Automated Theorem Proving: a Technology Roadmap

Lawrence C Paulson FRS

Mathematical Theorem Proving and its Applications, 25/4/2022

Supported by the ERC Advanced Grant ALEXANDRIA (Project GA 742178).

1. Proof Assistants

Mechanising a formal logic

- Syntax: a precise specification of the formalism's grammar
- Semantics: the mathematical meaning of logical terms and formulas
- Proof theory: a precise calculus for deriving or verifying true formulas
- Automation: algorithms and data structures to verify formulas efficiently

A variety of verification technologies

SAT solving (originated in the 1960s, revived in the 1990s) for Boolean logic

BDDs: a powerful data structure for large Boolean problems

SMT solving: extending SAT with arithmetic, arrays, quantifiers and more

Resolution, for first-order logic (quantifiers): logical reasoning + rewriting

each of these can handle large

problems and is fully automatic

So why *interactive* theorem proving?

No automatic method can prove even quite simple statements * there are infinitely many prime numbers; $\sqrt{2}$ is irrational Only higher-order formalisms are expressive enough Real-world projects require large hierarchies of specifications * "interactive theorem provers" should be called specification editors

Why do interactive provers need automation?

- Even the simplest facts are extremely tedious to prove in a basic calculus
 - Lengthy calculations drawing on thousands of facts
- Almost unlimited computer power could reduce the burden on users
 - finding new proofs (by classical theorem proving)
 - identifying similar proofs in existing libraries (by machine learning)

Interactive theorem provers today

- Simple types (higher-order logic): Isabelle / HOL, HOL4, HOL Light
 - a simpler but weaker formal calculus
 - straightforward automation
 - can express sophisticated constructions

Dependent types: Lean, Coq, Agda

- formally stronger and more expressive calculi
- constructive proof
- popular with mathematicians
 and theoreticians

The LCF Architecture

- * A small *kernel* implements the logic and has the sole power to generate theorems (Milner, 1979)
- * ... safety ensured by the programming language's abstract data types.
- All specification methods and proof procedures expand to full proofs.
- Unsoundness is less likely, but the implementation is more complicated. *
- Adopted by HOL, Isabelle, Coq, Lean... but not PVS, ACL2

Common features in all proof assistants

A *language* for declaring types & definitions, stating theorems

- *Recursive* functions and types
- A system of proof tactics
- A dependency graph for theories

- A modern user interface
 supporting *subgoal-oriented* proof
- *Automation*: rewriting, arithmetic and specialist proof procedures
- Code extraction / generation
- Extensive libraries of basic maths

2. Isabelle/HOL

Some distinctive features of Isabelle/HOL

- **Classical proof search** using forward/backward chaining *
- Quickcheck and nitpick: powerful counterexample detection *
- Sledgehammer: a link to external provers
- Isar, a readable language for structured proofs
- Extensive exploitation of parallelism

Higher-order logic

- *
- A type of truth values, with no distinction between terms and formulas
- *
- Easy to understand and implement

First-order logic extended with polymorphic types, functions and sets Expressive enough to formalise sophisticated mathematical definitions

"HOL = functional programming + logic"

Classical proof search (auto, force, blast ...)

forward or backward chaining using hundreds of built-in facts about logic, sets, simple maths and data structures

> both automatic and interactive modes

 $(\exists y \forall x . Pxy \longleftrightarrow Pxx) \rightarrow \neg \forall x \exists y \forall z . Pzy \longleftrightarrow \neg Pzx$

easily augmented by the user to support their own development

$$\left(\bigcup_{i\in I}A_i\cup B_i\right)=\left(\bigcup_{i\in I}A_i\right)\,\cup\,\left(\bigcup_{i\in I}B_i\right)$$

This was the key to all the work verifying *cryptographic protocols*

Quickcheck and nitpick

Because many theorems are stated incorrectly

Quickcheck detects false statements by evaluation with appropriate test data and also by symbolic evaluation [it excels at inductive datatypes]

 Nitpick detects false statements using sophisticated translations into firstorder relational logic, using the SAT-based Kodkod model finder

 inductive / coinductive predicates and other advanced constructions are permitted

Sledgehammer

Calls several external provers to work on the current goal * ... but does not trust their proofs! Zero configuration and 1-click invocation Access to the whole lemma library, able to dig up the most obscure facts Particularly powerful in conjunction with structured proofs

