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Abstract
Many problems in computer algebra and numerical analysis
can be reduced to counting or approximating the real roots
of a polynomial within an interval. Existing verified root-
counting procedures in major proof assistants are mainly
based on the classical Sturm theorem, which only counts
distinct roots.
In this paper, we have strengthened the root-counting

ability in Isabelle/HOL by first formally proving the Budan-
Fourier theorem. Subsequently, based on Descartes’ rule
of signs and Taylor shift, we have provided a verified pro-
cedure to efficiently over-approximate the number of real
roots within an interval, counting multiplicity. For counting
multiple roots exactly, we have extended our previous for-
malisation of Sturm’s theorem. Finally, we combine verified
components in the developments above to improve our pre-
vious certified complex-root-counting procedures based on
Cauchy indices. We believe those verified routines will be
crucial for certifying programs and building tactics.

CCS Concepts • Theory of computation→Higher or-
der logic; • Computing methodologies→ Algebraic al-
gorithms; Representation of exact numbers;

Keywords formal verification, theorem proving, Isabelle,
the Budan-Fourier theorem, Descartes’ rule of signs, count-
ing polynomial roots
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1 Introduction
Counting the real and complex roots of a univariate poly-
nomial has always been a fundamental task in computer
algebra and numerical analysis. For example, given a rou-
tine that counts the number of real roots of a polynomial
within an interval, we can compute each real root to arbitrary
precision through bisection, in which sense we have solved
the polynomial equation. Another example would be the
Routh-Hurwitz stability criterion [3, Section 23][23, Chapter
9], where the stability of a linear system can be tested by
deciding the number of complex roots of the characteristic
polynomial within the left half-plane (left of the imaginary
axis).
Numerous methods have been invented in the symbolic

and numerical computing community to efficiently count
(or test) real and complex roots of a polynomial [10, 32, 33].
However, in the theorem proving community, where proce-
dures are usually formally verified in a foundational proof
assistant (e.g., Coq, Isabelle, HOL and PVS), our choices are
typically limited to relying on Sturm’s theorem to count
distinct roots within an interval through signed remainder
sequences.

In this paper, we aim to reinforce our root-counting ability
in the Isabelle theorem prover [26]. In particular, our main
contributions are the following:

• We have mechanised a proof of the Budan-Fourier the-
orem and a subsequent roots test based on Descartes’
rule of signs and Taylor shift. This roots test efficiently
over-approximates the number of real roots within an
open interval, counting multiplicity.
• We have made a novel extension to our previous for-
malisation of Sturm’s theorem to count real roots with
multiplicity.
• Benefited from the developments above, we have ex-
tended our previous verified complex-root-counting
procedures to more general cases: zeros on the border
are allowed when counting roots in a half-plane; we
can now additionally count roots within a ball.

All results of this paper have been formalised in Isabelle/HOL
without using extra axioms, and the source code is available
from the following URL:

https://bitbucket.org/liwenda1990/src-cpp-2019
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To reuse the results in this paper, consult our entries in
the Archive of Formal Proofs [16, 17], which we will keep
updating.
This paper continues as follows: after introducing some

frequently used notations (§2), we first present a formal
proof of the Budan-Fourier theorem (§3), which eventually
leads to the Descartes roots test. Next, we extend our pre-
vious formalisation of the classical Sturm theorem to count
multiple real roots (§4). As an application, we apply those
newly-formalised results to improve our previous complex-
root-counting procedures (§5). After that, we discuss related
work (§6) and some experiments (§7). Finally, we conclude
the paper in §8.

2 Notations
Below, we will present definitions and proofs in both natural
language and the formal language of Isabelle. Some common
notations are as follows:
• we often use p and q in our proof scripts to denote poly-
nomials. However, when presenting them in mathe-
matical formulas, we will switch to capitalised letters—
P and Q .
• poly p a in Isabelle means P (a): the value of the uni-
variate polynomial P evaluated at the point a.
• µ (a, P ) denotes the multiplicity/order of a as a root of
the polynomial P . In Isabelle, this becomes order a p.
• R denotes the extended real numbers:

R = R ∪ {−∞,+∞}.

• NumR (P ; S ) andNumC (P ; S ) denote the number of real
and complex roots of P counting multiplicity within
the set S , while in Isabelle they both correspond to
proots_count p s—they are distinguished by the type
of the polynomial p.
• Similarly, NumDR (P ; S ) and NumDC (P ; S ) denote the
number of distinct real and complex roots of P within
S . In Isabelle, they correspond to
card (proots_within p s)

differentiated by the type of the polynomial p.
Many of the theorems presented in this paper will involve

sign variations, so we give a definition here:

Definition 2.1 (Sign variations). Given a list of real num-
bers [a0,a1, ...,an], we use Var([a0,a1, ...,an]) to denote the
number of sign variations after dropping zeros. Additionally,
we abuse the notation by letting

Var([P0, P1, ..., Pn];a) = Var([P0 (a), P1 (a), ..., Pn (a)])
Var([P0, P1, ..., Pn];a,b) = Var([P0, P1, ..., Pn];a)

− Var([P0, P1, ..., Pn];b),

where [P0, P1, ..., Pn] is a sequence of univariate polynomials,
and Var([P0, P1, ..., Pn];a) is interpreted as the number of
sign variations of [P0, P1, ..., Pn] evaluated at a. Finally, given

P (x ) = a0 + a1x + · · · + anx
n , we also use Var(P ) to denote

sign variations of the coefficient sequence of P :

Var(P ) = Var([a0,a1, ...,an]).

Example 2.2. By Definition 2.1, we can have calculations
like the following :

Var([1,−2, 0, 3]) = Var([1,−2, 3]) = 2,

Var([x2,x − 2]; 0, 1) = Var([x2,x − 2]; 0) − Var([x2,x − 2]; 1)
= Var([0,−2]) − Var([1,−1])
= 0 − 1 = −1,

Var(1 − x2 + 2x3) = Var([1, 0,−1, 2]) = 2.

3 From the Budan-Fourier Theorem to the
Descartes Roots Test

In this section, we first formalise the proof of the Budan-
Fourier theorem.We then apply this to derive Descartes’ rule
of signs, which effectively over-approximates the number of
positive real roots (countingmultiplicity) of a real polynomial
by calculating the sign variations of its coefficient sequence.
We then use this to show the Descartes roots test1: given a
polynomial P ∈ R[x] of degree n and a bounded interval
I = (a,b), we can apply Descartes’ rule of signs to a base-
transformed polynomial

PI (x ) = (x + 1)nP
(
ax + b

x + 1

)
, (1)

to over-approximate the number of real roots of P over (a,b).
Note that the base transformation (1) is commonly referred
as Taylor shift in the literature [14].

