
Mathematical Theorem Proving and its Applications, 25/4/2022

Automated Theorem Proving:  
a Technology Roadmap
Lawrence C Paulson FRS

Supported by the ERC Advanced Grant ALEXANDRIA (Project GA 742178). 



1. Proof Assistants



Mechanising a formal logic

✤ Syntax: a precise specification of the formalism’s grammar

✤ Semantics: the mathematical meaning of logical terms and formulas

✤ Proof theory: a precise calculus for deriving or verifying true formulas

✤ Automation: algorithms and data structures to verify formulas efficiently



A variety of verification technologies

SAT solving (originated in the 1960s, revived 
in the 1990s) for Boolean logic SMT solving: extending SAT with 

arithmetic, arrays, quantifiers and more

BDDs: a powerful data structure 
for large Boolean problems

Resolution, for first-order logic (quantifiers): 
logical reasoning + rewriting

each of these can handle large 
problems and is fully automatic



So why interactive theorem proving?

✤ No automatic method can prove even quite simple statements

✤ there are infinitely many prime numbers;  is irrational

✤ Only higher-order formalisms are expressive enough

✤ Real-world projects require large hierarchies of specifications

“interactive theorem provers” should be called specification editors

2



Why do interactive provers need automation?

✤ Even the simplest facts are extremely tedious to prove in a basic calculus

✤ Lengthy calculations drawing on thousands of facts

✤ Almost unlimited computer power could reduce the burden on users

✤ finding new proofs (by classical theorem proving)

✤ identifying similar proofs in existing libraries (by machine learning)



Interactive theorem provers today

✤ Simple types (higher-order logic): 
Isabelle/HOL, HOL4, HOL Light

✤ a simpler but weaker formal 
calculus

✤ straightforward automation

✤ can express sophisticated 
constructions

✤ Dependent types: Lean, Coq, Agda

✤ formally stronger and more 
expressive calculi

✤ constructive proof

✤ popular with mathematicians 
and theoreticians



The LCF  Architecture

✤ A small kernel implements the logic and has the sole power to generate 
theorems (Milner, 1979)

✤ … safety ensured by the programming language’s abstract data types.

✤ All specification methods and proof procedures expand to full proofs.

✤ Unsoundness is less likely, but the implementation is more complicated.

✤ Adopted by HOL, Isabelle, Coq, Lean… but not PVS, ACL2



Common features in all proof assistants

✤ A language for declaring types & 
definitions, stating theorems

✤ Recursive functions and types

✤ A system of proof tactics

✤ A dependency graph for theories

✤ A modern user interface 
supporting subgoal-oriented proof

✤ Automation: rewriting, arithmetic 
and specialist proof procedures

✤ Code extraction / generation

✤ Extensive libraries of basic maths



2. Isabelle/HOL



Some distinctive features of Isabelle/HOL

✤ Classical proof search using forward/backward chaining

✤ Quickcheck and nitpick: powerful counterexample detection

✤ Sledgehammer: a link to external provers

✤ Isar, a readable language for structured proofs

✤ Extensive exploitation of parallelism



Higher-order logic 

✤ First-order logic extended with polymorphic types, functions and sets

✤ A type of truth values, with no distinction between terms and formulas

✤ Expressive enough to formalise sophisticated mathematical definitions

✤ Easy to understand and implement

“HOL = functional programming + logic”



Classical proof search (auto, force, blast …)

forward or backward chaining using 
hundreds of built-in facts about logic, 
sets, simple maths and data structures 

easily augmented by the user to 
support their own development

both automatic and 
interactive modes

(∃y∀x . Pxy ⟷ Pxx) → ¬∀x∃y∀z . Pzy ⟷ ¬Pzx

( ⋃
i∈I

Ai ∪ Bi ) = ( ⋃
i∈I

Ai ) ∪ ( ⋃
i∈I

Bi )

This was the key to all the work 
verifying cryptographic protocols 



Quickcheck and nitpick

Because many theorems are stated incorrectly 

✤ Quickcheck detects false statements by evaluation with appropriate test data 
and also by symbolic evaluation [it excels at inductive datatypes]

✤ Nitpick detects false statements using sophisticated translations into first-
order relational logic, using the SAT-based Kodkod model finder

✤ inductive/coinductive predicates and other advanced constructions are 
permitted



Sledgehammer

✤ Calls several external provers to work on the current goal

✤ … but does not trust their proofs!

