
Exploring Properties of Normal Multi-
modal Logics in Simple Type Theory
with Leo-II1

Christoph Benzmüller and Lawrence C. Paulson

To Peter B. Andrews

1 Introduction

There are two well investigated approaches to automate reasoning in modal
logics: the direct approach and the translational approach. The direct
approach [6, 7, 14, 27] develops specific calculi and tools for the task; the
translational approach [29, 30] transforms modal logic formulas into first-
order logic and applies standard first-order tools. Embeddings of modal
logics into higher-order logic, however, have not yet been widely studied,
although multimodal logic can be regarded as a natural fragment of simple
type theory. Gallin [15] appears to mention the idea first. He presents an
embedding of modal logic into a 2-sorted type theory. This idea is picked up
by Gamut [16] and a related embedding has recently been studied by Hardt
and Smolka [17]. Carpenter [12] proposes to use lifted connectives, an idea
that is also underlying the embeddings presented by Merz [26], Brown [11],
Harrison [18, Chap. 20], and Kaminski and Smolka [22].

In this paper we pick up and extend the embedding of multimodal log-
ics in simple type theory as studied by Brown [11]. The starting point
is a characterization of multimodal logic formulas as particular λ-terms in
simple type theory. A distinctive characteristic of the encoding is that the
definiens of the 2R operator λ-abstracts over the accessibility relation R.
We illustrate that this supports the formulation of meta properties of en-
coded multimodal logics such as the correspondence between certain axioms
and properties of the accessibility relation R. We show that some of these
meta properties can even be efficiently automated within our higher-order
theorem prover Leo-II [9] via cooperation with the first-order automated

1This work was supported by EPSRC grant EP/D070511/1 (LEO II: An Effective
Higher-Order Theorem Prover) at Cambridge University, UK.

theorem prover E [32]. We also discuss some challenges to higher-order
reasoning implied by this application direction. Moreover, we extend the
presented embedding to first-order and higher-order quantified multimodal
logics.

2 Simple Type Theory

Classical higher-order logic or simple type theory [4, 13] is a formalism built
on top of the simply typed λ-calculus. The set T of simple types is usually
freely generated from a set of basic types BT = {o, ι} using the function type
constructor →. Here we allow an arbitrary but fixed number of additional
base types to be specified.

For formulae, we start with a set of typed variables Xα, Y, Z, X
1
β, X

2
γ . . .

and a set of typed constants cα, fα→β , The set of constants includes
the primitive logical connectives ¬o→o, ∨o→o→o and Π(α→o)→o (abbrevi-
ated Πα) and =α→α→o (abbreviated =α) for each type α.1 Other logical
connectives can be defined in terms of the these primitive ones in the usual
way. In the remainder of this paper, we assume that any signature Σ we
consider at least contains the primitive logical connectives ¬o→o, ∨o→o→o

and Π(α→o)→o.

Terms and formulae are constructed from typed variables and constants
using application and λ-abstraction. We use Church’s dot notation so that

stands for an implicit left bracket whose mate is as far to the right as
possible (consistent with explicit brackets). We use infix notation A∨B for
((∨A)B) and binder notation ∀Xα A for (Πα(λXα Ao)).

Standard and Henkin semantics of simple type theory is well understood
and thoroughly documented in the literature [1, 2, 8, 19].

One particular challenge for the complete automation of higher-order
logic is primitive substitution [3] or splitting [20]. Primitive substitutions
blindly guess some logical structure for free predicate or set variables in a
clause that cannot be synthesized otherwise, and they introduce new free
variables in order to delay some further decisions. The instantiation of the
new and the remaining free variables is ideally supported by higher-order
pre-unification. Generally, however, the primitive substitution process has
to be iterated which leads to very challenging search space for clause sets
containing many free variables. Some of the proof problems discussed in
this paper require simple primitive substitutions.

1Note that there are infinitely many different Πα and =α introduced here .

3 Encoding Multimodal Logics in Simple Type

Theory

Simple type theory is an expressive logic and it is thus no surprise that
modal logic can be encoded in several ways in it. Harrison [18], for instance,
presents a ‘deep embedding’ of modal logics by formalizing standard Kripke
semantics and a ‘shallow embedding’ of the temporal logic LTL. The latter
encoding more naturally exploits the expressiveness of higher-order logic.
Harrison’s shallow embedding is an instance of the encoding due to Brown
[11]. Here we adapt and further extend Brown’s suggestion and show that
this approach is well suited for reasoning within and about modal logics.

The idea of the encoding is simple: Choose a base type — we choose
ι — to denote the set of all possible worlds. Certain formulas of type
ι → o then correspond to multimodal logic expressions. The modal
operators ¬ , ∨ , and 2R become λ-terms of types (ι→ o) → (ι→ o),
(ι→ o) → (ι→ o) → (ι→ o), and (ι→ ι→ o) → (ι→ o) → (ι→ o) re-
spectively. Note that ¬ forms the complement of a set of worlds, while
∨ forms the union of two such sets.

DEFINITION 1 (Propositional Multimodal Logic Λmm
0). Given a signature

Σ, we define the the set Λmm
0 of propositional multimodal logic propositions

as follows.

1. We introduce the logical constants of Λmm
0 as abbreviations for the

following λ-terms:
¬ (ι→o)→(ι→o) = λAι→o λXι ¬AX
∨ (ι→o)→(ι→o)→(ι→o) = λAι→o λBι→o λXι AX ∨BX
2R (ι→ι→o)→(ι→o)→(ι→o) =

λRι→ι→o λAι→o λXι ∀Yι RX Y ⇒ AY

2. We define the set of Λmm
0 -propositions as the smallest set of simply

typed λ-terms for which the following hold:

• Each constant pι→o ∈ Σ is an atomic Λmm
0 -proposition.

• If φ and ψ are Λmm
0 -propositions, then so are ¬ φ, φ∨ψ and

2R φ, where ¬ , ∨ , and 2R are defined as above and where R
is a term of type ι→ ι→ o.

3. The propositional multimodal logic operators ⇒ , ⇔ , 3r , etc. can
be defined in terms of ¬ , ∨ and 2R in the usual way.

Note that the encoding of the modal operator 2R depends explicitly
on an accessibility relation R of type ι→ ι→ o given as its first argument.
Hence, we basically introduce a generic framework for modeling multimodal

logics. This idea is where Brown [11] differs from the LTL encoding of
Harrison. The latter chooses the interpreted type num of numerals and
then uses the predefined relation ≤ over numerals as a fixed accessibility
relation in the definitions of 2 and 3 .

By making the dependency of 2R and 3R on the accessibility relation
R explicit, we can formalize and automatically prove some properties of
multimodal logics in simple type theory, as we will later illustrate.

