
8
Imperative Programming in ML

Functional programming has its merits, but imperative programming is here to
stay. It is the most natural way to perform input and output. Some programs are
specifically concerned with managing state: a chess program must keep track of
where the pieces are! Some classical data structures, such as hash tables, work
by updating arrays and pointers.

Standard ML’s imperative features include references, arrays and commands
for input and output. They support imperative programming in full generality,
though with a flavour unique to ML. Looping is expressed by recursion or using
a while construct. References behave differently from Pascal and C pointers;
above all, they are secure.

Imperative features are compatible with functional programming. References
and arrays can serve in functions and data structures that exhibit purely func-
tional behaviour. We shall code sequences (lazy lists) using references to store
each element. This avoids wasteful recomputation, which is a defect of the
sequences of Section 5.12. We shall code functional arrays (where updating
creates a new array) with the help of mutable arrays. This representation of
functional arrays can be far more efficient than the binary tree approach of Sec-
tion 4.15.

A typical ML program is largely functional. It retains many of the advantages
of functional programming, including readability and even efficiency: garbage
collection can be faster for immutable objects. Even for imperative program-
ming, ML has advantages over conventional languages.

Chapter outline
This chapter describes reference types and arrays, with examples of

their use in data structures. ML’s input and output facilities are presented.
The chapter contains the following sections:
Reference types. References stand for storage locations and can be created,

updated and inspected. Polymorphic references cannot be created, but polymor-
phic functions can use references.

319

320 8 Imperative Programming in ML

References in data structures. Three large examples are presented. We mod-
ify our type of sequences to store computed elements internally. Ring buffers
illustrate how references can represent linked data structures. V -arrays exploit
imperative programming techniques in a functional data structure.

Input and output. Library functions convert between strings and basic types,
such as real . Channels, carrying streams of characters, connect an ML program
to input and output devices. Examples include date scanning, conversion to
HTML, and pretty printing.

Reference types
References in ML are essentially store addresses. They correspond to the

variables of C, Pascal and similar languages, and serve as pointers in linked data
structures. For control structures, ML provides while-do loop commands; the
if-then-else and case expressions also work for imperative programming.
The section concludes by explaining the interaction between reference types and
polymorphism.

8.1 References and their operations
All values computed during the execution of an ML program reside for

some time in the machine store. To functional programmers, the store is nothing
but a device inside the computer; they never have to think about the store until
they run out of it. With imperative programming the store is visible. An ML

reference denotes the address of a location in the store. Each location contains a
value, which can be replaced using an assignment. A reference is itself a value;
if x has type τ then a reference to x is written ref x and has type τ ref .

The constructor ref creates references. When applied to a value v , it allocates
a new address with v for its initial contents, and returns a reference to this ad-
dress. Although ref is an ML function, it is not a function in the mathematical
sense because it returns a new address every time it is called.

The function !, when applied to a reference, returns its contents. This opera-
tion is called dereferencing. Clearly ! is not a mathematical function; its result
depends upon the store.

The assignment E1:=E2 evaluates E1, which must return a reference p, and
E2. It stores at address p the value of E2. Syntactically, := is a function and
E1:=E2 is an expression, even though it updates the store. Like most functions
that change the machine’s state, it returns the value () of type unit .

Here is a simple example of these primitives:

val p = ref 5 and q = ref 2;

8.1 References and their operations 321

> val p = ref 5 : int ref
> val q = ref 2 : int ref

The references p and q are declared with initial contents 5 and 2.

(!p,!q);
> (5, 2) : int * int
p := !p + !q;
> () : unit
(!p,!q);
> (7, 2) : int * int

The assignment changes the contents of p to 7. Note the word ‘contents’! The
assignment does not change the value of p, which is a fixed address in the store;
it changes the contents of that address. We may use p and q like integer variables
in Pascal, except that dereferencing is explicit. We must write !p to get the
contents of p, since p by itself denotes an address.

