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Abstract. A brief overview is presented of MetiTarski [4], an automatic
theorem prover for real-valued special functions: ln, exp, sin, cos, etc.
MetiTarski operates through a unique interaction between decision pro-
cedures and resolution theorem proving. Its history is briefly outlined,
along with current projects. A simple collision avoidance example is pre-
sented.

1 Introduction

MetiTarski [4] is an automatic theorem prover for first-order logic over the real
numbers, including the transcendental and other special functions. It is a version
of Joe Hurd’s Metis [23, 24] (a resolution theorem prover) heavily modified to
call decision procedures, and more recently, augmented with case-splitting by
backtracking.

Here are some theorems that MetiTarski can prove, automatically of course,
and typically in tens of seconds.
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∀x ∈ (0, 1.25) =⇒ tan(x)2 ≤ 1.75 10−7 + tan(1) tan(x2)

∀x ∈ (−1, 1), y ∈ (−1, 1) =⇒ cos(x)2 − cos(y)2 ≤ − sin(x+ y) sin(x− y) + 0.25



∀x ∈ (−1, 1), y ∈ (−1, 1) =⇒ cos(x)2 − cos(y)2 ≥ − sin(x+ y) sin(x− y)− 0.25

∀x ∈ (−π, π) =⇒ 2 | sin(x)|+ | sin(2x)| ≤ 9
π

The motivation for MetiTarski arose with Jeremy Avigad’s Isabelle/HOL proof
of the prime number theorem. Avigad [7, Sect. 4.5] observed that some quite ele-
mentary inequalities involving the logarithm function (the proof requires estab-
lishing many such inequalities) were inordinately difficult to prove. My original
idea was to create a simple-minded heuristic procedure within Isabelle to prove
inequalities involving continuous functions. It might reason using monotonicity,
backwards chaining, and ideas similar to those in the Fourier-Motzkin [26] ap-
proach to deciding real inequalities. Although decision procedures are popular,
reasoning about arbitrary special functions is obviously undecidable. The decid-
able problems that do exist are very complex, both in theory and in practice.
Our approach has to be heuristic.

2 Early Work

The initial work was done (using funding from the UK’s EPSRC) by my col-
league, Behzad Akbarpour. He located a promising paper [29] (see also Daumas
et al. [16]) giving formally verified upper and lower bounds (polynomials or ratio-
nal functions, namely, ratios of polynomials) for the well-known transcendental
functions and describing techniques using interval arithmetic to establish ground
inequalities involving special functions over the real numbers. Hand simulations
quickly established that interval arithmetic was seldom effective at solving prob-
lems even in one variable [5].

Equipped with the upper and lower bounds, we could replace the transcen-
dental functions appearing in a problem by polynomials. We could therefore
reduce the original special-function inequality to a set of polynomial inequali-
ties. Because interval arithmetic was too weak to decide these inequalities, we
decided to try a decision procedure. First-order formulas over polynomial in-
equalities over the real numbers admit quantifier elimination [20], and are there-
fore decidable. This decision problem is known as RCF, for real closed fields.

The first implementation of MetiTarski [2] used John Harrison’s implementa-
tion [27] of the Cohen-Hörmander RCF decision procedure. It turned out to be
much more effective than interval arithmetic. As the procedure was itself coded
in ML, MetiTarski was a self-contained ML program. Unfortunately, we found [2]
that the Cohen-Hörmander procedure couldn’t cope with polynomials of degree
larger than five, which ruled out the use of accurate bounds. The next version
of MetiTarski [3] invoked an external decision procedure, QEPCAD [12], which
implements a much more powerful technique: cylindrical algebraic decomposi-
tion (CAD). More recently, we have integrated MetiTarski with the computer
algebra system Mathematica, which contains a family of highly advanced RCF
decision procedures. We can even use the SMT solver Z3 [18] now that it has
been extended with nlsat, a novel approach to deciding purely existential RCF
problems [25].



A separate question concerned how to apply the upper and lower bounds
to eliminate special function occurrences. Should we write a bespoke theorem
prover implementing a carefully designed algorithm? Analytica [14] and Weier-
strass [8] both implement a form of sequent calculus. Despite the impressive
results obtained by both of these systems, we decided to see whether ordinary
first-order resolution could perform as well. The contest between “natural” and
resolution proof systems is a long-standing scientific issue in automated rea-
soning [10]. Resolution had two strong arguments in its favour: one, its great
superiority (in terms of performance) over any naive implementation of first-
order logic, and two, the possibility that resolution might also be superior to
a bespoke algorithm at finding complicated chains of reasoning involving the
upper and lower bounds.