Given a signature Σ containing some constants aι→o, bι→o (basic modal
propositions) and rι→ι→o, sι→ι→o (accessibility relation constants) we can
formulate statements in Λmm

0 , such as these:

2r ⊤ 2r a⇒2r a 2r a⇒2s a 2s (2r a⇒2r a)

We assume that 2r binds more strongly than the propositional connectives
and, hence, 2r a⇒2r a stands for (2r a)⇒ (2r a).

Next, we define validity of modal logic expressions Aι→o ∈ Λmm
0 : formula

A is valid iff for all possible worlds Wι we have W ∈ A, that is, iff AW
holds.

DEFINITION 2 (Validity, Satisfiability, Falsifiable). We define the follow-
ing notions as simply typed λ-terms:

valid := λAι→o ∀Wι AW

satisfiable := λAι→o ∃Wι AW

falsifiable := λAι→o ∃Wι ¬AW

unsatisfiable := λAι→o ∀Wι ¬AW

4 Solving Simple Λ
mm

0 -problems with Leo-II

We can now exploit this framework to automatically analyze modal logic
formulas within a higher-order theorem prover such as our Leo-II. Table 1
presents performance results for Leo-II on some example problems for the
multimodal logic K. Since Leo-II cooperates with a first-order theorem
prover, we actually present two times in the table. The first one is the
total reasoning time used by both cooperating systems. The second time
is that used by Leo-II alone. (Hence their difference is the time spent
in the first-order theorem prover.) The times are given in seconds. All
experiments reported in this paper were conducted with version v0.9 of
LEO-II on a notebook computer with a Intel Pentium 1.60GHz processor
with 1GB memory running Linux.
Kc cannot be solved by Leo-II, which is fortunate: this statement is

clearly not valid without imposing restrictions on r and s. The other state-

Table 1. Runtimes for Proving Modal Logic Theorems
problem Leo-II+E / Leo-II

Ka valid(2r ⊤) 0.024/0.008
Kb valid(2r a⇒2r a) 0.032/0.012
Kc valid(2r a⇒2s a) –
Kd valid(2s (2r a⇒2r a)) 0.033/0.016
Ke valid(2r (a∧ b)⇔ (2r a∧2r b)) 0.051/0.020
Kf valid(3r (a⇒ b)⇒2r a⇒3r b) 0.038/0.016
Kg valid(¬ 3r a⇒2r (a⇒ b)) 0.031/0.012
Kh valid(2r b⇒2r (a⇒ b)) 0.032/0.012
Ki valid((3r a⇒2r b)⇒2r (a⇒ b) 0.032/0.012
Kj valid((3r a⇒2r b)⇒ (2r a⇒2r b)) 0.035/0.016
Kk valid((3r a⇒2r b)⇒ (3r a⇒3r b)) 0.035/0.016

ments expand into trivially refutable problems and they are quickly solved
by the Leo-II+E cooperation.

We explain how the cooperation between Leo-II and E solves problem
Kd. When the problem is initially input to Leo-II, the prover creates the
following clause:

C1 : [valid(2s (2r a⇒2r a))]
F

This clause consists of one negated literal, as indicated by the superscript F .
The atom of the literal, enclosed in square brackets, consists of the original
problem statement. Leo-II unfolds the definitions and thereby rewrites this
clause into

C2 : [∀X0
ι ∀X1

ι : ¬(sX0X1)

∨ ((¬(∀X2
ι ¬(r X1X2) ∨ (aX2))) ∨ (∀X2

ι ¬(r X1X2) ∨ (aX2)))]F .

This clause is obviously not in normal form yet. Clause normalization is
the next step performed in Leo-II. This produces the following four normal
form clauses, where the skj are Skolem constants and the V 1 is a variable:

C3 : [s sk1 sk2]T

C4 : [a sk3]F

C5 : [r sk2 sk3]T

C6 : [a V 1]T ∨ [r sk2 V 1]F

Subsequent to these pre-processing steps, Leo-II calls the first-order the-
orem prover E. The translation from higher-order to first-order logic is
based on the ideas of Kerber [23].2 This translation introduces a family of
application operators @ and encodes type information into their names. For
example, the operator @(βα) β encodes the information that its first argu-
ment has function type β → α and its second argument type β. Each clause
in the domain of the translation is passed after executing the transformation
to the prover E. In our example, four first-order clauses are generated and
passed to E:

C3′ : @(io) i(@(i(io)) i(s, sk
1), sk2)

C4′ : @(ιo) ι(a, sk
3)

C5′ : @(io) i(@(i(io)) i(r, sk
2), sk3)

C6′ : @(ιo) ι(a, V
1) ∨ (r, sk2), V 1)

E immediately finds a refutation for this trivial set of clauses and signals
success back to Leo-II. This in turn triggers Leo-II to stop its proof search
and to report success to the user. The proof protocol generated by Leo-II

for this problem is given in Appendix A.
Leo-II alone, not cooperating with E, would also quickly refute this

trivial set of clauses, but here E signals success before Leo-II even starts
its own main proof loop. Generally the subset of clauses in Leo-II’s search
space that can be passed to E usually becomes much bigger and these are the
cases where the cooperation between Leo-II and the first-order prover really
pays off: the first-order specialist prover may quickly find the refutation
while Leo-II alone gets stuck in its much more challenging search space. In
the refutation proof of problemKe, for example, Leo-II passes 24 first-order
clauses to E, which then generates 322 further clauses before signaling that
a refutation has been found. While the search space here is still trivial for
both, Leo-II and E, we will see examples in Section 5 where E generates
more than 20000 clauses before it finds a refutation for the subproblem
passed to it by Leo-II.

More information of the design of Leo-II is provided in Benzmüller et
al. [9]. In general terms, the first-order specialist provers support Leo-II

by periodically trying to detect subsets of clauses in Leo-II’s search space
that can be quickly refuted by them.

This simple idea can be further generalized

(i) by realizing analogous cooperations with specialist reasoners working
for other interesting and efficiently mechanizable fragments of higher-

2Further translations have been discussed in the literature; see for example [21, 24, 25].

order logic such as propositional logic, guarded fragment, monadic
second-order logic, etc.,

(ii) by allowing Leo-II and these reasoners to run in parallel, and

(iii) by supporting alternative translations to first-order logic and other
fragments of higher-order logic.

In fact, Leo-II already provides a link to the first-order theorem prover
SPASS as an alternative to E. And it also already supports an alternative
translation to first-order logic. In order to achieve the distribution goals we
plan to adapt the Oants system [10] to Leo-II.

We could now go on to study increasingly complex examples of the kind as
presented in the table above and they would clearly provide nice exercises
for Leo-II+E. However, we do not expect that Leo-II+E can compete
with specialist modal logic provers on challenge problems. In order to gain
a highly efficient mechanization of challenge problems, we may therefore
want to develop a cooperation with fast modal logic provers as well and
pass the problems before expansion of the definitions from Leo-II directly
to them. Verification of their results within Leo-II could then be tackled
afterwards. Verification of the cooperative proofs is an open issue also in our
current translational approach since the refutations of the prover E cannot
yet be translated back into refutations in Leo-II. This is also on our list of
future work.