✤ Zero configuration and 1-click invocation

✤ Access to the whole lemma library, able to dig up the most obscure facts

✤ Particularly powerful in conjunction with structured proofs



3. Structured Proofs 



Tactic proofs: fit only for machines

let	MVT	=	prove(	
		`!f	a	b.	a	<	b	/\	
											(!x.	a	<=	x	/\	x	<=	b	==>	f	contl	x)	/\	
											(!x.	a	<	x	/\	x	<	b	==>	f	differentiable	x)	
								==>	?l	z.	a	<	z	/\	z	<	b	/\	(f	diffl	l)(z)	/\	
												(f(b)	-	f(a)	=	(b	-	a)	*	l)`,	
		REPEAT	GEN_TAC	THEN	STRIP_TAC	THEN	
		MP_TAC(SPECL	[`\x.	f(x)	-	(((f(b)	-	f(a))	/	(b	-	a))	*	x)`;	
																`a:real`;	`b:real`]	ROLLE)	THEN	
		W(C	SUBGOAL_THEN	(fun	t	->REWRITE_TAC[t])	o	
		funpow	2	(fst	o	dest_imp)	o	snd)	THENL	
			[ASM_REWRITE_TAC[MVT_LEMMA]	THEN	BETA_TAC	THEN	
				CONJ_TAC	THEN	X_GEN_TAC	`x:real`	THENL	
					[DISCH_TAC	THEN	CONV_TAC(ONCE_DEPTH_CONV	HABS_CONV)	THEN	
						MATCH_MP_TAC	CONT_SUB	THEN	CONJ_TAC	THENL	
							[CONV_TAC(ONCE_DEPTH_CONV	ETA_CONV)	THEN	
								FIRST_ASSUM	MATCH_MP_TAC	THEN	ASM_REWRITE_TAC[];	
								CONV_TAC(ONCE_DEPTH_CONV	HABS_CONV)	THEN	MATCH_MP_TAC	CONT_MUL	THEN	
								REWRITE_TAC[CONT_CONST]	THEN	MATCH_MP_TAC	DIFF_CONT	THEN	
								EXISTS_TAC	`&1`	THEN	MATCH_ACCEPT_TAC	DIFF_X];	
						DISCH_THEN(fun	th	->	FIRST_ASSUM(MP_TAC	o	C	MATCH_MP	th))	THEN	
						REWRITE_TAC[differentiable]	THEN	DISCH_THEN(X_CHOOSE_TAC	`l:real`)	THEN	
						EXISTS_TAC	`l	-	((f(b)	-	f(a))	/	(b	-	a))`	THEN	
						CONV_TAC(ONCE_DEPTH_CONV	HABS_CONV)	THEN	MATCH_MP_TAC	DIFF_SUB	THEN	
						CONJ_TAC	THENL	
							[CONV_TAC(ONCE_DEPTH_CONV	ETA_CONV)	THEN	FIRST_ASSUM	ACCEPT_TAC;	
								CONV_TAC(ONCE_DEPTH_CONV	HABS_CONV)	THEN	REWRITE_TAC[]	THEN	
								GEN_REWRITE_TAC	LAND_CONV	[GSYM	REAL_MUL_RID]	THEN	
								MATCH_MP_TAC	DIFF_CMUL	THEN	MATCH_ACCEPT_TAC	DIFF_X]];	
				ALL_TAC]	THEN	

		REWRITE_TAC[CONJ_ASSOC]	THEN	DISCH_THEN(X_CHOOSE_THEN	`z:real`	MP_TAC)	THEN	
		DISCH_THEN(CONJUNCTS_THEN2	ASSUME_TAC	MP_TAC)	THEN	
		DISCH_THEN((then_)	(MAP_EVERY	EXISTS_TAC	
			[`((f(b)	-	f(a))	/	(b	-	a))`;	`z:real`])	o	MP_TAC)	THEN	
		ASM_REWRITE_TAC[]	THEN	DISCH_THEN((then_)	CONJ_TAC	o	MP_TAC)	THENL	
			[ALL_TAC;	DISCH_THEN(K	ALL_TAC)	THEN	CONV_TAC	SYM_CONV	THEN	
				MATCH_MP_TAC	REAL_DIV_LMUL	THEN	REWRITE_TAC[REAL_SUB_0]	THEN	
				DISCH_THEN	SUBST_ALL_TAC	THEN	UNDISCH_TAC	`a	<	a`	THEN	
				REWRITE_TAC[REAL_LT_REFL]]	THEN	
		SUBGOAL_THEN	`((\x.	((f(b)	-	f(a))	/	(b	-	a))	*	x	)	diffl	
																						((f(b)	-	f(a))	/	(b	-	a)))(z)`	
		(fun	th	->	DISCH_THEN(MP_TAC	o	C	CONJ	th))	THENL	
			[CONV_TAC(ONCE_DEPTH_CONV	HABS_CONV)	THEN	REWRITE_TAC[]	THEN	
				GEN_REWRITE_TAC	LAND_CONV	[GSYM	REAL_MUL_RID]	THEN	
				MATCH_MP_TAC	DIFF_CMUL	THEN	REWRITE_TAC[DIFF_X];	ALL_TAC]	THEN	
		DISCH_THEN(MP_TAC	o	MATCH_MP	DIFF_ADD)	THEN	BETA_TAC	THEN	
		REWRITE_TAC[REAL_SUB_ADD]	THEN	CONV_TAC(ONCE_DEPTH_CONV	ETA_CONV)	THEN	
		REWRITE_TAC[REAL_ADD_LID]);;	

