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“No matter how much wishful thinking we do, the theory of 
types is here to stay. There is no other way to make sense of 
the foundations of mathematics. Russell (with the help of 
Ramsey) had the right idea, and Curry and Quine are very 
lucky that their unmotivated formalistic systems are not 
inconsistent.” 

–Dana Scott (1969)



But what is the theory of types?



Ramified type theory (1908)

✤ introduced by Bertrand Russell to prevent paradoxes

✤ ramified type levels to prohibit “vicious circles”, i.e. 
impredicativity

✤ no syntax for types

✤ “classes” (sets) did the heavy lifting of specifications

Types were invisible and second class!



Simple type theory (1920s)

✤ Chwistek and Ramsey, though Russell also criticised 
ramified types

✤ the canonical formal system is by Church (1940)

✤ types ι (individuals), ο (Booleans) and functions

✤ sets and specifications (e.g. ℕ) coded as predicates

✤ self-contained: inductive sets, recursive functions and 
much else are definable



Dependent type theories

✤ AUTOMATH (de Bruijn, 1967)

✤ Martin-Löf’s intuitionistic type theories (1973 onward)

✤ calculus of constructions (Coquand & Huet, 1985) 

✤ … and inductive constructions (Paulin-Mohring, 1988)

✤ homotopy type theory (Awodey, Voevodsky, 2007)



From Intuitionism to  
Constructive Type Theory



A non-constructive proof

Theorem. There exist irrational numbers  and  such that  is rational.

Proof. Let . Now if  is rational then . 
Otherwise,  is irrational and the conclusion holds with , 

because .
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This proof is classically regarded as valid.

It doesn’t reveal the value of .x

It uses the excluded middle: “  is rational or irrational” z



Why reject ? A ∨ ¬A

Mathematics is a production of the human mind — Heyting

Mathematics describes a non-sensual reality, which exists 
independently …  of the human mind and is only perceived… 
by the human mind — Gödel

For intuitionists like Heyting,  is an assumption that 
mathematical objects really exist. (And they do, says Gödel)

A ∨ ¬A



Heyting’s interpretation of the 
logical connectives

✤ A proof of  is a proof of  or , with a label

✤ A proof of  is a pair: proofs of both  and 

✤ A proof of  is a pair, some  with a 
proof of , so we have the witnessing value

✤ A proof of  is a map: proofs of  to proofs of 

✤ A proof of  maps  to a proof  

A ∨ B A B

A ∧ B A B

(∃x : A) B(x) a : A
B(a)

A → B A B

(∀x : A) B(x) a : A B(a)



And thus Martin-Löf’s type theory

a : A
i(a) : A + B

b : B
j(b) : A + B

c : A + B
(x : A)

d(x) : C(i(x))
(y : B)

e(y) : C(j(y))
case(c, d, e) : C(c)

Sum of two types, analogous to the disjunction A ∨ B



Type theory: all in oneΣ, × , ∃, ∧

a : A b(a) : B(a)
⟨a, b⟩ : (Σx : A)B(x)

c : (Σx : A)B(x)
(x : A, y : B(x))
d(x) : C(⟨x, y⟩)

split(c, d) : C(c)

Sum of a family of types, analogous to (∃x : A) B(x)

But by “propositions as types”, also the conjunction A ∧ B



The attractions of M-L type theory

✤ A clear and elegant formalisation of constructive logic

✤ A computational treatment of propositions as types

✤ Synthesis ideas via “proofs as programs” 

✤ A minimum of primitive notions

✤ Highly expressive types



Issues with Dependent Types



The saga of the axiom of choice

✤ Introduced by Zermelo in 1904 for his wellordering theorem

✤ Used extensively in algebra, analysis, topology, …

✤ Endorsed by intuitionists Bishop and Dummett:  
“A choice function exists in constructive mathematics, 
because a choice is implied by the very meaning of existence”

✤ Actually provable* in Martin-Löf type theory 



Objections to the axiom of choice

Well-ordering of the reals; Banach-Tarski paradox

✤ Most intuitionists immediately rejected AC

✤ … even if their work needed it (Baire, Borel, Lebesgue)

✤ Diaconescu (1975) proved that, in topos theory, AC 
implies the law of excluded middle 

✤ … resolving this conflict seems to require abandoning 
both function extensionality and “propositions as types”.



Irrelevance of proofs

 has type ln x (Σx : real) (x > 0) → real

Its argument is a pair  where  is a real,  a proof of .⟨x, p⟩ x p x > 0
But does the logarithm of  actually depend on ?x p

Type theories—including impredicative ones like Coq’s
—typically include a separate logical layer where proofs 

are irrelevant (and propositions are not types).



Equality issues in type theory

✤ Definitional equality vs propositional equality:  
but not ; we have the weaker 

✤ the functions  and  are not equal

✤ If  and , do we have ? 

✤ Martin-Löf (1982) type theory had stronger equality 
laws, but these had harmful consequences (Church’s 
thesis failed; type checking was undecidable)

0 + n = n
n + 0 = n IdN(n + 0, n)

λn : N . 0 + n λn : N . n

f : A → B x =A y f(x) =B f(y)



Dependent type theories today

✤ Increasingly assuming the excluded middle (it’s 
necessary for mainstream mathematics)

✤ Distinguishing propositions from types

✤ Using dependent types to express rich mathematical 
structures while avoiding them when possible

✤ Hugely successful, with ambitious projects being 
tackled using the Lean proof assistant



Working in Simple Type Theory



Defining an n-element vector

Sets, as envisaged by all 
early logicians. Or lists.