In the next Section will turn our focus to a more interesting question:
using Leo-II to reason about some properties of different modal logics,
rather than to reason within such modal logics.

5 Exploring Properties of Λ
mm

0 with Leo-II

We now study study questions such as, ‘What is the concrete modal logic

we have introduced?’ First, we turn our attention to the weakest modal
logic, namely K. The essential properties of K are the necessitation rule
N and the distribution axiom D (for all accessibility relations R and modal
propositions A,B):

N If A is a theorem of K, then so is 2RA

D 2R (A⇒B)⇒ (2R A⇒2RB)

Our modal logic definitions in fact entail these principles and Leo-II can
easily prove them: We formalize problem KN , expressing that N is entailed
by our definitions so far, as

∀R ∀A valid(A) ⇒ valid(2RA)

Leo-II+E can prove it easily in 0.027 seconds. Problem KD, expressing
that D is valid, is formalized as

∀R ∀A ∀B valid(2R (A⇒B)⇒ (2RA⇒ 2RB))

Leo-II+E proves it in 0.029 seconds.
This provides some evidence that we have indeed correctly modeled the

modal logic K in simple type theory. So let us call the system we developed
so far K. Modal logic S4 is obtained from modal logic K by adding the
axioms T and 4. These axioms are well known to correspond to reflexivity
and transitivity of the accessibility relation R.

T 2R A⇒A corresponds to: refl(R)

4 2R A⇒2R 2RA corresponds to: trans(R)

Reflexivity and transitivity are defined in the obvious manner:

refl := λR ∀X RXX

trans := λR ∀X ∀Y ∀Z RX Y ∧RY Z ⇒ RX Z.

We will later also use irreflexivity and symmetry:

irrefl := λR ∀X ¬(RXX)

sym := λR ∀X ∀Y RX Y ⇒ RY X.

We now study the following obvious questions about our system K within
Leo-II:

Ka
T : Is axiom T is valid in K? As expected, Leo-II cannot prove

∀R ∀A valid(2RA⇒A).

Kb
T : Is there a relation R such that for all modal propositions A, axiom T

is valid in K? Leo-II+E can prove

∃R ∀A valid(2R A⇒A)

in 0.456 seconds; the prover E is unsuccessfully called three times
in Leo-II’s reasoning loop before the refutation is finally detected
within Leo-II itself. A clever instantiation for relation R is actually
needed to solve this problem (as we know from our undergraduate
modal logic course, R obviously needs to be reflexive) and this instan-
tiation can neither be synthesized by E’s first-order unification nor by

Leo-II’s higher-order pre-unification. In fact, such an instantiation
needs to be guessed by primitive substitution. Leo-II applies primi-
tive substitution after the initial pre-processing phase and it proposes,
amongst others, to consider the equality relation as a candidate in-
stantiation for R. Then, Leo-II quickly finds the refutation. To be
more precise, Leo-II does not instantiate R with λXι λYι X = Y
in the crucial primitive substitution step but with the more general
term λXι λYι (V X Y) = (W X Y) where V and W are new free
variables. By instantiating V and W with projections on the first
and second argument the former term could be introduced. However,
as the proof protocol generated by Leo-II for this example problem
in the Appendix B illustrates, the second, more general term already
leads to a refutation (ending in pre-unification constraint consisting
only in a flex-flex unification pair) without further instantiation of V
or W .

For the exploration of the properties of modal logic Kwe have thus
gained useful information: by considering the equality relation as an
accessibility relation, which amongst other properties is reflexive, we
are able to prove this statement. Thus, one way to proceed with the
exploration is to investigate the connection between reflexivity and T
in K.

Kc
T : Is axiom T indeed equivalent to reflexivity of R in K? Leo-II+E

takes 0.068 seconds to prove

∀R (∀A valid(2R A⇒A) ⇔ refl(R)).

Ka
4 : Is axiom 4 valid in K? As expected, Leo-II+E cannot prove

∀R ∀A valid(2RA⇒2R 2R A).

Kb
4: Is there a relation R and a modal proposition A for which axiom 4 is

valid in K? Leo-II+E takes 0.055 seconds to prove

∃R ∀A valid(2RA⇒2R 2R A).

Interestingly, the relation generated for R is λXι λYι (V X Y) 6=
(W X Y) where V and W are new free variables; see the proof
protocol generated by Leo-II in the Appendix C. A simpler relation
would be the empty relation λXι λYι X 6= X which is obviously an

instance of the above one.3 We proceed with the exploration. Let
us be naive this time and consider irreflexivity and symmetry as
interesting properties first before investigating transitivity.

Kc
4: Is axiom 4 equivalent to irreflexivity? Leo-II+E cannot prove

∀R (∀A valid(2R A⇒2R 2RA)) ⇔ irrefl(R).

Kd
4 : Is axiom 4 equivalent to symmetry? Leo-II+E cannot prove

∀R (∀A valid(2RA⇒ 2R 2RA)) ⇔ sym(R).

Ke
4: Is axiom 4 equivalent to transitivity of R in K? Leo-II+E takes 0.193

seconds to prove

∀R (∀A valid(2R A⇒2R 2RA)) ⇔ trans(R),

Ka
T4: Are axioms T and 4 equivalent to reflexivity and transitivity of R

in K? Leo-II+E takes 2.329 seconds (of which Leo-II uses 0.164
seconds) to prove

∀R (∀A valid(2RA⇒A) ∧ valid(2RA⇒2R 2RA))

⇔ (refl(R) ∧ trans(R))

E receives 70 clauses and generates 21769 before it finds the refutation.
This example well illustrates the benefits of the cooperation between
Leo-II and E, since the first-order refutation required in this example
is already too challenging to be easily detected by Leo-II alone in its
much more challenging search space.

It is much easier, however, to prove the two directions separately.
Leo-II+E takes 0.040 seconds to prove

∀R (∀A valid(2RA⇒A) ∧ valid(2RA⇒2R 2RA))

⇒ (refl(R) ∧ trans(R))

3The proof protocol in the Appendix C shows that from the initial problem state-
ment Leo-II derives the clause 27 : [V 1 (sk3

V
1) (sk5

V
1)]T . It then instantiates V

1

with the term t = λV
9

λV
10 ((λX λY ¬(X = Y)) (V 11

V
9

V
10) (V 12

V
9

V
10))

by primitive substitution to obtain the clause 39 : [¬(V 11 (sk3
t) (sk5

t)) =
(V 12 (sk3 t) (sk5 t))]T and subsequently it generates the flex-flex unification constraint
clause 59 : [(V 11 (sk3 t) (sk5 t)) = (V 12 (sk3 t) (sk5 t))]F by clause normalization. Flex-
flex unification constraint clauses can always be refuted and thus proof search in Leo-II

terminates here. For example, if we would instantiate V 11 and V 12 both with a term
λX λY a for an arbitrary constant a then we would generate the the clause [a = a]F in
which case the contradiction becomes obvious.

and 0.039 seconds for

∀R (∀A valid(2RA⇒A) ∧ valid(2RA⇒2R 2RA))

⇐ (refl(R) ∧ trans(R)).

