reasoning is to throw away our set theory
provers and work formalistically. We could work in a weak logic, such as PRA,
which has been proposed for the QED project for mechanizing mathematics [13].
In this logic, we would define the set of formulas (the set F ), an internalized
inference system, and the ZF axioms. Instead of proving the theorem φ in a ZF
prover, we would prove the theorem ZF ` pφq in PRA. Then we could easily
express syntactic operations on formulas.

However, the formalist approach is not easy. The formal language of set
theory has no function symbols and its only relation symbols are = and ∈. An
assertion such as 〈x, y〉 ∈ A ∪ B has to be expressed in purely relational form,
say ∃pC [isPair(x, y, p)∧ isUnion(A,B,C)∧ p ∈ C]. Expressions such as {x ∈ A |
φ(x)} and

⋃
x∈A B(x) require a treatment of variable binding. Theorems would

be hard even to state, and their proofs would require reasoning about syntax
when we would rather reason about sets. My earlier work with Gra̧bczewski [12]
using Isabelle/ZF [10,11] demonstrates that large amounts of set theory can
be formalized without taking such an extreme measure. It is worth trying to
see what can be accomplished using a set theory prover, recognizing that we
can never formalize arguments performed at the meta-level. As it happens, our
result can be proved as a collection of separate theorems that Isabelle can use
automatically to prove any desired instance of the reflection theorem.

Overview. The paper introduces the reflection theorem (§2) and the proof even-
tually formalized (§3). Excerpts from the two Isabelle/ZF theories are presented,
concerning normal functions (§4) and the reflection theorem (§5). An interactive
Isabelle session demonstrates the reflection theorem being applied (§6), and the
paper concludes (§7).

2 The Reflection Theorem

The reflection theorem is a simple result that illustrates the issues mentioned
above. Let ON denote the class of ordinals. Suppose that {Mα}α∈ON is a family
of sets that is increasing (which means α < β implies Mα ⊆Mβ) and continuous
(which means Mα =

⋃
ξ∈α Mξ when α is a limit ordinal). Define the class M by

M =
⋃

α∈ON Mα, Then the reflection theorem states that if φ(x1, . . . , xn) is a
formula in n variables and α is an ordinal, then for some β > α and all x1,. . . ,



xn ∈Mβ we have (intuitively)

M |= φ(x1, . . . , xn) ↔ Mβ |= φ(x1, . . . , xn).

I say intuitively, because M could be V, the universal class; as remarked above,
truth in ZF is not definable by a formula. A precise statement of the conclusion
requires relativization:

φM(x1, . . . , xn) ↔ φMβ (x1, . . . , xn).

The reflection theorem reduces truth in the class M to truth in the setMβ , where
β can be made arbitrarily large. It is valuable because classes do not exist in ZF;
they are merely notation. The theorem can be applied by letting M be V and
letting Mα be Vα, the cumulative hierarchy defined by V0 = 0, Vα+1 = P(Vα)
and Vα =

⋃
ξ∈α Vξ when α is limit. The reflection theorem is also applied to L,

the constructible universe [8, p. 169]; it is an essential part of modern treatments
of Gödel’s consistency proof that are based on ZF set theory.

Proving the reflection theorem is not difficult, if only we can formalize it.
Bancerek [1] proved it in Mizar. Mizar’s native Tarski-Grothendieck properly
extends ZF: classes really do exist, and we can define M |= pφ(x1, . . . , xn)q
when M is a class. This solves the problem concerning the definability of truth.
It is ironic that the formalization problems can be solved by working either in
the weaker logic PRA or in a stronger logic.

The approach taken below is more in the spirit of set theory: a theorem
follows from the axioms, while a meta-theorem is a mechanical procedure for
yielding theorems. Most authors do not formalize the meta-theory. Results such
as the following are not meta-theorems, but merely theorem schemes:

a ∈ {x ∈ A | φ(x)} ↔ a ∈ A ∧ φ(a)

a ∈
⋃

x∈A

B(x) ↔ ∃x (x ∈ A ∧ a ∈ B(x))

Their proofs depend not at all on the structure of the formula φ or the expres-
sion B. Thanks to Isabelle’s higher-order syntax, each is a single Isabelle/ZF
theorem, with a trivial proof. The reflection theorem is different: it is proved by
reasoning about a formula’s structure.

