The Relative Consistency of the Axiom of Choice

Mechanized Using Isabelle/ZF

Lawrence C. Paulson Computer Laboratory

Why Do Proofs By Machine?

- Too many been done already!
 - Gödel's incompleteness theorem (Shankar)
 - thousands of Mizar proofs
- But many types of reasoning are hard to formalize.
 - Algebraic structures (e.g. group theory)
 - Proofs involving metamathematics
- And this one concerns Hilbert's First Problem!

Outline of Gödel's Proof

- Define the *constructible universe*, L
- Show that L satisfies the ZF axioms
- Show that L satisfies the axiom V=L
- Show that V=L implies AC and GCH

A contradiction from ZF and V=L can be translated into one from ZF alone.

The Sets That Must Exist

 $\mathcal{D}(X)$: the *definable* subsets of X $L_0 = 0$ $L_{\alpha+1} = \mathcal{D}(L_{\alpha})$ $L_{\alpha} = \bigcup L_{\xi}$ when α is limit $\xi < \alpha$ $\alpha \in \mathbf{ON}$

L satisfies the ZF axioms

• Union, pairing

– Unions and pairs are definable by formulae

- Powerset, replacement scheme
 Using a rank function for L
- Comprehension scheme (separation)
 - By the Reflection Theorem
 - Scheme can be proved only in the metatheory

Show that L satisfies V=L

- V=L means "all sets are constructible"
- The concept of "constructible" is *absolute*
- Absolute means same in all models
 - Most concepts are absolute: unions, ordinals, functions, bijections, etc.
 - Not absolute: powersets, function spaces, cardinals

Show that V=L implies AC (or rather, the well-ordering theorem)

- The set of formulae is countable
- Parameter lists for formulae can be wellordered lexicographically
- So, if *X* is well-ordered then so is $\mathcal{D}(X)$
- Inductively construct a well-ordering on L

Satisfaction for Class Models?

For *M* a set, can define satisfaction recursively: $M \models \phi(x_1, \dots, x_n)$ for $x_1, \dots, x_n \in M$

For M a class, satisfaction cannot be defined!

The nondefinability of truth (Tarski)

Satisfaction Defined Syntactically

$$(x = y)^{\mathbf{M}} \mapsto x = y$$

$$(x \in y)^{\mathbf{M}} \mapsto x \in y$$

$$(\phi \land \psi)^{\mathbf{M}} \mapsto \phi^{\mathbf{M}} \land \psi^{\mathbf{M}}$$

$$(\neg \phi)^{\mathbf{M}} \mapsto \neg (\phi^{\mathbf{M}})$$

$$(\exists x \phi)^{\mathbf{M}} \mapsto \exists x (x \in \mathbf{M} \land \phi^{\mathbf{M}})$$

The *relativization* of ϕ to **M**

A contradiction using V=L?

- Can prove that $(V=L)^{L}$ is a ZF theorem
- ... as is ϕ^{L} provided ϕ is a ZF axiom
- Thus, a contradiction from ZF + (V=L) amounts to a contradiction in ZF alone
- Developing the argument (Gödel never did) requires proof theory

Isabelle/ZF

- Same code base as Isabelle/HOL
- Higher-order metalogic, ideal for
 - Theorem schemes
 - Classes
 - Class functions

• Develops set theory from the Zermelo-Fraenkel axioms to transfinite cardinals

Defining the Class L in Isabelle

- Datatype declaration of the set *formula*
- Primitive recursive functions:
 - Satisfaction relation
 - Arity of a formula
 - De Bruijn renaming
- Definable powersets: Dpow(X)
- Constructible hierarchy: Lset(i)
- The predicate *L*

Relativization in Isabelle

- Define a separate predicate for each concept: 0, ∪, ∩, function, limit ordinal, …
- Make each predicate relative to a class ${\bf M}$
- Absoluteness: prove that the predicate agrees with the native concept

Outcome: a relational language of sets

Examples: Pairs and Domains

 $upair(M,a,b,z) == a \in z \& b \in z \& (\forall x[M]. x \in z \longrightarrow x = a | x = b)$

 $is_domain(M,r,z) == \forall x[M]. x \in z \leftrightarrow \\ (\exists w[M]. w \in r \& (\exists y[M]. pair(M,x,y,w)))$

Proving that L is a Model of ZF

- Express ZF axioms using the predicates
- Mechanize proofs from Kunen (1980)
- Separation axiom (comprehension):
 - By previous proof of Reflection Theorem
 - Meta-3 quantifier to hide giant classes
 - Automatic translation from real formulae to elements of the set *formula*
 - 40 separate instances proved

Proving that L is a Model of V=L

- Absoluteness of well-founded recursion
- Absoluteness and relativization for ...
 - Recursive datatypes
 - About 100 primitive concepts
 - The satisfaction function (detailed breakdown needed)
- The concepts *Dpow(X)* and *Lset(i)*
- Define Constructible(M, x)
- Finally prove $L(x) \Rightarrow Constructible(L,x)$

Comparative Sizes of Theories (in Tokens)

Reflection theorem	3400
Definition of L	4140
ZF holds in L (excluding separation)	5100
V=L holds in L	29700
V=L implies AC	1769

Doing without Metamathematics

- Can't reason on the structure of formulae
- Can't prove separation schematically
- Can't formalize how a contradiction from V=L leads to a contradiction in ZF
- But: can use native set theory
 - Isabelle/ZF's built-in set theory libraries
 - benefits of a shallow embedding

Conclusions

- A mechanized proof of consistency for AC
- Big:12000 lines or 49000 tokens
- Just escape having to formalize metatheory
- Future challenges:
 - Repeat, with a formalized metatheory
 - Prove generalized continuum hypothesis
 - Formalize forcing proofs: independence of AC