Our formal proof of the Budan-Fourier theorem and Des-
cartes’ rule of signs roughly follows the textbook by Basu et
al. [5], while that of the Descartes roots test is inspired by
various sources [8, 13, 14].

3.1 The Budan-Fourier Theorem
Definition 3.1 (Fourier sequence). Let P be a univariate
polynomial of degree n. The Fourier sequence of P is gener-
ated through polynomial derivatives:

Der(P ) = [P , P ′, ..., P (n)].

Theorem 3.2 (The Budan-Fourier theorem). Let P ∈ R[x],
a,b be two extended real numbers (i.e., a,b ∈ R) such that
a < b. Through Fourier sequences and sign variations, the
Budan-Fourier theorem over-approximates NumR (P ; (a,b])
and the difference is an even number:

• Var(Der(P );a,b) ≥ NumR (P ; (a,b])
• and Var(Der(P );a,b) − NumR (P ; (a,b]) is even.

1 There does not seem to be a uniform name for this test [1, 2, 9]—here we
follow the one used in Arno Eigenwillig’s PhD thesis [13] where he refers
this test as "the Descartes test for roots".
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To prove Theorem 3.2, the key idea is to examine sign
variations near a root of P :

Var(Der(P ); c − ϵ, c ) and Var(Der(P ); c, c + ϵ ),

where c is a possible root of P and ϵ is a small real number.
Regarding Var(Der(P ); c − ϵ, c ), the property we have de-

rived in Isabelle/HOL is the following:

Lemma 3.3 (budan_fourier_aux_left’).
fixes c d1::real and p::"real poly"
assumes "d1 < c" and "p , 0"
assumes non_zero:"∀x. d1 ≤ x ∧ x < c −→

(∀q ∈ set (pders p). poly q x , 0)"
shows "changes_itv_der d1 c p ≥ order c p"

"even (changes_itv_der d1 c p - order c p)"

where

• order c p is µ (c, P ): the order/multiplicity of c as a
root of the polynomial p, as we described in §2;
• changes_itv_der d1 c p stands for Var(Der(P );d1, c );
• the assumption non_zero asserts that Q (x ) , 0 (i.e.,
poly q x , 0) for all x ∈ [d1, c ) and Q ∈ Der(P ).
Here, pders p is the Fourier sequence (i.e., Der(P ))
and set (pders p) converts this sequence/list into a
set of polynomials.

Essentially, d1 in Lemma 3.3 can be considered as c − ϵ , since
d1 is asserted to be closer to c from the left than any root
of polynomials in Der(P ). Therefore, Lemma 3.3 claims that
Var(Der(P ); c − ϵ, c ) always exceeds µ (c, P ) by an even num-
ber.

Proof of Lemma 3.3. By induction on the degree of P . For the
base case (i.e., the degree of P is zero), the proof is trivial
since both Var(Der(P );d1, c ) and µ (c, P ) are equal to 0.

For the inductive case, through the induction hypothesis,
we have

Var(Der(P ′);d1, c ) ≥ µ (c, P ′)

∧ even(Var(Der(P ′);d1, c ) − µ (c, P ′)). (2)

First, we consider the case when P (c ) = 0. In this case, we
can derive

µ (c, P ) = µ (c, P ′) + 1, (3)

Var(Der(P );d1) = Var(Der(P ′);d1) + 1, (4)

Var(Der(P ); c ) = Var(Der(P ′); c ). (5)

Combining (2), (3), (4) and (5) yields

Var(Der(P );d1, c ) ≥ µ (c, P )

∧ even(Var(Der(P );d1, c ) − µ (c, P )), (6)

which concludes the proof.

As for P (c ) , 0, we can similarly have

Var(Der(P ); c )

=




Var(Der(P ′); c ), if P ′(c + ϵ ) > 0
↔ P (c ) > 0,

Var(Der(P ′); c ) + 1, otherwise,
(7)

Var(Der(P );d1)

=




Var(Der(P ′);d1), if even(µ (c, P ′))
↔ P ′(x + ϵ ) > 0
↔ P (c ) > 0,

Var(Der(P ′);d1) + 1, otherwise.

(8)

where↔ is the equivalence function in propositional logic.
By putting together (3), (7) and (8), we can derive (6) through
case analysis, and conclude the whole proof. □

Considering Var(Der(P ); c, c + ϵ ), we have an analogous
proposition:

Lemma 3.4 (budan_fourier_aux_right).
fixes c d2::real and p::"real poly"
assumes "c < d2" and "p , 0"
assumes "∀x. c < x ∧ x ≤ d2 −→

(∀q ∈ set (pders p). poly q x , 0)"
shows "changes_itv_der c d2 p = 0"

which indicates thatVar(Der(P ); c, c+ϵ ) = Var(Der(P ); c,d2) =
0, since d2 can be treated as c + ϵ .

Proof of Lemma 3.4. Similar to that of Lemma 3.3: by induc-
tion on the degree of P and case analysis. □

With Lemma 3.4, we can generalise Lemma 3.3 a bit by
allowing P (d1) = 0 in the assumption:

Lemma 3.5 (budan_fourier_aux_left).
fixes c d1::real and p::"real poly"
assumes "d1 < c" and "p , 0"
assumes non_zero:"∀x. d1 < x ∧ x < c −→

(∀q ∈ set (pders p). poly q x , 0)"
shows "changes_itv_der d1 c p ≥ order c p"

"even (changes_itv_der d1 c p - order c p)"

Proof. Let d = (d1 + c )/2. Lemma 3.4 and 3.3 respectively
yield

Var(Der(P );d1,d ) = 0, (9)

Var(Der(P );d, c ) ≥ µ (c, P )

∧ even(Var(Der(P );d, c ) − µ (c, P )). (10)

Moreover, by definition,

Var(Der(P );d1, c )
= Var(Der(P );d1,d ) + Var(Der(P );d, c ). (11)

From (9), (10) and (11), the conclusion follows. □
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Finally, we come to our mechanised statement of the
bounded interval case of Theorem 3.2:

Theorem 3.6 (budan_fourier_interval).
fixes a b::real and p::"real poly"
assumes "a < b" and "p , 0"
shows "changes_itv_der a b p

≥ proots_count p {x. a < x ∧ x ≤ b} ∧
even (changes_itv_der a b p

- proots_count p {x. a < x ∧ x ≤ b})"

where proots_count p {x. a < x ∧ x ≤ b}) denotes
NumR (P ; (a,b]), which is the number of real roots of P (count-
ing multiplicity) within the interval (a,b].