3 Proof Overview

The first task in formalizing the reflection theorem is to find a proof with the least
amount of meta-level reasoning. Kunen’s proof [8, p. 136] needs a lemma, also
proved at the meta-level, about a subformula-closed list of formulas. The proof
idea is related to Skolemization and involves finding all existentially quantified
subformulas. Drake’s proof [4, p. 99] requires the formula to be presented in
prenex form and involves a simultaneous construction for the whole quantifier
string. In both proofs, the meta-level component is substantial.



Mostowski’s proof [9, p. 23], fortunately, is a simple structural induction. Re-
flection for atomic formulas is trivial. Reflection for ¬φ(x) and φ(x)∧φ′(x) follows
trivially from induction hypotheses for φ(x) and φ′(x). Reflection for ∃y φ(x, y)
follows from an induction hypothesis for φ(x, y). The main complication is that
the case for ∃y φ(x, y) adds a variable to the induction hypothesis; we do not
want the theorem statement to depend upon the number of free variables in
the formula. By assuming that the class M is closed (in a suitable way) under
ordered pairing, it suffices to derive reflection for ∃y φ(〈x, y〉) from reflection for
φ(〈x, y〉), which trivially follows from reflection for φ(z). The proofs are non-
trivial, but they take place entirely within ZF. The only meta-level reasoning
is the structural induction itself: noting that it suffices to prove the cases for
atomic formulas, ¬, ∧ and ∃. The simple structure of these lemmas makes it
easy to apply reflection to individual formulas and yields an expression for the
class of ordinals that reflect the formula. At the end of this paper, we shall see
Isabelle doing this automatically.

Mostowski’s proof owes its simplicity to the classic technique of strengthening
the induction hypothesis. The required conclusion has the form ∀α ∃β > α . . .;
in other words, the possible values of β form an unbounded class. In Mostowski’s
proof, this class is closed as well as unbounded. A class X of ordinals is closed
provided for every nonempty set Y , if Y ⊆ X then

⋃
Y ∈ X. (The union

⋃
Y is

the supremum, or limit, of the set Y .) It turns out that if X and X′ are closed
and unbounded, then so is X∩X′. This fact is crucial; in particular, it gives an
immediate proof for the conjunctive case of the reflection theorem: if X is the
class of ordinals for φ(x) and X′ is the class of ordinals for φ′(x) then X∩X′ is
a closed, unbounded class of ordinals for φ(x) ∧ φ′(x).

The function F : ON → ON is normal provided it is increasing and contin-
uous:

F (α) < F (β) if α < β

F (α) =
⋃
ξ<α

F (ξ) if α is a limit ordinal

Every normal function enjoys a key property: the class of fixedpoints {α | F (α) =
α} is closed and unbounded. This fact has surprising consequences. Consider
the enumeration of the cardinals, {ℵα}α∈ON. Given that even ℵ0 is infinite, one
might expect α < ℵα to be a trivial theorem, but in fact ℵ is a normal function
and the solutions of ℵα = α form a closed and unbounded class.

Normal functions are used in the critical case of the reflection theorem, when
we have an existential quantifier. Here is a sketch of the argument. At a key
stage in the proof, we seek an ordinal β such that for all x ∈Mβ we have

∃y ∈ M φ(x, y) → ∃y ∈Mβ φ(x, y). (1)

Let α be an ordinal. If x ∈ Mα and y ∈ M then (since M =
⋃

α∈ON Mα)
we can choose the least ξ(x) such that y′ ∈ Mξ and φ(x, y′). This ordinal is a
function of x, and we can apply the replacement axiom over the set Mα to find



the least upper bound of the set {ξ(x)}x∈Mα
. This map from α to

⋃
x∈Mα

ξ(x)
can be used to define a normal function, F . Let β be a fixedpoint of F . Then,
by construction, if x ∈ Mβ and y ∈ M then there exists y′ ∈ MF (β) such that
φ(x, y′). Since F (β) = β we conclude y′ ∈Mβ , which establishes (1).

