
Automated Theorem Proving For Special Functions:
The Next Phase

Lawrence C. Paulson
Computer Laboratory
Univ. of Cambridge

United Kingdom
lp15@cl.cam.ac.uk

Categories and Subject Descriptors
[Symbolic and algebraic manipulation]: Symbolic and
algebraic algorithms—Theorem proving algorithms; [Theory
of computation]: Logic—Logic and verification

General Terms
theorem proving, verification, decision procedures

1. RESOLUTION THEOREM PROVING
Automated theorem proving, in a nutshell, is the combi-

nation of symbolic logic with syntactic algorithms. A formal
proof calculus is chosen with two criteria in mind: expres-
siveness and ease of automation. These desiderata pull in
opposite directions: Boolean logic and linear arithmetic are
decidable, so the answers to all questions can simply be cal-
culated, but these theories are not very expressive. At the
other extreme, a dependent type theory such as the calcu-
lus of constructions used in Coq [6] is highly expressive and
flexible, but complicates automation; even basic rewriting
is difficult. Higher-order logic is often seen as a suitable
compromise, expressive enough to reason directly about sets
and functions, while still admitting substantial automation
(especially in the case of Isabelle [18]).

Interactive theorem provers typically implement an ex-
pressive calculus, at least higher-order logic if not type the-
ory, and rely on the user to guide the proof process. Auto-
matic theorem provers, with few exceptions, are confined to
first-order logic, for which highly refined and effective proof
procedures exist. A venerable but still popular procedure is
resolution [3]. The statement to be proved is negated and
then transformed into a set (interpreted as a conjunction) of
disjunctions. Finding the set of formulas to be inconsistent
proves the desired theorem by contradiction.

For a simple example, suppose that we assume P ∨Q and
P → Q and seek to prove Q. After negating the conclusion,
the problem amounts to the set P ∨ Q, ¬P ∨ Q, ¬Q. The
resolution rule deduces new disjunctions by combining an
atomic formula with its complement: from P ∨Q and ¬P ∨Q
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SNC’14, July 28–31, 2014, Shanghai, China.
Copyright 2014 ACM 978-1-4503-2963-7/14/07 ...$15.00.
http://dx.doi.org/10.1145/2631948.2631950

we deduce Q, which combined with ¬Q yields the sought-
after contradiction.

Resolution copes with first-order quantification easily. Con-
sider the generalised problem that assumes

(∃xP (x)) ∨ (∃xQ(x)) and ∀x [P (x)→ Q(x)]

and that seeks to prove ∃xQ(x). The corresponding set of
disjunctions is P (a)∨Q(b), ¬P (x)∨Q(x), ¬Q(x), where some
of the quantified variables have been replaced by constants
and the remainder are implicitly universally quantified. Re-
solving the first two disjunctions yields Q(a) ∨ Q(b). From
this, using ¬Q(x), we deduce first Q(b) and finally obtain
a contradiction. We have refuted the negated conjecture,
namely ¬Q(x), thereby proving ∃xQ(x), as desired.

Each resolution inference combines two disjunctions, say
P ∨A and ¬Q∨B, where P and Q are atomic formulas that
can be unified. This means finding a substitution σ such
that Pσ and Qσ are identical. Resolution then returns the
disjunction (A∨B)σ. Disjunctions in resolution are referred
to as clauses. They are often written as sets of literals, where
a literal is an atomic formula or its negation.

Passive
clause set

Active
clause set

 selected
clause

 inference
rules

 deduced
clauses simplification

new
clausesContradiction!

Figure 1: The main loop of resolution

A resolution prover’s main loop (Fig. 1) manages two sets
of clauses, Active and Passive [16]. The Active set consists
of clauses that have been resolved with every other Active
clause, while the Passive set consists of clauses waiting to
be processed. At the start, all clauses belong to Passive.
At each iteration, an element of the Passive set (called the
given clause) is selected and moved to the Active set. The
given clause is then resolved with every member of the Active
set. Newly inferred clauses can be simplified, for example by
rewriting, before they are added to the Passive set.

