
1

A computer-checked proof of the Four Colour Theorem

Georges Gonthier
Microsoft Research Cambridge

This report gives an account of a successful formalization of the proof of the Four
Colour Theorem, which was fully checked by the Coq v7.3.1 proof assistant [13].
This proof is largely based on the mixed mathematics/computer proof [26] of
Robertson et al, but contains original contributions as well. This document is
organized as follows: section 1 gives a historical introduction to the problem and
positions our work in this setting; section 2 defines more precisely what was proved;
section 3 explains the broad outline of the proof; section 4 explains how we exploited
the features of the Coq assistant to conduct the proof, and gives a brief description of
the tactic shell that we used to write our proof scripts; section 5 is a detailed account
of the formal proof (for even more details the actual scripts can be consulted); section
6 is a chronological account of how the formal proof was developed; finally, we draw
some general conclusions in section 7.

1 The story

The Four Colour Theorem is famous for being the first long-standing mathematical
problem to be resolved using a computer program. The theorem was first conjectured
in 1852 by Francis Guthrie, and after over a century of work by many famous
mathematicians [36,28] (including De Morgan, Peirce, Hamilton, Cayley, Birkhoff,
and Lebesgue), and many incorrect “proofs”, it was finally proved by Appel and
Haken in 1976 [3]. This proof broke new ground because it involved using computer
programs to carry out a gigantic case analysis, which could not, in any real sense, be
performed by hand: it covered, quite literally, a billion cases.

The Appel and Haken proof attracted a fair amount of criticism. Part of it concerned
the proof style: the statement of the Four Colour Theorem is simple and elegant so
many mathematicians expected a simple and elegant proof that would explain, at least
informally, why the theorem was true — not opaque IBM 370 assembly language
programs [5]. Another part, however, was more rational skepticism: computer
programming is known to be error-prone, and difficult to relate precisely to the formal
statement of a mathematical theorem. The fact that the proof also involved an initial
manual case analysis [4] that was large (10,000 cases), difficult to verify, and in
which several small errors were detected, also contributed to the uncertainty.

In 1995, Robertson, Sanders, Seymour, and Thomas published a more streamlined
proof of the theorem [26], using an argument quite similar to the one used by Appel
and Haken, but employing C programs to check both the giant and the large case
analyses. This second proof, along with the edition of a definitive monograph for the
original proof [6], cleared up most doubts concerning the truth of the theorem.
Futhermore, Robertson et al. used the larger computational resources available to
them to search for and find a significantly (four times) smaller set of cases for the
second analysis, by systematically exploring variants in the initial case analysis.

2

Our work can be seen as an ultimate step in this clarification effort, completely
removing the two weakest links of the proof: the manual verification of combinatorial
arguments, and the manual verification that custom computer programs correctly fill
in parts of those arguments. To achieve this, we have written a formal proof script
that covers both the mathematical and computational parts of the proof. We have run
this script through the Coq proof checking system [13,9], which mechanically verified
its correctness in all respects. Hence, even though the correctness of our proof still
depends on the correct operation of several computer hardware and software
components (the processor, its operating system, the Coq proof checker, and the
Ocaml compiler that compiled it), none of these components are specific to the proof
of the Four Colour Theorem. All of them come off-the-shelf, fulfill a more general
purpose, and can be (and are) tested extensively on numerous other jobs, probably
much more than the mind of an individual mathematician reviewing a proof
manuscript could ever be. In addition, the most specific component we use — the Coq
system, to which the script is tuned — can output a proof witness, i.e., a longhand
detailed description of the chain of formal logical steps that was used in the proof.
This witness can, in principle, be checked independently (technically, it is a term in a
higher-order lambda calculus). Because this witness records only logical steps, and
not computation steps, its size remains reasonable, despite the large amount of
computation needed for actually checking the proof.

Although this work is purportedly about using computer programming to help doing
mathematics, we expect that most of its fallout will be in the reverse direction —
using mathematics to help programming computers. The approach that proved
successful for this proof was to turn almost every mathematical concept into a data
structure or a program, thereby converting the entire enterprise into one of program
verification. Most of our work consisted in experimenting with and developing proof
techniques for dealing with such “higher-level” programs, leading to a proof style that
departs significantly from common practice in machine-assisted theorem proving. For
instance, we have almost no use for decision procedures or complex proof tactics, and
insert relatively few explicit intermediate statements. In fact, many of our proofs look
more like debugger or testing scripts than mathematical arguments. We believe that
the fact that the “highbrow” mathematics involved in the Four Colour Theorem can be
dealt with effectively in this fashion indicates that there is considerable scope for
using more effectively mathematical abstraction in software engineering.

2 The statement of the theorem

Part of the attractiveness of the Four Colour Theorem is its nutshell-sized statement:

Four Colour Theorem: Any planar map can be coloured with only four colours.

Of course, this is somewhat of a cheat, and we should be more explicit about what we
mean by “coloured map”:

Four Colour Theorem: The regions of any simple planar map can be
coloured with only four colours, in such a way that any two adjacent regions
have different colours.

3

This still leaves the terms simple planar map, region, and adjacent open; in formal
mathematics, even such intuitive graphical notions must be precisely defined. It is
posible to give a quite general definition, using some basic notions in abstract
topology:

Definition: A planar map is a set of pairwise disjoint subsets of the plane,
called regions. A simple map is one whose regions are connected open sets.
Definition: Two regions of a map are adjacent if their respective closures
have a common point that is not a corner of the map.
Definition: A point is a corner of a map iff it belongs to the closures of at
least three regions.

Without the restriction to simple maps in the first definition we would have the
Empire Colouring Problem, where regions can consist of two or more separate pieces;
such disjointed maps can require more than four colours (up to 6r+1, to be exact,
when regions are allowed to have up to r disjoint open parts each).

The second definition is just a formal way of saying that regions are adjacent when
they “touch” at points other than corners. For example, consider a map consisting of
four regions a, b, c, d that are the interior of the four squares below

Then the closure of a is the union of a with its framing square, similarly for b, c, and
d. The closures of a and b have a common point P that is not in the closure of c or d,
so a and b are adjacent. On the other hand, a and d are not adjacent, since the only
common point of their respective closures is Q, and Q also belongs to the closures of
b and d. Note again that without this restriction more than four colours could be
needed, e.g., if a, b, c, and d were all mutually adjacent, the the map obtained by
adding the outside of the large square would require five colours. Note also that
“corners” are not necessarily isolated points: replace the horizontal line segments in
the map above with two arcs of the curve y = sin 1/x, and there’s an entire line
segment [Q1Q2] of “corners” all touching each of a, b, c, and d.

The other notions we used in the above – open sets, connected sets, closures – are all
standard basic undergraduate material. Fully formalizing these notions along with the
definitions above takes up about 30 lines of our formal proof, in the file realmap.v.
But, precisely because this is a formal proof, these few lines, along with the formal
definition of the real numbers in file real.v (about 200 lines in total) are all that one
needs to read and understand in order to ascertain that the statement below in file
fourcolor.v is indeed a proof of the Four Colour Theorem:

d

Q1

Q2 c

a b

a b

c d
Q

P

4

Variable R : real_model.
Theorem four_color : (m : (map R))
 (simple_map m) -> (map_colorable (4) m).
Proof.
Exact (compactness_extension four_color_finite).
Qed.

The other 60,000 or so lines of the proof can be read for insight or even entertainment,
but need not be reviewed for correctness. That is the job of the the Coq proof
assistant, a job for computers.

The definition we use for the real numbers is both axiomatic and constructive,
following the approach used in the C-Corn library for intuitionistic real numbers [17].
We define a real_model as a type of objects with operations that satisfy a fairly
standard set of axioms1 for the real numbers and prove the Four Colour Theorem for
an abitrary real_model. However, we also provide an explicit construction of a
model (file dedekind.v) and a proof that this model is unique up to isomorphism (file
realcategorical.v). Thus, it is not necessary to read through the somewhat
involved Dedekind cut construction of the real model to ascertain that the R in the
statement of four_color indeed stands for the usual real numbers. Nevertheless, the
existence of the construction ensures that the real axioms we use are consistent with
the Coq type theory2 [13,2,35,8,24].

Although the statement of the Four Colour Theorem uses notions from Analysis, the
Four Colour Theorem is essentially a result in Combinatorics: the essence of the
theorem is a statement of properties of certain finite arrangements of finite objects.
Indeed, most mathematical papers on the subject pay only lip service to the
continuous statement and quickly (and informally) rephrase the problem in graph
theory: colouring a map is trivially equivalent to colouring the graph obtained by
taking the regions of the map as nodes, and linking every pair of adjacent regions.

In principle, it is even possible to completely forget that regions are sets of points in
the graph problem, but this is never done in practice, because the purely graph
theoretic characterizations of graphs generated by planar maps, such as the
Kuratowski minor exclusion [23] or the Hopcroft-Tarjan planarity test [20], are not
intuitively compelling and are difficult to use in proofs. Instead, the planarity of a
graph is characterized by means of a planar embedding that maps nodes to points and
edges to pairwise disjoint continuous arcs (the justification for this mapping is often
informal). It is then possible to apply the

Jordan Curve Theorem: The complement of any Jordan (i.e., closed
continuous) curve is the disjoint union of two components, each of whose
frontier is the whole curve.

1 There are a few twists due to the fact that Coq is based on intuitionistic type theory rather than
classical set theory. The main consequence is that we have to state all the arithmetic axioms, such as

the commutativity of +, using the extensional equality of the structure (defined by x=y ���≤y � x ≥ y),
rather than Coq’s primitive intensional equality; we would need additional extensionality axioms to
construct the quotient type in Coq. Also, we had to pick a form of the supremum axioms that implies

the excluded middle ������¬ P
2 The axiomatization of the reals in the Coq standard library includes a ceiling function that maps the
reals to the inductive integers, and whose consistency with the impredicative type theory of Coq v7 is
questionable. Our construction relies only on an excluded middle assumption, whose consistency has
been well studied.

5

to make use of the planarity asssumption, as every cycle in the graph is mapped to a
Jordan curve by the embedding. However, this approach results in proofs that, while
convincing for humans, are difficult to formalize because they contain an informal
mix of combinatorics and topology.

We therefore decided to use a different kind of combinatorial structure, known as
hypermaps[15,31,32,16], to carry out the combinatorial core of the proof (hypermaps
will be described in detail in section 5.1). This design decision had several
advantages:

• We could formulate a self-contained combinatorial theorem, and prove it
under weaker logical assumptions (using only intuitionistic logic).

• The use of Analysis was circumscribed to the discretization of the problem,
and even this could be carried out directly by elementary methods, without
appealing to the Jordan Curve Theorem (in fact, the discretization does not
follow from that Theorem, so it is somewhat off topic).

The second point is important because the Jordan Curve Theorem is a rather difficult
result3, whose known proofs rely heavily on either complex analysis and/or
homology. The approach we have outlined above allows us to avoid the Jordan Curve
Theorem, although we do use a combinatorial analog (see Section 5.1).

3 A historical overview of the proof

Aside from the hypermap formulation and the preliminary discretization lemma, our
proof follows very closely the 1994 proof by Robertson, Sanders, Seymour and
Thomas [26,27]; in turn, that proof follows the same outline as the 1976 proof by
Appel and Haken [4,5], whose general principles go back to the original (incorrect)
1879 proof by Kempe[22], with important contributions by Birkhoff[10], Heesch[18],
and many others (see [36] for a full history). In presenting the general ides of the
proof, we can only pay tribute to the ingenuity of our predecessors; our actual work
was to find a systematic way of getting the details right – all of them.

Our (combinatorial) hypermap colouring theorem can be interpreted as a special case
of the general Four Colour Theorem map colouring theorem, so we shall continue to
use the map colouring formulation here, even though most of the works we reference
use the graph formulation introduced in Section 2. We shall make the combinatorial
interpretation evident by focusing on a particular class of maps:

Definition: A polygonal outline is the pairwise disjoint union of a finite
number of open line segments, called edges, with a set of nodes that contains
the endpoints of the edges. The regions of a finite polygonal planar map,
called faces, are the connected components of the complement of a polygonal
outline.

3 The machine formalisation of the Jordan Curve Theorem was the subject of several projects; T. Hales
has just announced that he had completed the proof using HOL Light. There seemed to be little point in
trying to replicate these works.

6

Finite polygonal maps correspond quite closely to hypermaps, and indeed the
construction use to prove our discretization lemma can also be used to show that the
restriction to finite polygonal maps entails no loss of generality. On the contrary, the
definition of polygonal maps is slightly too broad. It allows isolated nodes,
disconnected outlines, and extraneous edges that are bordered by the same face on
either side, called bridges.

The discretization construction avoids such degeneracies; it generates polygonal maps
that are bridgeless and connected. These properties play an important rôle in the
combinatorial proof; indeed, the exact statement of our combinatorial theorem is

 Theorem four_color_hypermap : (g : hypermap)
 (planar_bridgeless g) -> (four_colorable g).

The faces of a finite bridgeless connected polygonal map are the interior of simple
polygons (and are thus bounded), except one, which is the exterior of a simple
polygon (and is thus unbounded). The edges and nodes of such a map are the sides
and vertices of these polygons, respectively. Thus the map is the planar projection of a
polyhedron, hence the following

Definition: A polyhedral map is a finite bridgeless connected polygonal map.

The number N of nodes, F of faces, and E of edges of a polyhedral map are related by
the well-known Euler formula

N + F – E = 2
This formula characterizes planarity. We use it to define planar hypermaps; in the
discretization construction, it is established by counting points, lines and squares on a
rectangular grid.

In the rest of this section we give an informal outline of the combinatorial proof,
transposed to polyhedral map. To avoid spurrious computational geometry
considerations, we will allow edges to be broken (as opposed to straight) line
segments; this is only apparent in the “digon” case in c) below.

The basic proof outline of the Four Colour Theorem, oddly, has not changed since the
initial, incorrect proof attempt[22] by Kempe in 1879. Kempe’s proof went as
follows:

a) It is enough to consider only cubic maps, where exactly three edges meet at
each node: just cover each node with a new polygonal face; if the resulting
cubic map can be coloured, then simply deleting the faces that were added
yields a colouring of the original map.

b) In a cubic map, we have 3N = 2E edge endpoints, so the Euler formula can be
rewritten 2E = 6F – 12. Since 2E is also the total number of sides of all faces,
this states that every face has on average almost six sides, but that globally

bridge bridge isolated
node

7

there are 12 missing sides (this is why it takes 12 pentagons, along with the
hexagons, to stitch a football together).

c) Consider a minimal cubic counter example to the Four Colour Theorem:
assuming there are polyhedral maps that require at least five colours, pick a
cubic one with the smallest number of faces.

d) By b) this minimal counter example map must have a face with five sides or
less, so the neighborhood around that face must look like one of these

If we erase one or two well chosen sides of the central face, we get a smaller
cubic polyhedral map, which must therefore be four colourable. (For the
square and pentagon, we erase two sides x and y, chosen so that the faces on
the other side of x and y, respectively, are neither equal nor adjacent.)

e) If the central face is not a pentagon, we can immediately find a colour for it
(recalling that for a square, we erase two opposite sides).

f) If the central face is a pentagon, we may need to modify the map colouring so
that a colour is free for the pentagon. Roughly,4 this is done by locally
interchanging two colours in any group of faces that is surrounded by the other
two colours. Such two-toned groups (called “Kempe chains”) cannot cross
each other, since the map is planar. Kempe enumerated all the possible ways
in which chains could connect the faces in the ring surrounding the central
pentagon to show that recolouring was always possible.

The error that took ten years to spot and almost a century to fix occurred in the last
step — some cases were missing in the enumeration (Kempe failed to note that
interchanging colours in one chain may scramble other chains).

The correct proof follows the same principle, but considers larger map fragments,
called configurations. A configuration consists of a connected group of (whole) faces,
called its kernel, surrounded by a ring of partial faces. The first major steps towards a
correct proof were made by Birkhoff in 1913[10]. He showed that

g) For some reducible configurations, such as the one below whose kernel is a
group of four pentagons (known as the Birkhoff diamond), the Kempe
argument f) that failed for single pentagons could be carried out soundly.