3. Structured Proofs

Tactic proofs: fit only for machines

Mean value theorem

let MVT LEMMA = prove(let MVT = prove(`!(f:real->real) a b. `!f a b. a < b /(x. f(x) - (((f(b) - f(a)) / (b - a)) * x)) (a) = <= x / x <= b ==> f contl x) / (b - a) (x - a) (x(x. f(x) - (((f(b) - f(a)) / (b - a)) * x)) x) a < x / x < b ==> f differentiable x)REPEAT GEN_TAC THEN BETA_TAC THEN ==> ?1 z. a < z /\ z < b /\ (f diff1 1)(z) /\ ASM_CASES_TAC `b:real = a` THEN ASM_REWRITE_TAC[](F(HEN - f(a) = (b - a) * 1)`, ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN RULE_ASSUM_TAC(ONCE_REWRITE_RULE[GSYM REALING BODDLTHENX. f(x) - (((f(b) - f(a)) / (b - a)) * x); MP_TAC(GENL [`x:real`; `y:real`] `a:real`; `b:real`] ROLLE) THEN (SPECL [`x:real`; `y:real`; `b - a`] REAC_SOBBOWL) THEMENfun t ->REWRITE_TAC[t]) o ASM REWRITE TAC[] THEN funpow 2 (fst o dest imp) o snd) THENL DISCH_THEN(fun th -> GEN_REWRITE_TAC I [GASM REWRITE_TAC [MVT_LEMMA] THEN BETA_TAC THEN REWRITE_TAC[REAL_SUB_RDISTRIB; GSYM REAL_CONJASAOCTHENEN GEN TAC `x:real` THENL FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP[BESCHDIXCRMWENtodNVTHAD(ONCE_DEPTH_CONV HABS_CONV) THEN GEN_REWRITE_TAC (RAND_CONV O RAND_CONV) [REMAICHINGYMACTOONT_SUB THEN CONJ_TAC THENL GEN_REWRITE_TAC (LAND_CONV & RAND_CONV) [REALCONV_ SXCONDEPTH_CONV ETA_CONV) THEN REWRITE_TAC[real_sub; REAL_LDISTRIB; REAL_RDISTRIB; REAL_RDISTRIB; REAL_RDISTRIB; REAL_RDISTRIB; MATCH_MP_TAC THEN ASM_REWRITE_TAC[REWRITE_TAC[CONJ_ASSOC] THEN DISCH_THEN(X_CHOOSE_THEN `z:real` MP_TAC) THEN REWRITE_TAC[GSYM REAL_NEG_LMUL; GSYM REAL_NEG_OMVLTAC(ONCE_DEPTH_CONV HABS_CONV) THEN MATCH DATE CHACTHEON (CONJUNCTEN_THEN2 ASSUME_TAC MP_TAC) THEN REAL_NEG_ADD; REAL_NEG_NEG] THEN REWRITE_TAC[CONT_CONST] THEN MATCH_MP_TAC DIFF DEGRET _THEN ((then_) (MAP_EVERY EXISTS_TAC EXISTS_TAC `&1` THEN MATCH_ACCEPT_TAC DIFF_X]; [`((f(b) - f(a)) / (b - a))`; `z:real`]) o MP_TAC) THEN REWRITE_TAC[GSYM REAL_ADD_ASSOC] THEN DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCHASMP_REWRITHERAC[] THEN DISCH_THEN((then_) CONJ_TAC o MP_TAC) THENL REWRITE_TAC[AC REAL_ADD_AC W + x + y + z = (y + w) + (x + z); REALRADRITENTAC REAFERPORTIENTAC REAFERPORTIENTAC REAFERPORTIENTAC REAFERPORTIENTAC REAFERPORTIENTAC DISCH_THEN(X_CHOOSELLTAC) THENEN ALL_TAC) THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_DIV_LMUL THEN REWRITE_TAC[REAL_SUB_0] THEN REWRITE_TAC[REAL_ADD_RID]);; EXISTS TAC 1 - ((f(b) - f(a)) / (b - a)) THEN CONV_TAC(ONCE_DEPTH_CONV HABS_CONV) THEN MATCH MP PAGE CHEFHESUBURGENALL_TAC THEN UNDISCH_TAC `a < a` THEN REWRITE TAC[REAL LT REFL]] THEN CONJ TAC THENL [CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN FIRST_ASSIGNALCITERN TAC; x. ((f(b) - f(a)) / (b - a)) * x) diff1 ((f(b) - f(a)) / (b - a)))(z)CONV_TAC(ONCE_DEPTH_CONV HABS_CONV) THEN REWRITE_TAC[] THEN GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_RID] THEN THEN THE -> DISCH_THEN(MP_TAC o C CONJ th)) THENL MATCH_MP_TAC DIFF_CMUL THEN MATCH_ACCEPT_TAC DIFFCONV_TAC(ONCE_DEPTH_CONV HABS_CONV) THEN REWRITE_TAC[] THEN GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_RID] THEN ALL_TAC] THEN MATCH_MP_TAC DIFF_CMUL THEN REWRITE_TAC[DIFF_X]; ALL_TAC] THEN DISCH_THEN(MP_TAC o MATCH_MP DIFF_ADD) THEN BETA_TAC THEN REWRITE_TAC[REAL_SUB_ADD] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN REWRITE_TAC[REAL_ADD_LID]);;