Innumerable refinements and sophisticated implementa-
tions have brought resolution to the point where it can prove
theorems in many domains, in the presence of hundreds of

axioms. Nevertheless, resolution theorem proving has not
made a significant impact on mathematics. Its most cele-
brated achievement to date is settling the Robbins conjecture
using EQP [15], a specialised theorem prover implementing a
variant of resolution. The proof involved showing that three
particular axioms were sufficient to characterise the notion
of a Boolean algebra. This sort of highly syntactic, self-
contained problem is typical of what can be achieved using
fully automatic methods. Although the Robbins conjecture
was of real significance, questions about the sufficiency of
particular sets of axioms are a niche concern. They lie well
outside of mainstream mathematics.

2. METITARSKI
MetiTarski [1] is a resolution theorem prover specialised to

the domain of the real numbers. It proves first-order formu-
las built up over real inequalities that may involve the famil-
iar special functions such as sin, cos, tan−1 and ln. Its strat-
egy is to replace occurrences of special functions by upper
or lower bounds for them, given by axioms. These bounds
are typically truncated Taylor series or rational functions de-
rived from continued fraction approximations. Eliminating
occurrences of division leaves us with polynomial inequali-
ties, which in many cases can be decided by calling an ex-
ternal decision procedure for real-closed fields (RCF), such
as QEPCAD [9].

All of this takes place within the resolution framework.
The original problem is broken down into clauses. The se-
lection of suitable upper or lower bound axioms happens au-
tomatically, matching inequalities in the axioms with those
in the problems. A collection of bounds, valid over a variety
of intervals, linear or of high degree, is typically given to
MetiTarski, and resolution alone determines which bounds
are used in the final proof. But MetiTarski also has special
code to convert arithmetic expressions to a canonical form
(in an ad hoc manner), to isolate function occurrences so
that they can easily be eliminated, and to flatten expres-
sions involving division to assist in its elimination. The ac-
tual replacement of division by multiplication is performed
by resolution, given the obvious axioms relating the two op-
erations.

In general, a resolution step creates a new clause that has
more literals than the two existing clauses. Many resolu-
tions are possible, but very few of them are useful. In order
to focus the search, Bachmair and Ganzinger [2] introduced
ordering heuristics for restricting each resolution step to par-
ticular literals. Resolution therefore eliminates those literals
first. In the specific case of MetiTarski, we arrange things
to eliminate literals containing special functions, replacing
them by their upper or lower bounds as appropriate. Once
division has also been eliminated from a literal, it becomes a
polynomial inequality. This is the stage at which QEPCAD,
or another external decision procedure, can be called. The
point is to identify literals that must be false (within their
context) and can therefore be safely deleted. This creates
a fine-grained integration between resolution and computer
algebra.

The absolute value function is specified by the obvious pair
of clauses:

x < 0 ∨ |x| = x 0 ≤ x ∨ |x| = −x

Using these, MetiTarski replaces |t| by t or −t. The effect is
to perform case analysis on the sign of t, but it happens nat-

urally according to the standard mechanisms are resolution
theorem prover. Given a clause of the form

P (|t|) ∨ C,

two new clauses can be generated:

P (t) ∨ t < 0 ∨ C
P (−t) ∨ 0 ≤ t ∨ C

An instance of the absolute value function has been elim-
inated. In particular, if C and P (t) can both be refuted,
then the first clause will be reduced to just t < 0. Refuting
P (−t) will reduce the second clause to 0 ≤ t, which will con-
tradict t < 0 and conclude the proof. Note that MetiTarski
identifies t < u with ¬(u ≤ t).

Finally, MetiTarski augments resolution with backtrack-
ing, as seen in SAT and SMT solvers [8]. Case splitting ef-
fectively solves subproblems that naturally arise during the
search. It is appropriate because many MetiTarski clauses
have no universally quantified variables. Thus, MetiTarski
has an unusual architecture combining elements of resolution
and SAT-solving, tightly integrated with external decision
procedures for real closed fields.