4 See section 5.2 for a precise description of the version of this operation that is used in the formal
proof.

8

h) The Kempe argument is sound for any configuration surrounded by a ring of
at most five faces—except the one containing a single pentagon. Let us say
that a ring is trivial when its interior is either empty or consists of a single
pentagon; then it follows from the above that a minimal counter example can
contain no non-trivial rings of length 5 or less: it must be internally 5-
connected. We refer to this result as the “Birkhoff lemma” in the sequel.

i) As a consequence of h), in a minimal counter example, every face is
surrounded by two concentric simple rings, i.e., its second neighborhood must
have a shape similar to

This excludes, for instance, maps where two non-consecutive neighbors of the
central face are adjacent, as in the figure below, because such maps contain a
configuration with a three-face ring (indicated by the heavy mixed dash).

We refer to this result as the “Birkhoff theorem” in the sequel.

These results suggest the following strategy for proving the Four Colour Theorem:
Find an explicit list R of configurations such that one can establish

I. reducibility: every configuration in R is reducible, using some variant of g).
II. unavoidability: every minimal counter example must contain at least one of the

configurations in R, using b), e), h), and i).
The Four Colour Theorem then follows by contradiction, since no reducible
configuration should occur in a minimal counter example.

9

Although much of the work that followed focused on finding a suitable R, for us it
was a given: we just used the list of 633 configurations devised by Robertson et
al[26].

The methods used in g), with some generalizations and minor improvements, are
sufficient for part I, reducibility. It was only in 1969, however, that a systematic
method for part II, unavoidability, was published by Heesch5[18]. The method, called
discharging, can be outlined as follows
1) Find a formula for computing the “average” arity (number of sides) of the

polygons in the second neighborhood of a face, such that the sum of these
averages over all faces is equal to 2E, the total number of sides in the graph.

2) Show that in a minimal counter example, every second neighborhood whose
average arity, computed using the formula of 1), is strictly less than 6, contains
one of the reducible configurations in R.

Unavoidability follows from 2), since by b) and 1) any cubic map must contain some
second neighborhood whose average arity is less than 6. By i) step 2) can be carried
out by enumerating the possible arities of the faces in a second neighborhood. The
average arity constraint usually provides an upper bound for this enumeration, and
this bound is quite tight, since by e) all arities are at least 5. Thus, the total size of the
enumeration is relatively small (in the 10,000 range); furthermore, the neighborhoods
produced by the enumeration will have a high density of pentagons and hexagons, and
thus stand a good chance of being reducible.

Heesch also gave a method for constructing suitable averaging formulas for step 1).
To insure that the sum-of-averages constraint in 1) is always met, the averaging
process is described in terms explicit transfers of (fractions of) arity between
neighboring faces: the average arity δ�(a) of the neighborhood a face a is computed as

δ�(a) = δ(a) + ∑b Tba – ∑b Tab

where δ(a) is the arity of a, and Tba is the fraction of arity transferred to a from one of
its neighbors b. Heesch defined the value of Tba with a set of explicit patterns, called
discharge rules. Each rule specifies that a fraction of arity should be tranferred from b
to a if their common neighborhoood fits its pattern, and Tba is the sum of all these
fractions. For instance (following Robertson et al.) we use the following rule

This transfers to a pentagon one fifth of a side from any adjacent face that has more
than five sides. Therefore, the neighborhood of any pentagon that is not adjacent to
another pentagon will have an average arity of exactly 6. Robertson et al. showed [26]
that with a handful of similar rules, this property can be extended to all pentagons and
hexagons: unless they are part of a reducible clump of pentagons and hexagons, their
average arity is exactly 6. In other terms, the “missing side” of each pentagon is
exactly borrowed from the heptagons, octagons, and polygons of higher arity in its
second neighborhood. Since each rule transfers only a fraction of a side, the second
neighborhood of, say, an octagon with an average arity of less than 6 must contain

5 Heesch had been developing and using the methods since the 1940s, however.

1/5 b a

10

many pentagons, which increases the likelyhood that it will contain a reducible
configuration.

Unlike a weighted arithmetic average, the average arity obtained by discharging might
not depend on the arities of all the faces in the neighborhood, so it may not be
possible to enumerate the arities of all the faces in a neighborhood with an average
arity less than 6. This is not a problem in practice, since the enumeration can be
stopped as soon as a reducible configuration occurs, and the set of discharge rules can
be adjusted so that this is always the case. Discharging also gives bounds on the size
of neighborhoods that need to be enumerated. The rules proposed by Robertson et al.
never transfer more than half a side between two faces, so there is no need to
enumerate the neighborhoods of dodecagons and larger polygons, since their average
arity is never less than 6.

Although Heesch had correctly devised the plan of the proof of the Four Colour
Theorem, he was unable to actually carry it out because he missed a crucial element:
computing power. The discharge rules he tried gave him a set R containing
configurations with a ring of size 18, for which checking reducibility was beyond the
reach of computers at the time. However, there was hope, since both the set of
discharge rules and the set R could be adjusted arbitrarily in order to make every step
succeed.

Appel and Haken cracked the problem in 1976 by focusing their efforts on adjusting
the discharge rules rather than extending R, using a heuristic due to Heesch for
predicting whether a configuration would be reducible (with 90% accuracy), without
performing a full check. By trial and error they arrived at a set R, containing only
configurations of ring size at most 14, for which they barely had enough computing
resources to do the reducibility computation. Indeed the discharging formula had to be
complicated in many ways in order to work around computational limits. In particular
the formula had to transfer arity between non-adjacent faces, and to accommodate this
extension unavoidability had to be checked manually. It was only with the 1994 proof
by Robertson et al. that the simple discharging formula that Heesch had sought was
found.

We took the work of Robertson et al. as our starting point, reusing their optimized
catalog of 633 reducible configurations, their cleverly crafted set of 32 discharge
rules, and their branch-and-bound enumeration of second neighborhoods[27].
However, we had to devise new algorithms and data structures for performing
reducibility checks on configurations and for matching them in second
neighborhoods, as the C integer programming coding tricks they used could not be
efficiently replicated in the context of a theorem prover, which only allows pure, side
effect free data structures (e.g., no arrays). And performance was an issue: the version
of the Coq system we used needed three days to check our proof, whereas Robertson
et al. only needed a three hours… ten years ago! (Future releases of Coq should cut
our time back to a few hours, however.)

We compensated in part this performance lag by using more sophisticated algorithms,
using multiway decision diagrams (MDDs) [1,12] for the reducibility computation,
concrete construction programs for representing configurations, and tree walks over a
circular zipper[21] to do configuration matching. This sophistication was in part

11

possible because it was backed by formal verification; we didn’t have to “dumb
down” computations or recheck their outcome to facilitate reviewing the algorithms,
as Robertson et al. did for their C programs [27].

Even with the added sophistication, the program verification part was the easiest,
most straightforward part of this project. It turned out to be much more difficult to
find effective ways of stating and proving “obvious” geometrical properties of planar
maps. The approach that succeeded was to turn as many mathematical problems as
possible into program verification problems.

4 Prover technology

The scripts of this proof were developed and checked using the Coq v7.3.1 system
[13], under the Proof General front end [7]. This combination of tools provided a very
flexible basis for trying out different approaches to the problem. In particular, as the
proof advanced, we were able to extend the Coq scripting language to directly support
the more effective approach that emerged. These extensions enabled progress and
ultimately completion of the project, but unfortunately tie down the scripts to the 7.3.1
version of Coq; the user-level syntax extension facilities of the more recent releases of
the system, although easier to use, do not support our extensions (and finishing the
proof was more of a priority than porting it).

However, the most important feature of the Coq system for this proof was its logic,
not its syntax. Specifically, the entire enterprise hinged on the fact that the Coq logical
language includes a small but practical programming language, and that the
computation of programs embedded in statements is an integral part of the Coq logic.
In the Coq logic, the two statements

P(2 + 2) and P(4)
are not just equivalent, they are identical, meaning that the two statements can be used
interchangeably at any point in a formal demonstation. As a consequence, one can use
any proof of P(4) as a proof of P(2+2) — e.g., if P(x) is defined as 4 = x, the
instance of the reflexivity of = that proves 4 = 4 also proves directly 4 = 2 + 2.

This feature is called computational reflection. From the trivial 2+2 example above
one may get the impression that computational reflection is neither sound nor useful:

A. The correctness of demonstration using computational reflection, depends on
the irks and quirks of an arcane programming language.

B. If all the feature can do is prove 2 + 2 = 4, there’s not much point to it.
Both impressions are utterly wrong. As regards impression A, correctness, the
embedded programming language has been carefully trimmed of all the traps and
trappings commonly found in general purpose programming languages, to ensure that
every expression and statement has a definite, context-independent meaning. The list
of features excluded by this principle is long: there are no side effects, since they
would make the the outcome of a computation depend on its timing; there are no
floating point or primitive integers, since their rounding/overflow behaviour is
machine dependent; consequently there are no constant-time access arrays; there are
no exceptions, virtual methods, unbounded loops, … In fact the most complex to
implement feature of the language is the ability to call functions with arguments.
Since definitions with parameters are the main building block for mathematical
theories, and thus any pratical formal proof system must include support for replacing

12

parameters with values, admitting computational reflection requires no great leap of
faith. On the contrary, the theory of pure functions with arguments, called the λ-
calculus, has been studied for over 75 years. The logical metatheory of Coq, which
was established almost 20 years ago, is in fact directly based on the λ-calculus: in
Coq, the consistency of the logic follows from the consistency of
computations[13,2,8].

Of course, the fact that the embedded language is so spartan rather strengthens
impression B: it seems difficult to write useful code in such a restricted language,
despite the well-know fact that in theory, any computation can be described in the
pure λ-calculus. We believe our work provides ample evidence that this is definitely
not the case, and that on the contrary computational reflection is a very effective proof
technique, both in the large and in the small:
• In the large, we use computational reflection to implement major parts of the Four

Colour Theorem proof, with programs of an unprecedented size and complexity.
Most of the previous applications of computational reflection used only relatively
modest implementations of formal rewrite systems [11].

• In the small, we use computational reflection to robustly automate many “small
steps” of our proof, so we have reasonably short proofs without having to resort to
the fickle domain-specific “decision procedures” traditionally used to handle these
simple steps.

The flagship application of computational reflection “in the large” occurs in the
reducibility part of the proof of the Four Colour Theorem. We define a common
prologue, in file cfreducible.v, that includes the following:

Variable cf : config.
Definition check_reducible : bool := …
Definition cfreducible : Prop := …

Lemma check_reducible_valid : check_reducible -> cfreducible.
The variable cf is a parameter of the definitions and lemmas that follow. It stands for
the explicit data representation of a configuration map, basically a string of letters and
numbers. We define elsewhere a standard interpretation of that string as an explicit
program for constructing a mathematical hypermap object (see section 5.3 for an
explanation of that construction). The two definitions that follow are of a very
different nature; the first is a program, while the second is a logical predicate:
• check_reducible is a boolean expression that performs a complex combinatorial

reducibility check, using a nonstandard interpretation of the map construction
program cf, and the MDD computations mentioned in Section 3.

• cfreducible is a mathematical proposition that asserts that the hypermap
constructed by the standard interpretation of cf is indeed reducible.

Using these definitions, we then prove the check_reducible_valid lemma, which
asserts the partial correctness of the check_reducible program with respect to the
mathematical specification cfreducible: if the check_reducible returns true, then
cfreducible holds. Since cf is a parameter of this proof, the result applies for any
value of cf. Using this, we can prove for example

Lemma cfred232 : (cfreducible (Config 11 33 37
 H 2 H 13 Y 5 H 10 H 1 H 1 Y 3 H 11 Y 4 H
 9 H 1 Y 3 H 9 Y 6 Y 1 Y 1 Y 3 Y 1 Y Y 1 Y)).

in just two logical steps, by applying check_reducible_is_valid to the concrete
configuration above and the trivial proof of true = true, even though the
configuration map represented by (Config 11 33 …) has a ring size of 14 and a
longhand demonstration would need to go over 20 million cases. Of course the

13

complexity does not disappear altogether — Coq 7.3.1 needs an hour to check the
validity of this “trivial” proof.

The fact that evaluation is transparent in Coq’s logic has another important
consequence for us: it allows us to use freely multiple levels of intermediate
definitions to derive specific properties from general ones in a modular way. Because
such definitions are automatically expanded and specialized by evaluation, we can
directly use the lemmas associated with the generic properties on the derived
properties, without having to manually unfold the property definitions or provide new
specialized lemmas. For example, when in the scripts above we use the boolean value
check_reducible as a logical statement, Coq silently6 interprets this as (is_true
check_reducible) where (is_true b) is defined as b=true. — this is why we
could directly use reflexivity in the proof of cfred232.

We use this “trick” extensively in our proofs, because it allows us to handle a wide
range of concepts using a relatively modest set of basic lemmas — we never needed
to resort to the lemma search command of Coq. For example, we model paths with a
boolean function recursively defined over sequences

Variable e : (rel d).
Fixpoint path [x : d; p : (seq d)] : bool :=
 if p is (Adds y p') then (andb (e x y) (path y p')) else true.

This allows us to directly use the standard lemmas for the boolean “and” function
andb to reason about (path x (Adds y p)), (path x (Adds y (Adds z q))), etc.

Using boolean functions in lieu of logical predicates has other benefits: we can use
rewriting of boolean expressions to apply an equivalence deep inside a complex
statement, e.g., to “push” the path predicate over a sequence concatenation, using

Lemma path_cat : (x : d; p1, p2 : (seq d))
 (path x (cat p1 p2)) = (andb (path x p1) (path (last x p1) p2)).

Booleans also make it easy to reason by contradiction even in Coq’s intuitionistic
logic. In particular, if a boolean assumption computes or rewrites to false, then the
standard tactic Discriminate can be used to conclude the proof. This turned out to be
so common that most of our proof tactics attempt to use Discriminate automatically,
and this is so effective that almost all our case splits leave at most two nontrivial
subgoals. Thus we can make the script layout reflect the structure of the proof just by
indenting the script for the first subgoal.

Because we employed mostly computable definitions we were able to rely mainly on
a “generate-and-test” style of proof. Most of our proofs follow this routine:
• Do a case split on relevant variables or expressions, based on their type
• Compute out the proof goal, possibly along with some assumptions
Quite often this was enough to complete the (sub)proof; most of remaining cases
could be resolved just by nudging the computation with selective rewriting (e.g.,
using the path_cat lemma above). Explicit logical steps came only a distant third
(7000 tactic calls, compared to 21,000 stepping/case splitting/rewriting tactic calls);
about two thirds of them were backward inference (explicitly forcing a proof schema,
spinning off new proof obligations), a third were forward inference (steps that
explicitly add new facts). Although there are only 1500 of them, declarative forward

6 is_true is declared as a coercion from bool to sorts.

14

steps explicitly inserting a subgoal were very important because they helped structure
the longer proof scripts.

We found this approach to machine-assisted theorem proving quite effective, enough
so that we made very little use of the (admittedly modest) proof automation facilities
of the Coq system. This approach provides a very natural way of harnessing the
computational resources of the proof assistant: we write and have Coq execute a set of
simple, deterministic programs that compute with concrete (but partial) data. This
compares rather favorably with trying to control the assistant with tactics, which are
metaprograms manipulating terms, or with a set of nondeterministic rewrite rules.

Of course this conclusion is relative to the problem at hand—there is not much
symbolic algebra in the proof of the Four Colour Theorem, and even so there were
many subproofs that would have benefited from better rewriting support. Despite
these caveats, it remains that our simple-minded approach succeeded on a challenging
problem. We should point out that the liberal use of intermediate definitions (over
1000) also greatly helped in keeping the development tractable: there are only 2500
lemmas in the entire proof, more than half of which are trivial rewrite equations for
integers and list operations. Unfortunately combining definitions also makes much of
the Coq automation ineffective: unless definitions are unfolded just at the right level,
the primitive Apply, Auto, AutoRewrite and most of the more elaborate tactics will
fail to match the goal; user guidance is almost always needed. Moreover it is unclear
that more aggressive unfolding in automated tactics would help, since the size of the
goal increases geometrically when several layers of definitions are unfolded.

The size of the individual lemma proofs varies widely: over half of them are one-
liners, 75% are under 5 lines, 90% under 10 lines, but at the other end 40 are longer
than a screen page, up to almost 700 lines for the proof of correctness of the
compilation of configuration reducibility (lemma cfctr_correct). We have such
large proofs because we deliberately avoid the clutter of ad hoc lemmas that often
plague formal developments; if an obscure result is only needed as an intermediate
step of a higher-level lemma, we use forward reasoning to introduce it and prove at
the point at which it is relevant. This often saves a significant amount of bookkeeping,
since we do not need to explicitly establish and introduce the context in which the
result holds.

