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“No matter how much wishful thinking we do, the theory of 
types is here to stay. There is no other way to make sense of 
the foundations of mathematics. Russell (with the help of 
Ramsey) had the right idea, and Curry and Quine are very 
lucky that their unmotivated formalistic systems are not 
inconsistent.” 

–Dana Scott (1969)



But what is the theory of types?



Ramified type theory (1908)

✤ introduced by Bertrand Russell to prevent paradoxes

✤ ramified type levels to prohibit “vicious circles”

✤ no syntax

✤ “classes” (sets) did the heavy lifting of specifications

Types were invisible and second class!



Simple type theory (1920s)

✤ credited to Chwistek and Ramsey, but Russell himself 
criticised ramified types

✤ the canonical formal system is by Church (1940)

✤ types ι (individuals), ο (Booleans) and functions

✤ sets and specifications (e.g. ℕ) coded as predicates



Dependent type theories

✤ AUTOMATH (de Bruijn, 1967)

✤ Martin-Löf’s intuitionistic type theories (1973 onward)

✤ calculus of constructions (Coquand & Huet, 1985) 

✤ … and inductive constructions (Paulin-Mohring, 1988)



Foundational implications

✤ simple type theory: generally classical (though intuitionistic 
versions exist, e.g. in topos theory)

✤ dependent type theories: mostly intuitionistic 

✤ except AUTOMATH!

✤ can add non-constructive axioms (with care)

Intuitionistic logic and mathematics 
don’t really mix!



Working without dependent types

E.g., how can we specify an n-element vector?

Sets, as envisaged by all 
early logicians. Or lists.

Separate types word4, word8, 
etc., as in early HOL

Vectors over finite types (John Harrison, 2005)

Axiomatic type classes, 
as in Isabelle/HOL



Vector τn, where n is a finite type

✤ τn abbreviates the function type n → τ

✤ Types like τn × τn → bool work, even for matrix 
multiplication.

✤ the τn have replaced word8, etc., in HOL.

✤ Can even obtain n as an integer!



Limitations of Harrison’s trick

✤ Must use ℝ1 instead of ℝ, and τm+n instead of τm × τn: 
every type (in analysis) must have the form ℝn

✤ ℝn is too low-level; even ℂ must be identical to ℝ2 

✤ No vectors of length 0

✤ No abstraction over types, so no induction on n



Type class polymorphism!

axiomatically define groups, 
rings, topological spaces, metric 

spaces and other type classes
prove that a type is in some 

class, inheriting its properties

… supporting uniform 
mathematical notation 

Eliminating the need to copy/paste 
material for related structures, and



class	"open"	=	
		fixes	"open"	::	"'a	set	⇒	bool"	

class	topological_space	=	"open"	+	
		assumes	open_UNIV:	"open	UNIV"	
		assumes	open_Int:			"open	S	⟹	open	T	⟹	open	(S	∩	T)"	

		assumes	open_Union:	"∀S∈𝒦.	open	S	⟹	open	(⋃𝒦)"	
begin	

definition	closed	where	"closed	S	⟷	open	(-	S)"	

lemma	open_empty:	"open	{}"	
		using	open_Union	[of	"{}"]	by	simp	

lemma	open_Un:	"open	S	⟹	open	T	⟹	open	(S	∪	T)"	
		using	open_Union	[of	"{S,	T}"]	by	simp	

lemma	open_Diff:	"open	S	⟹	closed	T	⟹	open	(S	-	T)"	
		by	(simp	add:	closed_open	Diff_eq	open_Int)	

end

syntactic type class 
for overloading

The type class of topological spaces

the axioms

some results



class	t0_space	=	topological_space	+	
		assumes	t0_space:		
				"x	≠	y	⟹	∃U.	open	U	∧	¬	(x∈U	⟷	y∈U)”	

class	t1_space	=	topological_space	+	
		assumes	t1_space:		
				"x	≠	y	⟹	∃U.	open	U	∧	x∈U	∧	y	∉	U”	

class	t2_space	=	topological_space	+	
		assumes	hausdorff:		
				"x≠y	⟹	∃U	V.	open	U	∧	open	V	∧	x∈U	∧	y∈V	∧	U	∩	V	=	{}"

More type classes; more axioms 



instance	t1_space	⊆	t0_space	

instance	t2_space	⊆	t1_space	

instance	metric_space	⊆	t2_space	

instance	real_normed_vector	⊆	metric_space

Proving type class inclusions

giving us inheritance



instantiation	real	::	real_normed_field	

instantiation	complex	::	real_normed_field	

instantiation	prod	::	(topological_space,topological_space)	topological_space	

instantiation	fun	::	(type,topological_space)	topological_space	

conveying properties to types

✤ Each type inherits a corpus of material about 
continuity, limits, derivatives, etc

✤ … great when defining new types, e.g. quaternions 
and formal power series and constructions over them



Type classes fix most faults of τn

✤ No need for use ℝ1 or to define ℂ = ℝ2, since ℝ and ℂ 

belong to their rightful type classes 

✤ May assume an abstract metric, topological or 
Euclidean space rather than specifically ℝn.

