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Abstract. Experiments show that many inequalities involving exponen-
tials and logarithms can be proved automatically by combining a reso-
lution theorem prover with a decision procedure for the theory of real
closed fields (RCF). The method should be applicable to any functions
for which polynomial upper and lower bounds are known. Most bounds
only hold for specific argument ranges, but resolution can automatically
perform the necessary case analyses. The system consists of a superpo-
sition prover (Metis) combined with John Harrison’s RCF solver and a
small amount of code to simplify literals with respect to the RCF theory.

1 Introduction

Despite the enormous progress that has been made in the development of decision
procedures, many important problems are not decidable. In previous work [1],
we have sketched ideas for solving inequalities over the elementary functions,
such as exponentials, logarithms, sines and cosines. Our approach involves re-
ducing them to inequalities in the theory of real closed fields (RCF), which is
decidable. We argued that merely replacing occurrences of elementary functions
by polynomial upper or lower bounds sufficed in many cases. However, we of-
fered no implementation. In the present paper, we demonstrate that the method
can be implemented by combining an RCF decision procedure with a resolution
theorem prover.

The alternative approach would be to build a bespoke theorem prover that
called theory-specific code. Examples include Analytica [8] and Weierstrass [6],
both of which have achieved impressive results. However, building a new system
from scratch will require more effort than building on existing technology. More-
over, the outcome might well be worse. For example, despite the well-known
limitations of the sequent calculus, both Analytica and Weierstrass rely on it for
logical reasoning. Also, it is difficult for other researchers to learn from and build
upon a bespoke system. In contrast, Verifun [10] introduced the idea of combin-
ing existing SAT solvers with existing decision procedures; other researchers
grasped the general concept and now SMT (SAT Modulo Theories) has become
a well-known system architecture.

Our work is related to SPASS+T [17], which combines the resolution theorem
prover SPASS with a number of SMT tools. However, there are some differences



between the two approaches. SPASS+T extends the resolution’s test for unsat-
isfiability by allowing the SMT solver to declare the clauses inconsistent, and
its objective is to improve the handling of quantification in SMT problems. We
augment the resolution calculus to simplify clauses with respect to a theory, and
our objective is to solve problems in this theory.

Our work can therefore be seen to address two separate questions.

– Can inequalities over the elementary functions be solved effectively?
– Can a modified resolution calculus serve as the basis for reasoning in a highly

specialized theory?

At present we only have a small body of evidence, but the answer to both ques-
tions appears to be yes. The combination of resolution with a decision procedure
for RCF can prove many theorems where the necessary case analyses and other
reasoning steps are found automatically. An advantage of this approach is that
further knowledge about the problem domain can be added declaratively (as
axioms) rather than procedurally (as code). We achieve a principled integration
of two technologies by using one (RCF) in the simplification phase of the other
(resolution).

We eventually intend to output proofs where at least the main steps are
justified. Claims would then not have to be taken on trust, and such a system
could be integrated with an interactive prover such as Isabelle [16]. The tools
we have combined are both designed for precisely such an integration [13, 15].

Paper outline. We begin (§2) by presenting the background for this work,
including specific upper and lower bounds for the logarithm and exponential
functions. We then describe our methods (§3): which axioms we used and how
we modified the automatic prover. We work through a particular example (§4),
indicating how our combined resolution/RCF solver proves it. We present a table
of results (§5) and finally give brief conclusions (§6).

2 Background

The initial stimulus for our project was Avigad’s formalization, using Isabelle,
of the Prime Number Theorem [2]. This theorem concerns the logarithm func-
tion, and Avigad found that many obvious properties of logarithms were tedious
and time-consuming to prove. We expect that proofs involving other so-called
elementary functions, such as exponentials, sines and cosines, would be equally
difficult. Avigad, along with Friedman, made an extensive investigation [3] into
new ideas for combining decision procedures over the reals. Their approach pro-
vides insights into how mathematicians think. They outline the leading decision
procedures and point out how easily they perform needless work. They present
the example of proving