Thus, we have successfully explored the properties of modal logic S4
with Leo-II+E. And we could go on to explore properties of other more
specialized modal logics and multi modal logics in exactly the same way.

6 Quantified Multimodal Logics Λ
mm

1 and Λ
mm

ω

We adapt the definition of propositional multimodal logic to the first-order
and higher-order case.

DEFINITION 3 (First-order Quantified Multimodal Logic Λmm
1). In addi-

tion to base type ι we introduce a second base type, µ. The idea is that ι
is reserved to denote the set of all possible worlds while µ denotes the set
of individuals. Let Σ be a signature.

1. Λmm
1 -terms are defined as the smallest set of simply typed λ-terms for

which the following hold:

• Each constant cµ ∈ Σ and variable Xµ ∈ Σ is a Λmm
1 -term.

• If t1µ, . . . , tnµ are Λmm
1 -terms and fµ→...→µ→µ ∈ Σ is an n-ary

(curried) function symbol, then (. . . (f t1) . . . tn)µ is a Λmm
1 -term.

Note that Λmm
1 -terms must not depend on worlds, that is, subterms

of a Λmm
1 -term are never of type ι.

2. The modal operators ¬ , ∨ ,2R are defined as before.

3. Modal universal quantification ∀Xµ φι→o is defined as the term

λwι ∀Xµ φw

In fact we can employ the standard trick in simple type theory to
avoid introducing a new binder for universal quantification. For this
we introduce the logical constant Πµ→(ι→o) and use this to encode
modal universal quantification as follows: ∀Xµ φι→o stands for

Πµ→(ι→o)(λXµ φι→o)

and the modal operator Π is itself defined as

λφ′µ→(ι→o) λWι ∀Xµ φ′XW.

4. Λmm
1 -propositions are defined as the smallest set of simply typed terms

for which the following hold:

• If t1µ, . . . , tnµ are Λmm
1 -terms and pµ→...→µ→(ι→o) ∈ Σ is an n-ary

(curried) predicate symbol (for n ≥ 0), then (. . . (p t1) . . . tn)ι→o

is an atomic Λmm
1 -proposition.

• If φ and ψ are Λmm
1 -propositions, then so are ¬ φ, φ∨ψ and

2R φ, where R is a term of type ι→ ι→ o.

• If Xµ ∈ Σ is a variable of type µ and φι→o is a Λmm
1 -proposition,

then ∀X φ is a Λmm
1 -proposition.

First-order quantified multimodal logic has been studied in Nguyen [28],
who defines a basic quantified normal multimodal logic called K(m); like K
in the propositional case, it serves as the starting point for the introduction
of further quantified normal multimodal logics.

Here we briefly investigate whether Λmm
1 fulfill the characteristics of the

normal multimodal logic K(m).

CLAIM 4 (Λmm
1 is a normal multimodal logic). Λmm

1 fulfill the properties
of the normal multimodal logic K(m) of [28]. That is:

1. Λmm
1 validates the axioms for classical predicate logic.

2. Λmm
1 validates the K-axioms: 2R (φ⇒ψ)⇒ (2R φ⇒2R ψ).

3. Λmm
1 validates the Barcan formula axioms: (∀X 2R φ)⇒2R ∀X φ.

4. Λmm
1 validates the axioms defining 3R : 3R φ⇔¬2R ¬φ.

5. Λmm
1 validates the modus ponens rule: if φ and φ⇒ψ are valid, then

ψ is valid.

6. Λmm
1 validates the generalization rule: if φ is valid, then ∀X φ is

valid.

7. Λmm
1 validates the modal generalization rule: if φ is valid, then 2R φ

is valid.

8. K(M) validates the converse Barcan formula (∀X 2R φ) ⇐
2R ∀X φ.

We do not give a formal proof of this claim here and instead argue as
follows:

1. The axioms for classical predicate logic are obviously valid in simple
type theory (and Leo-II can handle them).

2. Leo-II+E can prove ∀R ∀φ ∀ψ valid(2R (φ⇒ψ)⇒ (2R φ⇒2R ψ)
in 0.059 seconds.

3. Leo-II+E can prove ∀R ∀φ valid(∀X 2R φ⇒ 2R ∀X φ) in 0.066
seconds.

4. Leo-II+E can prove ∀R ∀φ valid(3R φ⇔ ¬ 2R ¬φ) in 0.078 sec-
onds.

5. Leo-II+E can prove ∀φ ∀ψ valid(φ) ∧ valid(φ⇒ψ) ⇒ valid(ψ) in
0.062 seconds.

6. Leo-II+E can prove

∀Pµ→(ι→o) (∀Xµ valid(P X)) ⇒ valid(∀Xµ (P X)

in 0.061 seconds.

7. Leo-II+E can prove ∀R ∀φ valid(φ)⇒ valid(2R φ) in 0.056 seconds.

8. Leo-II+E can prove 2R ∀X φ⇒ ∀X 2R φ, the converse Barcan
formula, in 0.049 seconds.

Assuming that Leo-II+E is correct, this provides evidence that Λmm
1 in-

deed adequately models the basic normal multimodal logic K(m) of Nguyen
[28]. Validity of the Barcan formula and its converse illustrate that quan-
tification in Λmm

1 is a fixed-domain quantification.
The first-order quantified multimodal logic Λmm

1 can be further general-
ized. Doing so we obtain the following proposal for a higher order quantified
multimodal logic Λmm

ω , again with fixed-domain quantification.

DEFINITION 5 (Higher-order Quantified Multimodal Logic Λmm
ω). The

key idea of this definition is to exclude statements about possible worlds
from the language Λmm

ω . The rest is as before.

1. Given a simply typed λ-term tγ we define the function obt (occurring
base types) as follows:

• obt(t = cδ ∈ Σ) = obt′(δ)

• obt(t = (t1 t2)) = obt(t1) ∪ obt(t2)

• obt(t = (λX t1)) = obt(X) ∪ obt(t1)

• obt′(δ ∈ BT) = {δ}

• obt′(β → δ) = obt′(β) ∪ obt′(δ)

Let tι→o be a simply typed λ-term. If tι→o is a constant or variable,
then tι→o is a Λmm

ω -term. If tι→o is an abstraction λXι po, then tι→o

is a Λmm
ω -term if ι /∈ obt(po). If t is an application (qα→(ι→o)) sα),

then tι→o is a Λmm
ω -term if ι /∈ obt(sα).

2. The modal operators ¬ , ∨ ,2R are defined as before.

3. Modal universal quantification ∀Xγ φι→o is now defined follows: Let
φι→o be an Λmm

ω -term and let Xγ ∈ Σ be a variable such that ι /∈
obt(Xγ). Then ∀Xγ φ stands for λwι ∀Xγ φw.