References in data structures. Because references are ML values, they may be-
long to tuples, lists, etc.

val refs = [p,q,p];
> val refs = [ref 7, ref 2, ref 7] : int ref list
q := 1346;
> () : unit
refs;
> [ref 7, ref 1346, ref 7] : int ref list

The first and third elements of refs denote the same address as p, while the
second element is the same as q . ML compilers print the value of a reference as
ref c, where c is its contents, rather than printing the address as a number. So
assigning to q affects how refs is printed. Let us assign to the head of the list:

hd refs := 1415;
> () : unit
refs;
> [ref 1415, ref 1346, ref 1415] : int ref list
(!p,!q);
> (1415, 1346) : int * int

Because the head of refs is p, assigning to hd refs is the same as assigning to p.
References to references are also allowed:

val refp = ref p and refq = ref q;
> val refp = ref (ref 1415) : int ref ref
> val refq = ref (ref 1346) : int ref ref

The assignment below updates the contents (q) of refq with the contents (1415)

322 8 Imperative Programming in ML

of the contents (p) of refp. Here refp and refq behave like Pascal pointer vari-
ables.

!refq := !(!refp);
> () : unit
(!p,!q);
> (1415, 1415) : int * int

Equality of references. The ML equality test is valid for all reference types. Two
references of the same type are equal precisely if they denote the same address.
The following tests verify that p and q are distinct references, and that the head
of refs equals p, not q :

p=q;
> false : bool
hd refs = p;
> true : bool
hd refs = q;
> false : bool

In Pascal, two pointer variables are equal if they happen to contain the same
address; an assignment makes two pointers equal. The ML notion of reference
equality may seem peculiar, for if p and q are distinct references then noth-
ing can make them equal (short of redeclaring them). In imperative languages,
where all variables can be updated, a pointer variable really involves two levels
of reference. The usual notion of pointer equality is like comparing the contents
of refp and refq , which are references to references:

!refp = !refq;
> false : bool
refq := p;
> () : unit
!refp = !refq;
> true : bool

At first, refp and refq contain different values, p and q . Assigning the value p
to refq makes refp and refq have the same contents; both ‘pointer variables’
refer to p.

When two references are equal, like p and hd refs , assigning to one affects the
contents of the other. This situation, called aliasing, can cause great confusion.
Aliasing can occur in procedural languages; in a procedure call, a global variable
and a formal parameter may denote the same address.

Cyclic data structures. Circular chains of references arise in many situations.
Suppose that we declare cp to refer to the successor function on the integers,

and dereference it in the function cFact .

8.2 Control structures 323

val cp = ref (fn k => k+1);
> val cp = ref fn : (int -> int) ref
fun cFact n = if n=0 then 1 else n * !cp(n-1);
> val cFact = fn : int -> int

Each time cFact is called, it takes the current contents of cp. Initially this is the suc-
cessor function, and cFact(8) = 8× 8 = 64:

cFact 8;
> 64 : int

Let us update cp to contain cFact . Now cFact refers to itself via cp. It becomes a
recursive function and computes factorials:

cp := cFact;
> () : unit
cFact 8;
> 40320 : int

Updating a reference to create a cycle is sometimes called ‘tying the knot.’ Many func-
tional language interpreters implement recursive functions exactly as shown above, cre-
ating a cycle in the execution environment.

Exercise 8.1 True or false: if E1 = E2 then ref E1 = ref E2.

Exercise 8.2 Declare the function +:= such that +:= Id E has the same
effect as Id := !Id + E , for integer E .

Exercise 8.3 With p and q declared as above, explain ML’s response when
these expressions are typed at top level:

p:=!p+1 2*!q

8.2 Control structures
ML does not distinguish commands from expressions. A command is

an expression that updates the state when evaluated. Most commands have type
unit and return (). Viewed as an imperative language, ML provides only basic
control structures.

The conditional expression

if E then E1 else E2

can be viewed as a conditional command. It evaluates E , possibly updating the
state. If the resulting boolean value is true then it executes E1; otherwise it exe-
cutes E2. It returns the value of E1 or E2, though with imperative programming
that value is normally ().