1 + x2

(2 + y)17
<

1 + y2

(2 + x)10

from the assumption 0 < x < y: the argument is obvious by monotonicity, while
mechanical procedures are likely to expand out the exponents. To preclude this



possibility, Avigad and Friedman have formalized theories of the real numbers
in which the distributivity axioms are restricted to multiplication by constants.
As computer scientists, we do not see how this sort of theory could lead to
practical tools or be applied to the particular problem of logarithms. We prefer
to use existing technology, augmented with search and proof heuristics to this
problem domain. We have no interest in completeness—these problems tend to
be undecidable anyway—and do not require the generated proofs to be elegant.

Our previous paper [1] presented families of upper and lower bounds for
the exponential and logarithm functions. These families, indexed by natural
numbers, converge to their target functions. The examples described below use
some members of these families which are fairly loose bounds, but adequate for
many problems.
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Fig. 1. Upper and Lower Bounds for Logarithms
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Fig. 2. Upper and Lower Bounds for Exponentials

Figure 1 presents the upper and lower bounds for logarithms used in this
paper. Note that each of these bounds constrains the argument to a closed inter-
val. This particular family of bounds is only useful for finite intervals, and proofs
involving unbounded intervals must refer to other properties of logarithms, such
as monotonicity. Figure 2 presents upper and lower bounds for exponentials,
which are again constrained to narrow intervals. Such constraints are necessary:
obviously there exists no polynomial upper bound for expx for unbounded x,
and a bound like lnx ≤ x − 1 is probably too loose to be useful for large x.
Tighter constraints on the argument allow tighter bounds, but at the cost of
requiring case analysis on x, which complicates proofs.

Our approach to proving inequalities is to replace occurrences of functions
such as ln by suitable bounds, and then to prove the resulting algebraic inequal-



ity. Our previous paper walked through a proof of

−1
2
≤ x ≤ 3 =⇒ ln(1 + x) ≤ x. (1)

One of the cases reduced to the following problem:

x

1 + x
+

1
2

(
−x

1 + x

)2

≤ x

As our paper shows, this problem is still non-trivial, but fortunately it belongs to
a decidable theory. We have relied on two readable histories of this subject [9, 15].
Tarski proved the decidability of the theory of Real Closed Fields (RCF) in the
1930s: quantifiers can be eliminated from any inequality over the reals involving
only the operations of addition, subtraction and multiplication. It is inefficient:
the most sophisticated decision procedure, cylindrical algebraic decomposition
(CAD), can be doubly exponential. We use a simpler procedure, implemented
by McLaughlin and Harrison [15], who in their turn credit Hörmander [12] and
others. For the RCF problems that we generate, the decision procedure usually
returns quickly: as Table 1 shows, most inequalities are proved in less than one
second, and each proof involves a dozen or more RCF calls.

Although quantifier elimination is hyper-exponential, the critical parameters
are the degrees of the polynomials and the number of variables in the formula.
The length of the formula appears to be unimportant. At present, all of our
problems involve one variable, but the simplest way to eliminate quotients and
roots involves introducing new variables. We do encounter situations where RCF
does not return.

Our idea of replacing function occurrences by upper or lower bounds involves
numerous complications. In particular, most bounds are only valid for limited
argument ranges, so proofs typically require case splits to cover the full range of
possible inputs. For example, three separate upper bounds are required to prove
equation (1). Another criticism is that bounds alone cannot prove the trivial
theorem

0 < x ≤ y =⇒ lnx ≤ ln y,

which follows by the monotonicity of the function ln. Special properties such as
monotonicity must somehow be built into the algorithm. Search will be necessary,
since some proof attempts will fail. If functions are nested, the approach has to
be applied recursively. We could have written code to perform all of these tasks,
but it seems natural to see whether we can add an RCF solver to an existing
theorem prover instead.

For the automatic theorem prover, we chose Metis [13], developed by Joe
Hurd. It is a clean, straightforward implementation of the superposition calcu-
lus [4]. Metis, though not well known, is ideal at this stage in our research. It
is natural to start with a simple prover, especially considering that the RCF
decision procedure is more likely to cause difficulties.