Proof of Theorem 3.6. By induction on the number of roots
of polynomials in Der(P ) within the interval (a,b). For the
base case, we have

Q (x ) , 0, for all x ∈ (a,b) and Q ∈ Der(P ), (12)

and then, by Lemma 3.5,

Var(Der(P );a,b) ≥ µ (b, P )

∧ even(Var(Der(P );a,b) − µ (b, P )). (13)

In addition, (12) also leads to

NumR (P ; (a,b]) = µ (b, P ). (14)

We finish the base case by combining (13) and (14).
Regrading the inductive case, let b ′ be the largest root

within the interval (a,b) of the polynomials from Der(P ):

b ′ = max{x ∈ (a,b) | ∃Q ∈ Der(P ). Q (x ) = 0}. (15)

With the induction hypothesis, we have

NumR (P ; (a,b ′]) ≤ Var(Der(P );a,b ′)
∧ even(NumR (P ; (a,b ′]) − Var(Der(P );a,b ′)). (16)

Also, considering there is no root of P within (b ′,b) (other-
wise it will be larger than b ′, contradicting (15)), we have

NumR (P ; (a,b]) = NumR (P ; (a,b ′]) + µ (b, P ). (17)

Finally, Lemma 3.5 yields

Var(Der(P );b ′,b) ≥ µ (b, P )

∧ even(Var(Der(P );b ′,b) − µ (b, P )). (18)

Putting together (16), (17), and (18) finishes the proof. □

Note that Theorem 3.6 only corresponds to the bounded
interval case of Theorem 3.2. In the formal development, we
also have versions for a = −∞, b = +∞ or both.

An interesting corollary of the Budan-Fourier theorem is
that when all roots are real, the over-approxiamation (i.e.,
Var(Der(P );a,b)) becomes exact:

Corollary 3.7 (budan_fourier_real).
fixes a b::real and p::"real poly"
assumes "all_roots_real p"
shows

"proots_count p {x. x ≤ a} = changes_le_der a p"
"a < b −→ proots_count p {x. a < x ∧ x ≤ b}

= changes_itv_der a b p"
"proots_count p {x. b < x} = changes_gt_der b p"

where
• all_roots_real p is formally defined as every complex
root of P having a zero imaginary part,
• changes_le_der a p encodes Var(Der(P );−∞,a),
• changes_itv_der a b p encodes Var(Der(P );a,b),
• changes_gt_der b p encodes Var(Der(P );b,+∞).

Proof of Corollary 3.7. Let
t1 = Var(Der(P );−∞,a) − NumR (P ; (−∞,a])
t2 = Var(Der(P );a,b) − NumR (P ; (a,b])
t3 = Var(Der(P );a,b) − NumR (P ; (b,+∞))

As a result of Theorem 3.2, we have
t1 ≥ 0 ∧ t2 ≥ 0 ∧ t3 ≥ 0. (19)

Additionally, by the definition of Var we derive

Var(Der(P );−∞,a) + Var(Der(P );a,b)
+ Var(Der(P );a,+∞) = deg(P ), (20)

and the assumption (i.e., all roots are real) brings us

NumR (P ; (−∞,a]) + NumR (P ; (a,b])
+ NumR (P ; (b,+∞)) = deg(P ). (21)

Joining (20) with (21) yields
t1 + t2 + t3 = 0. (22)

Finally, putting (19) and (22) together concludes the proof.
□

3.2 Descartes’ Rule of Signs

Given a,b ∈ R, a < b and a polynomial P ∈ R[x], the Budan-
Fourier theorem (Theorem 3.2) in the previous section grants
us an effective way to over-approximate NumR (P ; (a,b]) (by
an even number) through calculating Var(Der(P );a,b).

Nevertheless, the approximation Var(Der(P );a,b) still re-
quires calculating a Fourier sequence (Der(P )) and a series
of polynomial evaluations. When a = 0 and b = +∞, the
approximation can be refined to counting the number of sign
variations of the coefficient sequence of P , which requires
almost no calculation! Approximating NumR (P ; (0,+∞)) us-
ing Var(P ) (rather than Var(Der(P ); 0,+∞)) is the celebrated
Descartes’ rule of signs:

Theorem 3.8 (descartes_sign).
fixes p::"real poly"
assumes "p , 0"
shows "changes (coeffs p)
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≥ proots_count p {x. 0 < x} ∧
even (changes (coeffs p)

- proots_count p {x. 0 < x})"

where changes (coeffs p) encodes Var(P )—sign variations
of the coefficient sequence of P .

Proof. Let P = a0+a1x+a2x
2+ · · ·+an−1x

n−1+anx
n .Der(P )

is as follows:
[a0 + a1x + a2x2 + · · · + xn−1xn−1 + anxn ,

a1 + 2a2x + · · · + (n − 1)an−1xn−1 + nanxn−1,
...

(n − 1)!an−1 + n!anx
n!an
]

(23)

where n! is the factorial of n. From (23), it can be derived that
Der(P ) has no sign variation when evaluated at +∞:

Var(Der(P );+∞) = 0. (24)

Also, evaluatingDer(P ) at 0 gives [a0,a1, ..., (n−1)!an−1,n!an],
hence its sign variations should equal [a0,a1, ...,an−1,an]:

Var(Der(P ); 0) = Var(P ). (25)

Joining (24) and (25) gives Var(Der(P ); 0,+∞) = Var(P ),
with which we apply Theorem 3.2 to finish the proof. □

3.3 Base Transformation and Taylor Shift
Given P ∈ R[x], with Descartes’ rule of signs (Theorem
3.8) in the previous section, we can efficiently approximate
NumR (P ; (0,+∞)). However, in many cases, we are inter-
ested in roots within a bounded interval: NumR (P ; I ), where
I = (a,b) and a,b ∈ R. Can we still exploit the efficiency
from Descartes’ rule of signs? The answer is yes, via an
operation to transform P into PI ∈ R[x] such that

NumR (P ; I ) = NumR (PI ; (0,+∞)). (26)

In order to develop this transformation operation, we first
define the composition of a univariate polynomial and a ra-
tional function (i.e., a function of the form f (x ) = P (x )/Q (x ),
where P and Q are polynomials) in Isabelle/HOL:
definition fcompose::

"’a ::field poly ⇒ ’a poly ⇒ ’a poly ⇒ ’a poly"
where

"fcompose p q1 q2 =
fst (fold_coeffs (λa (r1,r2).

(r2 * [:a:] + q1 * r1,q2 * r2)) p (0,1))"

where
• q1 and q2 are respectively the numerator and denomi-
nator of a rational function,
• fst gives the first part of a pair,
• [:a:] is a constant polynomial lifted from the value a.