Resolution has entirely met our expectations. No individual bound can accu-
rately approximate a special function over the entire real line. This was already
clear in Muñoz and Lester [29], who presented families of bounds, each accurate
over a small interval. A typical proof involves choosing multiple bounds over
overlapping intervals of the real line. With resolution, we can supply bounds
as files of axioms. Resolution automatically identifies bounds that are accurate
enough, keeping track of the intervals for which the theorem has been proved.
Moreover, other facts (such as the definitions of the functions abs and max) can
be asserted declaratively as axioms.

The original families of bounds also underwent many refinements. Through
careful scrutiny, we were able to extend their ranges of applicability. A later ver-
sion of MetiTarski [4] adopted many continued fraction approximations [15]. For
some functions, notably ln and tan−1, continued fractions are vastly more accu-
rate than truncated Taylor series. There is also the choice between inaccurate
but simple bounds (linear ones are helpful if functions are nested), and highly
accurate bounds of high degree. Although the most recent version of MetiTarski
can choose axiom files automatically, manually choosing which bounds to in-
clude can make a difference between success and failure for some problems. To
extend MetiTarski to handle a new function, the most important step is to find
approximations to the function that yield suitable upper and lower bounds.

3 Basic Architecture

MetiTarski comprises a modified resolution theorem prover, one or more RCF
decision procedures and a collection of axiom files giving approximations (upper
and lower bounds) to special functions. A few other axioms are used, relating
division with multiplication, defining the absolute value function, etc.

The most important modifications to the resolution method are arithmetic
simplification and the interface to RCF decision procedures. Polynomials are
simplified in an ad hoc manner, loosely based on Horner canonical form; this
serves first to identify obviously equivalent polynomials, but second and crucially
to identify a special function occurrence to be eliminated. The mathematical
formula is transformed to move this candidate occurrence into a certain position,



which will allow an ordinary resolution step to replace it by an upper or lower
bound, as appropriate. Occurrences of the division operator are also simplified
and in particular flattened, so that an algebraic expression contains no more
than a single occurrence of division, and that outermost.

RCF decision procedures are mainly used to simplify clauses by deleting cer-
tain literals. Recall that a clause is a disjunction of literals, each of which is
an atomic formula or its negation. With standard resolution, a literal can only
be deleted from a clause after a resolution step with another clause containing
that literal’s negation. MetiTarski provides another way a literal can be deleted:
whenever an RCF decision procedure finds it to be inconsistent. This determi-
nation is done with respect to the literal’s context, consisting of the negation of
other literals in the same clause, as well as any globally known algebraic facts.

RCF decision procedures are also used to discard redundant clauses. When-
ever a new clause emerges from the resolution process, it is given to the decision
procedure, and if the disjunction of its algebraic literals turns out to be a logical
consequence (in RCF) of known facts, then this clause is simply ignored. This
step prevents the buildup of redundant algebraic facts, which cannot influence
future decision procedure calls.

Our use of RCF decision procedures has one massive disadvantage: perfor-
mance. The general decision problem is doubly exponential in the number of
variables [17]. We actually use a special case of the decision problem, in which
we ask whether universally quantified formulas are theorems, but even so, when
a proof takes a long time, almost invariably this time is spent in decision pro-
cedures. The time spent in resolution is frequently just a few seconds, a tiny
fraction of the total.

We undertook this project as basic research, motivated by Avigad’s diffi-
culties but with no other specific applications. Having no problem set to begin
with, we (mainly Akbarpour) created our own. The original problems mostly
came from mathematical reference works [1, 13, 28]. Later, we formalised en-
gineering problems, including Nichols plot problems from Ruth Hardy’s thesis
[21], and simple hybrid systems problems that were published on a website [35].
The hardware verification group at Concordia University supplied a few more
problems. We now have nearly 900.

4 Current Projects

Recent developments fall under three categories: improvements to the resolution
process, the use of new decision procedures, and applications.

Resolution can be tweaked in countless ways, but one of the most important
heuristics is splitting. This involves taking a clause of the form A ∨ B (all non-
trivial clauses are disjunctions) and considering the cases A and B as separate
problems. Given that resolution already can deal with disjunctions, splitting is
not always appropriate, and indeed splitting is only possible if A and B have
no variables in common. We have experimented [11] with two kinds of splitting:
lightweight (essentially a simulation, implemented by adding propositional vari-



ables as labels in clauses) and with backtracking (similar to the splitting done
by SAT-solvers). Backtracking is complicated to implement in the context of
resolution theorem proving: it affects many core data structures, which must
now be saved and restored according to complicated criteria; this work was done
by James Bridge. Both forms of splitting deliver big performance improvements.
The problem is only split into separate cases when each involves a special func-
tion problem.