3 Method

Most resolution theorem provers implement some variant of the inference loop
described by McCune and Wos [14]. There are two sets of clauses, Active and
Passive. The Active set enjoys the invariant that every one of its elements has
been resolved with every other, while the Passive set consists of clauses waiting
to be processed. At each iteration, these steps take place:

– An element of the Passive set (called the given clause) is selected and moved
to the Active set.

– The given clause is resolved with every member of the Active set.
– Newly inferred clauses are first simplified, for example by rewriting, then

added to the Passive set. (They can also simplify the Active and Passive
sets by subsumption, an important point but not relevant to this paper.)

Resolution uses purely syntactical unification: no theory unification is in-
volved. Our integration involves modifying the simplification phase to take ac-
count of the RCF theory. Algebraic terms are simplified and put into a canonical
form. Literals are deleted if the RCF solver finds them to be inconsistent with
algebraic facts present in the clauses. Both simplifications are essential. The
canonical form eliminates a huge amount of redundant representations, for ex-
ample the n! permutations of the terms of x1+· · ·+xn. Literal deletion generates
the empty clause if a new clause is inconsistent with existing algebraic facts, and
more generally it eliminates much redundancy from clauses.

To summarize, we propose the following combination method:

1. Negate the problem and Skolemize it, finally converting the result into con-
junctive normal form (CNF) represented by a list of conjecture clauses.

2. Combine the conjecture clauses with a set of axioms and make a problem
file in TPTP format, for input to the resolution prover.

3. Apply the resolution procedure to the clauses. Simplify new clauses as de-
scribed below before adding them to the Passive set.

4. If a contradiction is reached, we have refuted the negated formula.

3.1 Polynomial Simplification

All terms built up using constants, negation, addition, subtraction, and multi-
plication can be considered as multivariate polynomials. Following Grégoire and
Mahboubi [11], we have chosen a canonical form for them: Horner normal form,
also called the recursive representation.1 An alternative is the distributed repre-
sentation, a flat sum with an ordering of the monomials; however, our approach
is often adopted and is easy to implement.

Any univariate polynomial can be rewritten in recursive form as

p(x) = anxn + · · ·+ a1x + a0 = a0 + x(a1 + x(a2 + · · ·x(an−1 + xan))
1 A representation is called canonical if two different representations always corre-

spond to two different objects.



We can consider a multivariate polynomial as a polynomial in one variable whose
coefficients are themselves a canonical polynomial in the remaining variables. We
maintain a list with the innermost variable at the head, and this will determine
the arrangement of variables in the canonical form. We adopt a sparse represen-
tation: zero terms are omitted.

For example, if variables from the inside out are x, y and z, then we represent
the polynomial 3xy2 + 2x2yz + zx + 3yz as

[y(z3)] + x([z1 + y(y3)] + x[y(z2)]),

where the terms in square brackets are considered as coefficients. Note that we
have added numeric literals to Metis: the constant named 3, for example, denotes
that number, and 3 + 2 simplifies to 5.

We define arithmetic operations on canonical polynomials, subject to a fixed
variable ordering. For addition, our task is to add c + xp and d + yq. If x and
y are different, one or other is recursively added to the constant coefficient of
the other. Otherwise, we just compute (c + xp) + (d + xq) = (c + d) + x(p + q),
returning simply c + d if p + q = 0. For negation, we recursively negate the
coefficients, while subtraction is an easy combination of addition and negation.

We can base a recursive definition of polynomial multiplication on the fol-
lowing equation, solving the simpler sub-problems p× d and p× q recursively:

p× (d + yq) = (p× d) + (0 + y(p× q))

However, for 0 + y(p× q) to be in canonical form we need y to be the topmost
variable overall, with p having no variables strictly earlier in the list. Hence, we
first check which polynomial has the earlier topmost variable and exchange the
operands if necessary. Powers pn (for fixed n) are just repeated multiplication.