There is a tradeoff, however: having longer, more significant lemmas greatly helps
bookkeeping at the global proof level, but can create bookkeeping problems for
individual proofs. Indeed, the proof context (the set of variables, definitions, and
assumptions that can be referenced) can easily become uncomfortably large even in a
10-line script if it is not managed. We found it difficult to do systematic context
management, using only the standard set of Coq tactics. For example, it takes two
separate commands to discharge an assumption H (moving H from the context to the
goal G, so that following case, rewrite or reverse chaining commands will operate on
H→G). Although this may appear to be a minor annoyance, this makes it very
difficult to maintain consistency in a script that explicitly moves assumptions to and
from the context—but that is largely what context management consists of. It also
didn’t help that several useful variants of this operation required rather different,
sometimes arcane sequences of commands.

15

This prompted us to develop our own tactic “shell”, so that we could make better
progress with the project. Fortunately, the Coq v6-v7 systems included a rather
powerful, if somewhat unwieldly, user syntax mechanism that was sufficient for our
purposes (unfortunately, it has been replaced by an easier to use but less expressive
notation facility in recent releases of the Coq system). Although we only put in
features when they occurred repeatedly in our scripts, we ended up with a complete
and rich language.

We should point out that such extensions have no impact on the trustworthiness of the
proof that was carried out, for two reasons:

• There is a small, well-defined kernel of the system that checks the logical
validity of proofs carried out with the Coq assistant. The bulk of the Coq code
base, and in particular the entire tactic and input syntax subsystems can only
prepare candidate proofs and submit them to the kernel for validation. For
additional safety, Coq actually stores the proofs that have been approved, so
that they can be independently rechecked.

• Our extensions only involved modifying the tables of the Coq extensible
parser. We did not add any ML code to the system, so our extensions cannot
possibly interfere with the kernel code through side effects, language-
dependent behaviour, or unsafe code.

Our design follows the philosophy of a command shell: we offer a small number of
commands, but each of them can perform a variety of related functions, according to
its arguments; all commands have identical or at least very similar argument
conventions. Nearly 85% of the commands in our scripts are one of the following
five7:

• Move: t1 t2 t3 … => p1 p2 p3 ….
This is the basic bookkeeping command, for moving assumptions and values
from the context to the goal and conversely. It combines the functions of the
primitive Coq commands Generalize and Intros, mixed with Clear and
Pattern. The arguments t1 t2 t3 are moved to the goal; if ti is a value rather
than a logical assumption, “moving ti to the goal” implies first generalizing ti,
that is, replacing ti with a new variable xi. After the =>, p1 p2 p3 provide names
for the assumptions or values that are moved from the goal to context; p1 p2 p3
can actually be Coq “intro patterns”, allowing tuples, lists conjunctions to be
decomposed on the fly. The Move command has several other options for
deleting additional assumptions, selecting the exact occurrences to generalize,
and performing on-the-fly simplification.

• Case: t1 t2 t3 … => [p11 | p12 | …] p2 p3 ….
The Case command is a version of Move specialized for the analysis of data
structures: the first pattern to the right of => must be a destructuring “intro
pattern” [13]. The Case command provides additional facilities for dealing
with Coq’s dependent datatypes, but is otherwise interchangeable with the
Move command.

• Apply: P… => [p11 | p12 | …] ….

7 We reuse the keywords of some of the primitive Coq commands, but ensure
backward compatibility by always including a symbol (one of : / =>) in the list of
arguments.

16

This is the basic reverse chaining command; it is similar to Coq’s primitive
Apply, with two important differences: it is insensitive to intermediate
definitions, and the proof method P can contain holes “?” that will be filled by
matching the current proof goal. The other command arguments are similar to
those of the Case command, except that the patterns p11 , p12 are used on the
first, second, etc. subgoal, respectively.

• Step p: t By …
This is the forward chaining command, similar to Coq’s primitive Assert,
except that it can be used to introduce several values (p can be a pattern), and
the By introduces a tactic, not a term. The By can be omitted, in which case the
command generates a subgoal for the justification of t (only 25% of the Step
commands have a By in the four colour proof script).

• Rewrite: t1 t2 t3...
This command is the main workhorse in our scripts; it is called nearly 10000
times, almost as many times as Move and Case combined. It merges the
functionality of most of Coq’s rewriting/computing commands (Rewrite,
Unfold, Fold, and Simpl) with a coherent, unified notation, also adding
important functionality such as selection of the rewrite occurrences. Most
importantly, however, it applies a sequence of rewrite rules rather than a
single rule; this feature alone about halves the size of our scripts!

These commands and a handful of related ones (Elim, Clear, Injection, Congr, and
Def) are defined and extensively documented in the prelude file tacticext.v that is
loaded by every file in the development. The Move, Case and Apply commands also
have a “view” feature that provides a tie-in for the reflect inductive predicate
defined in the boolean prelude file boolprop.v. Briefly, (reflect P b) states that P
and b are equivalent (P↔b=true). We prove such properties for all boolean
predicates that have a useful logical counterpart; for a predicate foob, the
corresponding lemma is fooP. For example in boolprop.v we prove8

Lemma andP : (reflect b1 /\ b2 (andb b1 b2)).
Then we can write Move/andP=> [Hb1 Hb2] to decompose an assumption of the
form (andb b1 b2) as if it were b1 /\ b2, that is, introducing assumptions Hb1: b1
and Hb2 : b2. Conversely, we can use the sequence Apply/andP; Split to split a
proof of (andb b1 b2) in two subproofs of b1 and b2, respectively.

Since we adopted a “command shell” design, our scripts do not read as mathematical
text. However, given our proof style based on computation and expansion, we don’t
think they possibly could, as we tend to get many large, unwieldly subgoals. The
important thing for us was that this language allowed us to tackle effectively complex
proofs, even when we didn’t have a detailed text proof to guide us. We can present
this piece of anecdotic evidence as to the efficiency of our command language: it
turned out we needed a variant of Streicher’s axiom K [19], which states that there is
only one proof of x = x, for our dataSet structures. Axiom K is derivable in this case,
because equality is decidable by definition on dataSet; in fact this derivation is in the
Coq standard library (in Logic/Eqdep_dec.v). We tried rolling out our own proof,
and came up with a four-line, 50-word proof script; the standard library proof has

8 The actual lemma is called andPx; andP is the corresponding syntactic form with holes “?” for b1
and b2.

17

over 100 non-comment source lines, and 500 words, so we can claim an order-of-
magnitude productivity improvement on this particular example.

5 The computer-checked proof

The exercise of formalizing a famous theorem can easily degenerate in the following
(somewhat depressing) routine: translate a nice, crisp, mathematical text into
computer lingo, at the rate of xx days per page, balk at the long list of trivial
mathematical prerequisites that ought to be known to the proof system (but aren’t),
write a large ad hoc collection of lemmas to fill the deficiencies.

However, our experience with the Four Colour Theorem wasn’t like this. Because we
were faced with rather different implementation and performance constraints, we had
to come up with our own programs for checking reducibility and unavoidability
(although we did reuse as much of the Robertson et al. proof as we could). Because
most graph theory proofs rely on the visual analysis faculties of the reader, and a
proof assistant like Coq is fully devoid of such faculties, we mostly had to come up
with our own proofs (sometimes using visual intuition as guidance, but not always).

In addition, as we noted in section 2, we were working with a different, more
combinatorial notion of map; while this notion was generally more cumbersome than
the more familiar topological one, on several occasions its additional precision
provided a clean argument where the “intuitive” situation seemed muddled at best. In
particular we found we could do without the notion of “ring completion” and the
“omitted straightforward but lengthy proof” of the “folklore theorem (3.3)” in the
Robertson et al. paper[26]. Indeed, the biggest payoff was that we could weaken the
definition of “appears”, which involves graph isomorphism, into one that involved
only morphism, thereby simplifying considerably the configuration occurrence check
and its correctness proof.

The remainder of this section gives an account of the mathematics and the algorithms
involved in the actual computer proof: the theory of planar hypermaps, the
reducibility computation, the construction programs for configuration maps and their
interpretations, the Birkhoff lemma and the embedding of configurations in a minimal
counter example, the enumeration of second neighborhoods, and the discretization of
the continuous Four Colour problem to the hypermap one.

5.1 Hypermaps

Having ruled out topological definitions of planar maps, we needed a combinatorial
replacement for them in order to state (and hopefully prove) the Four Colour
Theorem. That structure would have to

a) explicitly represent all local geometrical connections
b) support a clearly recognizable definition of “planar”
c) be easy to manipulate in Coq

This combination of requirements ruled out all the structures that had been used in the
previous formal developments of graph theory, e.g., simplicial representations, which
have separate sorts for edges, faces, and nodes are too complex to meet c), and graphs

18

verifying the Kuratowski minor exclusion [23] fail both a) and c). Rather than
combing the literature in search of an appropriate definition, we tried to roll out our
own from first principles, and ended up rediscovering hypermaps, which are well-
known combinatorial structures [15,31,32,33,29,16].

We reasoned as follows:
1. Since an essential part of our approach was to define properties by computable

programs, we wanted a representation on which graph traversal would be easy to
program. A natural starting point was therefore the basic data structure for
directed graphs, an array G of lists of integers, where G[i] lists the immediate
neighbors of node i (nodes are represented by integer indices).

2. Each cell in these lists corresponds to an edge in the directed graph. Additional

edge attributes, such as labels, are often added to the cells; in particular, for
symmetric graphs, it is common to add reciprocal pointers between the two cells
that correspond to the same undirected edge in the graph. More precisely, when
adding an edge e = {i,j} to a symmetric graph, that is, adding j to G[i] and i to
G[j], means inserting a cell cj in G[i] and a cell ci in G[j], and putting extra
pointers cj → ci and ci → cj in ci and cj, respectively. In this way, the edge e is
represented by the linked pair ci ↔ cj: each of the cells ci, cj represents a “half-
edge”, called a dart, in the hypermap terminology (some authors use the term
flag).

3. The structure can encode geometrical information at no extra cost, simply by

taking the convention that G[i] list the darts of node i in geometrical order (say,
counterclockwise). Since this is a cyclic order, it is then natural to make the cell
lists circular, by having the last cell point to the first. This simplifies considerably
geometrical traversals: to go from any dart to the next dart on the same face,
clockwise, simply follow, successively, the “edge reciprocal” and “node list”
pointers. Moreover, each non-isolated node of the graph is now represented by its
circular list, just as the edges are represented by the reciprocal dart pairs. This
allows us to further simplify the structure by removing the G array and the integer
indices altogether, as the “edge” pointer of a cell cj always points into the same
list as G[j]. We assume that we also have some way of iterating over all cells.

4. The resulting structure is easy to represent in Coq: there is only one type of

objects, d (for darts), whose only properties is that it is has an equality test and is
finite. Pointer attributes like the “edge” and “node” pointers above are just

0

1

3

2

1 3 3

0

0 0

0

1

3

2

1 3 3

0

0

0 1

2 3

19

functions e, n : d → d, and in general any additional attribute (e.g., “colour”) can
be represented by a function on d. Here n and e must be, respectively, a
permutation and an involution on d. Weakening the requirement for e to just being
a permutation, that is, allowing “edges” to have more than two sides, yields the
traditional definition of hypermaps: a pair of permutations of a finite set.
Hypermaps have been extensively used in the study of graph enumeration [16].

5. However, even this simplified definition turned out to be impractical in Coq,
because “being a permutation” property is moderately difficult to prove and use:
both the “there exists an inverse” and the “injective” characterizations require
deductive steps to use; in our approach, this is five to ten times more expensive
than an equational characterization, because a single Rewrite: command can
perform five to ten rewrite steps. For this reason, we extended the structure with a
third dart attribute, a pointer to the next counterclockwise dart on the same face,
represented by a function f : d → d. The navigation trick pointed out in 3. above
turns into an equation

e ◦ n ◦ f = Id
Because d is finite, this identity characterizes hypermaps; it implies that e, n, and
f are all permutations, and that we also have n ◦ f ◦ e = Id and f ◦ e ◦ n = Id. As
Tutte pointed out [31], this representation is circularly symmetrical with respect
to edges, nodes, and faces.

6. Although their name suggests drawing “darts” as arrows on the original map, this
leads to horrendously confused figures when one adds arrows for the e, n, and f
functions. In the figures below, we therefore always depict darts as points (we use
small hexagonal bullets). When we draw an ordinary map together with the
corresponding hypermap, we arrange the darts in circles around the corresponding
nodes, halfway between adjacent edges. This way, each node appears at the center
of the corresponding n cycle, each f cycle is inset in the corresponding face, and
each e cycle is the diagonal of an n-f quadrilateral centered on the corresponding
edge, as in the figure below.

However, we rarely find it necessary to draw such complex figures; most of the
time, we only need to consider the diagram around a single dart, which has the
following fixed, regular shape

e
n

f
dart

node

edge

map

20

The hypermaps that correspont to plain maps have the property that all e cycles have
length 2; this implies the additional identities e = e-1= n ◦ f. We call such hypermaps
plain hypermaps. Although the central part of the proof of the Four Colour Theorem
uses only plain hypermaps, most of the basic results on hypermaps are easier to
establish for general hypermaps: many of the constructions described in this section
create general hypermaps.

Although we primarily selected the “one domain, three functions, one equation”
definition of hypermaps for its simplicity, its threefold symmetry allows significant
reuse of definitions and lemmas. For example, the Euler formula takes a completely
symmetrical form for this presentation of hypermaps

#e + #n + #f = #d + 2#(e∪ n∪ f)
where #e, #n and #f denote the number of distinct cycles of e, n, and f, respectively,
#d the total number of darts, and #(e∪ n∪ f) denotes the number of connected
components of the relation obtained by taking the union of the graphs of all three
functions. Because of this symmetry, the graph/map duality is completely trivial in
our setting, so there is no point for us in switching from map colouring to graph
colouring, as is traditionally done; all the lemmas in our development are therefore
phrased in terms of map colouring.

We actually chose to define planar hypermaps as those that satisfy this generalized
Euler formula, since this property is readily computable. Much of the Four Colour
Theorem proof can be carried out using only this formula. In particular Benjamin
Werner, who worked with us on the early part of the proof, found out that the proof of
correctness of the reducibility part (step I) was most naturally carried out using the
Euler formula only. As the other unavoidability part of the proof (steps II) is explicitly
based on the Euler formula, one could be misled into thinking that the whole theorem
is a direct consequence of the Euler formula. This is not the case, however, because
unavoidability also depends on the Birkhoff theorem giving the shape of second
neighborhoods. Part of the proof of the latter requires cutting out the submap inside an
arbitrary simple ring of 2 to 5 faces in the (hypothesized) counterexample map.
Identifying the inside of a ring is exactly what the Jordan Curve Theorem is about, so
this calls for a combinatorial analog of that famous theorem. As a side benefit, we will
get additional assurance that our definition of planarity is correct by proving that the
hypermap Jordan property is actually equivalent to the hypermap Euler formula
(about half of that reciprocal proof is a lemma required for the correctness of the
reducibility check).

Unfortunately, the naïve transposition of the Jordan Curve Theorem from the
continuous plane to discrete maps fails. Simply removing a ring from a hypermap,
even a connected one, can leave behind any number of components: both the “inside”
and the “outside” may turn out to be empty or disconnected. A possible solution,
proposed by Stahl [29], is to consider paths (called chords below) that go from one
face of the ring to another (loops are allowed). The Jordan Curve Theorem then tells

e
n

f

21

us that such paths cannot start from the “inner half” of a ring face, and end at the
“outer half” of a ring face,9 i.e., there are no “Moebius rings” such as the one below.

Given careful definitions of the “inner” and “outer” halves of ring faces, this can be
made to work (indeed, we have done this in file rjordan.v, as an addendum to the
proof), but the resulting definitions are too unwieldly and complex to be practical for
machine-checked inductive proofs. Fortunately, a much simpler and slightly stronger
version of the Jordan property can be defined directly on the hypermap structure, by
considering contours of the hypermap three-function graph, rather than rings in an
underlying map.