The same, as a structured proof

theorem mvt: **fixes** ϕ :: "real \rightarrow real" assumes "a < b" and contf: "continuous_on {a..b} o" and derf: " $\land x$. [a < x; x < b] \Rightarrow (ϕ has_derivative ϕ' x) (at x)" obtains ξ where "a < ξ " " ξ < b" " ϕ b - ϕ a = (ϕ ' ξ) (b-a)" proof define f where "f = λx . $\phi x - (\phi b - \phi a) / (b-a) * x$ " have " $\exists \xi$. $a < \xi \land \xi < b \land (\lambda y. \phi' \xi y - (\phi b - \phi a) / (b-a) * y) = (\lambda v. 0)$ " proof (intro Rolle_deriv[OF <a < b>]) fix x **assume** x: "a < x" "x < b" show "(f has_derivative (λy . $\varphi' \times y - (\varphi b - \varphi a) / (b-a) * y$)) (at χ)" unfolding f_def by (intro derivative_intros derf x) next show "f a = f b" using assms by (simp add: f_def field_simps) next show "continuous_on {a..b} f" unfolding f_def by (intro continuous_intros assms) qed then show ?thesis by (smt (verit, ccfv_SIG) pos_le_divide_eq pos_less_divide_eq that) qed

Structured proofs are necessary!

 Because formal proofs should make sense to users ... reducing the need to **trust** our verification tools

For *reuse* and eventual *translation* to other systems

For maintenance (easily fix proofs that break due to changes to definitions... or automation)

with some other systems, users avoid automation for that reason!

Structured proofs assist machine learning!

 Working locally within a large proof Looking for just the next step (not the whole proof) Proof by analogy Identifying idioms

For Isabelle, we've lots of data

- of Formal Proofs (not all mathematics though)

Over 400 different authors: diverse styles and topics

About 230K proof lines in Isabelle's maths libraries: Analysis, Complex Analysis, Number Theory, Algebra

Nearly 3.4M proof lines nearly 700 entries in the Archive

Lots of structured "chunks"

- and context elements that could drive learning
- These might relate to natural mathematical steps
 - Proving a function to be continuous

Structured proof fragments contain explicit assertions

Getting a ball around a point within an open set

Covering a compact set with finitely many balls

It is essential to synthesise terms and formulas

Even tactics take arguments

Structured proofs mostly consist of explicit formulas

4. A Few Proof Idioms for ML

Inequality chains

have "{X m * Y m - X n * Y n} = {X m * (Y m - Y n) + (X m - X n) * Y n}" **unfolding** mult diff mult ... **also have** "... $\leq \{X \ m \ * \ (Y \ m \ - \ Y \ n)\} + \{(X \ m \ - \ X \ n) \ * \ Y \ n\}$ **by** (rule abs triangle ineq) **also have** "... = |X m| * |Y m - Y n| + |X m - X n| * |Y n|" unfolding abs mult ... also have "... < a * t + s * b"</pre> **by** (simp all add: add strict mono mult strict mono' a b i j *) finally show "|X m * Y m - X n * Y n| < r" **by** (simp only: r)

typically by the triangle inequality with simple algebraic manipulations

- there are hundreds of examples

Simple topological steps

have "open (interior I)" by auto from openE[OF this $\langle x \in interior I \rangle$] **obtain** e where e: "0 < e" "ball x e \subseteq interior I".