Any algebraic term can now be translated into canonical form by transform-
ing constants and variables, then recursively applying the appropriate canonical
form operations. We simplify a formula of the form X ≤ Y by converting X−Y
to canonical form, finally generating an equivalent form X ′ ≤ Y ′ with X ′ and
Y ′ both canonical polynomials with their coefficients all positive. We simplify
1 + x ≤ 4 to x ≤ 3, for example. Any fixed format can harm completeness,
but note that the literal deletion strategy described below is indifferent to the
particular representation of a formula.

3.2 Literal Deletion

We can distinguish a literal L in a clause by writing the clause as A ∨ L ∨ B,
where A and B are disjunctions of zero or more literals. Now if ¬A ∧ ¬B ∧ L is
inconsistent, then the clause is equivalent to A∨B; therefore, L can be deleted.
We take the formula ¬A ∧ ¬B ∧ L to be inconsistent if the RCF solver reduces
it to false.

For example, consider the clause x ≤ 3 ∨ x = 3. (Such redundancies arise
frequently.) We focus on the first literal and note that x 6= 3 ∧ x ≤ 3 is consis-
tent, so that literal is preserved. We focus on the second literal and note that



¬(x ≤ 3) ∧ x = 3 is inconsistent, so that literal is deleted: we simplify the clause
to x ≤ 3.

This example illustrates a subtle point concerning variables and quantifiers.
In the clause x ≤ 3 ∨ x = 3, the symbol x is a constant, typically a Skolem
constant originating in a existentially quantified variable in the negated con-
jecture. Before calling RCF, we again convert x to an existentially quantified
variable. Here is a precise justification of this practice. In the semantics of first-
order logic [5], a structure for a first-order language L comprises a non-empty
domain D and interprets the constant, function and relation symbols of L as cor-
responding elements, functions and relations over D. The clause x ≤ 3 ∨ x = 3
is satisfied by any structure that gives its symbols their usual meanings over
the real numbers and also maps x to 3; it is, however, falsified if the structure
instead maps x to 4. To prove the inconsistency of say ¬(x ≤ 3) ∧ x = 3, we
give the RCF solver a closed formula, ∃x [¬(x ≤ 3) ∧ x = 3]; if this formula is
equivalent to false, then there exists no interpretation of x satisfying the original
formula. More generally, we can prove the inconsistency of a ground formula by
existentially quantifying over its uninterpreted constants before calling RCF.

We strengthen this test by taking account of all algebraic facts known to the
prover. (At present, we consider only algebraic facts that are ground.) Whenever
the automatic prover asserts new clauses, we extract those that concern only
addition, subtraction and multiplication. We thus accumulate a list of algebraic
clauses that we include in the formula that is delivered to the RCF solver. For
example, consider proving − 1

2 ≤ u ≤ 3 =⇒ ln(u + 1) ≤ u. Upon termination, it
has produced the following list of algebraic clauses:

F, ~(1 <= u), ~(0 <= u) \/ ~(u <= 1), 0 <= 1 + u * 2, u <= 3

This list is built from right to left. It begins with u ≤ 3 from the problem
statement, while 0 ≤ 1 + u× 2 is soon derived from − 1

2 ≤ u. The other clauses
arise during the proof, which terminates with false.

To summarize, literal deletion works as follows, where C denotes the con-
junction of all ground algebraic clauses known to the prover.

1. Identify a candidate literal L in a clause by writing the clause as A∨L∨B.
Note that L must be algebraic.

2. Form the existential closure of the formula ¬A∧¬B ∧C ∧L, retaining only
the algebraic literals of A and B.

3. If RCF quantifier elimination reduces this formula to false, then delete L
from the clause.

The formulas given to RCF contain no universal quantifiers, because at
present they are constructed from ground clauses. As mentioned above, every
uninterpreted constant contained in the formula becomes an existentially quan-
tified variable.