Again we can employ the standard trick in simple type theory to avoid
introducing a new binder for universal quantification. This time we
introduce the logical constants Πγ→(ι→o) for all types γ such that
ι /∈ obt′(γ). We use them to encode modal universal quantification as
follows: ∀Xγ φι→o stands for Πγ→(ι→o)(λXγ φι→o) and the modal
operator Π is itself defined as

λφ′γ→(ι→o) λWι ∀Xγ φ′XW.

4. Λmm
ω -propositions are defined as the smallest set of simply typed λ-

terms for which the following hold:

• Each Λmm
ω -term tι→o is an atomic Λmm

ω -proposition.

• If φ and ψ are Λmm
ω -propositions, then so are ¬ φ, φ∨ψ and

2R φ.

• If Xγ ∈ Σ is a variable of type µ and φι→o is a Λmm
ω -proposition,

then ∀X φ is a Λmm
ω -proposition.

We could now proceed with a systematic exploration of the properties of
Λmm

1 and Λmm
ω . This, however, will be future work.

7 Discussion

In this paper we explore an interesting and promising research direction:
the embedding of multimodal logic in simple type theory, the development
of reasoning tools such as Leo-II or TPS [5] to support reasoning in and
about multimodal logics in simple type theory, and the systematic computer
supported exploration of properties of multimodal logic in simple type the-
ory.

Interesting future work will be to employ the presented encoding of nor-
mal multimodal logics in order to attack the $100 modal logic challenge4

4http://www.cs.miami.edu/∼tptp/HHDC/

with Leo-II. This challenge, originally proposed by John Halleck, calls
for a computer program, which given the formalizations of any two modal
logics determines their relationship. The approach presented in this paper
should generally be applicable to this challenge when restricting it to normal

multimodal logics.
We illustrate the idea by an example. Consider the statement

∃R ∃A ∃B (¬valid(2RA⇒A)) ∨ (¬valid(2R B⇒2R 2RB))

Leo-II alone (without E) can prove this statement in 17.305 seconds.5 Us-
ing primitive substitution, Leo-II instantiates R in this proof with the “not
equals” relation, which is non-reflexive. We can conclude from this proof
that modal logic S4 is not entailed by modal logic K (S4 6⊆ K).

The time of 17.305 seconds required by Leo-II (without any tuning)
is clearly a massive improvement over the 16 minutes pre-processing time
plus 2710 seconds solving time reported by Rabe et al. [31] for the same
problem. They employ a specifically tuned system based on standard first-
order theorem provers and standard translations of modal logics into first-
order logic.

However, in order to solve the challenge for all normal multimodal logics,
a specific tuning of Leo-II seems also unavoidable. The problem is related
to primitive substitution. It is well illustrated by the following statement,
which expresses that modal logic T (which adds only axiom T to K) is not
entailed in K:

∃R ∃B (¬valid(2RB⇒2R 2R B))

We would expect that this statement can be quickly proved when instanti-
ating R with a non-transitive relation similar to primitive substitution steps
required in examples Kb

T and Kb
4. For good reasons Leo-II fails to do so.

In fact, Leo-II also fails to prove the related statement

∃R ¬trans(R)

The reason is that without further assumptions this statement is not a
theorem. We have neither assumed the axiom of infinity nor that there
exist at least two different possible worlds. Hence, our domain of possible
worlds may well just consist of a single worldw in which case a non-transitive
accessibility relation cannot be provided.

5The proof in Leo-II+E takes 198.818 seconds because of several unsuccessful but time
consuming calls to E. We have already mentioned that the current sequential architecture
of Leo-II+E needs to be replaced by a distributed in which Leo-II cooperates with the
first-order prover in a distributed and incremental manner.

Leo-II can in fact prove the existence of a non-transitive accessibility
relation under the additional assumption

∃X ∃Y X 6= Y

Like the special purpose approach used by Rabe et al. [31], we could
probably successfully tune Leo-II to provide and employ a domain specific
“menu” of the interesting accessibility relations in connection with interest-
ing constraints on the domain of possible worlds in order to attack the $100
modal logic challenge.

Acknowledgment:

We thank Chad Brown, Franz Baader, Gert Smolka, and Mark Kaminski for
their valuable comments to earlier versions of this paper and John Harrison
for reminding us of this interesting application area. We also thank Catalin
Hritcu for proofreading.

BIBLIOGRAPHY
[1] Peter B. Andrews. General Models and Extensionality. Journal of Symbolic Logic,

37:395–397, 1972.
[2] Peter B. Andrews. General Models, Descriptions, and Choice in Type Theory. Journal

of Symbolic Logic, 37:385–394, 1972.
[3] Peter B. Andrews. On Connections and Higher-Order Logic. Journal of Automated

Reasoning, 5:257–291, 1989.
[4] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To

Truth Through Proof. Kluwer Academic Publishers, second edition, 2002.
[5] Peter B. Andrews and Chad E. Brown. TPS: A hybrid automatic-interactive system

for developing proofs. J. Applied Logic, 4(4):367–395, 2006.
[6] Philippe Balbiani, Luis Fariñas del Cerro, and Andreas Herzig. Declarative Semantics

for Modal Logic Programs. In FGCS, pages 507–514, 1988.
[7] Matteo Baldoni, Laura Giordano, and Alberto Martelli. A Framework for a Modal

Logic Programming. In Joint International Conference and Symposium on Logic
Programming, pages 52–66, 1996.

[8] Christoph Benzmüller, Chad E. Brown, and Michael Kohlhase. Higher Order Seman-
tics and Extensionality. Journal of Symbolic Logic, 69:1027–1088, 2004.

[9] Christoph Benzmüller, Larry Paulson, Frank Theiss, and Arnaud Fietzke. Progress
Report on LEO-II – An Automatic Theorem Prover for Higher-Order Logic. In Emerg-
ing Trends at the 20th International Conference on Theorem Proving in Higher Order
Logics. University Kaiserslautern, Germany, 2007.

[10] Christoph Benzmüller, Volker Sorge, Mateja Jamnik, and Manfred Kerber. Combined
Reasoning by Automated Cooperation. Journal of Applied Logic, 2007. To appear.

[11] Chad E. Brown. Encoding Hybrid Logic in Higher-Order Logic. Unpublished slides
from an invited talk presented at Loria Nancy, France, April 2005. http://mathgate.
info/cebrown/papers/hybrid-hol.pdf.

[12] Bob Carpenter. Type-logical semantics. MIT Press, Cambridge, MA, USA, 1998.
[13] Alonzo Church. A Formulation of the Simple Theory of Types. Journal of Symbolic

Logic, 5:56–68, 1940.

[14] Luis Fariñas del Cerro. MOLOG: A System That Extends PROLOG with Modal
Logic. New Generation Comput., 4(1):35–50, 1986.