The decision procedure is a crucial element of MetiTarski. From the first
experiments using interval arithmetic and the first implementation, using the
Cohen-Hörmander method, each improvement to the decision procedure has
yielded dramatic improvements overall. We have the most experience with QEP-
CAD, but in the past year we have also used Mathematica and Z3. Each has
advantages. QEPCAD is open source and delivers fast performance on problems
involving one or two variables. Unfortunately, QEPCAD is almost unusable for
problems in more than three variables, where Mathematica and Z3 excel. Grant
Passmore is heavily involved with this work. With Mathematica, we can solve
problems in five variables, and with Z3, we have sometimes gone as high as nine.
(See the example in Sect. 6.) But we do not have the luxury of regarding the
decision procedure as a black box. That is only possible when the performance
bottlenecks are elsewhere. We have to examine the sort of problems that Meti-
Tarski produces for the decision procedures, and configure them accordingly.
Such tuning delivers significant improvements [30].

5 Applications

We have assumed that, as MetiTarski’s performance and scope improved, users
would find their own applications. Meanwhile, we have ourselves investigated
applications connected with hybrid systems, and in particular with stability
properties. Note that MetiTarski is not itself a hybrid system verifier: it knows
nothing about the discrete states, transitions and other elements of a hybrid
system. The discrete aspect of a hybrid system must be analysed by other means,
but MetiTarski can assist in verifying the continuous aspect [6]. There have also
been a few simple experiments involving the verification of analogue circuits [19].

The ability to prove theorems combining first-order logic and real-valued
special functions is unique to MetiTarski. Mathematica can establish such prop-
erties in simple cases, as can certain constraint solvers [34], but these tools do
not deliver proofs. MetiTarski delivers resolution proofs, which specify every de-
tail of the reasoning apart from the arithmetic simplification and the decision
procedure calls. Even these reasoning steps do not necessarily have to be trusted,
as discussed below (Sect. 7).

Mathematicians will find that MetiTarski proofs are seldom natural or el-
egant. Mathematical properties of a special function are typically proved from
first principles, referring to the function’s definition and appealing to general
theorems. A MetiTarski proof is typically a complicated case analysis involving
various bounds of functions and signs of divisors. Compared with a mathemati-



cian’s proof, such a proof will frequently yield a less general result (perhaps
limited to a narrow interval). For these reasons, MetiTarski is more appropriate
for establishing inequalities that arise in engineering applications, inequalities
that hold for no simple reason.

6 A Collision Avoidance Problem

A problem studied by Platzer [32, Sect. 3.4] concerns collision avoidance for two
aircraft, named x and y. For simplicity, we consider only two dimensions: the
aircraft are flying in the XY plane.

The coordinates of aircraft x are written (x1, x2). Here, the subscript 1 refers
to the X component of the aircraft’s position, while subscript 2 refers to the
Y component. (I am not to blame for this confusing notation!) Similarly, the
velocity vector in two dimensions is written (d1, d2).

Glossing over the details of the derivation, here is a summary of the system
of equations governing this aircraft:

x′1(t) = d1(t) x′2(t) = d2(t) d′1(t) = −ωd2(t) d′2(t) = ωd1(t)
x1(0) = x1,0 x2(0) = x2,0 d1(0) = d1,0 d2(0) = d2,0

This system admits a closed-form solution, yielding the trajectory of aircraft x:

x1(t) = x1,0 +
d2,0 cos (ωt) + d1,0 sin (ωt)− d2,0

ω

x2(t) = x2,0 −
d1,0 cos (ωt)− d2,0 sin (ωt)− d1,0

ω

The treatment of aircraft y, whose coordinates are written (y1, y2), is analo-
gous. We would like to prove that two aircraft following the trajectory equations,
for certain ranges of initial locations and linear velocities will maintain a safe
distance (called p, for “protected zone”):

(x1(t)− y1(t))2 + (x2(t)− y2(t))2 > p2

Figure 1 presents the corresponding MetiTarski input file. MetiTarski can
prove the theorem, but the processor time is 924 seconds.1 Of this, six seconds
are devoted to resolution proof search and the rest of the time is spent in the
RCF decision procedure (in this case, Z3). The problem is difficult for MetiTarski
because of its nine variables. It is only feasible because of our recent research
[30] into heuristics such as model sharing (which can eliminate expensive RCF
calls by utilising information obtained from past calls) and specific strategies
that fine-tune Z3 to the problems that MetiTarski gives it.