3.3 Axioms

We have sought to find a general set of axioms describing the real numbers,
and in particular their ordering. We combine these general axioms with upper



and lower bounds for the functions of interest. The resulting axiom set replaces
inequalities concerning those functions by algebraic inequalities. These, in turn,
will be simplified by the RCF solver.

We include axioms that relate division to multiplication, since RCF solvers
do not accept division.

X ≤ Y × Z =⇒ X/Z ≤ Y ∨ Z ≤ 0
X ≤ Y/Z =⇒ X × Z ≤ Y ∨ Z ≤ 0
X × Z ≤ Y =⇒ X ≤ Y/Z ∨ Z ≤ 0
X/Z ≤ Y =⇒ X ≤ Y × Z ∨ Z ≤ 0

We include similar axioms for equality.

Y/Z = X =⇒ Z = 0 ∨ Y = X × Z

X = Y/Z =⇒ Z = 0 ∨X × Z = Y

These axioms simplify inequalities between quotients.

X/Y ≤ W/Z =⇒ Y ≤ 0 ∨ Z ≤ 0 ∨X × Z ≤ Y ×W

Y ×W ≤ X × Z =⇒ W/Z ≤ X/Y ∨ Y ≤ 0 ∨ Z ≤ 0

Our use of a canonical polynomial representation eliminates the need for the
usual axioms for addition and multiplication, such as commutative laws.

We have experimented with axioms defining the standard properties of a
linear ordering:

X ≤ X (2)
X ≤ Y ∨ Y ≤ X (3)

X ≤ Y ∧ Y ≤ X =⇒ X = Y (4)
X ≤ Y ∧ Y ≤ Z =⇒ X ≤ Z (5)

Note that inequalities are formalized using ≤. We formalize < by the equivalence
X < Y ⇐⇒ ¬(Y ≤ X). This eliminates the need to have, for example, four
versions of transitivity.

¬(X < Y ) ∨ ¬(Y ≤ X)
(X < Y ) ∨ (Y ≤ X)

However, the experiments reported below do not use axioms (2)–(5). Transitivity,
in particular, blows up the search space. When transitivity is omitted, the lower
and upper bound axioms must be modified in the obvious way; for example, the
axiom φ =⇒ lnX ≤ e must become φ ∧ e ≤ Y =⇒ lnX ≤ Y . We intend to
do more work to find the best treatment of ordering properties.

These axioms are rather general. We can influence the way they are applied
by means of weights, which influence the selection of literals in ordered resolution.
Giving high weights (500 000) to the functions ln and exp encourages the prover



to eliminate them. We also give division a high weight (50), encouraging its
replacement by multiplication. It is obvious that occurrences of certain functions
must be discouraged, but the effect of adding weights was more powerful than
we expected.

4 Worked Example

In order to see how this approach works, let us follow its proof of the formula

∀X
[
−1/2 ≤ X ∧ X ≤ 3 =⇒ ln(1 + X) ≤ X

]
.

Below, for the sake of readability, we write

L1 ∧ . . . ∧ Ln =⇒ false

rather than
¬L1 ∨ . . . ∨ ¬Ln.

We also use standard mathematical notation rather than Horner canonical form.
The input file appears as Appendix A.

After negation and Skolemization, our problem consists of three conjecture
clauses:

−1/2 ≤ u

u ≤ 3
¬(ln(1 + u) ≤ u)

The first conjecture clause resolves with one of the divisibility axioms and yields

−1 ≤ u× 2 ∨ 2 ≤ 0,

which simplifies to 0 ≤ 1 + u× 2.
The high weight of ln will ensure that literals containing it are selected.

Therefore, the negative literal above will combine with complementary literals
in the axiom clauses specifying upper bounds of lnx: that is, those shown in
Fig. 1. One of these (combined with transitivity as described in §3.3) is

1 ≤ X ∧ X ≤ 2 ∧ X − 1 ≤ Y =⇒ lnX ≤ Y.

Resolution of the third conjecture clause with this axiom yields

1 ≤ 1 + u ∧ 1 + u ≤ 2 ∧ 1 + u− 1 ≤ u =⇒ false (6)

Performing the obvious simplifications, we get

0 ≤ u ∧ u ≤ 1 =⇒ false.