The simplification comes from the fixed local structure of hypermaps, which allows
“inner” and “outer” to be defined locally, provided we restrict ourselves to a certain
pattern of traversal. Specifically, we exclude one of the three functions (the e
permutation), and pick fixed, opposite directions of travel on the other two: from a
dart x we can go to either n-1(x) or f(x). We define contour paths as dart paths that
only take steps in this n-1∪ f relation. A contour cycle follows the inside border of a
face ring, clockwise, listing explicitly all the darts in this border. Note that n or n-1
steps from a contour cycle always go inside the contour, while f or f -1 steps always go
outside. Therefore the Jordan property for hypermap contours is: “no contour path
that starts and ends on a duplicate-free contour cycle, without otherwise intersecting
it, can start with an n-1 step and end with an f step”, or, more symmetrically, “any such
path must start and end with the same type of step”. For example, the figure below is
forbidden.

This definition is much simpler than the ring one, not only because it avoids the
delicate definition of the inner and outer “halves” of a face cycle, but also because

9 More precisely, this follows from the Jordan separation theorem; the nonseparation part of the
theorem, which implies that each edge borders at most two regions, is implicitly used to turn the
problem of colouring the continuous plane into one of colouring a discrete data structure.

contour
path

22

“nonintersecting” (resp., “duplicate-free”) have their literal meanings here: not
containing the same dart (resp., twice the same dart), whereas for rings we need to
also exclude darts in the same f cycle. This also implies that the contour-based
property is slightly stronger than the ring property, since it applies to contour cycles
that are not derived from simple rings (different darts from the same f cycle can occur
in two different sections of a contour cycle). Such contours actually occur in the Four
Colour Theorem proof, but only around explicitly matched configuration maps, for
which we do not need the Jordan property.

Although it is much simpler than the ring property, we found that the definition above
was still too complex to carry out inductive proofs in Coq; it still involves three
different values (the path, its starting point, and the cycle), along with five to six
separate properties. However, we observed that by splicing together the cycle and the
path, we could form an equivalent statement that only involves a single value and
three properties. We therefore used the following:

Theorem (the Jordan Curve Theorem for hypermaps): A hypermap is
planar iff it has no duplicate-free “Moebius contours” of the form

The x ≠ y condition rules out contour cycles; note however that we do allow y = n(x).

As far as we know this is a new combinatorial definition of planarity. Perhaps it has
escaped attention because a crucial detail, reversing one of the permutations, is
obscured for plain maps (where e-1 = e), or when considering only the cycles of that
the permutation. Since, as we show in the Coq development, this Jordan property is
equivalent to the Euler identity, it is symmetrical with respect to the choice of the two
permutations that define “contours”, despite appearances (we use this in the
reducibility proof). Oddly enough, we know no simple direct proof of this fact (the
best we can do is to derive it from the equivalence between the “ring” and “contour”
versions of the Jordan property, and which is hardly “simple”).

We show that our Jordan property is equivalent to the Euler identity by induction on
the number of darts. At each induction step we remove some dart z from the
hypermap structure. In doing so, we must take care to redefine the permutations so
that they avoid z. For two of them we can do this in the obvious way by suppressing z
from the cycle in which it occurs: for example, we can define permutations n’ and f’
on the smaller hypermap by n’(n-1(z)) = n(z), f’(f -1(z)) = f(z), and n’(x) = n(x) and
f’(x)=f(x) otherwise. For the third permutation, however, the triangular identity of
hypermaps leaves us no choice, and we have to either merge two cycles, or split a
cycle of that permutation. For example, if that third permutation is e, we do the
following transformation on the portion of hypermap surrounding z:

e
n

f

z Walkupe

x nx y ny
n
(n-1∪ f)* x ≠ y

nx ≠ ny

23

Following Stahl [29], we call this operation the Walkup transformation [34]. More
precisely, the figure above illustrates the Walkupe transformation; by symmetry, we
also have Walkupn and Walkupf transformations.

In general, the three transformations yield different hypermaps, and all three prove to
be useful. However, in the degenerate case where z is a fixpoint of any one of the
three permutations, then all three transformations give the same result (z has at most 3
neighbors to connect), e.g., if e(z) = z, then either

Of course we only need to define and study one of the Walkup transformations, as we
then get the others (and their properties) for free by symmetry. We chose the Walkupe
transformation. Apart from for the removal of z, the Walkupe transformation leaves
the cycles of n and f unchanged; however, except in the degenerate cases above, it has
a nontrivial effect on the cycles of e: if z and n(z) are on different e cycles, the
Walkupe transformation merges the two cycles; if z and n(z) are on the same e cycle,
then the Walkupe transformation splits this cycle.

The degenerate and merge forms of the Walkup transformation clearly leave the
validity of the hypermap Euler equation

#e + #n + #f = #d + 2#(e∪ n∪ f)

z Walkupe
(split)

nz

ez

nz

ez

z Walkupe
(merge)

nz

ez

nz

ez

z z Walkup Walkup or

nothing

z Walkupf Walkupn

24

unchanged (both sides decrease by 1 or 3). The split form only preserves the Euler
equation if it disconnects the hypermap; otherwise, it increases the difference between
the left and right hand sides by 2. Since repeatedly applying the transformation
eventually yields the empty hypermap, for which the Euler equation is trivially valid,
we immediately see that all hypermaps satisfy the inequality

#e + #n + #f ≥ #d + 2#(e∪ n∪ f)
Planar hypermaps are thus those that minimize the left hand side, so applying any of
the Walkup transformations to a planar map always yields a planar map; in the split
case, the map is always disconnected (as is obvious from the figure above). Thus, to
prove the implication Euler→Jordan we are free to apply any sequence of Walkup
transformations to reduce a planar hypermap containing a Moebius contour to the map
below, for which the Euler equality obviously fails.

We use Walkupe to eliminate darts outside the contour, as this leaves the n-1 and f
steps of the contour unchanged, and Walkupf and Walkupn to contract n-1 and f steps
on the contour, respectively. In the Jordan → Euler direction, we use only Walkupe
transformations, as they leave the contour steps mostly unchanged. We carefully
select the removed dart to make sure that we are not in the split case: we use the
Jordan property to show that any e cycle C that is closed under n (n(z)∈ C for all z∈ C)
contains a fixpoint of either n or f. We named the latter statement the Euler tree
lemma, because it is the hypermap analog of the following: if a planar connected
graph has only one face, then it is a tree; this property is used implicitly in the
standard “flooding” proof of the Euler formula.

We also use all three transformations in the main body of the Four Colour Theorem
proof. Since at this point we are restricting ourselves to plain maps (all e cycles have
length 2), we always perform two Walkup transformations in succession; the first one
always has the merge form, the second one is always degenerate, and always yields a
plain map. Each variant of this double Walkup transformation has a different
geometric interpretation, and is used in a different part of the proof:

• The double Walkupf transformation erases an edge in the map, merging the
two adjoining faces. It is used in the main induction of the Four Colour
Theorem proof, to replace an identified reducible configuration with a smaller
submap.

• The double Walkupe transformation concatenates two successive edges in the
map; we only apply it at nodes that have only two incident edges, to remove
edge subdivisions left over after erasing edges (the node degree condition
ensures that the resulting map is plain).

• The double Walkupn transformation contracts an edge in the map, merging its
two endpoints together. It is used to prove the correctness of the reducibility
check, by induction on the size of the remainder of the graph. We use the
upper cited Euler tree lemma of the Jordan → Euler proof to find an
appropriate dart at which to apply the transformation, so as to avoid the split
case of the Walkup transformation.

25

Contours play a central part in our formal development of the Four Colour Theorem
proof, because they are the basis for a precise definition of the patch operation, which
pastes two maps along a border ring to generate a larger map. This operation is the
cornerstone of the proof, since it defines the three-way relation between a
configuration submap, whether explicitly identified or computed using the Jordan
property, the map in which it occurs, and the remainder of that map. Mathematical
articles and books rarely define this operation precisely, probably on the account that
it is “intuitively obvious”. We have found, however, that getting the details of this
operation exactly right was critical to the successful proof of several key lemmas.
Ultimately, this attention to detail paid off handsomely, as it allowed us to remove
injectivity checks in the matching configuration, and to omit the analysis of the
structure of the second neighborhood altogether.

A key observation is that, despite appearances, the patch operation is not symmetrical
in its arguments. It does paste two hypermaps along a ring, but in a slightly
asymmetrical manner, and requires different assumptions the two maps:

• For one of the submaps, which we shall call the disk map, the ring is an e
cycle, that is, a hyperedge. This cycle must be simple, i.e., no two darts on it
can belong to the same face.

• The other submap, the remainder map, the ring is an arbitrary n cycle.
The gluing operation itself consists in merging pairwise the darts on the e cycle of the
disk map with those on the n cycle of the remainder map, reversed (the two cycles
must have the same length). On the merged cycle, the e function is defined as in the
remainder map and the n function is defined as in the disk map. The definition of the f
function is then adjusted as is to satisfy the triangular identity, as illustrated below.

Let us point out that although the darts on the border rings were linked by the e and n
permutations in the disk and remainder map, respectively, they are not directly
connected in the full map. Indeed, they need not even form a simple ring in the full
map. However, because the e cycle is simple in the disk map, it is a subcycle of a
contour that delineates the entire disk map (indicated by the mixed dash in the figure
above). This contour is preserved by the construction, which, because of this, is
reversible: the disk map can be extracted, using the Jordan property, from this
contour. This allows us to divide the proof load by two, using equational reasoning to
show that geometrical properties in the full map are equivalent to the conjunction of
similar properties in the disk and remainder maps:

• The full map is planar (resp., connected) iff both submaps are.

patch

disk

remainder

contour cycle

full map

26

• The full map is plain iff the remainder map is plain, and the disk map is plain
except for the border ring.

• The full map is cubic (all n cycles of length 3) iff the disk map is cubic, and
the remainder map is cubic except for the border ring.

• If the full map is bridgeless both submaps are; the converse only holds if the
disk map ring is chordless (the only e links between the f cycles of the darts in
the e cycle ring are those of the cycle itself).

• The full map is four colourable iff both submaps are four colourable with
colourings that match on the rings (with a reversal).

All the theory exposed so far applies to general hypermaps. However, for the rest of
the proof of the Four Colour Theorem we need to specialize to plain (all e cycles of
length 2) and cubic (all n cycles of length 3) maps: these properties are required both
for the enumeration strategy for the unavoidability part, as well as for the computation
of reducibility checks. To do this specialization we show that the task of colouring an
arbitrary hypermap can be solved by colouring the hypermap obtained by covering
every node and hyperedge with a new face. As depicted in the figure below, the
construction of this new map is completely regular and straightforward; the new map
has six times as many darts as the original one.

5.2 Reducibility
The bulk of the reducibility computation for a given configuration consists in iterating
a formalized version of the Kempe chain argument, in order to compute a lower
bound for the set of colourings that can be “fitted” to match a colouring of the
configuration border, using colour swaps. The actual check consists in verifying that
this lower bound contains all the colourings of the map obtained by erasing 1 to 4
specific edges in the complete configuration map; this smaller map is called the

e

f

n

f

e n

original
hypermap

expansion of
central dart

expansion of
other darts

27

contract map of the configuration. This final check does not require a significant
amount of computation (in many cases, the lower bound yields the set of all possible
colourings, whence the check is trivial).

Although the Kempe chain argument is usually exposed for the dual graph colouring
problem, we have found that the form that is actually used for the proof of the Four
Colour Theorem is easier to justify for the map colouring problem. The argument uses
an alternative formulation of the colouring problem, proposed by Tait[30] in 1880
(one year after Kempe’s original proof, along with a variant of Kempe’s proof that
turned out to be equally wrong).

Tait suggested replacing the face colouring problem with an edge colouring problem.
Suppose we use the integers 0, 1, 2, and 3 to “colour” the map faces; given such a
colouring k, we can compute another colouring, this time on the edges of the map: we
colour an edge x that separates two faces a and b with the bitwise sum (aka. exclusive
or) k(a) ⊕ k(b) of the colours of a and b. This edge colouring has two obvious
properties:
1) Since a and b are adjacent we have k(a) ≠ k(b), so k(x) takes only the values 1, 2,

or 3
2) The bitwise sum of k(y) for all edges y that are incident to any given node p is 0:

expanding the definition of k(y), we see that the colour of every face incident to p
occurs twice in the summation.

Conversely, any edge colouring that satisfies 1) and 2) can be turned into a face
colouring, by choosing an arbitrary colour for one face a0 in each connected
component of the map, for each edge x bounding a0, colouring the face across x with
k(a0) ⊕ k(x), and so on (the formal proof of correctness involves the Jordan property).

Tait further observed that for cubic maps, 2) is equivalent to the much simpler
3) For any node p the colours of the three edges incident to p are a permutation of

{1,2,3}.
He concluded that four colouring the faces of a cubic planar is equivalent to three
colouring its edges. Now, consider the problem of trying to fit the colouring of a
submap with one of the remainder of the map, where the submap has been “cut out”
across a ring of faces. By Tait’s results, we only need to match the colours of the
edges that were cut.

3

0

1

2

1 3

2

1

0

3

1

2

edge colours

28

This simple observation has a significant impact on complexity, since we now have
only three colours to consider, and there are only six permutations of them. There is
more, however. Consider an arbitrary edge colouring of the remainder part of the
map, and erase all the edges with the colour 1. Since this deletes exactly one of the
three edges incident to each node, the resulting map is the union of a set of isolated
loops with a set of linear paths (“chords”) starting and ending with the 2- and 3-
coloured edges dangling at the cutout (see the figure below). Since we are only
interested in the colouring of these dangling edges, we shall ignore the loops.

The colour of edges on any of the chords must strictly alternate between 2 and 3, so
the dangling extremities of a chord must have the same colour if the length of the
chord is odd, and different colours if the length of the chord is even. In fact, this is the
only constraint on the colouring of chords, since exchanging colours 2 and 3 on any
one chord yields a valid edge colouring of the remainder. Since we can do this chord
flip simultaneously for any subset of the chords, we can match any edge colouring of
the cutout submap that

a) assigns colour 1 to the same dangling edges as the remainder colouring
b) assigns different colours to the ends of a chord iff the length of the chord is

even.
We say that such a colouring is consistent with the set of chords.

Let us say that an edge colouring of the remainder map is suitable if it can be
transformed, through a sequence alternating the chord flips described above with
global permutations of the three edge colours, into an edge colouring that matches
exactly an edge colouring of the cutout submap on the sequence of dangling edges.
We prove the reducibility of the cutout map by showing that every colouring of the
remainder map that matches the colouring of a specific, strictly smaller, contract map,
is suitable. This implies that it is impossible for a minimal non four colourable map to
contain the cutout, since by minimality the map obtained by replacing the cutout with

ring starting
edge

29

the contract would have a valid edge colouring, whose restriction to the remainder
would then be suitable.

The bulk of the reducibility check consists therefore in constructing a safe
approximation of the set Θ of the sequences of colours assigned to the dangling edges
by suitable colourings of the remainder, using fixpoint computatation. We compute an
increasing sequence Θ1, Θ2, Θ3 … of safe approximations of Θ until it converges:

i. In Θ1 we only put the sequences of colours assigned to the dangling edges by
actual colourings of the cutout.

ii. If θ∈Θ i, we can add ρθ to Θi+1, where ρ is any permutation of {1,2,3}.
iii. By the above, we could also add to Θi+1 a sequence θ of colours if we could

find some θ’∈Θ i and set of chords ξ induced by an edge colouring of the
remainder such that both θ andθ’ are consistent with ξ. We can’t really do this,
since we don’t know the remainder. However, since any θ induced by an edge
colouring of must be consistent with some set ξ of chords, if we can find a θ’
as above for all ξ that θ is consistent with, we can safely add θ to Θi+1.

Step iii is practical because the conditions a) and b) above only depend on the
endpoints and the parity of chords, and not on their internal edges. This
endpoint/parity information can be very simply represented by a formal word in a
bracket (or Dyck) language, as follows:

For each dangling edge, in counterclockwise order, starting from any fixed edge:
• Write down a dash ‘-’ if the edge is not part of a chord.
• Write down an open bracket ‘[’ if the edge is the start of a chord.
• Write down a close bracket ‘]b’ if the edge is the end of a chord with parity

b∈ {0,1}.
Since the remainder map is planar (more precisely, outerplanar), chords cannot cross;
therefore if we read back the codeword while going around the dangling edges, we
can unambiguously interpret a closing bracket as marking the end of the last chord for
which we have seen the start but not the end (which we’ll refer to as an open chord).
We call these four-letter codewords chromograms. For example the chromogram for
the last figure, starting with the edge marked by an arrow, is 〈- [- - []1]0 〉.