324 8 Imperative Programming in ML

Note that this behaviour arises from ML’s treatment of expressions in general;
ML has only one if construct.

Similarly, the case expression can serve as a control structure:

case E of P1 => E1 | · · · | Pn => En

First E is evaluated, perhaps changing the state. Then pattern-matching selects
some expression Ei in the usual way. It is evaluated, again perhaps changing the
state, and the resulting value is returned.

In the function call E1 E2 and the n-tuple (E1,E2, . . . ,En), the expressions
are evaluated from left to right. If E1 changes the state, it could affect the out-
come of E2.

A series of commands can also be executed by the expression

(E1;E2; . . . ;En)

When this expression is evaluated, the expressions E1, E2, . . . , En are evalu-
ated from left to right. The result is the value of En ; the values of the other
expressions are discarded. Because of the other uses of the semicolon in ML,
this construct must always be enclosed in parentheses unless it forms the body
of a let expression:

let D in E1;E2; . . . ;En end

For iteration, ML has a while command:

while E1 do E2

If E1 evaluates to false then the while is finished; if E1 evaluates to true then
E2 is evaluated and the while is executed again. To be precise, the while
command satisfies the recursion

while E1 do E2 ≡ if E1 then (E2; while E1 do E2)

else ()

The value returned is (), so E2 is evaluated just for its effect on the state.

Simple examples. ML can imitate procedural programming languages. The fol-
lowing procedures, apart from the explicit dereferencing (the ! operation), could
have been written in Pascal or C. The function impFact computes factorials
using local references resultp and ip, returning the final contents of resultp.
Observe the use of a while command to execute the body n times:

8.2 Control structures 325

fun impFact n =
let val resultp = ref 1

and ip = ref 0
in while !ip < n do (ip := !ip + 1;

resultp := !resultp * !ip);
!resultp

end;
> val impFact = fn : int -> int

The body of the while contains two assignments. At each iteration it adds one
to the contents of ip, then uses the new contents of ip to update the contents of
resultp.

Although calling impFact allocates new references, this state change is invis-
ible outside. The value of impFact(E) is a mathematical function of the value
of E .

impFact 6;
> 720 : int

In procedural languages, a procedure may have reference parameters in order to
modify variables in the calling program. In Standard ML, a reference parameter
is literally a formal parameter of reference type. We can transform impFact into
a procedure pFact that takes resultp as a reference parameter.

fun pFact (n, resultp) =
let val ip = ref 0
in resultp := 1;

while !ip < n do (ip := !ip + 1;
resultp := !resultp * !ip)

end;
> val pFact = fn : int * int ref -> unit

Calling pFact(n, resultp) assigns the factorial of n to resultp:

pFact (5,p);
> () : unit
p;
> ref 120 : int ref

These two functions demonstrate the imperative style, but a pure recursive func-
tion is the clearest and probably the fastest way to compute factorials. More
realistic imperative programs appear later in this chapter.

Supporting library functions. The standard library declares some top level func-
tions for use in imperative programs. The function ignore ignores its argument
and returns (). Here is a typical situation:

326 8 Imperative Programming in ML

if !skip then ignore (TextIO.inputLine file)
else skip := true;

The input/output command returns a string, while the assignment returns ().
Calling ignore discards the string, preventing a clash between types string and
unit . The argument to ignore is evaluated only for its side-effects, here to skip
the next line of a file.

Sometimes we must retain an expression’s value before executing some com-
mand. For instance, if x contains 0.5 and y contains 1.2, we could exchange
their contents like this:

y := #1 (!x, x := !y);
> () : unit
(!x, !y);
> (1.2, 0.5) : real * real

The exchange works because the arguments of the pair are evaluated in order.
The function #1 returns the first component,1 which is the original contents of x .
The library infix before provides a nicer syntax for this trick. It simply returns
its first argument.

y := (!x before x := !y);

The list functional app applies a command to every element of a list. For ex-
ample, here is a function to assign the same value to each member of a list of
references:

fun initialize rs x = app (fn r => r:=x) rs;
> val initialize = fn : ’a ref list -> ’a -> unit
initialize refs 1815;
> () : unit
refs;
> [ref 1815, ref 1815, ref 1815] : int ref list

Clearly app f l is similar to ignore(map f l), but avoids building a list of
results. The top level version of app comes from structure List . Other library
structures, including ListPair and Array , declare corresponding versions of
app.