Also, fold_coeffs is the classical foldr operation on a coeffi-
cient sequence:

definition fold_coeffs ::
"(’a::zero ⇒ ’b ⇒ ’b) ⇒ ’a poly ⇒ ’b ⇒ ’b"

where "fold_coeffs f p = foldr f (coeffs p)"

Essentially, let P ,Q1, andQ2 be three univariate polynomials
over some field such that P is of degree n. Our composition
operation over these three polynomials (i.e., fcompose p q1
q2) gives the following polynomial:

(Q2 (x ))
nP

(
Q1 (x )

Q2 (x )

)
. (27)

The idea of (27) can be illustrated by the following mecha-
nised lemma:

Lemma 3.9 (poly_fcompose).
fixes p q1 q2::"’a::field poly"
assumes "poly q2 x , 0"
shows "poly (fcompose p q1 q2) x =

poly p (poly q1 x / poly q2 x)
* (poly q2 x) ^ (degree p)"

where poly p x gives the value of the polynomial p when
evaluated at x.
When Q1 (x ) = a + bx and Q2 (x ) = 1 + x , (27) yields a

transformation (i.e., Taylor shift):

PI (x ) = (x + 1)nP
(
ax + b

x + 1

)
, (28)

with which we have achieved (26):

Lemma 3.10 (proots_count_pos_interval).
fixes a b::real and p::"real poly"
assumes "p , 0" and "a < b"
shows "proots_count p {x. a < x ∧ x < b} =

proots_count (fcompose p [:b,a:] [:1,1:])
{x. 0 < x}"

where
• [:b,a:] encodes the polynomial b + ax ,
• [:1,1:] stands for the polynomial 1 + x .

3.4 The Descartes Roots Test
Finally, we come to the Descartes roots test. Given P ∈ R[x],
a,b ∈ R and I = (a,b), the Descartes roots test is Var(PI ):
the number of sign variations on the coefficient sequence of
the Taylor-shifted polynomial PI :
definition descartes_roots_test::

"real ⇒ real ⇒ real poly ⇒ nat"
where

"descartes_roots_test a b p = nat (changes
(coeffs (fcompose p [:b,a:] [:1,1:])))"

where
• fcompose p [:b,a:] [:1,1:] encodes Taylor shift as
in (28),
• coeffs converts a polynomial into its coefficient se-
quence,
• changes calculates the number of sign variations (i.e.,
Var),
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• nat converts an integer into a natural number.
Just likeVar(Der(P );a,b), whose root approximation prop-

erty has been reflected in Theorem 3.6, Var(PI ) has a similar
theorem related to NumR (P ; (a,b)):

Theorem 3.11 (descartes_roots_test).
fixes a b::real and p::"real poly"
assumes "p , 0" and "a < b"
shows "proots_count p {x. a < x ∧ x < b}

≤ descartes_roots_test a b p ∧
even (descartes_roots_test a b p

- proots_count p {x. a < x ∧ x < b})"

which claims that Var(PI ) always exceeds NumR (P ; (a,b))
by an even number.

Proof of Theorem 3.11. Lemma 3.10 yields

NumR (P ; (a,b)) = NumR (PI ; (0,+∞)),

with which we apply Theorem 3.8 to conclude the proof. □

As an approximation, it is natural to askwhen theDescartes
roots test (Var(PI )) is exact. From Theorem 3.11, it is easy
to see that it would be exact as least when Var(PI ) = 0
and Var(PI ) = 1. Also, it is analogous to Corollary 3.7 that
Var(PI ) is exact when all roots are real:

Corollary 3.12 (descartes_roots_test_real).
fixes a b::real and p::"real poly"
assumes "all_roots_real p" and "a < b"
shows "proots_count p {x. a < x ∧ x < b}

= descartes_roots_test a b p"

3.5 Remarks
Ever since the seminal paper by Collins and Akritas [8],
the Descartes roots test has been closely linked to modern
real root isolation [13, 14, 28], where an effective method
is needed for testing if an interval has zero or exactly one
root. Although Sturm’s theorem (which has already been
formalised in Isabelle [11, 15, 19]) is also up to the task of
root testing, it is considered too slow in modern computer
algebra. Our mechanised version of the Descartes roots test
is, by no means, state of the art; it is probably the most
straightforward and naive implementation. Improvements
over our current implementation are mainly about avoiding
exact arithmetic, and the approaches include partial Taylor
shift [14] and bitstream arithmetic [13, Chapter 3].

4 Extending Sturm’s Theorem to Exactly
Count Multiple Roots

With the Descartes roots test we obtained from the previous
section, we have an effective method to over-approximate
the number of roots (with multiplicity) within an interval.
However, wemay sometimeswant to know the exact number,
as we will describe below (§5). For now, we only have the
classical Sturm theorem available (in Isabelle/HOL), which
only counts distinct real roots. In this section, we extend our

previous formalisation of Sturm’s theorem so that we will
be able to count roots with multiplicity and exactly.
Our mechanised proof follows Rahman and Schmeisser

[27, Theorem 10.5.6].

Theorem 4.1 (Sturm’s theorem). Let P ∈ R[x], a,b ∈ R
such that a < b, P (a) , 0, and P (b) , 0. Sturm’s theorem
claims

NumDR (P ; (a,b)) = Var(SRemS(P , P ′);a,b)

where
• NumDR (P ; (a,b)) is the number of distinct roots of the
polynomial P within the interval (a,b),
• P ′ is the first derivative of P ,
• Var is as in Definition 2.1,
• SRemS(P , P ′) is the signed remainder sequence:

[P1, P2, ..., Pn], (29)

such that P1 = P , P2 = P ′, Pi = −(Pi−1 mod Pi−2)
(3 ≤ i ≤ n), and Pn mod Pn−1 = 0.

The core idea of our extended Sturm’s theorem is to extend
the remainder sequence (SRemS):

Definition 4.2 (Extended signed remainder sequence). Let
P ,Q ∈ R[x]. The extended signed remainder sequence

SRemSE(P ,Q ) = [P1, P2, ..., Pm]

is defined as P1 = P , P2 = Q , and for i ≥ 3:

Pi =



−(Pi−1 mod Pi−2), if Pi−1 mod Pi−2 , 0
P ′i−1, otherwise,

(30)

until Pm such that Pm+1 = 0 by (30).

In Isabelle/HOL, SRemS and SRemSE are respectivelymech-
anised as smods and smods_ext:
function smods::

"real poly ⇒ real poly ⇒ real poly list"
where

"smods p q = (if p = 0 then []
else p # (smods q (- (p mod q)))
)"

function smods_ext::
"real poly ⇒ real poly ⇒ real poly list"

where
"smods_ext p q =

(if p = 0 then
[]

else if p mod q , 0 then
p # (smods_ext q (- (p mod q)))

else
p # (smods_ext q (pderiv q))

)"

where [] is an empty list and # is the Cons operation on
lists—adding one element at the start of a list.
As SRemSE extends SRemS (from the back), it is natural

to consider SRemS as a prefix of SRemSE:
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Lemma 4.3 (smods_ext_prefix).
fixes p q::"real poly"
defines "r ≡ last (smods p q)"
assumes "p , 0" and "q , 0"
shows "smods_ext p q = smods p q

@ tl (smods_ext r (pderiv r))"

where

• last gives the last element of a list,
• @ concatenates two lists,
• tl removes the head of a list,
• pderiv returns the first derivative of a polynomial.