[15] Daniel Gallin. Intensional and Higher-Order Modal Logic, volume 19 of North-Holland
Mathematics Studies. North-Holland, Amsterdam, 1975.

[16] L. T. F. Gamut. Logic, Language, and Meaning. Volume II. Intensional Logic and
Logical Grammar, volume 2. The University of Chicago Press, 1991.

[17] Moritz Hardt and Gert Smolka. Higher-Order Syntax and Saturation Algorithms for
Hybrid Logic. Electr. Notes Theor. Comput. Sci., 174(6):15–27, 2007.

[18] John Harrison. HOL Light Tutorial (for version 2.20). Intel JF1-13, September 2006.
http://www.cl.cam.ac.uk/∼jrh13/hol-light/tutorial 220.pdf.

[19] Leon Henkin. Completeness in the Theory of Types. Journal of Symbolic Logic,
15:81–91, 1950.

[20] Gérard P. Huet. A Mechanization of Type Theory. In Proceedings of the Third
International Joint Conference on Artificial Intelligence, pages 139–146, Stanford
University, California, USA, 1973. IJCAI.

[21] J. Hurd. An LCF-Style Interface between HOL and First-Order Logic. In Automated
Deduction — CADE-18, volume 2392 of LNAI, pages 134–138. Springer, 2002.

[22] Mark Kaminski and Gert Smolka. Hybrid Tableax for the Difference Modality, 2007.
Accepted to Methods for Modalities 5 (M4M-5), Cachan, France.

[23] Manfred Kerber. On the Representation of Mathematical Concepts and their Transla-
tion into First-Order Logic. PhD thesis, Fachbereich Informatik, Universität Kaiser-
slautern, Kaiserslautern, Germany, 1992.

[24] Jia Meng and Lawrence C. Paulson. Experiments on Supporting Interactive Proof
Using Resolution. In In Proc. of IJCAR 2004, volume 3097 of LNCS, pages 372–384.
Springer, 2004.

[25] Jia Meng, Claire Quigley, and Lawrence C. Paulson. Automation for interactive proof:
first prototype. Inf. Comput., 204(10):1575–1596, 2006.

[26] Stephan Merz. Yet another encoding of TLA in Isabelle. Available on the Internet:
http://www.loria.fr/∼merz/projects/isabelle-tla/doc/design.ps.gz, 1999.

[27] Linh Anh Nguyen. A Fixpoint Semantics and an SLD-Resolution Calculus for Modal
Logic Programs. Fundam. Inform., 55(1):63–100, 2003.

[28] Linh Anh Nguyen. Multimodal logic programming. Theor. Comput. Sci., 360(1-
3):247–288, 2006.

[29] Andreas Nonnengart. How to Use Modalities and Sorts in Prolog. In Craig MacNish,
David Pearce, and Lúıs Moniz Pereira, editors, JELIA, volume 838 of Lecture Notes
in Computer Science, pages 365–378. Springer, 1994.

[30] Hans Jürgen Ohlbach. A Resolution Calculus for Modal Logics. In Ewing L. Lusk and
Ross A. Overbeek, editors, CADE, volume 310 of Lecture Notes in Computer Science,
pages 500–516. Springer, 1988.

[31] Florian Rabe, Petr Pudlak, Geoff Sutcliffe, and Weina Shen. Solving the $100 modal
logic challenge. Journal of Applied Logic, 2007.

[32] Stephan Schulz. E – A Brainiac Theorem Prover. Journal of AI Communications,
15(2/3):111–126, 2002.

A Leo-II Proof Protocol for Example K
d

**** Protocol for Problem: K^d.thf

**** Beginning of derivation protocol ****

1: (mvalid @ ((mbox @ s) @ ((mimpl @ ((mbox @ r) @ a)) @

((mbox @ r) @ a))))=$true

--- theorem(file(K^d.thf,[thm]))

2: (mvalid @ ((mbox @ s) @ ((mimpl @ ((mbox @ r) @ a)) @

((mbox @ r) @ a))))=$false

--- neg_input 1

3: (! [x0:$i,x1:$i] : ((~ ((s @ x0) @ x1)) | ((~ (! [x2:$i] :

((~ ((r @ x1) @ x2)) | (a @ x2)))) | (! [x2:$i] :

((~ ((r @ x1) @ x2)) | (a @ x2))))))=$false

--- unfold_def 2

4: (! [x1:$i] : ((~ ((s @ sk1) @ x1)) | ((~ (! [x2:$i] :

((~ ((r @ x1) @ x2)) | (a @ x2)))) | (! [x2:$i] :

((~ ((r @ x1) @ x2)) | (a @ x2))))))=$false

--- cnf 3

5: ((~ ((s @ sk1) @ sk2)) | ((~ (! [x2:$i] :

((~ ((r @ sk2) @ x2)) | (a @ x2)))) | (! [x2:$i] :

((~ ((r @ sk2) @ x2)) | (a @ x2)))))=$false

--- cnf 4

6: ((~ (! [x2:$i] : ((~ ((r @ sk2) @ x2)) | (a @ x2)))) |

(! [x2:$i] : ((~ ((r @ sk2) @ x2)) | (a @ x2))))=$false

--- cnf 5

7: (~ ((s @ sk1) @ sk2))=$false

--- cnf 5

8: ((s @ sk1) @ sk2)=$true

--- cnf 7

9: (! [x2:$i] : ((~ ((r @ sk2) @ x2)) | (a @ x2)))=$false

--- cnf 6

10: (~ (! [x2:$i] : ((~ ((r @ sk2) @ x2)) | (a @ x2))))=$false

--- cnf 6

11: (! [x2:$i] : ((~ ((r @ sk2) @ x2)) | (a @ x2)))=$true

--- cnf 10

12: ((~ ((r @ sk2) @ sk3)) | (a @ sk3))=$false

--- cnf 9

13: ((~ ((r @ sk2) @ V1)) | (a @ V1))=$true

--- cnf 11

14: (a @ sk3)=$false

--- cnf 12

15: (~ ((r @ sk2) @ sk3))=$false

--- cnf 12

16: (~ ((r @ sk2) @ V1))=$true | (a @ V1)=$true

--- cnf 13

17: ((r @ sk2) @ sk3)=$true

--- cnf 15

18: ((r @ sk2) @ V1)=$false | (a @ V1)=$true

--- cnf 16

19: ($false)=$true

--- fo-atp 8 14 17 18

**** End of derivation protocol ****

**** no. of clauses: 19 ****

B Leo-II Proof Protocol for Example K
b

T

**** Protocol for Problem: K_T^b.thf

**** Beginning of derivation protocol ****

1: (? [R:$i>($i>$o)] : (! [A:$i>$o] :

(mvalid @ ((mimpl @ ((mbox @ R) @ A)) @ A))))=$true

--- theorem(file(K_T^b.thf,[thm]))