Exceptions and commands. When an exception is raised, the normal flow of
execution is interrupted. An exception handler is chosen, as described in Sec-
tion 4.8, and control resumes there. This could be dangerous; an exception

1 Section 2.9 explains selector functions of the form #k .

8.3 Polymorphic references 327

could occur at any time, leaving the state in an abnormal condition. The follow-
ing exception handler traps any exception, tidies up the state, and re-raises the
exception. The variable e is a trivial pattern (of type exn) to match all excep-
tions:

handle e => (...(*tidy up actions*)...; raise e)

Note: Most commands return the value () of type unit . From now on, our
sessions will omit the boring response

> () : unit

Exercise 8.4 Expressions (E1;E2; . . . ;En) and while E1 do E2 are derived
forms in ML, which means they are defined by translation to other expressions.
Describe suitable translations.

Exercise 8.5 Write an imperative version of the function sqroot , which com-
putes real square roots by the Newton-Raphson method (Section 2.17).

Exercise 8.6 Write an imperative version of the function fib, which computes
Fibonacci numbers efficiently (Section 2.15).

Exercise 8.7 The simultaneous assignment

V1,V2, . . . ,Vn := E1,E2, . . . ,En

first evaluates the expressions, then assigns their values to the corresponding
references. For instance x , y := !y, !x exchanges the contents of x and y . Write
an ML function to perform simultaneous assignments. It should have the poly-
morphic type (α ref)list × α list → unit .

8.3 Polymorphic references
References have been a notorious source of insecurity ever since they

were introduced to programming languages. Often, no type information was
kept about the contents of a reference; a character code could be interpreted as a
real number. Pascal prevents such errors, ensuring that each reference contains
values of one fixed type, by having a distinct type ‘pointer to τ ’ for each type τ .
In ML, the problem is harder: what does the type τ ref mean if τ is polymorphic?
Unless we are careful, the contents of this reference could change over time.

328 8 Imperative Programming in ML

An imaginary session. This illegal session demonstrates what could go wrong
if references were naı̈vely added to the type system. We begin by declaring the
identity function:

fun I x = x;
> val I = fn : ’a -> ’a

Since I is polymorphic, it may be applied to arguments of any types. Now let
us create a reference to I :

val fp = ref I;
> val fp = ref fn : (’a -> ’a) ref

With its polymorphic type (α→ α)ref , we should be able to apply the contents
of fp to arguments of any types:

(!fp true, !fp 5);
> (true, 5) : bool * int

And its polymorphic type lets us assign a function of type bool → bool to fp:

fp := not;
!fp 5;

Applying not to the integer 5 is a run-time type error, but ML is supposed to
detect all type errors at compile-time. Obviously something has gone wrong,
but where?

Polymorphism and substitution. In the absence of imperatives, evaluating an ex-
pression repeatedly always yields the same result. The declaration val Id = E
makes Id a synonym for this one result. Ignoring efficiency, we could just as
well substitute E for Id everywhere.

For example, here are two polymorphic declarations, of a function and a list
of lists:

let val I = fn x => x in (I true, I 5) end;
> (true, 5) : bool * int
let val nill = [[]] in (["Exeter"]::nill, [1415]::nill) end;
> ([["Exeter"], []], [[1415], []])
> : string list list * int list list

Substituting the declarations away affects neither the value returned nor the typ-
ing:

((fn x => x) true, (fn x => x) 5);

8.3 Polymorphic references 329

> (true, 5) : bool * int
(["Exeter"]::[[]], [1415]::[[]]);
> ([["Exeter"], []], [[1415], []])
> : string list list * int list list

Now let us see how ML reacts to our imaginary session above, when packaged
as a let expression:

let val fp = ref I
in ((!fp true, !fp 5), fp := not, !fp 5) end;
> Error: Type conflict: expected int, found bool

ML rejects it, thank heavens — and with a meaningful error message too. What
happens if we substitute the declarations away?