The “consistent with” relation between edge colourings and chromograms can be
defined with a simple formal recurrence. Let us write

• ε for both the null colour sequence and the null chromogram
• θ ≈ γ for “the sequence of edge colours θ is consistent with the chromogram γ”
• ν / θ ≈ γ for “the sequence of edge colours θ is consistent with the

chromogram γ, given that the sequence of edge colours of the beginning of
open chords is ν”

We then have
• θ ≈ γ iff ε / θ ≈ γ
• ν / 1θ ≈ - γ iff ν / θ ≈ γ
• ν / cθ ≈ [γ iff c∈ {2,3} and νc / θ ≈ γ
• νc / c’θ ≈]b γ iff c’ = c ⊕ b and ν / θ ≈ γ
• ε / ε ≈ ε

Writing [θ]≈ = {γ : θ ≈ γ} for the set of chromograms that a colour sequence is
consistent with, we can reformulate step iii of the reducibility computation as

30

iv. Compute Γi = �θ∈Θ i
 [θ]≈

v. Add to Θi+1 any θ for which [θ]≈ ⊆ Γi

The time and memory required for the fixpoint computation increases geometrically
with the ring size of the cutout. For the largest ring size (14) there are about 300,000
different valid edge colour sequences, about 1,000,000 chromograms, and around
20,000,000 colour sequence/chromogram pairs in the ‘≈’ relation. While these
numbers are by no means out of reach of modern computers, we need to be somewhat
cautious, since the computation needs to run inside the proof checking kernel of Coq,
which as a compute engine is several orders of magnitude less efficient than the bare
processor. Also, we must select an algorithm that does not use imperative structures
such as arrays, since these are not available in the embedded programming language
of Coq. These considerations led us to the following design choices:

• We compute Γi (step iv) incrementally, like Robertson et al. [26] (Appel and
Haken could not do this[4], because computers in the early 70s did not have
enough core memory to store a million bits…)

• We use 3 and 4-way decision diagrams [1,12] to store Θi and Γi, respectively;
each level in the decision tree branches according to a colour or symbol in the
sequence or chromogram, respectively.

• We store the complements Ξi and Λi of Θi and Γi, respectively, rather than Θi
and Γi. This way the computation starts with large sets that are rapidly pruned,
rather than with small sets that expand quickly. In addition the large initial sets
Ξ0 and Λ0 have a very regular structure, so their decision trees require very
little memory, as most of their subtrees can be shared.

• Ξ0 is not the set of {1,2,3} sequences whose length is the ring size, but the set
of all such sequences whose bitwise sum is 0, and in which the order in which
colours appear is a cyclic permutation of 〈1,2,3〉, e.g., if the first colour is 3,
the first colour different than 3 will be 1. The first restriction rules out
sequences that can’t possibly be induced by edge colourings; the second one is
a free way to halve the size of the set, based on the observation that the
“consistent” relation ≈ is insensitive to swapping colours 2 and 3.

• Likewise, Λ0 is the set of all chromograms that are consistent with some θ∈ Ξ0.
This corresponds to excluding ill-bracketed words, and words for which the bit
sum of the closing bracket parities does not match the parity of the ring size.

• To avoid rescanning the large ≈ relation in step v, Ξi actually stores the
number of chromograms in Λi consistent with each θ it contains, which allows
step v to be carried out in constant time. Thus, unlike the Robertson et al.
program [26], our fixpoint computation runs in time linear in the size of the ≈
relation, traversing each θ ≈ γ pair at most twice.

• We use dynamic programming to compute a highly compressed representation
of Ξ0 and Λ0, but do not try to find ad hoc sharing afterwards; initial
experiments with an ML prototype had showed that there was little to gain.
We do however omit the last layer of Ξi, as the last colour in a valid sequence
is always the sum of the previous ones, and we also use a fixed compression
scheme for the last two layers of Λi, using 8 fixed constants (since this is 4-
way branching tree, this saves 75% of the memory!).

The computation iterates the three following steps:

31

i. Given a set of colour sequences ∆Θ to be added to Θi, remove all the
chromograms in Λi that are consistent with some θ∈∆Θ , simultaneously
computing Λi+1 and ∆Γ = Λi+1 - Λi, the set of chromograms to be added to Γi.

ii. For each θ in the domain of Ξi, decrement the value of Ξi (θ) by the number
of chromograms in ∆Γ consistent with θ, simultaneously computing Ξi+1 (θ)
and ∆Ξ = {θ : Ξi (θ) > 0 and Ξi+1 (θ) = 0}, the set of colour sequences whose
count has just reached 0.

iii. Compute ∆Θ = {ρeθ : θ∈∆ Ξ, e = ±1}, and feed it back to step i. Here ρ is the
cyclic permutation that maps 〈1 2 3〉 to 〈2 3 1〉.

We start with ∆Θ = Θ1 and terminate as soon as one of Ξi, ∆Γ, or Γi becomes empty.
All the intermediate sets use the same MDD representation, so steps i-iii can all be
implemented efficiently with parallel tree walks. Finally, the fixpoint loop is driven
by a higher-order tree iterator that can efficiently execute an exponential number of
steps. While this is clearly overkill (the number of iterations never goes over 30), it
does allow us to do a full correctness proof of the algorithm, sparing us the hassle of
having to debug the execution of such a complex algorithm on large data structures in
a development environment with absolutely no debugging support (not even print
statements!). Furthermore, the full correctness proof is surprisingly straightforward; it
is carried out mostly by stepping through all the cases of all the functions.

We also needed to prove that the formal, purely combinatorial definition of “suitable”
actually implied something about the colouring of planar maps. In principle this
implied formalizing all the theory that we exposed in this section: Tait’s edge
colourings, the topology of the chords, and the parsing of a chromogram into a chord
set. Benjamin Werner, who worked with us on this part of the proof, found out that
none of this was needed, except for insight into the solution. It was much easier to

∆Θ

Θ1 Ξ0 Λ0

Λi

Ξi ∆Λ

∆Ξ

ρ∪ ρ-1

Λi+1

YES

NO

Ξi+1

Ξ, Λ

restrict Λ

decrement Ξ

any ∅ ?

NO NO

kempe

32

prove directly that if a remainder map has a suitable colouring, then it has a colouring
that matches a border colouring of the configuration; the main lemma, which states
the existence of a consistent chromogram, is proved by induction on the size of the
remainder map. Indeed this result can be proved directly from the Euler formula,
whereas we needed to use the Jordan property twice in our informal discussion! When
we finally decided to port his outline to our development on hypermaps (he had had
some trouble with the definition of the node contraction needed to carry out the
induction), it only took us a day to complete the proof10.

5.3 Configuration maps

Since the reducibility check is based solely on the edge-colouring of the
configurations and their contracts, it would appear that it is not necessary to describe
the exact geometry of the maps to prove the Four Colour Theorem: the colourings can
be computed from the adjacency graphs of the configuration maps, and in the
unavoidability part of the proof these adjacency graphs are matched against the graphs
of the explicitly enumerated second neighborhoods submaps of an arbitrary counter
example; the latter are, by construction, geometrically correct. This is how Robertson
et al. outline their proof [26], and indeed they use adjacency lists to describe their 633
configurations. We naively followed this line of reasoning in our initial investigations,
which focused on the feasibility of the reducibility proof, since it was straightforward
to compute the set of colourings of a graph. However when we started working on the
graph theory linking the two computational parts of the proof, we realized that this
approach was wrong:

• Several small geometric side conditions are imposed on configurations and
their contracts; while most of them are simply sanity checks, some are used in
the actual proof, and therefore must be checked.

• Enumerating just the arity of faces in neighborhoods is already fairly complex;
enumerating their full geometry would have been one step up.

• Most of all, the enumeration strategy proposed by Robertson et al. does not
explicitly identify complete submaps, because it is limited to the second
neighborhood, and the configurations needed to prove the Four Colour
Theorem do not lie entirely within the second neighborhood: only their kernel
does. This is sufficient, if one can apply the “folklore theorem” that any kernel
has a unique free ring completion; however this theorem only applies if the
adjacency graph of the completion is geometrically consistent.

Of course the Robertson et al. data is geometrically consistent: it gives a planar
embedding for each configuration, for which adjacency lists are oriented clockwise.
The programs supplied by Robertson et al. also perform a combinatorial sanity check.

Nevertheless, we had to revise our approach, and explicitly define a hypermap for
each configuration. We first did this directly from the adjacency data, using pairs of
integers for the darts; this allowed us to keep the colouring and contract colouring
functions, along with their correctness proofs. However, this approach also involved
encoding geometric reasoning as obscure arithmetic identities, and didn’t support very
well doing induction on the geometry of the map, which was required for establishing
the correctness of the geometric side condition checks.

10 We cheated by reusing the euler_tree lemma, which we had used to prove Jordan→ Euler.

33

A little analysis revealed that all 633 configuration submaps could be built by
following very simple, inside-out construction program, so we switched to that
description. This change cut down the size of the configuration data by a factor of 5,
but, more importantly, it provided a clean framework for the various checks we
needed to perform on the maps. We could rephrase all the operations we needed to
perform on a configuration map (computing the set of colourings, the contract,
checking the radius, even compiling an occurrence check filter) as nonstandard
interpretations of its program (the standard interpretation being the map construction).
This approach both made the implementation efficient, and the correctness proofs
straightforward, although sometimes lengthy: these proofs always consisted in
establishing some simulation relation between the standard and nonstandard
interpretations.

Although the main use of configuration maps is the reducibility argument, which calls
for disk maps, we chose to construct remainder maps, for various technical reasons:

• The proof of the Birkhoff lemma [10] requires a handful of explicitly
constructed remainder maps (see §5.4 below).

• It’s easy to show that the construction yields a remainder map with a simple
border n cycle; stripping this cycle trivially yields a disk map with the same
colourings.

• The remainder map construction is more uniform because it starts with a non-
empty map.

• Remainder maps are plain and quasicubic (cubic except on the n cycle)
whereas disk maps are cubic and quasiplain (plain except on the e cycle), and
the plain identities, e(e(x)) = x and n(f(x)) = e(x), are more useful than the
cubic ones.

The construction actually yields a pointed remainder map, in which one dart on the
border n cycle has been selected. The construction starts from a single edge and
applies a sequence of steps to progressively build the map. For configuration maps, it
turns out we only need three types of steps:

• Rj (rotate) steps that only change the selected ring dart x to n-j(x) for some j.
• Y steps that insert a node between x and the border ring.
• H steps that insert a linked pair of nodes between x and n-1(x) and the border

ring.

The first construction step is always a Y step. Construction sequences are applied
right to left, so the construction sequences for configurations always end with a Y
(they also start with an H). For example, the program 〈H R3 Y Y〉 constructs a map
consisting of a single square surrounded by a ring of four faces:

base map

ring ring

Rj step

ring

Y step

ring

H step

before step

added by step
ring boundary
(before/after)

selected dart
(before/after)

j

…

34

The data for a configuration also includes a contract, that is, a set of edges that should
be erased to get, by induction, a suitable colouring of the remainder. As these edges
must not contain border ring darts, they must have been disconnected from the border
ring and connected to an internal node by a Y or H step. We therefore denote contract
edges by the left-to-right index of this connexion, counting that each Y makes one
such connexion, and each H makes three (because the initial step is a Y, the feet of the
H belong to different edges). These indices appear before the H that starts the
construction sequences (the other indices in the sequence are R steps). This
representation allows us to easily find contract edges while scanning the program left
to right.

Since the correctness proof of the function that computes configuration border
colourings is rather long, we decided not to try to combine it with the definition of
contracts. Instead, we added three new construction steps that allowed us to construct
a map that had the same set of colourings as the contract map (or, more precisely, the
same “contract colouring” as the configuration map). This allows us to produce the set
of contract colourings by compiling the configuration program into a contract
program, then running that program with the “generate colourings” interpreter. The
new steps are:

• the U step, which inserts a single loop between x and n(x)
• the K step, which adds an inverted Y above x and n-1(x)
• the A step, which connects x and n-1(x) with a degree 2 node (the resulting

map is not quasicubic; in fact, it might not even be plain – see below)

We also use the U to construct some of the remainder maps used in the proof of the
Birkhoff lemma [10].

These new steps are more primitive than the H and Y steps; indeed, we can define the
H, Y, and K steps in terms of U and a rotation variant N = R ◦ K ◦ R-1 of K, as we then
have Y = N ◦ U, H = N ◦ Y, and K = R-1 ◦ N ◦ R. Thus we only need to give precise
hypermap constructions for the base map and the U, N, and A steps:

U step

ring ring

A step

ring

K step

R3

H

Y

Y

base
map

35

The A and N steps have degenerate cases in which these definitions are incorrect. For
the N step, this occurs if the ring size is less than three: if x is the selected dart, we
have n-2(x) = x, but the definition above gives different values for n’(x) and n’(n-2(x)).
The degenerate case for the A step occurs when x and n-2(x) are already on the same f
cycle: in that case the definition above splits the cycle and disconnects the hypermap
(this is similar to the split case of the Walkup transformation). Although these
degenerate cases do not occur with our data, this is not easy to check for the A step,
and at any rate is is easier to provide consistent definitions for these cases than to deal
with partial constructions throughout the proof, so we use the following:

Note that both these definitions are still valid in the completely degenerate case where
the ring size is 1.

The contract compilation is defined in the figure below, which shows the effect of
erasing one or two edges from a Y or H step. The correctness proof of the contract
compilation would seem straightforward from these diagrams, but it is the longest
proof (close to 700 lines of script) in the entire development, with the second largest
compilation time (excluding the reducibility and unavoidability computation lemmas).

degenerate N step

ring

ring

degenerate A step

ring

base map

U step
N step

A step

ring

ring

ring

ring

added by
the step

deleted by
the step

unchanged
by the step

selected ring
dart (old/new)

36

The correctness proof of the edge colouring procedure defined in the figure below
(where ρ is the permutation defined in §5.2) is comparatively easier, because we can
use the correctness lemmas for the U and K steps to show the correctness of the Y and
H steps, since the Y and H steps can be defined in terms of U, K, and R steps..

Observe that while some of the colouring rules have side conditions, only the A and K
step can fail; hence the colouring of a non-contracted configuration never backtracks.

The unavoidability part of the four colour theorem proof requires yet another
interpretation of the map construction programs: we need a filter that will efficiently
test for the occurrence of a configuration in the data structure used to represent a
second neighborhood pattern, which, following Robertson et al., we shall call a part
[26]. Now Robertson et al. computed this test by somewhat arbitrarily assigning
integers to faces of the configuration and part, precomputing the geometrical relations
(in their case, the clockwise triangles) for both maps, and then using yet another array
to store the partial morphism in a traversal of a list of triangles of the configuration
[27]. As we have pointed out already, the Coq language does not have arrays, and the
idea of emulating them in order to implement such an indirect algorithm, and proving
the correctness of the combination, was not appealing. It seemed that a more
geometrical approach should exist, and we did indeed find one, by combining the
insights provided by our analysis of hypermaps and of the incremental construction of
the configuration maps.

As we shall see in the next section, we strengthened one of the auxiliary results of
Robertson et al [27]. and showed that if it was possible to perform a geometrically

b

b c c

b

b

c

c

b

b

c c’

b ⊕ c

b c b

ρ�1b ρ�1b

U step K step (b≠c) A step (c= c’) Y step H step (b≠c) H step (b=c)

b c

ρ�1b ρ�1b

b c ring colouring

ring

U step

ring

no step

ring

no step

ring

no step

ring

K step

ring

K step

ring

Y step

ring

Y step

ring

A step

ring

no step

ring

no step

ring

U step

edge erased by
the contract

node erased by
the contract

37

connected traversal of the faces of the kernel of the configuration in the part, while
generating the same sequence of arities, then the geometrical properties of
configurations and counter example maps directly implied the existence of a one-to-
one embedding of the disk map of the configuration into any counter example map
fitting the part. It follows that there is no need to construct the isomorphism, hence, no
need for arrays.