Moreover, we may need to realise that the last element of
SRemS(P ,Q ) is actually the greatest common divisor (gcd)
of P and Q up to some scalar:

Lemma 4.4 (last_smods_gcd).
fixes p q::"real poly"
defines "r ≡ last (smods p q)"
assumes "p , 0"
shows "r = smult (lead_coeff r) (gcd p q)"

where

• smult multiplies a polynomial with a scalar,
• lead_coeff gives the lead coefficient of a polynomial.

Finally, we can state (the bounded version of) our extended
Sturm’s theorem:

Theorem 4.5 (sturm_ext_interval).
fixes a b::real and p::"real poly"
assumes "a < b" and "poly p a , 0"

and "poly p b , 0"
shows "proots_count p {x. a < x ∧ x < b}

= changes_itv_smods_ext a b p (pderiv p)"

where changes_itv_smods_ext a b p (pderiv p) encodes
Var(SRemSE(P , P ′);a,b). Essentially, Theorem 4.5 claims that
under some conditions

NumR (P ; (a,b)) = Var(SRemSE(P , P ′);a,b).

Proof of Theorem 4.5. By induction on the length of
SRemSE(P , P ′), and case analysis on whether P ′ = 0. When
P ′ = 0, the proof is trivial since both NumR (P ; (a,b)) = 0
and Var(SRemSE(P , P ′);a,b) = 0 provided P , 0.

When P ′ , 0, we let R be the last element of SRemS(P , P ′),
and Lemma 4.4 gives us

R = lc(R) gcd(P , P ′), (31)

where lc(R) is the leading coefficient of R.

The essential part of the proof is to relate Num(P ; (a,b))
and Num(R; (a,b)):

NumR (P ; (a,b))

=
∑

x :P (x )=0∧x ∈(a,b )

µ (x , P ) (32)

=
∑

x :P (x )=0∧x ∈(a,b )

(1 + µ (x ,R)) (33)

= NumDR (P ; (a,b)) +
∑

x :P (x )=0∧x ∈(a,b )

µ (x ,R) (34)

= NumDR (P ; (a,b)) +
∑

x :R (x )=0∧x ∈(a,b )

µ (x ,R) (35)

= NumDR (P ; (a,b)) + NumR (R; (a,b)). (36)

In particular, (33) has been derived by

µ (x , P ) = 1 + µ (x , P ′) = 1 +min(µ (x , P ′), µ (x , P ))
= 1 + µ (x , gcd(P , P ′)) = 1 + µ (x ,R),

provided P (x ) = 0 and (31). Also, (35) is because {x | R (x ) =
0} ⊆ {x | P (x ) = 0} and µ (y,R) = 0 for all y ∈ (a,b) such
that P (y) = 0 and R (y) , 0. With (32) - (36), we have

NumR (P ; (a,b)) = NumDR (P ; (a,b)) + NumR (R; (a,b)).
(37)

Moreover, the induction hypothesis yields

NumR (R; (a,b)) = Var(SRemSE(R,R′);a,b), (38)

and the classical Sturm theorem (Theorem 4.1) yields

NumDR (P ; (a,b)) = Var(SRemS(P , P ′);a,b). (39)

Also, by joining Lemma 4.3 and definition of Var, we may
have

Var(SRemSE(P , P ′);a,b) = Var(SRemS(P , P ′);a,b)
+ Var(SRemSE(R,R′);a,b). (40)

Finally, putting together (37), (38), (39), and (40) yields

NumR (P ; (a,b)) = Var(SRemSE(P , P ′);a,b),

concluding the proof. □

Be aware that Lemma 4.5 only corresponds to the bounded
version of the extended Sturm’s theorem. Our formal devel-
opment also contains unbounded versions (i.e., whena = −∞
or b = +∞).

5 Applications to Counting Complex
Roots

In the previous sections (§3 and §4), we have demonstrated
our enhancements for counting real roots in Isabelle/HOL.
In this section, we will further apply those enhancements to
improve existing complex-root-counting procedures [21].
In particular, we will first review the idea of counting

complex roots through Cauchy indices in §5.1. After that, we
will apply the extended Sturm’s theorem (§4) to remove the
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constraint of forbidding roots on the border when counting
complex roots in the upper half-plane (§5.2). In §5.3, we will
combine the improved counting procedure (for roots in the
upper half-plane) and the base transformation in §3.3 to build
a verified procedure to count complex roots within a ball.
Finally, we give some remarks about counting complex roots
(§5.4).

5.1 Number of Complex Roots and the Cauchy
Index

In this section we will briefly review the idea of counting
complex roots through Cauchy indices, For a more detailed
explanation, the reader can refer to our previous work [21].

Thanks to the argument principle, the number of complex
roots can be counted by evaluating a contour integral:

1
2πi

∮
γ

P ′(x )

P (x )
dx = N , (41)

where P ∈ C[x], P ′(x ) is the first derivative of P and N is the
number of complex roots of p (counting multiplicity) inside
the loop γ . Also, by the definition of winding numbers, we
have

n(P ◦ γ , 0) =
1
2πi

∮
γ

P ′(x )

P (x )
dx , (42)

where ◦ is function composition andn(P◦γ , 0) is the winding
number of the path P ◦ γ around 0. Combining (41) and (42)
enables us to count (complex) roots by evaluating a winding
number:

N = n(P ◦ γ , 0). (43)
Now the question becomes how to evaluate the winding
number n(P ◦ γ , 0). One of the solutions is to utilise the
Cauchy index.

To define the Cauchy index, we need to first introduce the
concept of jumps:

Definition 5.1 (Jump). For f : R→ R and x ∈ R, we define

jump+ ( f ,x ) =




1
2

if lim
u→x+

f (u) = +∞,

−
1
2

if lim
u→x+

f (u) = −∞,

0 otherwise.

jump− ( f ,x ) =




1
2

if lim
u→x−

f (u) = +∞,

−
1
2

if lim
u→x−

f (u) = −∞,

0 otherwise.

We can now proceed to define Cauchy indices by summing
up these jumps over an interval and along a path.

Definition 5.2 (Cauchy index). For f : R→ R and a,b ∈ R,
the Cauchy index of f over the interval [a,b] is defined as

Indba ( f ) =
∑

x ∈[a,b )

jump+ ( f ,x ) −
∑

x ∈(a,b]

jump− ( f ,x ).