We have now deduced u < 0 ∨ u > 1.



Another upper bound axiom (combined with transitivity) is

2 ≤ X ∧ X ≤ 4 ∧ X

2
≤ Y =⇒ lnX ≤ Y

when resolution with the third conjecture clause yields

2 ≤ 1 + u ∧ 1 + u ≤ 4 ∧ 1 + u

2
≤ u =⇒ false.

The simplified clause (RCF deletes u ≤ 3) is

1 ≤ u ∧ 1 + u

2
≤ u =⇒ false. (7)

Resolution of this with the appropriate division axiom produces

1 ≤ u ∧ 1 + u ≤ u× 2 =⇒ 2 ≤ 0,

which simplifies to
1 ≤ u =⇒ false,

so we have deduced u < 1. Indeed (since u < 0 ∨ u > 1) we have u < 0, and
RCF will notice this.

Resolution of the third conjecture clause with the third upper bound axiom
and the division axiom yields

1/2 ≤ 1 + u ∧ 1 + u ≤ 1 ∧ 3(1 + u)2 − 4(1 + u) + 1 ≤ 2u(1 + u)2

=⇒ 2u2 ≤ 0.

The obvious simplifications yield

−1/2 ≤ u ∧ u ≤ 0 ∧ 0 ≤ u2 + u3 =⇒ 2u2 ≤ 0,

but given the facts u < 0 and 0 ≤ 1 + u× 2, RCF further simplifies it to

false.

As mentioned earlier, this proof generates the following series of algebraic
clauses, from right to left.

F, ~(1 <= u), ~(0 <= u) \/ ~(u <= 1), 0 <= 1 + u * 2, u <= 3

5 Results and Discussion

We have run only a few dozen examples, but the results are promising (Table 1).
We are aware of no other system that can solve such problems, so we present
the table merely to give an impression of what can be solved, rather than as a
basis for comparison. Most of these problems are proved in under three seconds
on a 3GHz Pentium D.



Table 1. Problems and Runtimes

problem seconds

1/2 ≤ x ≤ 4 =⇒ ln x ≤ x− 1 0.608
1 ≤ x ≤ 4 =⇒ ln x ≤ x2 − x 0.060

1/2 ≤ x ≤ 3/2 =⇒ ln x ≤ 2x2 − 3x + 1 0.643
1/2 ≤ x ≤ 1 =⇒ ln x ≤ (3− 3x)/2 0.779

−1/2 ≤ x ≤ 3 =⇒ ln(1 + x) ≤ x 0.527
0 ≤ x ≤ 3 =⇒ ln(1 + x) ≤ x + x2 0.060

−1/2 ≤ x ≤ 1/2 =⇒ ln(1 + x) ≤ x + 2x2 2.500
−1/2 ≤ x ≤ 0 =⇒ ln(1 + x) ≤ (−3x)/2 2.457
−3 ≤ x ≤ 1/2 =⇒ ln(1− x) ≤ −x 1.929
−3 ≤ x ≤ 0 =⇒ ln(1− x) ≤ x2 − x 0.219

−1/2 ≤ x ≤ 1/2 =⇒ ln(1− x) ≤ 2x2 − x 4.256
0 ≤ x ≤ 1/2 =⇒ ln(1− x) ≤ (3x)/2 3.303

1/2 ≤ x ≤ 4 =⇒ (x− 1)/x ≤ ln x 0.272
1 ≤ x ≤ 4 =⇒ −x2 + 3x− 2 ≤ ln x 0.305

1/2 ≤ x ≤ 3/2 =⇒ −2x2 + 5x− 3 ≤ ln x 0.258
−1/2 ≤ x ≤ 3 =⇒ x/(1 + x) ≤ ln(1 + x) 2.592