Two points remain before we can proceed to the Isabelle/ZF proofs. First,
recall that we can restrict attention to unary formulas, deriving reflection for
∃y φ(〈x, y〉) rather than for ∃y φ(x, y). This requires assuming that the class M
is closed under ordered pairing in a suitable way. The natural way is to assume
that Mα is closed under ordered pairing whenever α is a limit ordinal. The class
of limit ordinals is closed and unbounded, so we can intersect this class with
the class found by the proof sketched above and the resulting class will still be
closed and unbounded.

For the second point, recall that the conclusion of the reflection theorem is

φM(z) ↔ φMβ (z).

Working with real formulas makes it impossible to formalize the relativizations
φM and φMβ . It turns out that we can abstract φM(z) to φ(z) and φMβ (z) to
ψ(β, z) in the crucial case of the existential quantifier, proving

∃y ∈ M φ(〈x, y〉) ↔ ∃y ∈Mβ ψ(β, 〈x, y〉).

For the induction hypothesis, we merely need a closed unbounded class of or-
dinals α such that φ(x) ↔ ψ(α, x) for x ∈ Mα. The proof does not require
ψ(α, x) to behave like φMα(x). The resulting theorems inductively generate (at
the meta-level!) pairs of formulas of the form φM and φMβ .

4 Normal Functions in Isabelle/ZF

Two Isabelle/ZF theories define the concepts covered in this paper: one for nor-
mal functions and closed and unbounded classes, the other for the reflection
theorem itself. The files (available from the author) prove about 90 lemmas and
theorems using about 210 proof commands. The next two sections present high-
lights, omitting most proofs and many technical lemmas. The formal material
presented below was generated automatically from the Isabelle theories. It is
similar to what the user sees on the screen when using Proof General.2 These
proofs were not written in ML, as in traditional Isabelle, but as tactic scripts in
the Isar language [16].

Iteration of the function F, written iterates(F,x,n), corresponds to Fn(x).
The following concept is the limit of all such iterations, corresponding to Fω(x).

constdefs
iterates omega :: "[i⇒i,i] ⇒ i"

"iterates omega(F,x) ≡
⋃
n∈nat. iterates(F,x,n)"

The ordinal ω is written nat in Isabelle/ZF because it is the set of natural
numbers.
2 http://www.proofgeneral.org/

http://proofgeneral.inf.ed.ac.uk/


4.1 Closed and Unbounded Classes of Ordinals

Classes have no special status in Isabelle/ZF. Although Isabelle’s overloading
mechanism [15] makes it possible to extend operations such as ∈, ∪, ∩ and ⊆
to classes, the theories adopt the traditional approach. A class M is really a
formula φ. Membership in a class, a ∈ M, means φ(a). Intersection of two classes,
M ∩N, denotes the conjunction of the predicates, λx. φ(x) ∧ ψ(x). A family of
classes, {Mz}z∈N, denotes a 2-argument predicate; for example, a ∈

⋃
z∈N Mz

stands for ∃z ψ(z) ∧ φ(z, a). These examples illustrate the extent to which we
can reason about classes in ZF.

The theory defines closed and unbounded (c.u.) classes of ordinals. A class
has type i⇒o, which is the type of functions from sets to truth values.

constdefs
Closed :: "(i⇒o) ⇒ o"

"Closed(P) ≡ ∀ I. I 6=0−→ (∀ i∈I. Ord(i) ∧ P(i)) −→ P(
⋃
(I))"

Unbounded :: "(i⇒o) ⇒ o"

"Unbounded(P) ≡ ∀ i. Ord(i) −→ (∃ j. i<j ∧ P(j))"

Closed Unbounded :: "(i⇒o) ⇒ o"

"Closed Unbounded(P) ≡ Closed(P) ∧ Unbounded(P)"

The predicate Ord recognizes the class of ordinal numbers, which is tradi-
tionally written ON, while Limit recognizes the limit ordinals. The predicate
Card recognizes the class of cardinals, which is traditionally written CARD. All
three classes are easily proved to be closed and unbounded.

theorem Closed Unbounded Ord [simp]: "Closed Unbounded(Ord)"

theorem Closed Unbounded Limit [simp]: "Closed Unbounded(Limit)"

theorem Closed Unbounded Card [simp]: "Closed Unbounded(Card)"