2: (? [R:$i>($i>$o)] : (! [A:$i>$o] :

(mvalid @ ((mimpl @ ((mbox @ R) @ A)) @ A))))=$false

--- neg_input 1

3: (~ (! [x0:$i>($i>$o)] : (~ (! [x1:$i>$o,x2:$i] :

((~ (! [x3:$i] : ((~ ((x0 @ x2) @ x3)) | (x1 @ x3)))) |

(x1 @ x2))))))=$false

--- unfold_def 2

4: (! [x0:$i>($i>$o)] : (~ (! [x1:$i>$o,x2:$i] :

((~ (! [x3:$i] : ((~ ((x0 @ x2) @ x3)) | (x1 @ x3)))) |

(x1 @ x2)))))=$true

--- cnf 3

5: (~ (! [x1:$i>$o,x2:$i] : ((~ (! [x3:$i] : ((~ ((V1 @ x2) @ x3)) |

(x1 @ x3)))) | (x1 @ x2))))=$true

--- cnf 4

6: (! [x1:$i>$o,x2:$i] : ((~ (! [x3:$i] :

((~ ((V1 @ x2) @ x3)) | (x1 @ x3)))) | (x1 @ x2)))=$false

--- cnf 5

7: (! [x2:$i] : ((~ (! [x3:$i] : ((~ ((V1 @ x2) @ x3)) |

((sk1 @ V1) @ x3)))) | ((sk1 @ V1) @ x2)))=$false

--- cnf 6

8: ((~ (! [x3:$i] : ((~ ((V1 @ (sk2 @ V1)) @ x3)) |

((sk1 @ V1) @ x3)))) | ((sk1 @ V1) @ (sk2 @ V1)))=$false

--- cnf 7

9: ((sk1 @ V1) @ (sk2 @ V1))=$false

--- cnf 8

10: (~ (! [x3:$i] : ((~ ((V1 @ (sk2 @ V1)) @ x3)) |

((sk1 @ V1) @ x3))))=$false

--- cnf 8

11: (! [x3:$i] : ((~ ((V1 @ (sk2 @ V1)) @ x3)) |

((sk1 @ V1) @ x3)))=$true

--- cnf 10

12: ((~ ((V1 @ (sk2 @ V1)) @ V2)) | ((sk1 @ V1) @ V2))=$true

--- cnf 11

13: (~ ((V1 @ (sk2 @ V1)) @ V2))=$true | ((sk1 @ V1) @ V2)=$true

--- cnf 12

14: ((V1 @ (sk2 @ V1)) @ V2)=$false | ((sk1 @ V1) @ V2)=$true

--- cnf 13

19: (((V19 @ (sk2 @ (^ [x0:$i,x1:$i] :

(((V19 @ x0) @ x1) = ((V20 @ x0) @ x1))))) @ V2) =

((V20 @ (sk2 @ (^ [x0:$i,x1:$i] : (((V19 @ x0) @ x1) =

((V20 @ x0) @ x1))))) @ V2))=$false |

((sk1 @ (^ [x0:$i,x1:$i] : (((V19 @ x0) @ x1) =

((V20 @ x0) @ x1)))) @ V2)=$true

--- prim-subst (V1-->lambda [V17]: lambda [V18]:

(eq ((V19 V17) V18)) ((V20 V17) V18)) 14

31: ((sk1 @ (^ [x0:$i,x1:$i] : (((V19 @ x0) @ x1) =

((V20 @ x0) @ x1)))) @ V2)=$true |

(((V19 @ (sk2 @ (^ [x0:$i,x1:$i] : (((V19 @ x0) @ x1) =

((V20 @ x0) @ x1))))) @ V2) = ((V20 @ (sk2 @ (^ [x0:$i,x1:$i] :

(((V19 @ x0) @ x1) = ((V20 @ x0) @ x1))))) @ V2))=$false

--- uni () 19

32: ((sk1 @ V32) @ (sk2 @ V32))=$false

--- rename 9

94: (((sk1 @ (^ [x0:$i,x1:$i] : (((V19 @ x0) @ x1) =

((V20 @ x0) @ x1)))) @ V2) = ((sk1 @ V32) @ (sk2 @ V32)))=$false |

(((V19 @ (sk2 @ (^ [x0:$i,x1:$i] : (((V19 @ x0) @ x1) =

((V20 @ x0) @ x1))))) @ V2) = ((V20 @ (sk2 @ (^ [x0:$i,x1:$i] :

(((V19 @ x0) @ x1) = ((V20 @ x0) @ x1))))) @ V2))=$false

--- res 31 32

97: (((V64 @ ((((sk9 @ (sk2 @ (^ [x0:$i,x1:$i] : (((V64 @ x0) @ x1) =

((V65 @ x0) @ x1))))) @ (^ [x0:$i,x1:$i] : (((V64 @ x0) @ x1) =

((V65 @ x0) @ x1)))) @ V20) @ V19)) @ ((((sk10 @ V19) @ V20) @

(sk2 @ (^ [x0:$i,x1:$i] : (((V64 @ x0) @ x1) = ((V65 @ x0) @ x1))))) @

(^ [x0:$i,x1:$i] : (((V64 @ x0) @ x1) = ((V65 @ x0) @ x1))))) =

((V65 @ ((((sk9 @ (sk2 @ (^ [x0:$i,x1:$i] : (((V64 @ x0) @ x1) =

((V65 @ x0) @ x1))))) @ (^ [x0:$i,x1:$i] : (((V64 @ x0) @ x1) =

((V65 @ x0) @ x1)))) @ V20) @ V19)) @ ((((sk10 @ V19) @ V20) @

(sk2 @ (^ [x0:$i,x1:$i] : (((V64 @ x0) @ x1) = ((V65 @ x0) @ x1))))) @

(^ [x0:$i,x1:$i] : (((V64 @ x0) @ x1) = ((V65 @ x0) @ x1))))))=$false |

(((V19 @ ((((sk9 @ (sk2 @ (^ [x0:$i,x1:$i] : (((V64 @ x0) @ x1) =

((V65 @ x0) @ x1))))) @ (^ [x0:$i,x1:$i] : (((V64 @ x0) @ x1) =

((V65 @ x0) @ x1)))) @ V20) @ V19)) @ ((((sk10 @ V19) @ V20) @

(sk2 @ (^ [x0:$i,x1:$i] : (((V64 @ x0) @ x1) = ((V65 @ x0) @ x1))))) @

(^ [x0:$i,x1:$i] : (((V64 @ x0) @ x1) = ((V65 @ x0) @ x1))))) =

((V20 @ ((((sk9 @ (sk2 @ (^ [x0:$i,x1:$i] : (((V64 @ x0) @ x1) =

((V65 @ x0) @ x1))))) @ (^ [x0:$i,x1:$i] : (((V64 @ x0) @ x1) =

((V65 @ x0) @ x1)))) @ V20) @ V19)) @ ((((sk10 @ V19) @ V20) @ (sk2 @

(^ [x0:$i,x1:$i] : (((V64 @ x0) @ x1) = ((V65 @ x0) @ x1))))) @

(^ [x0:$i,x1:$i] : (((V64 @ x0) @ x1) = ((V65 @ x0) @ x1))))))=$false |

(((V19 @ (sk2 @ (^ [x0:$i,x1:$i] : (((V19 @ x0) @ x1) =

((V20 @ x0) @ x1))))) @ (sk2 @ (^ [x0:$i,x1:$i] : (((V64 @ x0) @ x1) =

((V65 @ x0) @ x1))))) = ((V20 @ (sk2 @ (^ [x0:$i,x1:$i] :