Definition 5.3 (Cauchy index along a path). Given a path
γ : [0, 1]→ C and a point z0 ∈ C, the Cauchy index along γ
about z0 is defined as

Indp(γ , z0) = Ind10 ( f ),

where
f (t ) =

Im(γ (t ) − z0)

Re(γ (t ) − z0).

As the Cauchy index Indp(γ , z0) captures the way that γ
crosses the line {z | Re(z) = Re(z0)}, we can evaluate the
winding number through the Cauchy index:

Theorem 5.4. Given a valid path γ : [0, 1]→ C and a point
z0 ∈ C, such that γ is a loop and z0 is not on the image of γ ,
we have

n(γ , z0) = −
Indp(γ , z0)

2
.

Combining Theorem 5.4 and (43) gives us a way to count
complex polynomial roots:

N = −
Indp(P ◦ γ , z0)

2
. (44)

What is more interesting is that Indp(P◦γ , z0) (or Indba ( f , z0))
can be calculated through remainder sequences and sign
variations when P ◦ γ (or f ) is a rational function. That is,
the right-hand side of (44) becomes executable, and we have
a procedure to count N .

5.2 Resolving the Root-on-the-Border Issue when
Counting Roots within a Half-Plane

Fundamentally, the complex-root-counting procedure in the
previous section relies on the winding number and the ar-
gument principle, both of which disallow roots of P on the
border γ . As a result, both mechanised procedures — count-
ing roots within a rectangle and within a half-plane — in
our previous work will fail whenever there is a root on the
border. In this section, we will utilise our newly mechanised
extended Sturm’s theorem to resolve the root-on-the-border
issue when counting roots within a half-plane. Note that the
root-on-the-border issue for the rectangular case, unfortu-
nately, remains: we leave this issue for future work.
Considering that any half-plane can be transformed into

the upper half-plane through a linear-transformation, we
only need to focus on the upper-half-plane case:
definition proots_upper :: "complex poly ⇒ nat"

where
"proots_upper p = proots_count p {z. Im z > 0}"

where proots_upper p encodes NumC (P ; {z | Im(z) > 0}) —
the number of complex roots of P within the upper half-plane
{z | Im(z) > 0}.
Previously, we relied on the following lemma to count

NumC (P ; {z | Im(z) > 0}):

Lemma 5.5 (proots_upper_cindex_eq).
fixes p::"complex poly"
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assumes "lead_coeff p = 1"
and no_real_roots: "∀x∈proots p. Im x , 0"

shows "proots_upper p = (degree p -
cindex_poly_ubd (map_poly Im p)

(map_poly Re p)) / 2"

where
• lead_coeff p = 1 asserts the polynomial P to bemonic,
• the assumption no_real_roots asserts that P does not
have any root on the real axis (i.e., the border). This
assumption is, as mentioned earlier, because the argu-
ment principle disallows roots on the border.
• cindex_poly_ubd (map_poly Im p) (map_poly Re p)

encodes the Cauchy index

Ind+∞−∞

(
λx .

Im(P (x ))

Re(P (x ))

)
,

which can be computed (through remainder sequences
and sign variations) due to λx . Im(P (x ))/Re(P (x )) be-
ing a rational function.

To solve the root-on-the-border issue in Lemma 5.5, we
observe the effect of removing roots from a horizontal border:

Lemma 5.6 (cindexE_roots_on_horizontal_border).
fixes p q r ::"complex poly" and st ::complex

and a b s::real
defines "γ≡linepath st (st + of_real s)"
assumes "p = q * r" and "lead_coeff r = 1"

and "∀x∈proots r. Im x = Im st "
shows "cindexE a b (λt. Im ((poly p ◦ γ) t)

/ Re ((poly p ◦ γ) t)) =
cindexE a b (λt. Im ((poly q ◦ γ) t)

/ Re ((poly q ◦ γ) t))"

where the polynomial Q is the result of P after removing
some roots on the horizontal border γ . Lemma 5.6 claims
that

Indab

(
λx .

Im(P (γ (x ))

Re(P (γ (x ))

)
= Indab

(
λx .

Im(Q (γ (x ))

Re(Q (γ (x ))

)
.

That is, the Cauchy index will remain the same if we only
drop roots on a horizontal border.

We can now refine Lemma 5.5 by dropping the no_real_roots
assumption:

Lemma 5.7 (proots_upper_cindex_eq’).
fixes p::"complex poly"
assumes "lead_coeff p = 1"
shows "proots_upper p =

(degree p - proots_count p {x. Im x=0}
- cindex_poly_ubd (map_poly Im p)

(map_poly Re p)) /2"

To compare Lemma 5.7 with Lemma 5.5, we may note
there is an extra term proots_count p {x. Im x=0} in the
conclusion. This term encodes NumC (P ; {z | Im(z) = 0}),

and we can have

NumC (P ; {z | Im(z) = 0})
= NumR (gcd(Re(P ), Im(P )); (−∞,+∞)), (45)

where Re(P ), Im(P ) ∈ R[x] are respectively the real and
complex part of a complex polynomial P such that P (x ) =
Re(P ) (x ) + i Im(P ) (x ). The rationale behind (45) is that each
root of P on the real axis ({z | Im(z) = 0}) is actually real and
is also a root of both Re(P ) and Im(P ). More importantly, the
right-hand side of (45) is where we will apply our extended
Sturm’s theorem in §4.

Proof of Lemma 5.7. Let Q be the polynomial P after remov-
ing all the roots on the border (i.e., the real axis) such that

Im(z) , 0 whenever z is a complex root of Q . (46)

By the definition of Q and (46), we can apply Lemma 5.5 to
derive

NumC (P ; {z | Im(z) > 0})
= NumC (Q ; {z | Im(z) > 0})

= deg(Q ) − Ind+∞−∞

(
λx .

Im(Q (x )

Re(Q (x )

)
. (47)

Moreover, deg(P ) and deg(Q ) are related by the funda-
mental theorem of algebra:

deg(Q ) = deg(P ) − NumC (P ; {z | Im(z) = 0}), (48)

and Lemma 5.6 brings us the equivalence between twoCauchy
indices:

Ind+∞−∞

(
λx .

Im(Q (x )

Re(Q (x )

)
= Ind+∞−∞

(
λx .

Im(P (x )

Re(P (x )

)
. (49)

Putting (47), (48), and (49) together yields

NumC (P ; {z | Im(z) > 0})
= deg(P ) − NumC (P ; {z | Im(z) = 0})

− Ind+∞−∞

(
λx .