Separate types word4, word8, 
etc., as in early HOL

Vectors over finite types (John Harrison, 2005)

Axiomatic type classes, 
as in Isabelle/HOL



Type class polymorphism!

axiomatically define groups, 
rings, topological spaces, metric 

spaces and other type classes
prove that a type is in some 

class, inheriting its properties

… supporting uniform 
mathematical notation 

Eliminating the need to copy/paste 
material for related structures, and



class	"open"	=	
		fixes	"open"	::	"'a	set	⇒	bool"	

class	topological_space	=	"open"	+	
		assumes	open_UNIV:	"open	UNIV"	
		assumes	open_Int:			"open	S	⟹	open	T	⟹	open	(S	∩	T)"	
		assumes	open_Union:	"∀S∈𝒦.	open	S	⟹	open	(⋃𝒦)"	
begin	

definition	closed	where	"closed	S	⟷	open	(-	S)"	

lemma	open_empty:	"open	{}"	
		using	open_Union	[of	"{}"]	by	simp	

lemma	open_Un:	"open	S	⟹	open	T	⟹	open	(S	∪	T)"	
		using	open_Union	[of	"{S,	T}"]	by	simp	

lemma	open_Diff:	"open	S	⟹	closed	T	⟹	open	(S	-	T)"	
		by	(simp	add:	closed_open	Diff_eq	open_Int)	

end

syntactic type class 
for overloading

The type class of topological spaces

the axioms

some results



class	t0_space	=	topological_space	+	
		assumes	t0_space:		
				"x	≠	y	⟹	∃U.	open	U	∧	¬	(x∈U	⟷	y∈U)”	

class	t1_space	=	topological_space	+	
		assumes	t1_space:		
				"x	≠	y	⟹	∃U.	open	U	∧	x∈U	∧	y	∉	U”	

class	t2_space	=	topological_space	+	
		assumes	hausdorff:		
				"x≠y	⟹	∃U	V.	open	U	∧	open	V	∧	x∈U	∧	y∈V	∧	U	∩	V	=	{}"

More type classes; more axioms 



instance	t1_space	⊆	t0_space	

instance	t2_space	⊆	t1_space	

instance	metric_space	⊆	t2_space	

instance	real_normed_vector	⊆	metric_space

Proving type class inclusions

giving us inheritance



instantiation	real	::	real_normed_field	

instantiation	complex	::	real_normed_field	

instantiation	prod	::	(topological_space,topological_space)	topological_space	

instantiation	fun	::	(type,topological_space)	topological_space	

conveying properties to types

✤ Each type inherits a corpus of material about 
continuity, limits, derivatives, etc

✤ … great when defining new types, e.g. quaternions 
and formal power series and constructions over them



Limitations of type classes

✤ Type classes only work if the carrier is the entire type. 

✤ No abstraction over types; no induction on dimension

✤ They are really for fixed types like int, real, complex…

✤ Many constructions really need parameters



Defining abstract topologies

definition	istopology	::	"('a	set	⇒	bool)	⇒	bool"	where	
		"istopology	L	≡	(∀S	T.	L	S	⟶	L	T	⟶	L	(S∩T))	∧		
																		(∀𝒦.	(∀S∈𝒦.	L	S)	⟶	L	(⋃𝒦))”	

typedef	'a	topology	=	"{L::('a	set)	⇒	bool.	istopology	L}"	
		morphisms	"openin"	"topology"	

now topologies are values



Reasoning with topologies

proposition	
				"openin	U	{}"	
				"⋀S	T.	openin	U	S	⟹	openin	U	T	⟹	openin	U	(S∩T)"	
				"⋀𝒦.	(∀S∈𝒦.	openin	U	S)	⟹	openin	U	(⋃𝒦)”	

definition	discrete_topology	
		where	"discrete_topology	T	≡	topology	(λS.	S	⊆	T)”	

abbreviation	euclidean	::	"'a::topological_space	topology"	
		where	"euclidean	≡	topology	open"

now they can take parameters

and can be related 
to the type class



Specifications given by predicates 
(possibly encapsulated in new types) are 

more general than type classes.

But we risk having 
duplicate developments.

Hierarchies of concepts defined by 
predicates––even with multiple inheritance––

can be managed through the mechanism of 
locales.



Advantages of simple type theory

✤ Simple syntax, semantics, proof system and therefore 
implementations (less so with type classes)

✤ Fewer “surprises” with argument synthesis

✤ Equality works (no “setoid hell” as in Coq)

✤ Highly expressive for formalising mathematics



… And the main drawbacks

It’s formally much weaker than CIC, 
which is equivalent in strength to ZFC + 

inaccessible cardinals.
Though ZFC can be 

assumed if necessary.The techniques for defining mathematical 
structures need further development.

How do we balance type classes 
versus predicates/locales?



“The intuitionistic mathematician . . . uses 
language, both natural and formalised, only for 
communicating thoughts, i.e., to get others or 
himself to follow his own mathematical ideas. Such 
a linguistic accompaniment is not a representation 
of mathematics; still less is it mathematics itself.” 

– Arend Heyting (1944)