3. A WORKED EXAMPLE
The best way to see how MetiTarski actually works is by

examining a small example:

∀x |ex − 1| ≤ e|x| − 1

The first step is to negate the conjecture, which in effect
asserts the existence of a counterexample, c. Our objective
is to refute the following inequality:

e|c| < 1 + |ec − 1| (1)

According to the absolute value mechanism described above,
a clause is generated corresponding to the case c < 0:

0 ≤ c ∨ e−c < 1 + |ec − 1|

(you may prefer to read it as c < 0 =⇒ e−c < 1 + |ec − 1|.)
Note that |c| has been replaced by −c.

A second use of absolute value reasoning generates a clause
corresponding to the case ec − 1 < 0:

1 ≤ ec ∨ 0 ≤ c ∨ e−c < 2− ec

(Note that MetiTarski transforms arithmetic expressions in
a fairly obvious manner.)

Now two occurrences of the exponential function have
been isolated and can be eliminated using the upper or lower
bound axioms. Among these axioms is a well-known inequal-
ity, 1+x ≤ ex. So in particular, 1−c ≤ e−c. The MetiTarski
axioms are formulated to include one step of transitivity rea-
soning. Thus, resolving 1− c ≤ e−c with the previous clause
yields (after simplification)

1 ≤ ec ∨ 0 ≤ c ∨ ec < 1 + c.

The same lower bound can be used again, this time in the
form 1 + c ≤ ec. Transitivity yields 1 + c < 1 + c, which of
course is false, so the resulting clause is simply

1 ≤ ec ∨ 0 ≤ c.

We have eliminated an exponential. We have made progress!
It should be clear that the two literals in 1 ≤ ec ∨ 0 ≤ c

are equivalent and that one of them ought to be deleted.

MetiTarski accomplishes this in a very unintuitive manner,
using the upper bound

ex ≤ 2304/(−x3 + 6x2 − 24x+ 48)2,

which is asserted to be valid for x ≤ 0. (It is actually valid
for x ≤ 3.192 . . ., but MetiTarski strengthens the condition
for pragmatic reasons.) Transitivity now yields

1 ≤ 2304/(−c3 + 6c2 − 24c+ 48)2 ∨ 0 < c ∨ 0 ≤ c.

Now the division operator must be eliminated. Division ax-
ioms exist for various combinations of inequalities and signs.
Assuming that the divisor is positive (the opposite assump-
tion leads to a dead end) yields the following clause:

(−c3 + 6c2 − 24c+ 48)2 ≤ 2304

∨ (−c3 + 6c2 − 24c+ 48)2 ≤ 0 ∨ 0 < c ∨ 0 ≤ c.

The next step is critical. MetiTarski examines the first,
complicated, literal in the context of its disjunction with
the other literals, which means, under the assumption that
c < 0. The external decision procedure considers the formula

∃x
[
x < 0 ∧ (−x3 + 6x2 − 24x+ 48)2) ≤ 2304

]
and finds it to be false.1 Therefore the first literal is incon-
sistent with its context and can be deleted. A similar step
deletes the literals (−c3 + 6c2 − 24c + 48)2 ≤ 0 and 0 < c.
MetiTarski has concluded that the supposed counterexample
is nonnegative:

0 ≤ c.

We are not finished. Proof search in resolution works in
strange ways, and here it goes right back to the conjecture
clause (1) and generates a clause corresponding to the case
ec − 1 ≥ 0:

e|c| < ec ∨ ec < 1

A further use of absolute value reasoning, now for the case
c ≥ 0, yields c < 0 ∨ ec < ec ∨ ec < 1, which immediately
simplifies to

c < 0 ∨ ec < 1.

A further use of 1 +x ≤ ex produces c < 0∨ 1 + c < 1 which
simplifies to c < 0. But this contradicts 0 ≤ c and we are
finished. QED.