Naturally, users would like to handle problems in many more variables. This
is the biggest hurdle in any application of RCF decision procedures.

1 On a Mac Pro Dual Quad-core Intel Xeon, 2.8 GHz, with 10GB RAM



fof(airplane_easy,conjecture,

(! [T,X10,X20,Y10,Y20,D10,D20,E10,E20] :

(

(

0 < T & T < 10 & X10 < -9 & X20 < -1 & Y10 > 10 & Y20 > 10 &

0.1 < D10 & D10 < 0.15 & 0.1 < D20 & D20 < 0.15 &

0.1 < E10 & E10 < 0.15 & 0.1 < E20 & E20 < 0.15

)

=>

(

(X10 - Y10 - 100*D20 - 100*E20 + (100*D20 + 100*E20)*cos(0.01*T)

+ (100*D10 - 100*E10)*sin(0.01*T))^2 +

(X20 - Y20 + 100*D10 + 100*E10 + (-100*D10 - 100*E10)*cos(0.01*T)

+ (100*D20 - 100*E20)*sin(0.01*T))^2

)

> 2

)

)

).

include(’Axioms/general.ax’).

include(’Axioms/sin.ax’).

include(’Axioms/cos.ax’).

Fig. 1. Aircraft Collision Avoidance

Platzer’s treatment of this problem is quite different. He uses KeyMaera,
his hybrid system verifier [33]. KeyMaera models a hybrid system that controls
the aircraft, while we examine only a part of the continuous dynamics of this
system. Even the continuous dynamics are treated differently: KeyMaera has a
principle called differential induction [31] that can establish properties of the
solutions to differential equations without solving them. To prepare these Meti-
Tarski problems, the differential equations must first be solved (perhaps using
Mathematica), yielding explicit formulas for the aircrafts’ trajectories. KeyMaera
can verify much larger hybrid systems than MetiTarski can. However, recall that
MetiTarski is not specifically designed for verifying this type of example: it is
simply a general-purpose theorem prover for the reals.

7 Integration with Proof Assistants

As mentioned before, MetiTarski combines classical resolution with arithmetic
simplification, RCF decision procedures and axioms describing the behaviour of
various real-valued functions. It returns machine-readable proofs that combine
standard resolution steps with these extensions.

If MetiTarski is to be added to an interactive theorem prover as a trusted
oracle, little effort is required other than to ensure that all problems submitted
to it are first-order with all variables ranging over the real numbers. To reduce



the level of trust required, MetiTarski proofs could be broken down into their
various elements and reconstructed in Isabelle, leaving only the most intractable
steps to oracles.

– Arithmetic simplification in MetiTarski involves little more than reducing
polynomials to canonical form and extending the scope of the division op-
erator; these steps should be easy to verify by automation in an LCF-style
interactive theorem prover.

– The axioms used by MetiTarski are simply mathematical facts that could,
in principle, be developed in any capable interactive theorem prover. For-
mal developments of the familiar power series expansions already available
[16]. However, the theory of continued fractions seems to rest on substantial
bodies of mathematics that are yet to be mechanised. Possibly some of these
bounds could be verified individually, independently of the general theory.

– The most difficult obstacle is that of the RCF decision procedure. Unfor-
tunately, the algorithms are complicated and we have few implementations
to choose from. Until now there has been little interest in procedures that
justify their answers. However, Harrison has investigated sum of squares
techniques that could produce certificates for such proofs eventually [22].

One fact in our favour is that MetiTarski’s entire proof search does not have to be
justified, only the final proof, which represents a tiny fraction of the reasoning.

Before undertaking such an integration, it is natural to ask how many po-
tential applications there are. It is sobering to consider that after SMT solvers
were integrated with Isabelle, they were left essentially unused [9], and SMT
solvers are much more generally applicable than MetiTarski. This integration
might be included in a larger project to verify a specific and substantial corpus
of continuous mathematics.

8 Conclusion

Research on MetiTarski is proceeding in many directions. Improvements to the
use of decision procedures are greatly increasing MetiTarski’s scope and power,
especially by increasing the number of variables allowed in a problem. Meanwhile,
many new kinds of applications are being examined. Integrating MetiTarski with
an interactive theorem prover such as Isabelle is not straightforward, but is
feasible given motivation and resources.
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