(((V19 @ x0) @ x1) = ((V20 @ x0) @ x1))))) @ (sk2 @ (^ [x0:$i,x1:$i] :

(((V64 @ x0) @ x1) = ((V65 @ x0) @ x1))))))=$false

--- uni (V32/lambda [V62]: lambda [V63]: (eq ((V64 V62) V63))

((V65 V62) V63) V2/sk2 (lambda [x0]: lambda [x1]: (eq ((V64 x0) x1))

((V65 x0) x1))) 94

98: ($false)=$true --- flexflex 97

**** End of derivation protocol ****

**** no. of clauses: 20 ****

C Leo-II Proof Protocol for Example K
b

4
**** Protocol for Problem: K_4^b.thf

**** Beginning of derivation protocol ****

2: (? [R:$i>($i>$o)] : (! [A:$i>$o] : (mvalid @ ((mimpl @ ((mbox @ R) @ A))

@ ((mbox @ R) @ ((mbox @ R) @ A))))))=$true

--- theorem(file(K_4^b.thf,[thm]))

4: (? [R:$i>($i>$o)] : (! [A:$i>$o] : (mvalid @ ((mimpl @ ((mbox @ R) @ A))

@ ((mbox @ R) @ ((mbox @ R) @ A))))))=$false

--- neg_input 2

5: (~ (! [x0:$i>($i>$o)] : (~ (! [x1:$i>$o,x2:$i] : ((~ (! [x3:$i] :

((~ ((x0 @ x2) @ x3)) | (x1 @ x3)))) | (! [x3:$i] : ((~ ((x0 @ x2) @ x3))

| (! [x4:$i] : ((~ ((x0 @ x3) @ x4)) | (x1 @ x4))))))))))=$false

--- unfold_def 4

7: (! [x0:$i>($i>$o)] : (~ (! [x1:$i>$o,x2:$i] : ((~ (! [x3:$i] :

((~ ((x0 @ x2) @ x3)) | (x1 @ x3)))) | (! [x3:$i] : ((~ ((x0 @ x2) @ x3))

| (! [x4:$i] : ((~ ((x0 @ x3) @ x4)) | (x1 @ x4)))))))))=$true

--- cnf 5

9: (~ (! [x1:$i>$o,x2:$i] : ((~ (! [x3:$i] : ((~ ((V1 @ x2) @ x3)) |

(x1 @ x3)))) | (! [x3:$i] : ((~ ((V1 @ x2) @ x3)) | (! [x4:$i] :

((~ ((V1 @ x3) @ x4)) | (x1 @ x4))))))))=$true

--- cnf 7

11: (! [x1:$i>$o,x2:$i] : ((~ (! [x3:$i] : ((~ ((V1 @ x2) @ x3)) |

(x1 @ x3)))) | (! [x3:$i] : ((~ ((V1 @ x2) @ x3)) | (! [x4:$i] :

((~ ((V1 @ x3) @ x4)) | (x1 @ x4)))))))=$false

--- cnf 9

13: (! [x2:$i] : ((~ (! [x3:$i] : ((~ ((V1 @ x2) @ x3)) |

((sk2 @ V1) @ x3)))) | (! [x3:$i] : ((~ ((V1 @ x2) @ x3)) | (! [x4:$i] :

((~ ((V1 @ x3) @ x4)) | ((sk2 @ V1) @ x4)))))))=$false

--- cnf 11

15: ((~ (! [x3:$i] : ((~ ((V1 @ (sk3 @ V1)) @ x3)) | ((sk2 @ V1) @ x3)))) |

(! [x3:$i] : ((~ ((V1 @ (sk3 @ V1)) @ x3)) | (! [x4:$i] :

((~ ((V1 @ x3) @ x4)) | ((sk2 @ V1) @ x4))))))=$false

--- cnf 13

17: (! [x3:$i] : ((~ ((V1 @ (sk3 @ V1)) @ x3)) | (! [x4:$i] :

((~ ((V1 @ x3) @ x4)) | ((sk2 @ V1) @ x4)))))=$false

--- cnf 15

21: ((~ ((V1 @ (sk3 @ V1)) @ (sk5 @ V1))) | (! [x4:$i] :

((~ ((V1 @ (sk5 @ V1)) @ x4)) | ((sk2 @ V1) @ x4))))=$false

--- cnf 17

25: (~ ((V1 @ (sk3 @ V1)) @ (sk5 @ V1)))=$false

--- cnf 21

27: ((V1 @ (sk3 @ V1)) @ (sk5 @ V1))=$true

--- cnf 25

39: (~ (((V11 @ (sk3 @ (^ [x0:$i,x1:$i] : (~ (((V11 @ x0) @ x1) =

((V12 @ x0) @ x1)))))) @ (sk5 @ (^ [x0:$i,x1:$i] : (~ (((V11 @ x0) @ x1) =

((V12 @ x0) @ x1)))))) = ((V12 @ (sk3 @ (^ [x0:$i,x1:$i] :

(~ (((V11 @ x0) @ x1) = ((V12 @ x0) @ x1)))))) @ (sk5 @ (^ [x0:$i,x1:$i] :

(~ (((V11 @ x0) @ x1) = ((V12 @ x0) @ x1))))))))=$true

--- prim-subst (V1-->lambda [V9]: lambda [V10]: ((lambda [X]: lambda [Y]:

neg ((eq X) Y)) ((V11 V9) V10)) ((V12 V9) V10)) 27

59: (((V11 @ (sk3 @ (^ [x0:$i,x1:$i] : (~ (((V11 @ x0) @ x1) =

((V12 @ x0) @ x1)))))) @ (sk5 @ (^ [x0:$i,x1:$i] : (~ (((V11 @ x0) @ x1) =

((V12 @ x0) @ x1)))))) = ((V12 @ (sk3 @ (^ [x0:$i,x1:$i] :

(~ (((V11 @ x0) @ x1) = ((V12 @ x0) @ x1)))))) @ (sk5 @ (^ [x0:$i,x1:$i] :

(~ (((V11 @ x0) @ x1) = ((V12 @ x0) @ x1)))))))=$false

--- cnf 39

60: ($false)=$true --- flexflex 59

**** End of derivation protocol ****

**** no. of clauses: 15 ****