4.2 The Intersection of a Family of Closed Unbounded Classes

A key lemma for the reflection theorem is that the intersection of a family of
closed unbounded (c.u.) classes is c.u. (The family must be indexed by a set, not
a class, for

⋂
α∈ON {β | β > α} is empty.) The constructions below come from

Kunen [8, p. 78].
A locale [7] lets us fix the class P and the index set A . It states assumptions

that hold for the whole development, namely that P is closed and unbounded
and that A is nonempty. It also contains definitions of functions next greater

and sup greater, which are local to the proof.

locale cub family =

fixes P and A

fixes next greater — the next ordinal satisfying class A

fixes sup greater — sup of those ordinals over all A



assumes closed: "a∈A =⇒ Closed(P(a))"

and unbounded: "a∈A =⇒ Unbounded(P(a))"

and A non0: "A 6=0"

defines "next greater(a,x) ≡ µy. x<y ∧ P(a,y)"

and "sup greater(x) ≡
⋃
a∈A. next greater(a,x)"

Our result is the culmination of a series of lemmas proved in the scope of this
locale. We begin by proving that the intersection is closed.
lemma ( in cub family) Closed INT: "Closed(λx. ∀ i∈A. P(i,x))"

The proof (omitted) is a one-liner. The difficulty is showing that the intersection
is unbounded. For a∈A, by the unboundedness of P(a), it contains an ordinal
next greater(a,x) greater than x. By reasoning about the µ-operator, which
denotes the least ordinal satisfying a formula, these claims are easily verified:

" [[Ord(x); a∈A ]] =⇒ P(a, next greater(a,x))"

" [[Ord(x); a∈A ]] =⇒ x < next greater(a,x)"

I have omitted the lemma commands, for brevity.
Now sup greater(x) is the supremum of next greater(a,x) for a∈A. We can

iterate this step to reach sup greater ω(x). The point is that sup greater ω(x)

belongs to all of the classes, and thus to the intersection. First, a number of
trivial facts have to be verified, such as these:

"Ord(x) =⇒ x < iterates omega(sup greater,x)"

"a∈A =⇒ next greater(a,x) ≤ sup greater(x)"

This is a key stage in the argument. Fixing a∈A, we find that sup greater ω(x)

can be written as the supremum of values of the form next greater(a,−), that
is, as the supremum of members of P(a).

" [[Ord(x); a∈A ]]
=⇒ iterates omega(sup greater,x) =

(
⋃
n∈nat. next greater(a, iterates(sup greater,x,n)))"

Since this class is closed, it must contain sup greater ω(x).
" [[Ord(x); a∈A ]] =⇒ P(a, iterates omega(sup greater,x))"

The desired result follows immediately. Note that the intersection of a family of
classes is expressed as a universally-quantified formula:
theorem Closed Unbounded INT:

"(
∧
a. a∈A =⇒ Closed Unbounded(P(a)))

=⇒ Closed Unbounded(λx. ∀ a∈A. P(a, x))"

Since 2 = {0, 1} in set theory, the intersection of two classes can be reduced to
the general case by using 2 for the index set:

"P(x) ∧ Q(x) ←→ (∀ i∈2. (i=0 −→ P(x)) ∧ (i=1 −→ Q(x)))"

Thus we obtain the corollary for binary intersections, which is the version used
in the reflection theorem:
theorem Closed Unbounded Int:

" [[Closed Unbounded(P); Closed Unbounded(Q) ]]
=⇒ Closed Unbounded(λx. P(x) ∧ Q(x))"



4.3 Fixedpoints of Normal Functions

Our proof of the reflection theorem uses the lemma that the class of fixedpoints
of a normal function is closed and unbounded. The Isabelle/ZF proof follows
Drake [4, pp. 113–114]. It begins by defining normal functions as those that are
monotonic and continuous over the ordinals:

constdefs
mono Ord :: "(i⇒i) ⇒ o"

"mono Ord(F) ≡ ∀ i j. i<j −→ F(i) < F(j)"

cont Ord :: "(i⇒i) ⇒ o"

"cont Ord(F) ≡ ∀ l. Limit(l) −→ F(l) = (
⋃
i<l. F(i))"

Normal :: "(i⇒i) ⇒ o"

"Normal(F) ≡ mono Ord(F) ∧ cont Ord(F)"

Among the consequences of these definitions is an equation expressing conti-
nuity of normal functions over unions. It follows (with a little effort) from their
continuity over limit ordinals.