define U where "U = $(\lambda w. (w - \xi) * g w)$ T" **have** "open U" by (metis oimT U def) moreover have " $0 \in U$ " ultimately obtain ε where " ε >0" and ε : "cball 0 $\varepsilon \subseteq$ U" **using** <open U> open contains cball by blast

a neighbourhood around a point within an open set

using $\langle \xi \in T \rangle$ by (auto simp: U_def intro: image_eqI [where x = ξ])

```
many similar but not identical instances
```

Summations

have	"real (Suc n) $*_R S (x + y)$ (Suc
by	(metis Suc.hyps times_S)
also	have " = x * ($\sum i \le n$. S x i * S
by	(rule distrib_right)
also	have " = $(\sum_{i \le n} x * S x i * S)$
by	<pre>(simp add: sum_distrib_left ac_s</pre>
also	have " = $(\sum_{i \le n} x * S x i * S)$
by	<pre>(simp add: ac_simps)</pre>
also	have " = $(\sum i \le n \cdot real (Suc i))$
	+ (∑i≤n. real (Suc n -
by	<pre>(simp add: times_S Suc_diff_le)</pre>
also	have "($\sum_{i \leq n}$. real (Suc i) $*_R$ (S
	= (∑i≤Suc n. real i * _R (S x
by	(subst sum.atMost_Suc_shift) sim
also	have "($\sum_{i \leq n}$. real (Suc n - i) *
	= ($\sum i \leq Suc n$. real (Suc n -
by	simp
also	have "($\sum_{i} \leq Suc n$. real i $*_R$ (S x
	+ (∑i≤Suc n. real (Suc n -
	= $(\sum_{i \leq Suc n}, real (Suc n) *$
by	(simp flip: sum.distrib scaleR_a
also	have " = real (Suc n) $*_R$ ($\sum i \leq i$
by	(simp only: scaleR_right.sum)
final	$lly show "S (x + y) (Suc n) = (\sum$
by	(simp del: sum.cl_ivl_Suc)

```
n) = (x + y) * (\sum_{i \le n} S_x i * S_y (n - i))"
y (n - i)) + y * (∑i≤n. S x i * S y (n - i))"
y (n - i)) + (\sum_{i \le n} S_x i * y * S_y (n - i))"
imps S_comm)
y (n - i)) + (\sum_{i \le n} S_x i * (y * S_y (n - i)))"
*<sub>R</sub> (S x (Suc i) * S y (n - i)))
 i) *<sub>R</sub> (S x i * S y (Suc n - i)))"
x (Suc i) * <mark>S</mark> y (n - i)))
i * <mark>S y</mark> (Suc n - i)))"
<sup>k</sup>R (S x i * S y (Suc n - i)))
i) *_{R} (S x i * S y (Suc n - i)))"
i * <mark>S y</mark> (Suc n - i)))
i) *<sub>R</sub> (S x i * S y (Suc n - i)))

{R (S x i * S y (Suc n - i)))"

add_left of_nat_add)
Suc n. S x i * S y (Suc n - i))"
(i≤Suc n. S x i * S y (Suc n - i))
```

Painful, yet the steps of that proof are routine!

- the distributive law (x + y)z = xz + yz
- the distributive law $x \sum_{i \le n} a_n = \sum_{i \le n} x a_n$
- the distributive law $\sum_{i \le n} (a_n + b_n) = \sum_{i \le n} a_n + \sum_{i \le n} b_n$
- Shifting the index of summation and deleting a zero term
 - Change-of-variables is also common in such proofs
- Can't at least some of these steps be learned from similar previous proofs?

Isabelle timeline (36 years!)

1986: higher-order unification 1988: classical reasoning 1989: logical framework 1989: term rewriting simplifier 1991: polymorphism and HOL 1995: set theory libraries 1996: verification case studies 1997: axiomatic type classes 1998: classical reasoner "blast" 1999: modules for structured specifications, "locales"

2002: structured proofs: Isar

2004: Archive of Formal Proofs

2007: sledgehammer

2008: multithreading

2011: counterexample finding (nitpick and quickcheck)

2013: code generation

2015: jEdit-based prover IDE

2016: HOL Light analysis library

2017+: advanced mathematics

