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Abstract

The HOL Light proof assistant is famous for its huge multi-
variate analysis library:  nearly 300,000 lines of code and
13,000 theorems. A substantial fraction of this library has
been manually ported to Isabelle/HOL. The Isabelle analy-
sis library contains  approximately 7400 named theorems,
including Cauchy’s integral and residue theorems, the Liou-
ville  theorem,  the  open  mapping  and  domain  invariance
theorems, the maximum modulus principle and the Krein–
Milman Minkowski theorem.
  Why port proofs manually given so much work on porting
proofs automatically? Typical approaches rely on low level
encodings that seldom yield natural-looking results. Man-
ual porting has allowed us to generalise many results from
n-dimensional vector spaces to metric or topological spa-
ces.  The  transition  from  the  traditional  LCF/HOL proof
style (which has hardly changed since 1985) to structured
proofs has produced a dramatic improvement in the legibil-
ity of the material. Automatic porting generally yields a list
of theorem statements but no intelligible proofs.
  This  project  has  highlighted  three  features  of  Isabelle
working  well  together:  heuristic  automation,  structured
proofs and sledgehammer. Heuristic automation builds in a
lot  of  implicit  knowledge,  which  is  potentially  unpre-
dictable,  but  in  combination  with  structured  proofs  any
breakages (caused by updates to the system) are localised
and easily fixed. Sledgehammer (which uses powerful ex-
ternal  automation to solve subgoals) can frequently com-
plete an argument without requiring a precise reproduction
of the original HOL Light proof. Sledgehammer also en-

courages a style in which the user reaches the desired result
by suggesting a series of intermediate claims.
  Such proofs are genuinely human-oriented. And only such
proofs will attract mathematicians; even a guarantee of cor-
rectness will not impress them unless the system lets them
understand and tinker with their formal proofs.
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