✤ But no abstraction over types: still no induction on n

✤ Type classes only work if the carrier is the entire type.



Defining abstract topologies

definition	istopology	::	"('a	set	⇒	bool)	⇒	bool"	where	
		"istopology	L	≡	(∀S	T.	L	S	⟶	L	T	⟶	L	(S∩T))	∧		
																		(∀𝒦.	(∀S∈𝒦.	L	S)	⟶	L	(⋃𝒦))”	

typedef	'a	topology	=	"{L::('a	set)	⇒	bool.	istopology	L}"	
		morphisms	"openin"	"topology"	

now topologies are values



Reasoning with topologies

proposition	
				"openin	U	{}"	
				"⋀S	T.	openin	U	S	⟹	openin	U	T	⟹	openin	U	(S∩T)"	

				"⋀𝒦.	(∀S∈𝒦.	openin	U	S)	⟹	openin	U	(⋃𝒦)”	

definition	discrete_topology	
		where	"discrete_topology	T	≡	topology	(λS.	S	⊆	T)”	

abbreviation	euclidean	::	"'a::topological_space	topology"	
		where	"euclidean	≡	topology	open"

now they can take parameters

and can be linked 
to the type class



Specifications given by predicates 
(possibly encapsulated in new types) are 

more general than type classes.

But we risk having 
duplicate developments.



Some advantages of STT

✤ Simple syntax, semantics, proof system and therefore 
implementations (less so with type classes)

✤ Fewer “surprises” with argument synthesis

✤ Self-contained: recursive definitions, datatypes, etc are 
all reducible to the base logic

✤ Highly expressive for formalising mathematics



… And the main drawbacks

✤ It’s formally much weaker than CIC, which is 
equivalent in strength to ZFC + inaccessibles.

✤ The respective roles of type classes and explicitly 
specified mathematical structures are still not clear.



Mathematics developed in STT

Jordan curve theorem

Central limit theorem

Gödel’s incompleteness theorems

Verification of the Kepler conjecture

Analytic number theory

Homology theory

Complex analysis

Measure, integration 
and probability theory

Prime number theorem

Algebraic closure of a field

Advanced topology

Nonstandard analysis

Linear algebra and matrices

Residue theorem



The main obstacle to formalising 
maths is proving the obvious

✤ geometric or diagrammatic arguments: commuting 
diagrams, winding number reasoning

✤ establishing homotopies between given paths

✤ cancellation of poles in complex analysis (Eberl, 2019)

✤ obvious proofs are tiresome and can take hours



The canonical obvious fact



A problem due to Littlewood

Dissection of squares and cubes into squares and cubes, 
finite in number and all unequal.



The first squared square, a compound one of side 4205 and order 55, discovered by 
RPS Sprague in 1939, redrawn by CMG Lee. Licensed under CC BY-SA 3.0



Littlewood’s trivial proof

“The square dissection is possible in an infinity of distinct ways (the 
simplest is very complicated); a cube dissection is impossible… 

In a square dissection the smallest square is not at an edge (for 
obvious reasons). Suppose now a cube dissection does exist. The 
cubes standing on the bottom face induce a square dissection of that 
face, and the smallest of the cubes at the face stands on an internal 
square. The top face of this cube is enclosed by walls; cubes must 
stand on this top face; take the smallest—the process continues 
indefinitely.”



Two more obvious facts

✤ A cube cannot be completely surrounded by larger unequal 
ones. — Littlewood

✤ If, however, we ask whether a single cube can be completely 
surrounded by larger unequal ones, the answer is `yes’.  
— As revised by Bollobás

Not all obvious statements are true!



Some final remarks…



“Unlike first-order logic and some of its less baroque 
extensions, second and higher-order logic have no coherent 
well-established theory; the existent material consisting 
merely of scattered remarks quite diverse with respect to 
character and origin.” 

– Johan van Benthem & Kees Doets (1983)



“The intuitionistic mathematician . . . uses language, both 
natural and formalised, only for communicating thoughts, 
i.e., to get others or himself to follow his own mathematical 
ideas. Such a linguistic accompaniment is not a representation 
of mathematics; still less is it mathematics itself.” 

– Arend Heyting (1944)



“Thus we are led to conclude that, although everything 
mathematical is formalisable, it is nevertheless impossible to 
formalise all of mathematics in a single formal system, a fact 
that intuitionism has asserted all along.” 

–Kurt Gödel (1935)



And so…

No formal system can be the 
foundation of mathematics!