" [[X 6=0; ∀ x∈X. Ord(x); Normal(F) ]]
=⇒ F(Union(X)) = (

⋃
y∈X. F(y))"

From this lemma, it is easy to prove that the class of fixedpoints is closed:

"Closed(λi. F(i) = i)"

As with the intersection theorem, the work goes into showing that the class is
unbounded, by reasoning about suprema. If F is a normal function, then consider
Fω(α) =

⋃
α∈ω Fn(α). It is easy to show that Fω(α) is a fixedpoint of F .

" [[Normal(F); Ord(a) ]]
=⇒ F(iterates omega(F,a)) = iterates omega(F,a)"

Since α ≤ Fω(α), there are arbitrarily large fixedpoints, which yields the desired
result.

theorem Normal imp fp Closed Unbounded:

"Normal(F) =⇒ Closed Unbounded(λi. F(i) = i)"

4.4 Function normalize

The key construction of the reflection theorem maps an ordinal α to another
ordinal, F (α), but F might not be monotonic, so it is not necessarily normal.
The usual proof complicates the construction in order to force F to be monotonic.
However, we can define a separate operator for this purpose.

Function normalize maps a continuous function F : ON → ON to a normal
function F ′ that bounds it above. Continuity of F is needed to show that F (α) ≤
F ′(α). For a counterexample, consider the successor function S : ON → ON,
which is not continuous. If S′ is normal, then let α be one of its fixedpoints.
Then S′(α) = α < S(α).



constdefs
normalize :: "[i⇒i, i] ⇒ i"

"normalize(F,a) ≡ ...

The definition is omitted because it is too technical. It defines normalize(F,a)

to be the function F ′(α) satisfying the transfinite recursion

F ′(0) = F (0)
F ′(α+ 1) = max{F ′(α) + 1, F (α+ 1)}

F ′(α) =
⋃
ξ<α

F ′(ξ) if α is a limit ordinal

Monotonicity follows directly, since by the definition F ′(α + 1) > F ′(α). The
essential properties of normalize are easily shown:

theorem Normal normalize:

"(
∧
x. Ord(x) =⇒ Ord(F(x))) =⇒ Normal(normalize(F))"

theorem le normalize:

" [[Ord(i); cont Ord(F);
∧
x. Ord(x) =⇒ Ord(F(x)) ]]

=⇒ F(i) ≤ normalize(F,i)"

5 The Reflection Theorem in Isabelle/ZF

Recall that the reflection theorem concerns a class M =
⋃

α∈ON Mα, where
the {Mα}α∈ON are an increasing and continuous family of sets indexed by the
ordinals. The constant mono le subset expresses the notion of increasing :

constdefs
mono le subset :: "(i⇒i) ⇒ o"

"mono le subset(M) ≡ ∀ i j. i≤j −→ M(i) ⊆ M(j)"

A locale (Fig. 1) fixes Mset, which stands for the family {Mα}α∈ON. It states
the assumptions that Mset is increasing, continuous and (at limit stages) closed
under ordered pairing. Its definition of the class M uses an existential quantifier to
express

⋃
α∈ON Mα. It defines reflection as the ternary relation Reflects(Cl,P,Q)

joining a closed, unbounded class Cl with a predicate P (supposed to be rela-
tivized to M) and a predicate Q (supposed to be relativized to Mα).

The locale also defines some items that are needed only to prove the exis-
tential case. The ordinal-valued functions mentioned in §3 are formalized as F0

and FF. The class ClEx(P) consists of all limit ordinals that are fixedpoints of
the normal function normalize(FF(P)). This class will be closed and unbounded
because it is the intersection of two other c.u. classes, and the restriction to
limit ordinals lets us use the assumption that Mset is closed under pairing at
limit stages.