All we needed was a data structure to represent a map traversal, and we found that the
most obvious one worked. We ensure that our traversal is connected by strictly
following kernel edges of the map. Each node in the traversal must be cubic, since it
is reached by a kernel edge, so there are two other edges leaving that node, and a face
across those two edges, whose arity might need to be checked. The traversal can end
with this check, or continue with either or both of the two edges. It is also possible
that the face across is a ring face; in that case the arity check must be skipped by the
traversal (there may not be a corresponding face in a matching part). This will
certainly happen once for the many configurations whose kernel is not two-connected,
and in fact this is the only case in which this happens. In those instances, the traversal
should continue either left or right, check the face there (it’s always a kernel face) and
then continue in the same direction (that is, the traversal does either two lefts or two
rights). Hence, the structure we need is the 7-case variant of the binary tree, shown
below.

In turns out that it is always possible to cover exactly the configuration map kernel,
using two such trees, and starting from the two faces incident to the initial edge of the
construction. Thus, we can generate an optimal test (called a quiz in the Coq scripts)
for all 633 configurations. We compile this pair of trees outside-in, that is, by
interpreting the construction program in reverse, left-to-right, using the rules in the
figure below. Conveniently, this is also the right direction for computing the face
arities, which are stored in the tree nodes, and for keeping track of which ring darts
belong to the kernel in the full configuration map, and which ones belong to the
border ring.

Qask0 Qask1 QaskL QaskR QaskLR

QaskLL QaskRR
non-tree edge

tree node

arity check

parent node

38

Note that the rules above are not quite complete: we do not handle the case where
there are non-empty trees for both arms of an H, which would have required a QaskRR
tree node (the other apparently missing cases can be ruled out using the geometric
properties of configurations). It turned out that only 4 of the 633 configurations
required that case, so it was easier to do a trivial modification of those 4 construction
programs than to prove the correctness of an additional complex case.

5.4 Embedding configurations

The main result of the graph theory part of the Four Colour Theorem proof is that no
dart of a minimal counter example can fit the quiz of a (combinatorialy) reducible
configuration. The few weeks it took us to prove this represented only a fraction of
the effort involved; much more time was spent developing and experimenting with the
basic concepts – sequences, paths, hypermaps – to see which formalization would
allow us to complete this part of the proof. This attention to detail paid off in the end:
it turned out that half of the final part of the proof could be skipped.

Specifically, we were able to eliminate cartwheels, an intermediate combinatorial
structure used to represent second neighborhoods. Roberston et al. use cartwheels as
follows [26, 27]:

• They recall a theorem of Birkhoff [10], stating that second neighborhoods in a
minimal counter example are isomorphic to cartwheels.

• They do the unavoidability enumeration on cartwheels, defining both part
matching and discharging on cartwheels.

• Although they use an array-based version of our quizzes to check for
configurations occurrence in parts, they only do so as a heuristic. A positive
check is always backed by the explicit construction of an injective simplicial
map from the configuration kernel to the “skeleton” of the part, as well as an
ad hoc check that the configuration is “well-positioned”. They state without
proof that these checks imply the existence of a morphism from the
configuration to the map.

outer
ring

outer
ring

outer
ring

outer ring

outer ring

kernel

kernel

kernel

kernel

kernel

kernel

kernel kernel kernel kernel

traversed

not
traversed

tree node

39

Since we were bent on doing a fully formal proof, using cartwheels would not give us
the benefits of reusing well-known results. On the contrary, they would just introduce
another layer of definitions and of correspondence lemmas, which were not really
needed. Since it is easy to navigate precisely in hypermaps (just use the right
sequence of e, n, and f), we could define discharging and part fitting directly on the
full counter example map just as easily as on a cartwheel (in fact we derive
discharging from part fitting). More importantly, we could do completely without the
Birkhoff theorem, by showing directly that the mapping derived from a successful
quiz check was automatically an embedding. This was a boon, because it relieved us
from having to prove in every case the injectivity of all the intermediate mappings –
from configuration to part, and part to map – that composed this mapping: we only
needed to show that these were morphisms.

To summarize, we used the following proof outline:
1. We prove the Birkhoff lemma [10] (every minimal counter example map is

internally five connected).
2. We deduce from this that any face of such a map is surrounded by a simple ring

(called a spoke ring) of at least five faces (we say the map is pentagonal).
3. Given a successful quiz, we construct a preembedding φ from the kernel darts of

the configuration map to the counter example map, that is, a mapping that
preserves all f arrows and arities, and preserves enough e arrows to connect its
domain (i.e., the kernel is connected by the relation whose graph is the union of
the f arrows and the set of e arrows x → e(x) such that φ(e(x)) = e(φ(x)).

4. We show that, provided the configuration map satisfies two simple geometric
conditions, φ can be extended into an embedding φ�� of the entire configuration
map, injective except on the border n ring.

5. Following Robertson et al. [26], we don’t try to replace directly the image under φ��
of the contract map, as we would have no simple way of proving that the resulting
map is bridgeless – the contract map need not be chordless, and its border ring
may not even be simple. Rather, we apply directly the image under φ�� of the
configuration contract to the counter example map, and show that colouring this
map induces via φ�-1 a colouring of the contract map. We show that the geometric
properties of the contract are carried over by φ�, and that they imply that applying
the contract to the counter example map yields a bridgeless map.

6. We conclude as indicated in subsection 5.2.
For each step except the last, we ended up inventing our own proofs.

For Step 1, we use a variant of the reflection method used for reducibility, reusing
much of the code from that part of the proof. The formal statement for Step 1 is “there
are no simple m-nontrivial rings of size k ≤ 5”, where m=1 if k=5, and m=0 if k < 5,
and a ring is m-nontrivial if both its inside and outside have more than m faces.

Let Ωk be a list of configuration maps with ring size k and at most m kernel faces.
Suppose r be such an m-nontrivial ring of size k in a minimal plain counter example
map g, and consider the set Ξ (resp. Ξ’) of border colourings of the remainder map h
(resp. h’) of the inside (resp. outside) of r. Since g is plain and not four colourable, Ξ
is disjoint from the set Θ of colourings suitable for h, hence disjoint from the safe
approximation of Θ computed from Ξ’ as in §5.2, i.e., by symmetry, we must both
have Ξ ⊆ kempe(Ξ0,Ξ’,Λ0) and Ξ’ ⊆ kempe(Ξ0,Ξ,Λ0). We check by enumeration that

40

for any such pair Ξ, Ξ’ there is some h”∈ Ωk whose set of border colourings Ξ” is
disjoint from either Ξ or Ξ’. This contradicts the minimality of g, since if, for
example, Ξ and Ξ” are disjoint, then the map obtained by replacing h’ with h” in g is
strictly smaller but not four colourable.

Using the monotony of kempe, the enumeration of the Ξ, Ξ’ pairs and the Ωk checks
are carried out simultaneously by the two mutually recursive procedures below.

While the lemmas proved in Step 2 are not original (they are a subset of the
consequences of the Birkhoff lemma), their proofs are somewhat different from
traditional mathematical argument, because they rely on the (abundant) computing
power of Coq rather than its (nonexistent) geometrical intuition. For example, we
establish exact formulas for navigating about the first neighborhood of a face: e.g., x
is a dart on the spoke ring iff n(x) is on the central face cycle, and the next dart on the
ring is f(f(e(x))). We then use these formulas to replace visual reasoning on figures
with equational reasoning. To prove Step 2 we exhibit an explicit colouring function
and use brute force enumeration to prove that it’s a valid colouring; this way we don’t
need to prove that a chordless 4-face ring must be 0-nontrivial, as in steps d) and e) in
Section 3.

Ξ0 Λ0

pick {θ}⊆ Ξ∩ Ξ’

Λ Ξ Λ’ Ξ’

&

return check

call subcheck call subcheck

Λ Ξ {θ}

return true

Ξ ∩ Ωk?

call check

∃∅
∀≠∅

subcheck

Ξ’ Λ’

call kempe

41

For step 3, we define φ as follows: let x1…xn be the sequence of darts traversed by
running the quiz on the configuration map. Since this sequence contains exactly one
dart in each face cycle in the kernel of the configuration map, for any dart x in this
kernel we can find a unique i such that x = f k(xi) for some k. We then set φ(x) = f k(ui),
where u1…un is the sequence of darts traversed by running the quiz on the counter
example map. Since both runs succeed, xi and ui have the same arities, so φ trivially
preserves arities and f arrows. Since the two question trees composing the quiz span
the configuration map kernel, we can then establish that φ is a preembedding by
showing that it preserves one e arrow for each branch in these trees. This follows from
the equational characterization of the “left” and “right” steps that were presented
graphically in 5.3:

• a “left” step takes us from x to n(e(n(x))) = e(f -2(x))
• a “right” step takes us from x to n(e(x))) = f(e(f(x)))

However, we can’t use these equations directly, because the traversal may leave the
kernel during double left and right step. We get around this issue by slightly adjusting
the definition of double left steps, so that the following property holds

• φ(e(xi)) = e(φ(xi)) for every xi in x1…xn.
This follows from a property of the quiz tree traversal

• φ(e(n-1(x)) = e(φ(n-1(x)) for every x at which the recursive quiz tree traversal
is called (because of the double steps, x is not necessarily one of the xi).

This holds at the tree roots because the traversals start from an edge cycle in both the
configuration and counter example maps, and inductively because of the geometric
identities.

Since φ preserves f arrows, the first of these equations implies that φ preserves at least
one e arrow connecting the face cycle of x to the face reached by a simple left or right
step. The second equation is used for the double-left and double-right steps; it implies
the existence of another e arrow connecting the face reached by the double step to the
lower part of the tree.

x

left right

x

double left double right

x

face ring

spoke ring

42

Step 4 is new to our proof, although it was inspired by the justification for the
configuration search heuristic of Robertson et al [27]. The two additional geometrical
constraints on configuration maps are:

a) The kernel must have radius 2, that is, there must be a face in the kernel whose
second neighborhood contains the entire kernel.

b) The arity of the ring faces must be between 3 and 6, inclusive.
Condition a) is fairly natural, since we are trying to embed the kernel of the
configuration map inside a second neighborhood of a counter example map; condition
a) was mentioned by Robertson et al. Condition b) is analogous to Robertson et al.’s
“well-positioned” condition, but is simpler in that it does not depend on how the
configuration embeds in the second neighborhood. We have an informal argument
that condition b) should hold for all configurations useful for the Robertson et al.
proof technique, but our proof does not depend on this argument, since we explicitly
check for condition b) during the quiz compilation; we check condition a) separately.

The conclusion of step 4 rests on three geometrical lemmas:

i. φ preserves all e arrows in the kernel.
ii. φ maps kernel e arrows faithfully .

iii. The border ring of the configuration is chordless.
The proof of each of these uses induction on the size of the ring interior disk. The
proof of lemma i depends only on the connexity of the domain φ, and the preservation
of f arrows; it doesn’t use conditions a) or b), or arities. It proceeds as follows:

• Consider a kernel dart x such that e(x) is also in the kernel, but φ(e(x)) ≠
e(φ(x)).

• By the connectivity property of φ, there must be some simple path p of faces
in the kernel that goes from e(x) to x, and is preserved by φ; i.e., p is a ring in
the configuration map kernel, but φ(p) is only a path in the counter example
map.

• We use induction on the size of the disk map delimited by p; by exchanging x
and e(x), we may assume that this disk map lies inside the kernel.

• Consider the arrows n(x) ↔ e(n(x)) = f -1(x) and f(e(x)) ↔ e(f(e(x)) = f -1(n(x)).
If they are both preserved by φ, then we get φ(e(x)) = e(φ(x)) by equational
reasoning, using the fact that the counter example map is cubic.

• Hence, one of these e arrows is not preserved; note that these correspond to
the edges between the face containing n(x) and those containing x and e(x),
respectively.

• The face containing n(x) is on or inside p, so n(x) is in the kernel, and there
must be a simple path q, not meeting p, from some face y∈ p to n(x) (y may be
x or e(x)). Dividing p at y and combining one of the pieces with q gives us a
ring with a smaller disk, so we can apply the induction hypothesis.

 e(x)

n(x)

y

p

q

43

The proof of lemma ii follows a similar argument, where the roles of the
configuration and counter example maps have been swapped.

• We want to prove that if φ(x) = e(φ(y)) for some kernel darts x and y, then x =
e(y), so assume some x and y for which this does not hold.

• Condition a) implies that there a simple path p in the kernel of the
configuration map going from y to x, of length at most 5 (at worst, we go from
x to the central face and then to y). Because of i and the assumptions on x and
y, φ(p) is a ring in the counterexample map, while p is only a path in the
configuration map.

• Exchanging x and y and reversing p if necessary, we can assume that the
interior of p is no larger than its exterior.

• If φ(p) has an empty interior then we can use a simplified variant of the
induction used for lemma i to derive a contradiction (n(φ(x)) must be in φ(p)).

• By the above, φ(p) is 0-nontrivial, so by the Birkhoff lemma it must have

length 5 and its interior must consist of a single face.

• Thus φ maps p to a spoke ring; since φ preserves the formula for the next dart

in a spoke ring, p must be a spoke ring arc in the configuration map, wrapping
around a single face of the configuration map. That face cannot be in the
kernel, for then it would have to be a pentagon, since it is mapped to the
central pentagon and φ preserves arity on the kernel, and this would imply x =
e(y). Hence it is a ring face, adjacent to the five different faces in p. Since it
must also be adjacent to the faces respectively preceding and following it on
the border ring, it must be at least a heptagon; but this violates condition b).

The proof of lemma iii uses yet another variant of the same argument:
• Any chord of the border ring of the configuration map splits it in two rings

with disconnected interiors. Since the union of these interiors is the kernel,
which is connected, one of the subrings must have a disjoint interior.

• By induction on the length of the subring with an empty interior, there must be
a subring of length 3.

• The middle face of that subring is only adjacent to two other faces in the
subring – this violates condition b).

The combination of lemmas i–iii implies that φ faithfully injects the kernel of the
configuration map into the counter example map. Since the configuration map is
plain, and cubic except on the border n cycle, we can define

 φ��ei(nj(x)) = ei(nj(φ(x)))
to get the required embedding: it follows from iii that each border ring face is adjacent

to at least one kernel face, hence the equation above defines φ��totally.

φ(x) φ(y) φ(p)
?

φ(x) φ(y)

n(φ(x))

φ(p)

44

Finally, for step 5 we follow closely Robertson et al., using the following conditions
to ensure that the application of a contract yields a smaller bridgeless map:

a) The contract is sparse: no two darts of its e-closure belong to the same n cycle,
or to the border n cycle.

b) The contract has between 1 and 4 darts.
c) If the contract has 4 darts, then it has a triad: there is a kernel dart of the

configuration map that is adjacent to at least 3 darts, belonging to different
faces, in the e-closure of the contract, but not to all such darts.

Our condition c) is slightly more restrictive but easier to check than the corresponding
condition in [26]. We show that conditions a), b), and c) are preserved by φ�, with the
non-border and kernel requirement dropped in a) and c), and that the combination of
a), b), and c) implies that no simple ring r of a minimal counter example can consist
almost entirely of contract edges, i.e., be such that all but one dart of r belong to the e-
closure of the contract:

• By induction on the size of r, condition a) implies that r cannot have an empty
interior; the proof is similar to that of lemma iii in step 4.

• By symmetry, r is thus 0-nontrivial; hence by the Birkhoff lemma and
condition b), r must be the spoke ring of a pentagon, and contain all the darts
of the e-closure of the contract, which must be of length 4.

• Condition c) states that there is a dart adjacent to three different darts in r, yet
is not in the inner pentagon cycle (it would then be adjacent to all of r). This
violates a corollary of the Birkhoff lemma.

We conclude by showing, by induction on the contract size, that the absence of such
almost-contract rings implies that erasing all the contract edges yields a smaller
bridgeless map, whose colouring induces a contract-colouring of the counter example
map, and thus of the contract map.