Im(P (x )

Re(P (x )

)
, (50)

which concludes the proof. □

Finally, we can have a code equation (i.e., executable proce-
dure) from the refined Lemma 5.7 to compute NumC (P ; {z |
Im(z) > 0}):

Lemma 5.8 (proots_upper_code1[code]).
"proots_upper p =

(if p , 0 then
(let pm = smult (inverse (lead_coeff p)) p;

pI = map_poly Im pm;
pR = map_poly Re pm;
g = gcd pI pR

in
nat ((degree p

- changes_R_smods_ext g (pderiv g)
- changes_R_smods pR pI ) div 2

)
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)
else
Code.abort (STR ’’proots_upper fails when p=0.’’)

(λ_. proots_upper p))"

where
• pm is a monic polynomial produced by P divided by
its leading coefficient, and this monic polynomial is re-
quired by the assumption lead_coeff p = 1 in Lemma
5.7.
• changes_R_smods_ext g (pderiv g) encodes

Var(SRemSE(G,G ′);−∞,+∞)

where G = gcd(Re(P ), Im(P )),

which computes NumC (P ; {z | Im(z) = 0}) in Lemma
5.7. Note that this part is where our extended Sturm’s
theorem in §4 has been utilised.
• changes_R_smods pR pI stands for

Var(SRemS(PR , PI );−∞,+∞),

which computes Ind+∞−∞
(
λx . Im(P (x )

Re(P (x )

)
in Lemma 5.7.

• The command Code.abort raises an exception in the
case of P = 0.

Overall, Lemma 5.8 asserts that

NumC (P ; {z | Im(z) > 0})

is equivalent to an executable expression: the right-hand side
of Lemma 5.8. Because it is declared as a code equation, it
implements a verified procedure to compute NumC (P ; {z |
Im(z) > 0}). We can now type the following command in
Isabelle/HOL:
value "proots_upper [:1+i, -2-i, 1:]"

to compute NumC ((1 + i ) + (−2 − i )x + x2; {z | Im(z) > 0}),
which was not possible in our previous work [21] since the
polynomial (1 + i ) + (−2 − i )x + x2 = (x − 1) (x − 1 − i ) has
a root on the border (i.e., the real axis).

5.3 Counting Roots within a Ball
In this section, we will introduce a verified procedure to
count NumC (P ; {z | |z − z0 | < r }), the number of complex
roots of a polynomial P within the ball {z | |z − z0 | < r }.
The core idea is to use the base transformation in §3.3 to
convert the current case to the one of counting roots within
the upper half-plane, and then make use of the procedure in
§5.2 to finish counting.

Let proots_ball denote NumC (P ; {z | |z − z0 | < r }):
definition proots_ball::

"complex poly ⇒ complex ⇒ real ⇒ nat"
where

"proots_ball p z0 r = proots_count p (ball z0 r)"

With the transformation operation (fcompose) we devel-
oped in §3.3, we can derive the following equivalence relation
in the number of roots:

Lemma 5.9 (proots_ball_plane_eq).
fixes p::"complex poly"
assumes "p , 0"
shows "proots_count p (ball 0 1)

= proots_count (fcompose p [:i,-1:] [:i,1:])
{z. 0 < Im z}"

That is,

NumC (P ; {z | |z | < 1})

= NumC
(
(i + x )nP

( i − x
i + x

)
; {z | Im(z) > 0}

)
, (51)

where n is the degree of P .
Moreover, we can relate roots between different balls using

normal polynomial composition:

Lemma 5.10 (proots_uball_eq).
fixes p::"complex poly" and z0::complex and r::real
assumes "p , 0" and "r > 0"
shows "proots_count p (ball z0 r)

= proots_count (p ◦p [:z0, of_real r:])
(ball 0 1)"

where ◦p encodes the composition operation between two
polynomials. Overall, Lemma 5.10 claims

NumC (P ; {z | |z − z0 | < r })

= NumC (P (rx − z0); {z | |z | < 1}) . (52)

Finally, we can derive a code equation for proots_ball:

Lemma 5.11 (proots_ball_code1[code]).
"proots_ball p z0 r =

( if r ≤ 0 then
0

else if p , 0 then
proots_upper (fcompose

(p ◦p [:z0, of_real r:]) [:i,-1:] [:i,1:])
else

Code.abort (STR ’’proots_ball fails
when p=0.’’) (λ_. proots_ball p z0 r)

)"

The idea behind of Lemma 5.11 is to combine (51) and (52):

NumC (P ; {z | |z − z0 | < r })

= NumC
(
(rx + i − z0)

nP

(
−rx + i + z0
rx + i − z0

)
; {z | Im(z) > 0}

)
, (53)

so that we can apply Lemma 5.8 to count roots within the
upper half-plane instead.
Because Lemma 5.11 is declared as a code equation, we

can execute it. For example, we can now type the following
command in Isabelle/HOL:
value "proots_ball [:i,- 1 - i, 1:] 0 1"

to check that the polynomial i + (−1 − i )x + x2 has no roots
within the ball {z | |z | < 1}.
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5.4 Remarks
Generally, most complex-root-counting procedures boil down
to applying the argument principle and approximating some
winding number. The Cauchy index on the complex plane ele-
gantly approximates the winding number, and it can be effec-
tively computed by remainder sequences and sign variations
as in the application of Sturm’s theorem. As this approach
is moderately efficient, in 1978 Wilf [32] used this counting
mechanism for his (complex) root isolation algorithm.
However, as we mentioned earlier in §3.5, remainder se-

quences are generally considered too slow for modern com-
puter algebra systems. As a result, in 1992 Collins andKrandick
[10] proposed an approach to directly approximate the wind-
ing number through efficient real root isolation based on
Descartes’ rule of signs, and this approach is actually the
one that has been widely implemented in modern systems
like Mathematica and SymPy.

In the future, we hope to implement Collins and Krandick’s
approach. Luckily, the Descartes roots test we mechanised
in §3.4 should serve as the first step.