Now we find ourselves reasoning at the meta-level. Formulas have not been
defined within set theory; rather they are part of the language of set theory.
Therefore, the induction on the structure of formulas cannot be formalized. We
simply state and prove the separate cases of this induction.



locale reflection =

fixes Mset and M and Reflects

assumes Mset mono le : "mono le subset(Mset)"

and Mset cont : "cont Ord(Mset)"

and Pair in Mset : " [[x ∈ Mset(a); y ∈ Mset(a); Limit(a) ]]
=⇒ <x,y> ∈ Mset(a)"

defines "M(x) ≡ ∃ a. Ord(a) ∧ x ∈ Mset(a)"

and "Reflects(Cl,P,Q) ≡
Closed Unbounded(Cl) ∧
(∀ a. Cl(a) −→ (∀ x∈Mset(a). P(x) ←→ Q(a,x)))"

fixes F0 — ordinal for a specific value y

fixes FF — sup over the whole level, y ∈ Mset(a)

fixes ClEx — Reflecting ordinals for the formula ∃ z. P

defines "F0(P,y) ≡ µb. (∃ z. M(z) ∧ P(<y,z>)) −→
(∃ z∈Mset(b). P(<y,z>))"

and "FF(P) ≡ λa.
⋃
y∈Mset(a). F0(P,y)"

and "ClEx(P) ≡ λa. Limit(a) ∧ normalize(FF(P),a) = a"

Fig. 1. The locale reflection

5.1 Proving Easy Cases of the Reflection Theorem

The base case is when the two formulas are identical, which in practice means
that they contain no quantifiers. All ordinals belong to the reflecting class. The
proof, by (simp ...), is shown to emphasize that the proof is immediate by
definition.

theorem ( in reflection) Triv reflection [intro]:

"Reflects(Ord, λx. P(x), λa x. P(x))"

by (simp add: Reflects def)

The reflecting class for a negation equals that for its operand. This proof is also
trivial.

theorem ( in reflection) Not reflection [intro]:

"Reflects(Cl,P,Q) =⇒ Reflects(Cl, λx. ~P(x), λa x. ~Q(a,x))"

by (simp add: Reflects def)

The reflecting class for a conjunction is the intersection of those for the two
conjuncts. This proof uses Closed Unbounded Int, our lemma that the intersection
of two c.u. classes is c.u. Not shown are the theorems for ∨, → and ↔ , whose
proofs are equally trivial.

theorem ( in reflection) And reflection [intro]:

" [[Reflects(Cl,P,Q); Reflects(C’,P’,Q’) ]]
=⇒ Reflects(λa. Cl(a) ∧ C’(a), λx. P(x) ∧ P’(x),

λa x. Q(a,x) ∧ Q’(a,x))"

by (simp add: Reflects def Closed Unbounded Int, blast)



The attribute [intro], which appears in each of the theorems above, labels them
as introduction rules for Isabelle’s classical reasoner. This will enable Isabelle to
perform reflection automatically.

5.2 Reflection for Existential Quantifiers

This is the most important part of the development. A key lemma is that the
function F0 works as it should: if y ∈ Mset(a) then F0(P,y) is a large enough
ordinal for ∃ z∈Mset(F0(P,y)). P(<y,z>) to hold. The proof is four lines long,
using simple reasoning about the µ-operator.

" [[y∈Mset(a); Ord(a); M(z); P(<y,z>) ]]
=⇒ ∃ z∈Mset(F0(P,y)). P(<y,z>)"

Similarly, the function FF works as it should: if a is an ordinal then FF(P,a) is
large enough for the desired conclusion to hold.

" [[M(z); y∈Mset(a); P(<y,z>); Ord(a) ]]
=⇒ ∃ z∈Mset(FF(P,a)). P(<y,z>)"

Similarly again, the normal function derived from FF returns an ordinal large
enough for the conclusion to hold.

" [[M(z); y∈Mset(a); P(<y,z>); Ord(a) ]]
=⇒ ∃ z∈Mset(normalize(FF(P),a)). P(<y,z>)"

To complete the proof, a further locale declares the induction hypothesis.
More precisely, it declares half of it: namely that Cl consists of ordinals that
correctly relate P and Q. At this point, there is no need to assume that Cl is
closed and unbounded.

locale ex reflection = reflection +

fixes P — the original formula
fixes Q — the reflected formula
fixes Cl — the class of reflecting ordinals
assumes Cl reflects:

" [[Cl(a); Ord(a) ]] =⇒ ∀ x∈Mset(a). P(x) ←→ Q(a,x)"

Now we can reap the benefits of the previous work, such as the lemmas about FF .
Translated into mathematical language, the next result states that if z ∈ M and
y ∈ Mα, where α is an ordinal belonging to the class we have constructed, and
P (〈y, z〉) holds, then Qα(〈y, z〉) holds for some z ∈Mα.