5.5 Enumerating parts

Recall that the unavoidability proof consists in proving that in a minimal counter
example the second neighborhood of any face whose “discharged” arity is less than 6
contains a copy of the kernel of one of the 633 reducible configurations. This is done
by going through a symbolic enumeration of all possible shapes of second
neighborhoods, checking for each shape that either

a) The central face has arity at least 6, after “averaging” with the discharge rules.
b) The quiz for one of the 633 configurations runs successfully at one of the

darts of the neighborhood.
 Both of these checks depend only on the arity of the neighborhood faces, so a
“shape” is just a mapping from these faces to integer intervals. We call these
mappings parts, following Robertson et al. Using their terminology [26], we
distinguish four kinds of faces in the domain of a part:

• The central face is called the hub; it always has a fixed arity.
• Faces in the first neighborhood of the hub are called spokes.
• Faces in the second neighborhood that are adjacent to two (consecutive)

spokes are called hats.
• Other second neighborhood faces, which are adjacent to only one spoke, are

called fans.
We represent a part as a counterclockwise sequence of subparts, where each subpart
is a record containing the arity intervals for a spoke, the hat clockwise from it, and the

45

counterclockwise sequence of fans that follows that hat. The length of the subpart
sequence is the arity of the hub.

The intervals in a part take only a very limited range of values:

• The lower bound is at least 5, since a counter example map is pentagonal.
• The upper bound is either less than 9 or infinite, because the discharge rules

don’t discriminate between faces with more than 8 sides, and configuration
maps have at most one face with more than 8 sides, which it is only matched
with the hub. For the same reason, the lower bound is less than or equal to 9.

Hence there are only 15 possible intervals, and the interval [5,+∞) means “no
constraint”. We always assign the [5,+∞) interval to fan faces that are not known to
be distinct, for example when the exact arity of the corresponding spoke is not known.
Indeed we have four kinds of subpart records, according to whether there are 0, 1, 2,
or 3 known distinct fans; in the latter cases the arity of the spoke must be 6, 7, and 8,
respectively.

We check that a part “fits” at a particular dart x of a counter example map by using
the hypermap functions to navigate around the part and its subparts, verifying each
nontrivial arity constraint. Crucially, this does not involve checking for a one-to-one
correspondence between the faces listed in the part and the face cycles in the second
neighborhood of x (by subsection 5.4, this is not needed). Because the definition of
“fits” is purely equational, it can be manipulated efficiently by our Coq scripts.

Since “fits” relates parts to the counter example map, we can directly use parts to
specify how arities are discharged. We can turn the 32 rules of Robertson et al. into a
list p1,.., pn of parts (n=71), and then define the discharged arity δ(r) of an f cycle r as

δ(r) = #r + 1/10∑x∈ r #{i : pi fits f -2(x)} − 1/10∑x∈ r #{i : pi fits f -2(e(x))}
Since e is an involution, we have, from the Euler formula,

∑r δ(r) = ∑r #r = #d = 6#f − 12 < 6#f = 6#{r : r is an f cycle}
Hence δ(r) < 6 for some r, and this holds for any sequence pi. In comparison, the
definition used by Robertson et al. [26] depended on the Birkhoff theorem and on
additional assumptions on the discharge rules.

Given a part p that fits a dart x, we can efficiently check whether some part pi fits
some dart f k (x) in the f cycle r of x by doing a memberwise comparison of the
intervals in pi and p rotated left k times. Thus we can get a lower bound on the first
sum in the definition of δ(r). To compute a lower bound on δ(r) we also need to find
an upper bound on the second sum. As illustrated in the figure below, we use using
pattern matching to compute a part p�i such that pi fits f -2(e(x)) only if p�i fits f -2(x).

hub

spoke

spoke

spoke

hat fan

hat

fan

subpart

46

(This is the reason for the f -2 in the definition of δ(r).) We can therefore get the
desired upper bound by comparing p�i with all rotations of pi.

�

The above gives us an efficient way of checking for condition a). To efficiently run a
quiz, i.e., to check condition b), we need to be able to navigate efficiently around a
part. This is an issue because the Coq programming model does not include random-
access arrays. However, running a quiz only requires local displacements (left and
right steps), so we can use Huet’s zipper data structure [21] to solve our problem. The
data structure we use to search and check for reducible configurations is a zpart (for
zipped part). A zpart is a representation of a pair of a part and of a dart position in
that part, optimized for fast access to the arity intervals of nearby darts. It consists of

• the (counterclockwise) sequence of subparts that starts with the subpart s
containing the dart position

• the reversed sequence of subparts before s
• a subpart location pinpointing the dart position in s

This representation makes it easy to move one step up or down the sequence of
subparts in constant time, keeping the initial part p and its reverse in global constants
to handle steps that wrap around the beginning or end of p (to minimize the
occurrence of such cases, the total size of the forward and reverse sequences of a zpart
is always twice that of p).

Because the construction of all our configuration maps always starts with a Y step, all
quizzes start with a three-way branch from the (central) node created by the Y step:

Thus quizzes can be decomposed into the triple of arities of the faces incident to the
central node, and a triple of questions rooted at the edges incident to the central
node. We use a decision diagram structure to sort all the question triples according
their respective arity triple, for all rotations and reflections of the central node
(omitting reflections for configurations that have an axial symmetry). This speeds up
considerably the configuration search:

• While traversing the part, we only need to consider complete nodes, such that
all the three faces incident to the node are mapped to an interval of arities by
the part. There are at most 6, and usually less than 3 complete nodes in each
subpart.

s0 s1

s2

s3 s4

s5

h01

h12

h23

f1
1

f2
1

f3
1

hub
hub

s0 s1

s2

s3 s4

s5

h23

h01

h34

h12

f1
1

f3
1

f2
1

h34
subpart of p�i

h34 f2
1

face index in p�i

face index in pi

h34 f2
1

hub

spoke i

hat over i and j

jth fan over i
and j

hub

si

hij

fi
j

47

• We only need to look up the triple of the top values of these intervals in the
decision diagram to get the list of question triples that should be tested. This
list is usually quite short (it can contain up to 239 triples, though).

In addition, a little analysis reveals that these questions only traverse a very limited
subset of the dart positions of the part: only 14 positions are reachable in each subpart,
so we can use a 15-element enumeration to represent subpart locations in a zpart
(reserving one value for out-of-bounds locations). Coding and verifying the
correctness of the configuration occurrence check was therefore a straightforward11
exercise in brute-force enumeration that only took a few days.

We use the clever branch-and-bound strategy devised by Robertson et al. [26,27] to
drive the enumeration of parts. They use explicit scripts to guide the initial
decomposition of the part search space, then turn to either

i. blind enumeration to check that if we fix the arity of every face that is
mapped to a finite interval by the part, then a reducible configurations occurs,

ii. automated branch and bound to check that 10δ(r) − 60 ≥ 0.
iii. explicit matching to check that this branch is a subcase of the

rotation/reflection of a previously explored branch.
Check ii uses an explicit hint to break the bound check into checks that a well-chosen
multiset of the

T[j] = #{i : p�i fits f j-3(x)} − #{i : pi fits f j-3(x)}
and

 T[j1,j2] = T[j1] + T[j2]
obey specific bounds that sum up to less than 20(m – 6) + 2, where m is the arity of
the hub x. The branching strategy for these searches consists in enumerating all the
sublists of p�i that have a non-empty intersection with the appropriate rotation of the
part p, and check that this intersection is included in enough pi to respect the bound. If

11 Except for a devious trick that allows double steps to wrap around a spoke whose arity interval is
[5,6] – see file redpart.v.

u

u l
u r

u l

u r

u r

u l

u
u

h

h

h l

h l

h r

h r

f0
r

f1
r

f2
r

f1
l

f1
l

f2
l

f0
l

f0
r

hub spoke

spoke

spoke hat

hat fan

fan

left step

right step

subpart

unreachable
dart

spoke

48

this fails, then check i is performed on the intersection (in fact, most of the
configurations searches occur this way).

Robertson et al. provide a single C program[27] that both interprets the explicitly
supplied scripts and performs the automated checks i-iii. We used a hybrid strategy to
implement this in Coq

• We used reflection, as we had done for the reducibility and Birkhoff lemmas,
to perform the automated checks: we wrote (rather short) recursive Coq
programs that performed the checks, and proved their partial correctness.

• We used a so-called deep embedding for the explicit scripts: we added five
Coq tactics that allowed us to directly interpret the explicit scripts12 as Coq
proof scripts.

We chose to use a deep embedding mainly because it seemed silly to duplicate part of
the proof search engine of Coq in a reflection program. However, this decision had
another much more important, advantage: we could use Coq’s interactive facilities to
step through the scripts. This turned out to be crucial, because, although we had
formally proved their correctness, most of our reflected functions needed to be
debugged! The reason for this apparent contradiction was that we only formally
verified partial correctness: that if a reflected check returned true, then the condition
it checked for actually held. By that measure, a check that returned false, would be
correct, albeit useless. As it turned out, a handful of trivial programming errors (e.g.,
off-by-one arithmetic, misspelled constants, and even clerical errors in entering the
discharge rules) had crept in the development, and needed to be weeded out. As we
pointed out earlier, debugging with a completely pure language is awkward, so the
ability to step through the script was vital. Finally, the deep embedding allowed us to
use the proof assistant to develop our own scripts for parts of length 5 and 6. In the
Robertson et al. proof these cases are dispatched with manual proofs using graphical
arguments that would have been difficult to carry out in a fully formal system, so we
decided instead to reuse the scripting infrastructure to come up with our own scripts.
Although the script for size 6 is 640 lines long, this was completely straightforward.

5.6 From maps to hypermaps

Like the Alexander proof of the Jordan Curve Theorem [25], our proof that an
arbitrary map colouring problem can be reduced to a set of of hypermap colouring
problems uses discrete grids to approximate the continuous plane. Specifically, we
use grids based on points with coordinates (x,y) that are binary fixed point numbers,
i.e., such that 2sx and 2sy are both integers, for some fixed non-negative integer s (the
scale of the grid). We approximate the open connected regions of the map with simple
polygons that are the union of grid squares, which we call mattes (i.e., the vertices of
a matte are grid points, and the sides of a matte are parallel to one of the axes).

We really only need to construct discrete approximations of finite maps, since it is
well-known that the compactness theorem for propositional logic implies that the
Four Colour Theorem for infinite maps follows from the Four Colour Theorem for
finite maps. However, the proof of the compactness theorem relies on the axiom of
choice, which we wished to avoid. Therefore we specialized the compactness
argument to the Four Colour Theorem, making use of the fact the every open region

12 Actually, a pretty-printed and somewhat more readable version of these scripts.

49

contains a grid square for a suitable scale (this gives an effective enumeration of the
regions of a map).

The discrete colouring problem for a finite map is constructed in several steps:
1) Pick, for each pair of adjacent regions, a common border point that is not a corner;

also pick a point in each region.
2) Pick, for each of the border points chosen in step 1), a small rectangle that

contains the point but that is disjoint from other regions and the other rectangles
chosen in this step.

3) Pick grid rectangles (rectangles whose vertices are grid points) that approximate
from inside the rectangles chosen in step 2); the approximation of each rectangle
must contain the corresponding border point from step 1).

4) Pick mattes that appoximate the map regions from inside; the matte approximation
of a region R must contain the point chosen in step 1) and meet the inside of every
grid rectangle from step 3) that corresponds to a border point of R.

5) Now the interior of each border rectangle B meets two region mattes; call them Q
and R. Extend Q with grid squares included in B until Q contains a square adjacent
to a square contained in R; do this for each B.

6) Choose a grid rectangle that contains all the extended mattes from step 5) – a
bounding box.

7) Contruct the hypermap that corresponds to the map whose regions are the
individual grid squares contained in the bounding box from step 6), and the
exterior of that box.

8) Each matte from step 5) now corresponds to a simple ring cycle in the hypermap
from step 7); use the converse of the “patch” operation defined in §5.1 to
construct the remainder map of that ring (in essence, erasing the darts
corresponding to grid segments inside the matte). Repeat for each matte; the result
is the desired hypermap.

To summarize, we take the hypermap for a regular rectangular grid and punch out
approximations of the map regions. It is interesting to note that in this construction,
the planarity of the final hypermap is a direct consequence of the planarity of the

Step 1) Steps 2)-3) Step 4)

Steps 6)-7) Step 5) Step 8)

50

rectangular grid hypermap. The latter is established simply by counting: the map for
an m×n rectangle has (m+1)(n+1) nodes, mn+1 faces, m(n+1) + (m+1)n edges, hence

N + F – E = (m+1)(n+1) + (mn+1) - m(n+1) - (m+1)n = 2
so the Euler formula holds. The Jordan Curve Theorem plays no part in this.

In step 8) the mattes and bounding box should all use the same scale. This can
obviously always be achieved by subdivision. In the Coq proof, we reduce everything
to a common scale just after step 4), and perform steps 5) to 8) on the integer grid;
even in steps 3) and 4), we use only rectangles and mattes on the integer grid,
introducing the scale factor separately: for example, we use the following definition:
an integer matte Q contains a point P = (x,y) at scale s iff (�2sx�, �2sy�) ∈ Q.

Steps 1), 2) and 3) follow from the topological definitions, classical reasoning, and the
fact that grid points form a dense subset of the plane. Step 4) is carried out by
choosing, for each region R of the map, an increasing sequence of mattes
approximating R from inside, Q0 ⊆ Q1 … ⊆ Qn ⊆ R. We take for Q0 a single grid
square containing the point chosen in step 1). For any i, if there is some border grid
rectangle B from step 3) that meets R but not Qi, we choose some point P in B�R, and
choose a matte Qi+1 such that Qi�{P} ⊆ Qi+1 ⊆ R; if there is no such B then we are
done (we set n=i). The proof that Qi+1 exists is the only point in the construction
where we need to use topological reasoning. We show that the union Qi of all mattes
Q such that Qi ⊆ Q ⊆ R is a nonempty clopen of R; since R is connected, this implies
Qi = R, hence P∈ Qi, and the existence of Qi+1 then follows from the definition of Qi.
That Qi is both closed and open in R follows from two combinatorial properties of
mattes; for any matte Q and grid recatngle N,

1. For any point P∈ N, there is a matte Q’ such that Q�{P} ⊆ Q’ ⊆ Q�N .

2. For any point P∈ N�Q there is a matte Q’, such that Q ⊆ Q’ ⊆ Q�N and Q’
contains all grid squares adjacent to P.

Property 1 implies that Qi is closed, and 2 implies that is Qi open. Both properties are
immediate consequences of a more specific property of integer mattes

3. For any matte Q whose vertices have even integer coordinates, any rectangle
N that meets Q and whose vertices have integer coordinates, and any unit
square S included in N and not touching the border of N, there is a sequence

S0... Sn=S of unit squares of N such that S0 ⊆ Q, and Q�S1�...�Si is a matte
for all i ≤ n.

In fact, property 3 is the only significant combinatorial property we need to proove on
mattes, because it also provides the means of carrying out step 5) of the construction.
Property 3 is nontrivial because of the restriction that mattes must be simple polygons;
that restriction is needed in step 8). This restriction prevents us from blindly adding
all the unit squares in N to Q: we have to carefully select the sequence S0... Sn so that
it stays away from Q after S0 and S1. This is possible because of the assumption that
the vertices of Q have even coordinates. Consider the 4×4 square with even
coordinates that covers S and all the unit squares adjacent to S. The assumption on Q
implies that each of the four 2×2 quadrants of the 4×4 square are either contained in
or disjoint from Q.

51

If S is contained in Q we can take n=0; if not, the 2×2 quadrant that contains S is
disjoint from Q. If one or two of the quadrants adjacent to S meet Q then they are
contained in Q so we can take n=1, letting S0 be the square of that quadrant adjacent
to S. If Q meets only the quadrant that touches S diagonally, then we can take n=2,
letting S0 be the square of that quadrant that touches S (diagonally), and S1 be either of
the two squares adjacent to both S0 and S. Finally, if the entire 4×4 square is disjoint
from Q then by induction13 on the size of N there is a sequence of unit squares that
extends Q, ends with a unit square S’ adjacent to S, and lies entirely on one side of the
line separating S from S’, i.e., if S’ is just below S, then the sequence contains only
squares below S. In that last case we can simply append S to the sequence.

Finally, step 6) is a straightforward computation, and step 7) is just a matter of
coining arithmetic formulas for the e, n, and f permutations, given the following
system of coordinates :

• grid points have integer coordinates
• grid unit squares have the same coordinates as their lower lefthand corner
• darts of the hypermap are unit vectors between two grid points. The

coordinates of a dart are obtained by adding the coordinates of its origin to the
coordinates of the unit square that lies counterclockwise of the dart.