((!(ref I) true, !(ref I) 5), (ref I) := not, !(ref I) 5);
> ((true, 5), (), 5) : (bool * int) * unit * int

The expression is evaluated without error. But the substitution has completely
altered its meaning. The original expression allocates a reference fp with ini-
tial contents I , extracts its contents twice, updates it and finally extracts the new
value. The modified expression allocates four different references, each with ini-
tial contents I . The assignment is pointless, updating a reference used nowhere
else.

The crux of the problem is that repeated calls to ref always yield different
references. We declare val fp = ref I expecting that each occurrence of fp
will denote the same reference: the same store address. Substitution does not
respect the sharing of fp. Polymorphism treats each identifier by substituting
the type of its defining expression, thereby assuming that substitution is valid.

The culprit is sharing, not side effects. We must regulate the creation of poly-
morphic references, not assignments to them.

Polymorphic value declarations. Syntactic values are expressions that are too
simple to create references. They come in several forms:

• A literal constant such as 3 is a syntactic value.
• An identifier is one also, as it refers to some other declaration that has

been dealt with already.
• A syntactic value can be built up from others using tupling, record no-

tation and constructors (excluding ref , of course).
• A function in fn notation is a syntactic value, even if its body uses ref ,

as the body is not executed until the function is called.

Calls to ref and other functions are not syntactic values.

330 8 Imperative Programming in ML

If E is a syntactic value then the polymorphic declaration val Id = E is
equivalent to a substitution. The declaration is polymorphic in the usual way:
each occurrence of Id may have a different instance of E ’s type. Every fun
declaration is treated like this, for it is shorthand for a val declaration with fn
notation, which is a syntactic value.

If E is not a syntactic value then the declaration val Id = E might create
references. To respect sharing, each occurrence of Id must have the same type.
If the declaration occurs inside a let expression, then each type variable in the
type of E is frozen throughout the let body. The expression

let val fp = ref I
in fp := not; !fp 5 end;

is illegal because ref I involves the type variable α, which cannot stand for bool
and int at the same time. The expression

let val fp = ref I
in (!fp true, !fp 5) end;

is illegal for the same reason. Yet it is safe: if we could evaluate it, the result
would be (true, 5) with no run-time error. A monomorphic version is legal:

let val fp = ref I
in fp := not; !fp true end;
> false : bool

A top level polymorphic declaration is forbidden unless E is a syntactic value;
the type checker cannot predict how future occurrences of Id will be used:

val fp = ref I;
> Error: Non-value in polymorphic declaration

A monomorphic type constraint makes the top level declaration legal. The ex-
pression no longer creates polymorphic references:

val fp = ref (I: bool -> bool);
> val fp = ref fn : (bool -> bool) ref

Imperative list reversal. We now consider an example with real polymorphism.
The function irev reverses a list imperatively. It uses one reference to scan down
the list and another to accumulate the elements in reverse.

8.3 Polymorphic references 331

fun irev l =
let val resultp = ref []

and lp = ref l
in while not (null (!lp)) do

(resultp := hd(!lp) :: !resultp;
lp := tl(!lp));

!resultp
end;

> val irev = fn : ’a list -> ’a list

The variables lp and resultp have type (α list)ref ; the type variable α is frozen
in the body of the let. ML accepts irev as a polymorphic function because it is
declared using fun.

As we can verify, irev is indeed polymorphic:

irev [25,10,1415];
> [1415, 10, 25] : int list
irev (explode("Montjoy"));
> [#"y", #"o", #"j", #"t", #"n", #"o", #"M"]
> : char list

It can be used exactly like the standard function rev .