" [[M(z); y∈Mset(a); P(<y,z>); Cl(a); ClEx(P,a) ]]
=⇒ ∃ z∈Mset(a). Q(a,<y,z>)"

This lemma is the opposite and easy direction, for if z ∈ Mα then obviously
z ∈ M.

" [[z∈Mset(a); y∈Mset(a); Q(a,<y,z>); Cl(a); ClEx(P,a) ]]
=⇒ ∃ z. M(z) ∧ P(<y,z>)"



Combining these results, we find that ClEx indeed expresses closed and un-
bounded classes of ordinals for reflection:

"Closed Unbounded(ClEx(P))"

" [[y∈Mset(a); Cl(a); ClEx(P,a) ]]
=⇒ (∃ z. M(z) ∧ P(<y,z>)) ←→ (∃ z∈Mset(a). Q(a,<y,z>))"

It only remains to package up the existential case using the Reflects symbol:

"Reflects(Cl,P0,Q0)

=⇒ Reflects(λa. Cl(a) ∧ ClEx(P0,a),

λx. ∃ z. M(z) ∧ P0(<x,z>),

λa x. ∃ z∈Mset(a). Q0(a,<x,z>))"

The previous version applies only to formulas that involve ordered pairs. To
correct that problem, we can use the projection functions fst and snd, which
return the first and second components of a pair:

theorem ( in reflection) Ex reflection [intro]:

"Reflects(Cl, λx. P(fst(x),snd(x)),

λa x. Q(a,fst(x),snd(x)))

=⇒ Reflects(λa. Cl(a) ∧ ClEx(λx. P(fst(x),snd(x)), a),

λx. ∃ z. M(z) ∧ P(x,z),

λa x. ∃ z∈Mset(a). Q(a,x,z))"

The dual rule for the universal quantifier is trivial, since ∀xφ(x) is ¬∃x¬φ(x).

6 Invoking the Reflection Theorem

We have no formal statement of the reflection theorem in Isabelle/ZF. However,
we have a mechanical procedure for applying it in specific cases, which is one
interpretation of a meta-theorem. That procedure is simply Isabelle’s classical
reasoner, fast. No modifications are necessary. Declaring each case of the re-
flection theorem with the [intro] attribute flags them as introduction rules,
suitable for backward chaining. The many λ-bound variables in these rules pose
no problems for fast : it searches for proofs using Isabelle’s inbuilt inference
mechanisms, which employ higher-order unification [6].

Here the reflection theorem is applied to φ(x) ≡ ∃y ∀z (z ⊆ x → z ∈ y).
I have explicitly written the relavitized formulas, namely φM and φMα , though
this can be automated using ML if necessary. We have no idea what the reflecting
class will be, but we can write it as the variable ?Cl and let Isabelle work it out.

lemma ( in reflection)

"Reflects(?Cl,

λx. ∃ y. M(y) ∧ (∀ z. M(z) −→ z ⊆ x −→ z ∈ y),

λa x. ∃ y∈Mset(a). ∀ z∈Mset(a). z ⊆ x −→ z ∈ y)"

by fast

Here, reflection is applied to a more complicated formula. Despite the three
quantifiers, the call to fast takes only 90 milliseconds.



lemma ( in reflection)

"Reflects(?Cl,

λx. ∃ y. M(y) ∧ (∀ z. M(z) −→
(∀ w. M(w) −→ w∈z −→ w∈x) −→ z∈y),

λa x. ∃ y∈Mset(a). ∀ z∈Mset(a).
(∀ w∈Mset(a). w∈z −→ w∈x) −→ z∈y)"

by fast

Conducting a single-step proof shows how easy these theorems are to prove and
also illustrates how the reflecting class is determined incrementally. For this, let
us return to the first example:

lemma ( in reflection)

"Reflects(?Cl,

λx. ∃ y. M(y) ∧ (∀ z. M(z) −→ z ⊆ x −→ z ∈ y),

λa x. ∃ y∈Mset(a). ∀ z∈Mset(a). z ⊆ x −→ z ∈ y)"