The dart coordinates enjoy several useful identities. A dart wth coordinates d belongs
to a square with coordinates �d/2���has origin d-�d/2�, and its orientation is given by
the remainder of that division (e.g., (0,0) for left-to-right). The f (resp. n) permutation
simply cycles through the four remainder values while keeping the square (resp.
origin) coordinates unchanged. In the Coq script these coordinates and their properties
are used throughout this part of the proof; for example, they are used to carry out the
complex matte extension proof outlined above in an orientation-independent way.

6 Looking back

This was a project that started out with a modest objective – trying out the internal
execution engine of Coq on a “real” benchmark – but became more ambitious over
time, as each successfully reached objective revealed that a new one might just be
within reach.

We had come across the Robertson et al. proof[26] while looking for programming
project for students in a basic computer science course. We wondered how a
“modern” approach to the reducibility computation, based on decision diagrams,
would fare against the idiomatic array-based C program supplied by Robertson et al.,
so we tried rolling out our own, in OCaml. The C program turned out to be faster, but
not by much; however we noted that the usually crucial caching and hash-consing

13 In the formal proof, the induction comes before the case analysis on S and its neighbors; furthermore
in the induction hypothesis we need to make a distinction between the rectangle N in which the Si
sequence is taken, and a larger rectangle N0 that contains all the neighbors of S, but is such that Q and
N0-N are disjoint.

 S

52

optimizations had little impact for this problem. This meant that the reducibility
computation could be carried out efficiently by a purely functional program – such as
an internal Coq program.

This looked like a nice benchmark for Coq or other provers, so we decided to give it a
try. We decided to start modestly by just enumerating the colourings of a
configuration, using explicit adjacency lists. Our program14 was reasonably fast, even
though it made liberal use of higher-order iterators, so we tried generating the
decision tree, primarily to check memory requirements. The experiment showed that:

• The full computation would barely fit in memory, using Coq’s internal data
representation. The lower layers of the chromogram tree would have to be
compressed, and this would complicate the algorithm enough to make a
correctness proof worthwhile.

• Proving the correctness of such purely combinatorial programs was
surprisingly easy in Coq, using the generate-and-test approach outlined in
section 4. For example, a somewhat tricky function that computed in a single
pass the normalized edge-colouring of a ring from one of its face colourings
was harder to program than to prove correct!

These observations prompted us to switch to a more ambitious goal: a fully checked
formal proof of the (computation-intensive) reducibility part of the Four Colour
Theorem. We enlisted the help of Benjamin Werner, and divided the work: we would
port and verify the decision diagram based check, and he would formalize the Kempe-
chain proof of the validity of the “consistent” relation presented in section 5.2.

Our “program check” part turned out to be easier than expected, once we had
hammered out a crude first prototype of the tactic shell described in section 4 to
organize the bookkeeping that cluttered our scripts. Having finished early, we took a
look at the bigger picture – which definition of planar graphs could plausibly be used
to actually do a full proof of the full Four Colour Theorem in Coq? It appeared that an
explicit construction program definition would work best for the reducibility part.
However, using this definition for the general statement seemed contrived. In
particular, the proof of correctness of the contract validity check clearly depended on
the Birkhoff theorem and hence some form of the Jordan Curve Theorem, which
seemed difficult to derive by induction on the construction program15. The line of
reasoning exposed in 5.1 lead us to hypermaps, and we decided to try to validate the
concept by proving the equivalence between the Euler formula and the Jordan
property.

This was much harder than anticipated, because of the gap between the intuitive,
picture-rich proof outline, and the very precise logical statement that had to be fed to
the Coq proof assistant. We went through several styles of definition for the basic
notions, such as paths. At the outset, the “boolean predicate with reflection” approach,
outlined in section 4, emerged as a clear winner. Our tactic shell proved to be
surprisingly effective in this setting; in particular, we could usually derive an
induction hypothesis directly from a goal with a single command, so we rarely needed

14 Sadly, this program does not appear in the final version of the development. It was scrapped when
we changed the representation of configurations to the explicit construction programs presented in 5.3.
15 Other efforts at formalizing graph theory had stumbled upon this difficulty.

53

spell out such hypotheses. With the addition of occurrence selection to our tactic
shell, this even turned out to be nearly always true.

With the formal setting in place, we decided to tackle the contract validity check, a
corner of the reducibility proof that we had originally planned to cut. The correctness
of the check follows easily from the Birkhoff lemma (this is one of the cleverest
innovations of the Robertson et al. proof). Proving the Birkhoff lemma was enticing
because it would be an example of using the reflected reducibility computation to
prove a tangible graph theoretic result.

However, the proof of the Birkhoff lemma required the graphically obvious
operations of cutting up a map along a cycle and conversely of gluing back two map
pieces. Defining these operations formally, and proving such intuitively obvious
properties as “the whole map is planar if and only if the two pieces are” turned out to
be much harder than expected, again because of the gap between pictorial intuition
and computerized formalism. Indeed, the asymmetric “patch” relation described in
section 5.1 emerged directly from the formal statement of the Jordan property – it
seems completely counterintuitive when one only looks at plain maps or graphs. This
“patch” relation is one of the enabling concepts of the formal proof; as the proofs of
most of the key embedding lemmas depend on its precise formulation and properties
(see section 5.4, steps 1 and 4). The “obvious” symmetry properties of plain map
cutouts in a plain map are actually not so trivial to prove formally (see file
revsnip.v).

At this point we needed to integrate in our setting Benjamin Werner’s work on the
correctness of the consistency relation between edge colourings and chromograms, in
order to be able to use the reflected reducibility computation in the proof of the
Birkhoff lemma. The work wasn’t quite complete; some lengthy case analyses were
unfinished. Our own experience suggested that these manual analyses could be
avoided by replacing the relational characterisation of the consistency predicate with
an effective one, and replacing lemmas that asserted the existence of chromograms
with explicit functions for computing them. Indeed, it took us less than a day to write
these functions and prove their correctness (using our tactic shell), and only another
day to complete the entire proof, reusing lemmas from the Jordan↔Euler proof to
build on-the-fly the construction program he needed to postulate. The entire
development fits in a single file (kempe.v).

We also needed to relate the adjacency list data used by the reducibility check
functions to our hypermap model. Extracting geometrical relations directly from the
adjacency data turned out to be complex and impractical, so we decided to exploit the
construction program structure that was built into the Robertson et al. data (it was
used in their colouring function), and to generate both the adjacency data and a
dependently-typed hypermap from it. The correspondence proofs were feasible, but
not very elegant; they used a large number of ad hoc arithmetic manipulations, as the
maps dart were defined as pairs of indices in the construction.

We were now faced with a software engineering problem: we needed to integrate
formal theories whose development had spanned several years. This meant that while
their main results were still usable (after all, this was a formal development), their
proofs tended to rely on slightly different collections of facts about basic data

54

structures such as integers, lists, and paths. We might have been able to complete the
Birkhoff lemma proof, but a major refactoring was clearly needed for any further
progress. This actually took several (part-time) months to complete.

With the cleaned-up basis in place, the Birkhoff lemma and its immediate
consequences (e.g., that any face should have at least five sides) followed easily (the
“immediate consequences” actually required more work). The last bit of graph theory
that remained in the Four Colour Theorem proof was the construction of the
embedding. It was only at this point, when we examined how we could formalize the
unpublished proof of correctness [27] of the configuration search heuristic used by
Robertson et al., that we realized how much the unavoidability proof could be
simplified, and that a complete formal proof of the Four Colour Theorem was close at
hand.

After devising the quiz compilation algorithm, we realized that we could also compile
the contract map colourings, using extended construction programs as an intermediate
representation. That was the death knell for the adjacency list representation and the
mess of index calculations it required. We completely removed it from the proof,
along with the graph colouring procedure that had been the first step of the proof.

After this, completing the combinatorial proof was mostly a (purely functional)
programming exercise, described in section 5.5, and refactoring (packaging sets of
geometrical assumptions in records, which we had deferred, since we didn’t know
which exactly sets would be useful).

Finally, the first part of the proof – the discretization of the continuous problem – was
the last one to to be completed. We wanted to avoid getting heavily involved in real
analysis and the proof of the Jordan Curve Theorem, so we had planned to settle for
an informal proof of this reduction. While writing the first draft of this paper we
realized both that we would have a much stronger result if we completed this last part,
and that it was possible to do this while relying mostly in the combinatorial methods
we had developed for the rest of the proof – so we went ahead and did it.

7 Looking ahead

As with most formal developments of classical mathematical results, the most
interesting aspect of our work is not the result we achieved, but how we achieved it.
We believe that our success was largely due to the fact that we approached the Four
Colour Theorem mainly as a programming problem, rather than a formalization
problem. We were not trying to replicate a precise, near-formal, mathematical text.
Even though we did use as much of the work of Robertson et al. as we could,
especially their combinatorial analysis, most of the proofs are largely our own.

Most of these arguments follow the generate-and-test pattern exposed in section 4.
We formalized most properties as computable predicates, and consequently most of
our proof scripts consisted in verifying some particular combination of outcomes by a
controlled stepping of the execution of these predicates. In many respects, these proof
scripts are closer to debugger or testing scripts than to mathematical texts. Of course
this approach was heavily influenced by our starting point, the proof of correctness of
the graph colouring function. We found that this programs-as-proof style was

55

effective on this first problem, so we devised a modest set of tools (our tactic shell) to
support it, and carried on with it, generalizing its use to the rest of the proof. Perhaps
surprisingly, this worked, and allowed us to single-handedly make progress, even
solving subproblems that had stumped our colleagues using a more orthodox
approach.

We believe it is quite significant that such a simple-minded strategy succeeded on a
“higher mathematics” problem of the scale of the Four Colour Theorem. Clearly, this
is the most important conclusion one should draw from this work. The tool we used to
support this strategy, namely our tactic shell, does not rely on sophisticated
technology of any kind, so it should be relatively easy to port to other proof assistants
(including the newer Coq). However, while the tactic shell design might be the most
obvious byproduct of our work, we believe that it should have wider implications on
the interface design of proof assistants. If, as this works seems to indicate, the
“programming” approach to theorem proving is more effective than a traditional
“mathematical” approach, and given that most of the motivated users of poof
assistants have a computer science background and try to solve computer-related
problems, would it not make interface of a proof assistant more similar to an program
development environment, rather than strive to imitate the appearance of
mathematical texts?

Acknowledgements

The work of Benjamin Werner on reducibility correctness was an integral part of this
development, even though it does not appear in the final proof script; we benefited
from extended discussions with him throughout this work, several of which also
involved Vincent Danos. We thank Kenneth Appel for a historical perspective on the
original Four Colour Theorem proof, Robert Cori for pointing out the related work on
hypermaps, and Hugo Herbelin and Bruno Barras for always patiently helping us
(mis)use the Coq assistant. We are also grateful to Cédric Fournet for his careful
proofreading of the initial draft of this report.

Rerefences
1. S. B. Akers, ‘Binary Decision Diagrams’, IEEE Transactions on Computers c-

27(6) (1978), 509–16.
2. T. Altenkirch, ‘Constructions, Inductive types and Strong Normalization’, PhD

Thesis, University of Edinburgh, 1993.
3. K. Appel and W. Haken, ‘Every map is four colourable’, Bulletin of the American

Mathematical Society 82 (1976), 711–12.
4. K. Appel and W. Haken, ‘Every map is four colourable, Part I: Discharging’,

Illinois Journal of Mathematics 21 (1977), 429–90.
5. K. Appel and W. Haken, ‘Every map is four colourable, Part II: Reducibility’,

Illinois Journal of Mathematics 21 (1977), 491–567.
6. K. Appel and W. Haken, Every map is four colourable, American Mathematical

Society, 1989.
7. D. Aspinall, ‘Proof General: A Generic Tool for Proof Development’,

Proceedings of Tools and Algorithms for the Construction and Analysis of
Systems, (TACAS) 2000, Springer-Verlag LNCS 1785, 2000.

56

8. G. Barthe, J. Hatcliff and M.H. Sørensen, ‘CPS translations and applications: the
Cube and beyond’, Higher Order and Symbolic Computation 12(2) (1999), 125–
70.

9. Y. Bertot and P. Castéran, Interactive Theorem Proving and Program
Development, Coq'Art: The Calculus of Inductive Construction, Texts in
Theoretical Computer Science, an EATCS series. Springer Verlag, 2004.

10. G. D. Birkhoff, ‘The reducibility of maps’, American Journal of Mathematics 35
(1913), 115–28.

11. S. Boutin, ‘Using reflection to build efficient and certified decision procedures’,
Proceedings of Theorethical Aspects of Computer Science (TACS) 1997, Springer-
Verlag LNCS 1281, 1997.

12. R. E. Bryant, ‘Graph-Based Algorithms for Boolean Function Manipulation’,
IEEE Transactions on Computers c-35(8) (1986), 677–91.

13. The Coq Development Team, ‘The Coq reference manual, version 7.3.1’, system
and documentation available from ftp://ftp.inria.fr/INRIA/coq/V.7.3.1.

14. T. Coquand and G. Huet, ‘The Calculus of Constructions’, Information and
Computation 76(2/3) (1988), 95–120.

15. R. Cori, ‘Un code pour les graphes planaires et ses applications’ Astérisque 27
(1975), 169.

16. R. Cori and A. Machí, ‘Maps, hypermaps and their automorphisms: a survey I, II,
III’, Expositiones Mathematicae 10(5) (1992), 403–67.

17. H. Geuvers, R. Pollack, F. Wiedijk and J. Zwanenburg, ‘A Constructive Algebraic
Hierarchy in Coq’, Journal of Symbolic Computation 34(4) (2002) 271–86.

18. H. Heesch, Untersuchungen zum Vierfarbenproblem, 810/a/b, Bibliographishes
Institut, Mannheim-Wien-Zürich, 1969.

19. M. Hofmann and T. Streicher, ‘The groupoid interpretation of type theory’,
Proceedings of Twenty-five years of constructive type theory, Oxford University
Press, 1998.

20. J. E. Hopcroft and R. E. Tarjan, ‘Efficient planarity testing’, Journal of the
Association for Computer Machinery 21 (1974), 145–54.

21. G. Huet, ‘The Zipper’, Journal of Functional Programming 7(5) (1997), 549–54.
22. A. B. Kempe, ‘On the geographical problem of the four colours’, American

Journal of Mathematics 2 (part 3) (1879), 193–200.
23. K. Kuratowski, ‘Sur le problème des courbes gauches en topologie’, Fundamenta

Mathematicae 15 (1930), 271–83.
24. A. Miquel, ‘A Model for Impredicative Type Systems, Universes, Intersection

Types and Subtyping’, Proceedings of the fifteenth annual IEEE symposium on
Logic in Computer Science (2000).

25. M. H. A. Newman, Elements of the topology of plane sets of points, Dover
Publications (1992).

26. N. Robertson, D. Sanders, P. Seymour, and R. Thomas. ‘The Four-Colour
Theorem’, Journal Combinatorial Theory, Series B 70 (1997), 2–44.

27. N. Robertson, D. Sanders, P. Seymour, and R. Thomas. ‘Discharging Cartwheels’,
unpublished manuscript, available at
ftp://ftp.math.gatech.edu/pub/users/thomas/fcdir/discharge.ps.

28. T. L. Saaty and P. C. Kainen, The Four-Colour Problem: Assaults and Conquest,
McGraw-Hill, 1977.

29. S. Stahl, ‘A Combinatorial Analog of the Jordan Curve Theorem’, Journal of
Combinatorial Theory, Series B 35 (1983), 28–38.

57

30. P. G. Tait, ‘Note on a theorem in the geometry of position’, Transactions of the
Royal Society of Edinburgh 29 (1880), 657–60.

31. W. Tutte, ‘Duality and trinity’, Colloquium Mathematical Society Janos Bolyai 10
(1975) 1459–72.

32. W. T. Tutte, ‘Combinatorial oriented maps’, Canadian Journal of Mathematics 31
(1979), 986–1004.

33. T. R. S. Walsh, ‘Hypermaps versus bipartite maps’, Journal of Combinatorial
Theory, Series B 18 (1975) 155–63.

34. D. W. Walkup, ‘How many ways can a permutation be factored into two n-
cycles?’, Discrete Mathematics 28 (1979), 315–19.

35. B. Werner, ‘Une Théorie des Constructions Inductives’, PhD Thesis, Université
Paris VII, 1994.

36. R. Wilson, Four Colours Suffice, Penguin books, 2002.