6 Related Work
Counting distinct real roots with Sturm’s theorem has been
widely implemented among major proof assistants including
PVS [25], Coq [22], HOL Light [24] and Isabelle [11, 15, 18].
In contrast, our previous complex-root-counting procedure
[21] seems to be the only one that counts complex roots,
since counting complex roots usually requires a formal proof
of the argument principle in complex analysis, which (to
the best of our knowledge) is only available in Isabelle/HOL
[20].
According to the website of Formalizing 100 Theorems2,

Descartes’ rule of signs has been independently formalised
in Isabelle/HOL [12], HOL Light, and ProofPower, and all
three versions seem to follow an informal inductive proof
by Arthan [4]. In Coq, Bertot et al. [6] have investigated
real root isolation through Bernstein coefficients, and during
the investigation they have proved a corollary of Descartes’
rule of sign: the polynomial has exactly one positive root if
there is only one sign change in its coefficient sequence. In
comparison, we have formalised a more general result (i.e.,
the Budan-Fourier theorem), and derive Descartes’ rule of
signs as an almost trivial consequence. As a benefit of this
more general result, we can additionally derive the corollary
that the roots approximation through both Descartes’ rule
of signs and the Descartes roots test will be exact when all
roots are real; it is not clear how to deduce this without the
Budan-Fourier theorem.
Since Thiemann and Yamada have formalised Yun’s al-

gorithm in Isabelle/HOL [30, 31], there could be an alterna-
tive procedure to count multiple real roots exactly. Given
P ∈ R[x], with Yun’s algorithm we can have a square-free
2http://www.cs.ru.nl/~freek/100/index.html

factorisation of P :

P = Q1Q
2
2Q

3
3 · · ·Q

n
n ,

such that polynomials from {Qi } (1 ≤ i ≤ n) are pairwise
coprime and square-free. We can then obtain a procedure to
count multiple roots by applying Sturm’s theorem to eachQi ,
multiplying the result by i , and summing them together. We
believe our extended Sturm’s theorem will be more efficient
than the sketch above, but that is never for sure until we
perform a side-by-side comparison.

Potential applications of our work include various formal-
isations of algebraic numbers in Coq [7] and Isabelle/HOL
[19, 29]. A real algebraic number is usually encoded as a
polynomial P and an isolation interval, and this interval is
frequently tested (or refined) to guarantee that exactly one
root of P lies within it. At present, the testing and refining
process relies on Sturm’s theorem, which can be replaced by
our new Descartes roots test for better efficiency. Further-
more, when encoding complex algebraic numbers, we may
need to deal with an isolation box or ball in the complex
plane, where our complex-root-counting procedures should
be of help.

7 Experiments
In this section, we briefly benchmark our root-counting pro-
cedures over some randomly generated polynomials, to con-
vey an idea about their scalability. All the experiments are
run on a Intel Core i7 CPU (quad core @ 2.66 GHz) and 16
gigabytes RAM. When benchmarking verified operations,
the expression to evaluate is first defined in Isabelle/HOL,
and then extracted and evaluated in Poly/ML. The reason for
this is that when invoking value in Isabelle/HOL to evaluate
an expression, a significant and unpredictable amount of
time is spent generating code, so we evaluate an extracted
expression to obtain more precise results.
First, we compare using the classical Sturm theorem, the

extended Sturm theorem, the Budan-Fourier theorem, and
the Descartes roots test to count/approximate the number
of real roots of various polynomials over the interval (0, 1)
or (0, 1]. As illustrated in Table 1 and Figure 1, procedures
based on remainder sequences (i.e., Sturm and Ex_Sturm)
are much slower than the others, and their performance
degrades rapidly as the bit size of the coefficients grows.
In the meantime, the difference in performance between
the Budan-Fourier theorem and the Descartes roots test is,
surprisingly, marginal. We believe this is due to our naive
implementation of Taylor shift, which usually contributes
most to the running time of the roots test.

In addition, we also apply our complex-root-counting pro-
cedures to count roots within the upper half-plane and the
ball {z | |z | < 1}. The result is illustrated in Table 2: both
methods have shownmoderate performance, but due to their
method of computing remainder sequences the performance
deteriorates quickly as the coefficient bit-size increases.
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88
79

x2 +
29
75

x3 +
80
51

x4 −
66
52

x5 +
9
71

x6 −
14
61

x7 −
27
64

x8 −
100
83

x9 +
1
53

x10 −
23
85

x11 +
83
98

x12 +
48
16

x13

−
89
25

x14 −
100
5

x15 +
36
28

x16 +
1
1
x17 +

43
99

x18 −
29
32

x19 +
74
97

x20 +
9
5
x21 +

20
70

x22 −
89
27

x23 −
33
48

x24 +
16
33

x25 +
84
63

x26

+
96
89

x27 +
22
69

x28 +
95
97

x29

P2 (x) = − 34 − 28x + 5x2 − 39x3 + 83x4 − 89x5 − 49x6 + 94x7 − 66x8 + 18x9 + 75x10 + 84x11 − 98x12 − 68x13 + 12x14

+ 46x15 − 43x16 + 98x17 + 24x18 − 30x19 + 10x20 − 88x21 + 54x22 + 79x23 − 29x24 + 12x25 − 55x26 − 46x27

− 18x28 + 50x29
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P4 (x) = − 20 − 6x − 50x2 − 95x3 + 35x4 − 64x5 + 77x6 − 56x7 + 18x8 − 94x9 − 74x10 − 69x11 − 62x12 − 93x13 − 4x14

− 41x15 − 47x16 − 48x17 − 95x18 − 41x19 + 29x20 + 76x21 + 70x22 − 67x23 − 91x24 − 93x25 − 55x26 − 34x27

− 67x28 − 61x29 − 8x30 + 32x31 + 8x32 − 33x33 − 27x34 − 8x35 + 88x36 + 53x37 − 28x38 − 66x39 − 72x40 − 46x41

+ 15x42 − 19x43 + 29x44

P5 (x) = (−
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47
−
49
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i ) + (
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47
+
547
88

i )x + (−
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67

) +
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11

i )x2 + (
2
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+
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3
20
+

4
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P6 (x) = (51 − 83i ) + (−82 + 29i )x + (−37 − 6i )x2 (1 + 45i )x3 + (145 − 57i )x4 + (−10 + 17i )x5 + (−39 + 22i )x6

+ (40 − 35i )x7 + (−112 − 27i )x8 + (106 − 2i )x9 + (−63 + 97i )x10

Figure 1. Some example polynomials.

Table 1. Applying various procedures to count the number
of real roots over an interval.

Time (s)

Polynomial Sturm Ex_Sturm Fourier Descartes

P1 12.123 23.418 .002 .002
P2 1.612 1.742 .001 0
P3 322.569 524.975 .007 .007
P4 8.894 13.425 .003 .003

8 Conclusion
In this paper, we have strengthened the existing root-counting
tools in Isabelle. In particular, we have

• formalised a proof of the Budan-Fourier theorem, and
thereby implemented the Descartes roots test,

Table 2. Counting the number of complex roots within the
upper half-plane and a ball.

Time (s)

Polynomial proots_upper proots_ball

P5 4.359 24.509
P6 0.633 0.256

• extended our previous formalisation of the classical
Sturm theorem to count real roots with multiplicity,
• applied part of the results above to improve our pre-
vious complex-root-counting procedures by allowing
roots on the border in the half-plane case and provid-
ing a procedure to count roots within a ball.

The proofs described in this paper are about 6000 LOC in
total, and took around 6 person-months to complete.
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As counting polynomial roots is a fundamental topic in
computer algebra and numerical computing, we believe our
verified routines will be of use when certifying continuous
systems and for coding tactics.
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