0 ≤ x ≤ 3 =⇒ x− x2 ≤ ln(1 + x) 0.723
−1/2 ≤ x ≤ 1/2 =⇒ x− 2x2 ≤ ln(1 + x) 1.643
−3 ≤ x ≤ 1/2 =⇒ −x/(1− x) ≤ ln(1− x) 0.836
−3 ≤ x ≤ 0 =⇒ −x− x2 ≤ ln(1− x) 0.779

−1/2 ≤ x ≤ 1/2 =⇒ −x− 2x2 ≤ ln(1− x) 1.133

−1 ≤ x ≤ 0 =⇒ exp x ≤ (2 + x)/2 0.307
−1 ≤ x ≤ 0 =⇒ exp x ≤ (4 + x)/4 0.363

0 ≤ x ≤ 1 =⇒ exp x ≤ 1 + x + x2 0.781
−1 ≤ x < 1 =⇒ exp x ≤ 1/(1− x) 0.800

0 ≤ x ≤ 1 =⇒ exp(−x) ≤ (2− x)/2 0.319
−1 < x ≤ 1 =⇒ exp(−x) ≤ 1/(1 + x) 0.614

−1 ≤ x ≤ 1 =⇒ 1 + x ≤ exp x 0.611
0 ≤ x ≤ 1 =⇒ (4 + x)/4 ≤ exp x 0.926

−1 ≤ x ≤ 0 =⇒ (4 + 7x)/4 ≤ exp x 0.613
−1 ≤ x ≤ 1 =⇒ 1− x ≤ exp(−x) 0.993

We clearly need to broaden our range of problems. Our examples all take the
same form: that a basic inequality holds over a specific interval. The potential
strength of a combination of resolution and RCF is that we might be able to
solve such problems when they occur indirectly buried in some more complicated
goals, perhaps resulting from the unification of other variables.

Limitations of our approach cause it to fail on some problems. Our bounds
shown in Figs. 1 and 2 are sometimes too loose. For example, to prove 0 ≤ x ≤
1/2 =⇒ −3x/2 ≤ ln(1− x), we have to use a tighter logarithmic lower bound:

11x3 − 18x2 + 9x− 2
6x3

≤ lnx
(1

2
≤ x ≤ 1

)



Similarly, proving 0 ≤ x ≤ 1 =⇒ expx ≤ (4 + 7x)/4 requires using a tighter
exponential upper bound:

expx ≤ 120/(−x5 + 5x4 − 20x3 + 60x2 − 120x + 120)
(
0 ≤ x ≤ 1

)
Some problems cannot be solved because the RCF decision procedure runs

forever. One example is 0 ≤ x ≤ 1 =⇒ exp(x − x2) ≤ 1 + x, which calls RCF
on the following existentially quantified formula:

exists u. 0 <= u /\ u <= 1 /\

~ (u * u * u * u * (1 + u * u * 2) <=

u * u * (3 + u * (2 + u * u * (3 + u * u))))

Introducing new variables allows some problems to be solved, but increases
the danger that the decision procedure will loop. The problem −1 < x =⇒
exp(x/(1+x)) ≤ 1+x is easily proved if we modify it, replacing the quotient by
an extra variable y such that (1 + x)y = x. As a second example, the univariate
problem −1/2 ≤ x ≤ 0 =⇒ x/

√
1 + x ≤ ln(1 + x) is first converted to a

problem with two variables to avoid the square root: −1/2 ≤ x ≤ 0 ∧ 0 ≤ y ∧
y2 = 1 + x =⇒ x/y ≤ ln(1 + x). Attempting the new problem will generate the
following formula, which RCF cannot handle:

exists u v. 0 <= 1 + u * 2 /\ u <= 0 /\ 0 <= v /\ 1 + u = v * v /\

~ (u * ((2 + v * 2) + (u * ((4 + v * 3)+ u * 2))) <= 0)

These examples are too hard for a simple algorithm like Cohen-Hörmander.
Eliminating two quantifiers from formulas involving nonlinear polynomials is
not trivial. The first example is more marginal, but the doubly exponential com-
plexity of Hörmander’s algorithm seems to become noticeable when the degree of
the polynomial exceeds 5. These examples suggest that we use a more powerful
procedure, such as QEPCAD-B [7].