This mechanical process will never produce an elegant
proof or solve any problem requiring variable transforma-
tions or geometric insights. Nevertheless, it is sufficient to
prove an enormous number of complicated problems. Note
that the proof sketched above has been greatly simplified for
purposes of presentation, and that MetiTarski may generate
many different proofs depending on various settings.

4. APPLICATIONS
It should be clear from the proof presented above that

MetiTarski is most likely to be applied to engineering prob-
lems, where elegant proofs are neither required nor expected
to exist. In an engineering design, safety constraints will re-
quire certain tolerances to be observed; any special function
inequalities that arise in such a proof will probably hold for
mundane reasons.

1The negations of the other literals should be included in the
conjunction. Redundant here, they are omitted for clarity.

A serious obstacle to finding engineering applications, how-
ever, is the enormous computational cost of the real-closed
field decision procedure. Because it is inherently doubly ex-
ponential in the number of variables [12], problems having
more than four or five variables are typically infeasible. And
the variables include not just those that describe the sys-
tem’s dynamics, but its parameters.

Nevertheless, MetiTarski is starting to find applications in
verification problems, for example in air traffic control [14].
The idea here is to automate the Nichols plot technique for
proving that a control system is stable. More recent work
[13] involves the integration of MetiTarski with PVS [19],
an interactive theorem prover that is heavily used to ver-
ify aerospace software, particularly at NASA. MetiTarski
turns out to be very much faster than the automation al-
ready available on PVS, but the integration between the
two systems currently requires the result of MetiTarski to be
trusted [13]. This is undesirable in applications that require
the highest degree of confidence, and the authors propose us-
ing MetiTarski for what might be called the prototyping of
a proof. For final runs, slower alternatives [17] that generate
fully-checked PVS proofs can be substituted.

This suggests that a potential role for MetiTarski is in
combination with interactive theorem proving, where prob-
lems that are too difficult to tackle in a single step can be
manually broken down into pieces that MetiTarski can han-
dle, and save considerable user effort compared with the dif-
ficulty of finding a fully manual proof. Given the correctness
concerns raised above, the first thing we will want to do is
satisfy ourselves that MetiTarski’s axioms are true. Proving
them within a particular interactive theorem prover is the
first step towards a trustworthy integration of MetiTarski
into that prover.

5. UPPER AND LOWER BOUNDS
MetiTarski requires upper and/or lower bounds for all

real-valued functions appearing in the problem [1]. In some
cases, such as the sine and cosine functions, these can be ob-
tained from Taylor series. Under fairly general conditions,
the Taylor expansion of a function is an alternating series
where the truncations alternate between upper and lower
bounds. For the exponential, logarithm and inverse tangent
functions, MetiTarski uses continued fraction approximants
[11]. These are much more accurate than the Taylor series
approximants, and are valid over wider ranges. But the un-
derlying theory of continued fractions (or the closely related
Padé approximants [5]) is complicated.

A simple way to prove that an approximation is an upper
(or lower) bound of a function is to form the difference and
then differentiate. If the difference is zero at a given point
and elsewhere the derivative is always positive (or negative),
then the desired conclusions are easily obtained. But it is
not obvious (at least to me) how to differentiate a continued
fraction, obtaining a closed form for an arbitrary approxi-
mant. The corresponding task for a power series, of course,
is trivial.

A simple workaround for such issues is to note that Meti-
Tarski uses a fixed, finite collection of bounds. It does not
dynamically generate increasingly accurate approximants in
the course of the proof, but draws from axiom files that have
been prepared, one could even say curated, for this purpose.
We therefore have only a finite number of bounds to exam-
ine. In the early days, I am sorry to say, visual inspection

using a computer algebra system was the only proof available
for some of these bounds. Now, the necessary inequalities
have been mechanically proved (using Isabelle) for the most
important functions: sin, cos, tan−1, ln, exp and square root.