Polymorphic exceptions. Although exceptions do not involve the store, they re-
quire a form of sharing. Consider the following nonsense:

exception Poly of ′a; (* illegal!! *)
(raise Poly true) handle Poly x => x+1;

If this expression could be evaluated, it would attempt to evaluate true + 1, a
run-time error. When a polymorphic exception is declared, ML ensures that it
is used with only one type, just like a restricted value declaration. The type of
a top level exception must be monomorphic and the type variables of a local
exception are frozen.

Limitations of value polymorphism. As noted in Section 5.4, the restriction to
syntactic values bans some natural polymorphic declarations. In most cases they
can be corrected easily, say by using fun instead of val:

val length = foldl (fn (_,n) => n+1) 0; (*rejected*)
fun length l = foldl (fn (_,n) => n+1) 0 l; (*accepted*)

Compile-time type checking must make conservative assumptions about what
could happen at run-time. Type checking rejects many programs that could
execute safely. The expression hd [5, true] + 3 evaluates safely to 8 despite
being ill-typed. Most modern languages employ compile-time type checking;

332 8 Imperative Programming in ML

programmers accept these restrictions in order to be free from type errors at
run-time.

The history of polymorphic references. Many people have studied polymorphic
references, but Mads Tofte is generally credited with cracking the problem.

Early ML compilers forbade polymorphic references altogether: the function ref could
have only monomorphic types. Tofte’s original proposal, adopted in the ML Definition,
was more liberal than the one used now. Special ‘weak’ type variables tracked the use
of imperative features, and only they were restricted in val declarations. Standard ML
of New Jersey used an experimental approach where weak type variables had numerical
degrees of weakness.

Weak type variables result in complicated, unintuitive types. They assign different
types to irev and rev , and prevent their being used interchangeably. Worst of all, they
make it hard to write signatures before implementing the corresponding structures.

Wright (1995) proposed treating all val declarations equally — in effect, making
all type variables weak. Purely functional code would be treated like imperative code.
Could programmers tolerate such restrictions? Using a modified type checker, Wright
examined an immense body of ML code written by others. The restrictions turned out
to cause very few errors, and those could be repaired easily. And so, after due consider-
ation, this proposal has been recommended for ML.

The type checking of polymorphic references in Standard ML is probably safe. Tofte
(1990) proved its correctness for a subset of ML and there is no reason to doubt that
it is correct for the full language. Greiner (1996) has investigated a simplification of
the New Jersey system. Harper (1994) describes a simpler approach to such proofs.
Standard ML has been defined with great care to avoid insecurities and other semantic
defects; in this regard, the language is practically in a class by itself.

Exercise 8.8 Is this expression legal? What does WI do?

let fun WI x = !(ref x)
in (WI false, WI "Clarence") end

Exercise 8.9 Which of these declarations are legal? Which could, if evaluated,
lead to a run-time type error?

val funs = [hd];
val l = rev [];
val l ′ = tl [3];
val lp = let fun nilp x = ref [] in nilp() end;

References in data structures
Any textbook on algorithms describes recursive data structures such as

lists and trees. These differ from ML recursive datatypes (as seen in Chapter 4) in
one major respect: the recursion involves explicit link fields, or pointers. These

8.4 Sequences, or lazy lists 333

pointers can be updated, allowing re-linking of existing data structures and the
creation of cycles.

Reference types, in conjunction with recursive datatypes, can implement such
linked data structures. This section presents two such examples: doubly-linked
circular lists and a highly efficient form of functional array. We begin with
a simpler use of references: not as link fields, but as storage for previously
computed results.

8.4 Sequences, or lazy lists
Under the representation given in Section 5.12, the tail of a sequence is

a function to compute another sequence. Each time the tail is inspected, a pos-
sibly expensive function call is repeated. This inefficiency can be eliminated.
Represent the tail of a sequence by a reference, which initially contains a func-
tion and is later updated with the function’s result. Sequences so implemented
exploit the mutable store, but when viewed from outside are purely functional.