6 Conclusions

Inequalities concerning the elementary functions, such as exp and ln, can be
proved by a simple combination of a resolution theorem prover and an RCF
decision procedure. The architecture is simple and principled: it merely involves
modifying resolution’s simplification phase to take account of the RCF theory.

The axiom system requires further development and testing. It could contain
a greater variety of upper and lower bounds. For example, the very loose bound
lnx ≤ x−1 might be useful when x can be arbitrarily large. Use of bounds such
as ln x ≤ 2(

√
x − 1) requires a means of eliminating the square root operator,

through a translation such as ∃y [y2 = x → · · · ]. Most of the bounds are infinite
families of axioms, so we must develop a preprocessing phase that inserts required
instances of these axioms into the problem automatically. The general ordering
axioms, such as transitivity, greatly expand the search space; we need to explore
other methods of handling ordering properties.



Also, we need to consider a wider range of problems, including difficult fea-
tures such as nested applications of elementary functions or sums and products
of them. We need to consider equalities as well as inequalities. Introducing new
variables to eliminate roots and quotients can cause the RCF procedure to run
forever, so we intend to try using QEPCAD-B [7] instead.
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A Input File for the Sample Problem

cnf(leq_left_divide_mul,axiom,

( ~ less_equal(X,multiply(Y,Z))

| less_equal(divide(X,Z),Y)

| less_equal(Z,0) )).

cnf(leq_left_mul_divide,axiom,

( ~ less_equal(X,divide(Y,Z))

| less_equal(multiply(X,Z),Y)

| less_equal(Z,0) )).

cnf(leq_right_divide_mul,axiom,

( ~ less_equal(multiply(X,Z),Y)

| less_equal(X,divide(Y,Z))

| less_equal(Z,0) )).

cnf(leq_right_mul_divide,axiom,

( ~ less_equal(divide(X,Z),Y)

| less_equal(X,multiply(Y,Z))

| less_equal(Z,0) )).

cnf(eq_left_divide_mul,axiom,

( ~ equal(divide(Y,Z),X)

| equal(Z,0)

| equal(Y,multiply(X,Z)) )).

cnf(eq_right_divide_mul,axiom,

( ~ equal(X,divide(Y,Z))

| equal(Z,0)

| equal(multiply(X,Z),Y) )).

cnf(leq_double_divide_mul,axiom,

( ~ less_equal(divide(X,Y),divide(W,Z))

| less_equal(Y,0)

| less_equal(Z,0)



| less_equal(multiply(X,Z),multiply(Y,W)) )).

cnf(leq_double_mul_divide,axiom,

( ~ less_equal(multiply(Y,W),multiply(X,Z))

| less_equal(divide(W,Z),divide(X,Y))

| less_equal(Y,0)

| less_equal(Z,0) )).

cnf(log_upper_bound_case_1,axiom,

( ~ less_equal(divide(1,2),X)

| ~ less_equal(X,1)

| ~ less_equal(divide(add(multiply(3,power(X,2)),

add(neg(multiply(4,X)),1)),multiply(2,power(X,2))),Y)

| less_equal(ln(X),Y) )).

cnf(log_upper_bound_case_2,axiom,

( ~ less_equal(1,X)

| ~ less_equal(X,2)

| ~ less_equal(subtract(X,1),Y)

| less_equal(ln(X),Y) )).

cnf(log_upper_bound_case_3,axiom,

( ~ less_equal(2,X)

| ~ less_equal(X,4)

| ~ less_equal(divide(X,2),Y)

| less_equal(ln(X),Y) )).

cnf(log_upper_bound_problem_5_1,negated_conjecture,

(less_equal(divide(neg(1),2),u) )).

cnf(log_upper_bound_problem_5_2,negated_conjecture,

(less_equal(u,3) )).

cnf(log_upper_bound_problem_5_3,negated_conjecture,

(~ less_equal(ln(add(1,u)),u) )).


