
Automated Assistance
for Proof Assistants

Lawrence C Paulson

Computer Laboratory

Dear Aunt Verity,

I am trying to prove this obvious fact:

b < a ⇒ c < 0 ⇒ c×a < c×b

It has been 3 days and I’m getting
nowhere. What can I do?

Yours, Confused.

Tech Support Question

Aunt Verity’s Reply

Dear Confused,

That theorem is already in the system. It
is called mult_strict_left_mono_neg. You
must look harder next time.

Yours, Aunt Verity

Dear Aunt Verity,

Now I am trying to prove

b < a ⇒ 0 < c ⇒ −a×c < −(c×b)

It’s practically the same as the other one
but I still can’t do it.

Yours, Desperate.

Question #2

Reply #2
Dear Desperate,

Moving symbols in a theorem can be
tricky. After a few years’ experience, such
tasks should not take more than one
hour. Work hard and one day you shall
succeed. Meanwhile, try this [horrible
code]

Yours, Aunt Verity

Dear Aunt Verity,

Instead of struggling to prove theorems, I
have decided to sell buggy C software
and charge extra for technical support.

Yours, Joyful At Last.

Question #3??

• Rewriters and auto-tactics can be weak.

• Decision procedures are powerful, but only
for narrow domains.

• SMT solvers are best for ground problems.

• Can general-purpose automatic theorem
provers (ATPs) make a difference?

Automation Ideas

Advantages of ATPs

• They are fully automatic, even with
quantifiers.

• They handle large problems.

• They are clever with equality: not just
directed rewriting!

• They find long, obscure proofs.

Drawbacks of ATPs

• They use untyped first-order logic (FOL);
we don’t!

• They need to run for a long time.

• They often fail.

Users risk wasting time and effort.

Ideas for a Useful Tool

• One-click invocation

• automatic translation to FOL

• automatic selection of lemmas

• Background execution: we don’t have to wait!
(let’s exploit our multi-core machines!)

• Source-level proof reconstruction: we don’t
have to call ATPs next time!

Isabelle Overview

• Generic proof assistant: extensible to
support ZF set theory and other logics.

• (using Huet’s higher-order unification!)

• Isabelle/HOL: classical higher-order logic
(simple type theory)

• Some automation: rewriting engine,
arithmetic solvers, backtracking search,
automatically referring to 2000 lemmas.

Encoding Types in FOL
• Isabelle’s type system is order-sorted

polymorphism (as in Haskell).

• Type classes, such as partial ordering, are
defined by axioms.

• Types can be modelled as first-order
terms, type classes as predicates.

• Modelling the types prevents the incorrect
use of properties such as transitivity.

Translation to FOL

• Detect whether the problem is already
first-order (no function variables...)

• Convert to clause form, eliminating higher-
order features if necessary

• Include some type information

Effectiveness Issues

• We don’t ask users to select relevant
lemmas: that’s too much work.

• The full Isabelle lemma library converts to
8500 clauses!

• ATPs gag if you give them such huge
problems.

• We need automatic relevance filtering.

Soundness Issues

• Attaching types to all terms and subterms
is safe, but quadratic in space.

• Omitting types admits many absurd proofs.

• We include enough types to disambiguate
polymorphic constants.

• This still admits absurd proofs!

Reconstruction Issues

• Proof reconstruction is essential, since we
use unsound translations.

• ATPs use many different inference rules;
they are complicated.

• Their output is incomplete and ambiguous.

Related Work

• KIV, integrated with the prover 3TAP

• Coq, integrated with the prover Bliksem

• Omega, integrated with numerous tools

• HOL, integrated with Metis: a prover
designed to allow proof reconstruction

The Metis Prover

• Designed by Joe Hurd for use with HOL4

• A complete implementation of the
superposition calculus

• ...with an ML interface to support proof
reconstruction.

• It’s good enough to prove modest-sized
problems.

Fixing Our Issues

• Like KIV, use relevance filtering to reduce
problem size.

• First, a simple signature-based filter reduces
a problem from 8500 clauses to say 300.

• Second, use the ATP itself as a giant
relevance filter, leaving perhaps 7 clauses.

• For proof reconstruction, let Metis prove it
again!

Relevance Filtering

• A clause is relevant if it shares “enough”
symbols with the goal being proved.

• The symbols of relevant clauses are used to
measure the relevance of other clauses.

• The iteration must be limited, or too many
clauses become relevant.

• The algorithm is ad-hoc but effective.

Effect of Relevance
Filtering

0 50 100 150 200 250 30020
30
40
50
60
70
80
90 filtered

raw

Runtime per problem (seconds)

Pe
rc

en
t s

ol
ve

d

Filtering gives a higher success rate, esp.
for short runtimes. (Figures for E prover.)

Higher-Order Problems

• We cannot hope for full higher-order
reasoning from first-order provers.

• We merely remove higher-order features
to make the problems look first-order.

• explicit “apply” function and “is true”
predicate for booleans

• removal of λ by combinators or λ-lifting

HO Translations

• We tried many treatments of types:

• full types: sound but too big (quadratic!)

• reduced types: compact but unsound

• For terms, do we preserve the full apply-
structure, or use built-in function application?

• We ran many, many tests!

Effects of Translations

0 50 100 150 200 250 30030

40

50

60 constant (FO)
constant
partial
full (FO)
full

Pe
rc

en
t s

ol
ve

d

Runtime per problem (seconds)

The difference between best and worst is
immense. (Figures for E prover.)

Source-Level Proofs

Single-Step Proofs

• The resolution proof can be emulated in
Isabelle, line by line or in small chunks.

• Each step is a separate Metis call.

• Such proofs are useful if Metis cannot
prove the theorem in a single call.

• This requires an ATP that outputs TSTP
format. (Currently, only the E prover)

A Single-Step Proof

Some Findings

• Naive relevance filtering is surprisingly
effective (and fast).

• Unsound methods coupled with checking
can be better than strictly sound methods.

• There is no substitute for extensive
experimentation with real data.

Final Remarks

• The ATP linkup offers one-click assistance.

• It is available at any point in a proof.

• It helps novices by finding easy proofs and
many of moderate difficulty.

• It gives multi-core machines a purpose.

• It is not a magic bullet for hard problems.

Dear Aunt Verity,

I have completed a deep and difficult
proof, but I just can’t decide which
journal to publish it in. Help!!

Yours, Helpless.

Acknowlegements

• Claire Quigley: process
management

• Kong Woei Susanto: Metis

• Jia Meng: relevance, HO
translations, etc.

• EPSRC project GR/S57198/01
Automation for Interactive Proof