The exponential function is perhaps the most interesting
case. It is obvious that no polynomial or rational func-
tion upper bound for ex can hold for all x ≥ 0. We con-
tent ourselves with bounds that are valid for finite intervals.
MetiTarski has a selection of such upper bounds, each of
which is a rational function where the denominator even-
tually vanishes. The most complicated of these is valid for
0 ≤ x < 9.94 (Upper bounds valid for all x < 0 pose no
difficulty, of course.)

Let us consider a simple case, the third continued fraction
approximant (Fig. 2):

cf3x , −x
3 + 12x2 + 60x+ 120

x3 − 12x2 + 60x− 120

Figure 2: A continued fraction upper bound for ex

As mentioned above, a simple way to prove that this is
an upper bound is to form the difference and differentiate.
When the function in question is the logarithm or inverse
tangent, then differentiation eliminates it (d

dx
lnx = 1/x;

d
dx

tan−1 x = 1/(1 +x2)). The resulting polynomial inequal-
ity can be solved with little effort. The exponential function
is not so easy to eliminate because d

dx
ex = ex. A simple

trick is to take the logarithm of both sides, since applying a
monotonic function preserves an inequality. The exponential
disappears, replaced by a logarithm elsewhere. The deriva-
tive of this difference is very well-behaved:

d

dx

[
ln(cf3x)− x

]
=

− x6

(x3 − 12x2 + 60x− 120)(x3 + 12x2 + 60x+ 120)

The derivative is positive provided x3−12x2 +60x−120 < 0
and in particular if 0 < x < 4.64 . . ., when we can conclude
that ex < cf3x.

Similar methods suffice to prove that cf3x ≤ ex for x ≤ 0.
There are a few complications. The derivative has another
singularity at x = −4.64 . . ., and for smaller values of x we
even have cf3x ≤ 0, so the logarithm is undefined. Neverthe-
less, this proof is also straightforward. Using case analysis on
the sign of x3 + 12x2 + 60x+ 120 (which is positive provided
x > −4.64 . . .), the positive case can be tackled by taking
logarithms as above. In the opposite case, cf3x ≤ ex is triv-
ial. Note that this case analysis does not involve an explicit
expression for the single real root of x3 + 12x2 + 60x+ 120.

6. CORRECTNESS CONCERNS
Users of various sorts of mathematical software have vary-

ing standards of correctness. At one extreme, floating-point
arithmetic is susceptible to rounding errors, and responsi-
bility for getting meaningful answers is entirely devolved to
programmers. Computer algebra systems can be seen in the
same light: their operation is opaque, involving interactions
among a great many algorithms, and it is the user’s respon-
sibility to check that results make sense.

At the other extreme, interactive theorem provers are typi-
cally constructed to have a minimal inference kernel that has
to be trusted. The rest of the source code operates through
the kernel, and by construction, cannot introduce logical rea-
soning errors. This strict architecture is complemented by
methodological constraints: users are strongly encouraged
to work exclusively with definitions and never to assume ax-
ioms. It is not unusual to hear people claim that following
such a programme delivers infallible results. (Therefore, un-
fortunately, it is also not unusual to see unrealistic models
formalised and incorrectly stated theorems proved.) Reso-
lution theorem provers and SMT solvers have no minimal
influence kernel, but any reasoning error is still regarded as
a serious fault.

MetiTarski compounds these difficulties. As a theorem
prover, correctness is of the utmost importance. And yet, it
depends on computer algebra algorithms (the external de-
cision procedures) to solve polynomial subproblems. The
axioms of upper and lower bounds were generated using the
computer algebra system Maple, given definitions of contin-
ued fraction expansions published online [4]. So there are
many potential sources of errors. On the other hand, Meti-
Tarski generates highly detailed proofs in which all logical
reasoning is shown explicitly. The references to axioms and
external decision procedures are all made explicit, along with
MetiTarski’s internal arithmetic simplification steps.