let	MVT_LEMMA	=	prove(	
		`!(f:real->real)	a	b.	
								(\x.	f(x)	-	(((f(b)	-	f(a))	/	(b	-	a))	*	x))(a)	=	
								(\x.	f(x)	-	(((f(b)	-	f(a))	/	(b	-	a))	*	x))(b)`,	
		REPEAT	GEN_TAC	THEN	BETA_TAC	THEN	
		ASM_CASES_TAC	`b:real	=	a`	THEN	ASM_REWRITE_TAC[]	THEN	
		ONCE_REWRITE_TAC[REAL_MUL_SYM]	THEN	
		RULE_ASSUM_TAC(ONCE_REWRITE_RULE[GSYM	REAL_SUB_0])	THEN	
		MP_TAC(GENL	[`x:real`;	`y:real`]	
			(SPECL	[`x:real`;	`y:real`;	`b	-	a`]	REAL_EQ_RMUL))	THEN	
		ASM_REWRITE_TAC[]	THEN	
		DISCH_THEN(fun	th	->	GEN_REWRITE_TAC	I	[GSYM	th])	THEN	
		REWRITE_TAC[REAL_SUB_RDISTRIB;	GSYM	REAL_MUL_ASSOC]	THEN	
		FIRST_ASSUM(fun	th	->	REWRITE_TAC[MATCH_MP	REAL_DIV_RMUL	th])	THEN	
		GEN_REWRITE_TAC	(RAND_CONV	o	RAND_CONV)	[REAL_MUL_SYM]	THEN	
		GEN_REWRITE_TAC	(LAND_CONV	o	RAND_CONV)	[REAL_MUL_SYM]	THEN	
		REWRITE_TAC[real_sub;	REAL_LDISTRIB;	REAL_RDISTRIB]	THEN	
		REWRITE_TAC[GSYM	REAL_NEG_LMUL;	GSYM	REAL_NEG_RMUL;	
														REAL_NEG_ADD;	REAL_NEG_NEG]	THEN	
		REWRITE_TAC[GSYM	REAL_ADD_ASSOC]	THEN	
		REWRITE_TAC[AC	REAL_ADD_AC	
				`w	+	x	+	y	+	z	=	(y	+	w)	+	(x	+	z)`;	REAL_ADD_LINV;	REAL_ADD_LID]	THEN	
		REWRITE_TAC[REAL_ADD_RID]);;	

Mean value theorem 



The same, as a structured proof



Structured proofs are necessary!

✤ Because formal proofs should make sense to users

… reducing the need to trust our verification tools

✤ For reuse and eventual translation to other systems

✤ For maintenance (easily fix proofs that break due to changes to 
definitions… or automation)

With some other systems,  
users avoid automation for that reason! 



Structured proofs  
assist machine learning!

✤ Working locally within a large proof

✤ Looking for just the next step (not the whole proof)

✤ Proof by analogy

✤ Identifying idioms



For Isabelle, we’ve lots of data

✤ About 230K proof lines in Isabelle’s maths libraries: 
Analysis, Complex Analysis, Number Theory, Algebra

✤ Nearly 3.4M proof lines nearly 700 entries in the Archive 
of Formal Proofs (not all mathematics though)

✤ Over 400 different authors: diverse styles and topics



Lots of structured “chunks”

✤ Structured proof fragments contain explicit assertions 
and context elements that could drive learning

✤ These might relate to natural mathematical steps

✤ Proving a function to be continuous 

✤ Getting a ball around a point within an open set

✤ Covering a compact set with finitely many balls



It is essential to synthesise terms and formulas

Even tactics take arguments

Structured proofs mostly consist of explicit formulas



4. A Few Proof Idioms for ML



Inequality chains

typically by the triangle inequality

with simple algebraic manipulations

there are hundreds of examples



Simple topological steps

a neighbourhood around a point within an open set

many similar but not identical instances



Summations



Painful, yet the steps of that proof are routine!

the distributive law (x + y)z = xz + yz

the distributive law x∑i≤n an = ∑i≤n xan

the distributive law ∑i≤n (an + bn) = ∑i≤n an + ∑i≤n bn

Shifting the index of summation and deleting a zero term

Can’t at least some of these steps be 
learned from similar previous proofs?

Change-of-variables is also common in such proofs



Isabelle timeline (36 years!)

1986: higher-order unification

1989: logical framework
1988: classical reasoning

1989: term rewriting simplifier
1991: polymorphism and HOL

1995: set theory libraries

1997: axiomatic type classes
1998: classical reasoner “blast”

2007: sledgehammer

2011: counterexample finding 
(nitpick and quickcheck)

2013: code generation 

2002: structured proofs: Isar

1999: modules for structured 
specifications, “locales”

2008: multithreading

2015: jEdit-based prover IDE 

2004: Archive of Formal Proofs

2016: HOL Light analysis library 
2017+: advanced mathematics 

1996: verification case studies