The outermost connective is ∃, so we apply the corresponding instance of the
reflection theorem. Observe how the variable ?Cl in the main goal is replaced
by an expression involving an invocation of ClEx and a new variable, ?Cl1. This
variable must be replaced by some class ?Cl1 that reflects the remaining subfor-
mulas:

apply (rule Ex reflection)

Reflects

(λa. ?Cl1(a) ∧
ClEx(λx. ∀ z. M(z) −→ z ⊆ fst(x) −→ z ∈ snd(x), a),

λx. ∃ y. M(y) ∧ (∀ z. M(z) −→ z ⊆ x −→ z ∈ y),

λa x. ∃ y∈Mset(a). ∀ z∈Mset(a). z ⊆ x −→ z ∈ y)

1. Reflects

(?Cl1, λx. ∀ z. M(z) −→ z ⊆ fst(x) −→ z ∈ snd(x),

λa x. ∀ z∈Mset(a). z ⊆ fst(x) −→ z ∈ snd(x))

Now the outermost connective is ∀, so we apply All reflection. The variable
?Cl1 is in its turn replaced by another invocation of ClEx and another new
variable, ?Cl2 :

apply (rule All reflection)

Reflects

(λa. (?Cl2(a) ∧
ClEx(λx. ¬ (snd(x) ⊆ fst(fst(x)) −→

snd(x) ∈ snd(fst(x))),

a)) ∧
ClEx(λx. ∀ z. M(z) −→ z ⊆ fst(x) −→ z ∈ snd(x), a),

λx. ∃ y. M(y) ∧ (∀ z. M(z) −→ z ⊆ x −→ z ∈ y),

λa x. ∃ y∈Mset(a). ∀ z∈Mset(a). z ⊆ x −→ z ∈ y)

1. Reflects

(?Cl2,

λx. snd(x) ⊆ fst(fst(x)) −→ snd(x) ∈ snd(fst(x)),

λa x. snd(x) ⊆ fst(fst(x)) −→ snd(x) ∈ snd(fst(x)))



The two formulas are now identical, so Triv reflection completes the proof. It
replaces ?Cl2 by Ord, the class of all ordinals.

apply (rule Triv reflection)

Reflects

(λa. (Ord(a) ∧
ClEx(λx. ¬ (snd(x) ⊆ fst(fst(x)) −→

snd(x) ∈ snd(fst(x))),

a)) ∧
ClEx(λx. ∀ z. M(z) −→ z ⊆ fst(x) −→ z ∈ snd(x), a),

λx. ∃ y. M(y) ∧ (∀ z. M(z) −→ z ⊆ x −→ z ∈ y),

λa x. ∃ y∈Mset(a). ∀ z∈Mset(a). z ⊆ x −→ z ∈ y)

No subgoals!

We should not use defined predicates such as Ord in the formula being re-
flected. The resulting theorems, although valid, would not be instances of the
reflection theorem: Ord is itself defined in terms of quantifiers, which need to be
relativized. I have defined relativized versions of many set-theoretic concepts,
such as order-isomorphism, and proved their equivalence to the originals. These
relativized concepts form a vocabulary for specific invocations of the reflection
theorem.

7 Conclusions

Gödel worked in von Neumann-Bernays-Gödel (NBG) set theory. Modern ver-
sions of his proof are typically expressed in ZF set theory. Either way, the base
set theory is proved to be relatively consistent with AC. Bancerek [1] proved the
reflection theorem years ago, in Mizar, also following Mostowski [9]. However,
Bancerek’s proof does not address the issue of meta-level reasoning. It instead
uses Tarski-Grothendieck set theory to reason about ZF, a weaker system. It
does not suggest how to prove the consistency of the axiom of choice with re-
spect to Tarski-Grothendieck set theory, which is a natural question for users of
that theory.

My aim is not simply to mechanize the reflection theorem but to capture the
spirit of Gödel’s consistency proof. I have not given a general way of eliminating
meta-reasoning, but I have shown how to treat one specific case. A number of
researchers [2,14] have done mechanical proofs using NBG set theory. Gödel’s
original proof [5] does not require the reflection theorem, but perhaps other parts
of his proof could be mechanized in NBG.
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