The previous section has addressed the question of the
correctness of the axioms. Many of these inequalities are fa-
miliar to the cognoscenti, but creating formal proofs of each
axiom (in the form that is given to MetiTarski) is necessary
to achieve full confidence here. Verifying the axioms using
Isabelle/HOL has opened up the possibility of integrating
these two reasoning tools.

The chief remaining difficulty is how to verify the results
given by the external RCF decision procedures. MetiTarski
is chiefly concerned with RCF problems that involve only
existential quantifiers2 and we are only interested in proving
such formulas to be inconsistent. (Equivalently, we wish to
prove universally quantified formulas.) Therefore, the deci-
sion procedure delivers a result without any supporting ev-

2An experimental extension to mixed-quantifier problems is
seldom used.

idence. An analogy may be useful: consider the question of
whether some very large number N is prime or not. We call
an external procedure, and if it returns a supposed factor k
then we can easily check this claim, but if it declares N to
be prime then we are none the wiser.

A key research question, then, is how to instrument the
external decision procedure so that its workings can be veri-
fied. They work by producing a cylindrical algebraic decom-
position: a partitioning of the space into regions, in each of
which the formula has a constant value, and then checking
the formula at a sample point in each region. Computing
this decomposition is computationally expensive; could it
be returned to be checked by an independent tool? But at
present, it is not clear how a supposed decomposition can be
confirmed to be correct without repeat the entire computa-
tion again.

This might be seen as an instance of a more general ques-
tion, how can we verify negative results delivered by com-
puter algebra algorithms?

7. THE NEXT PHASE
As mentioned above, an integration between MetiTarski

and PVS has turned out to be useful [13]. Its main draw-
back is the need to accept MetiTarski proofs on faith. And
we have considered the question of how to prove MetiTarski’s
axioms using elementary means, along with the more vex-
ing question of how to verify claims made by the external
RCF decision procedures. The verification of the axioms is
now largely complete, although it gives rise to additional
questions. Approximation theory has naturally focused on
getting the most accurate approximations, but other criteria
turn out to be important:

• approximations that are upper and lower bounds of a
given function

• coverage of a variety of intervals

• a choice between highly accurate approximations and
less accurate but simpler ones

Given that MetiTarski has already been integrated with
PVS, it is likely that some future work will continue to in-
volve PVS. But I am an Isabelle developer and my work
will inevitably focus on that system, in which the necessary
instances of the continued fraction expansions have already
been verified. The idea of formalising some of the general
theory of continued fractions and Padé approximants is ap-
pealing, even if it requires formalising substantial chunks of
complex analysis and similar material. Formalised libraries
of such core mathematical material are well overdue.

The question of RCF decision procedures has already seen
some attention [7, 10], mainly in the context of the Coq
proof assistant [6]. Decision methods for real-closed fields
have been implemented within Coq itself, but they are not
efficient enough for practical use. Different approaches are
needed, and what shape they will take is currently unclear.

In unpublished work, Grant Passmore has been developing
a self-contained RCF decision procedure within MetiTarski
itself. It justifies its results within a specialised formal cal-
culus. These proofs are designed with the objective of being
easy to check within a system such as Isabelle, while min-
imising the amount of mathematics that must be formalised.
Currently, it handles only the univariate case, but if this step

is successful then the bivariate case could be tackled, and so
forth.

The goal of integrating MetiTarski with Isabelle motivates
a general programme of research that includes reasonably ef-
fective methods for deciding polynomial inequalities. That
will ultimately require the formalisation of a great deal of
real algebraic geometry. A small amount of computer al-
gebra machinery already exists in a number of interactive
theorem provers, and it greatly facilitates this sort of work.
We can predict a bootstrapping process whereby the formal-
isation of core mathematics and the sound implementation
of core computer algebra functions proceed in tandem.

Acknowledgements. The Edinburgh members of the team
are Paul Jackson, Grant Passmore and Andrew Sogokon.
The Cambridge team includes James Bridge, William Den-
man and Zongyan Huang. We are grateful to our outside
collaborators, including César Muñoz, Eva Navarro-López
and André Platzer. Research supported by the Engineer-
ing and Physical Sciences Research Council [grant numbers
EP/I011005/1, EP/I010335/1].

8. REFERENCES
[1] Behzad Akbarpour and Lawrence Paulson. MetiTarski:

An automatic theorem prover for real-valued special
functions. Journal of Automated Reasoning,
44(3):175–205, March 2010.

[2] Leo Bachmair and Harald Ganzinger. Rewrite-based
equational theorem proving with selection and
simplification. Journal of Logic and Computation,
4(3):217–247, 1994.

[3] Leo Bachmair and Harald Ganzinger. Resolution
theorem proving. In Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning,
volume I, chapter 2, pages 19–99. Elsevier Science,
2001.

[4] F. Backeljauw, S. Becuwe, M. Colman, A. Cuyt, and
T. Docx. Special functions: continued fraction and
series representations, 2008. On the Internet at
http://www.cfhblive.ua.ac.be/.

[5] George A. Baker, Jr. Essentials of Padé Approximants.
Academic Press, 1975.

[6] Yves Bertot and Pierre Castéran. Interactive Theorem
Proving and Program Development: Coq’Art: The
Calculus of Inductive Constructions. Springer, 2004.

[7] Yves Bertot, Frédérique Guilhot, and Assia Mahboubi.
A formal study of Bernstein coefficients and
polynomials. Mathematical Structures in Computer
Science, 21(04):731–761, 2011.

[8] James Bridge and Lawrence Paulson. Case splitting in
an automatic theorem prover for real-valued special
functions. Journal of Automated Reasoning,
50(1):99–117, 2013.

[9] Christopher W. Brown. QEPCAD B: a program for
computing with semi-algebraic sets using CADs.
SIGSAM Bulletin, 37(4):97–108, 2003.

[10] Cyril Cohen and Assia Mahboubi. Formal proofs in
real algebraic geometry: from ordered fields to
quantifier elimination. Logical Methods in Computer
Science, 8(1), 2012.

[11] A. Cuyt, V. Petersen, B. Verdonk, H. Waadeland, and
W.B. Jones. Handbook of Continued Fractions for

Special Functions. Springer, 2008.

[12] J. H. Davenport and J. Heintz. Real quantifier
elimination is doubly exponential. J. Symbolic Comp.,
5:29–35, 1988.

[13] William Denman and César Muñoz. Automated real
proving in PVS via MetiTarski. In Cliff Jones, Pekka
Pihlajasaari, and Jun Sun, editors, FM 2014: Formal
Methods, volume LNCS 8442, pages 194–199. Springer,
2014.

[14] William Denman, Mohamed H. Zaki, Sofiène Tahar,
and Luis Rodrigues. Towards flight control verification
using automated theorem proving. In Mihaela Bobaru,
Klaus Havelund, GerardJ. Holzmann, and Rajeev
Joshi, editors, NASA Formal Methods, volume LNCS
6617, pages 89–100. Springer, 2011.

[15] W. McCune. Solution of the Robbins problem. Journal
of Automated Reasoning, 19(3):263–276, 1997.

[16] William McCune and Larry Wos. Otter: The
CADE-13 competition incarnations. Journal of
Automated Reasoning, 18(2):211–220, 1997.

[17] César Muñoz and Anthony Narkawicz. Formalization
of Bernstein polynomials and applications to global
optimization. Journal of Automated Reasoning,
51(2):151–196, 2013.

[18] Tobias Nipkow, Lawrence C. Paulson, and Markus
Wenzel. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer, 2002. LNCS Tutorial
2283.

[19] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and
M.K. Srivas. PVS: Combining specification, proof
checking, and model checking. In Rajeev Alur and
Thomas A. Henzinger, editors, Computer Aided
Verification: 8th International Conference, CAV ’96,
LNCS 1102, pages 411–414. Springer, 1996.