An abstract type of sequences. Structure ImpSeq implements lazy lists; see Fig-
ure 8.1 on the next page. Type α t has three constructors: Nil for the empty
sequence, Cons for non-empty sequences, and Delayed to permit delayed eval-
uation of the tail. A sequence of the form

Cons(x , ref (Delayed xf)),

where xf has type unit → α t , begins with x and has the sequence xf () for
its remaining elements. Note that Delayed xf is contained in a reference cell.
Applying force updates it to contain the value of xf (), removing the Delayed .
Some overhead is involved, but if the sequence element is revisited then there
will be a net gain in efficiency.

The function null tests whether a sequence is empty, while hd and tl return
the head and tail of a sequence. Because tl calls force, a sequence’s outer con-
structor cannot be Delayed . Inside structure ImpSeq , functions on sequences
may exploit pattern-matching; outside, they must use null , hd and tl because
the constructors are hidden. An opaque signature constraint ensures that the
structure yields an abstract type:

signature IMPS EQUENCE =
sig
type ′a t
exception Empty
val empty : ′a t
val cons : ′a * (unit -> ′a t) -> ′a t

334 8 Imperative Programming in ML

Figure 8.1 Lazy lists using references

structure ImpSeq :> IMPS EQUENCE =
struct
datatype ′a t = Nil

| Cons of ′a * (′a t) ref
| Delayed of unit -> ′a t;

exception Empty;

fun delay xf = ref (Delayed xf);

val empty = Nil;

fun cons(x,xf) = Cons(x, delay xf);

fun force xp =
case !xp of

Delayed f => let val s = f ()
in xp := s; s end

| s => s;

fun null Nil = true
| null (Cons _) = false;

fun hd Nil = raise Empty
| hd (Cons(x,_)) = x;

fun tl Nil = raise Empty
| tl (Cons(_,xp)) = force xp;

fun take (xq, 0) = []
| take (Nil, n) = []
| take (Cons(x,xp), n) = x :: take (force xp, n-1);

fun Nil @ yq = yq
| (Cons(x,xp)) @ yq =

Cons(x, delay(fn()=> (force xp) @ yq));

fun map f Nil = Nil
| map f (Cons(x,xp)) =

Cons(f x, delay(fn()=> map f (force xp)));

fun cycle seqfn =
let val knot = ref Nil
in knot := seqfn (fn()=> !knot); !knot end;

end;

8.4 Sequences, or lazy lists 335

val null : ′a t -> bool
val hd : ′a t -> ′a
val tl : ′a t -> ′a t
val take : ′a t * int -> ′a list
val toList : ′a t -> ′a list
val fromList : ′a list -> ′a t
val @ : ′a t *

′a t -> ′a t
val interleave : ′a t *

′a t -> ′a t
val concat : ′a t t -> ′a t
val map : (′a -> ′b) -> ′a t -> ′b t
val filter : (′a -> bool) -> ′a t -> ′a t
val cycle : ((unit -> ′a t) -> ′a t) -> ′a t
end;

Cyclic sequences. The function cycle creates cyclic sequences by tying the
knot. Here is a sequence whose tail is itself:

"Never"

This behaves like the infinite sequence "Never", "Never", . . . , but occupies
a tiny amount of space in the computer. It is created by

ImpSeq.cycle(fn xf => ImpSeq.cons("Never", xf));
> - : string ImpSeq.t
ImpSeq.take(5, it);
> ["Never", "Never", "Never", "Never", "Never"]
> : string list

When cycle is applied to some function seqfn , it creates the reference knot and
supplies it to seqfn (packaged as a function). The result of seqfn is a sequence
that, as its elements are computed, eventually refers to the contents of knot .
Updating knot to contain this very sequence creates a cycle.

Cyclic sequences can compute Fibonacci numbers in an amusing fashion. Let
add be a function that adds two sequences of integers, returning a sequence of
sums. To illustrate reference polymorphism, add is coded in terms of a function
to join two sequences into a sequence of pairs:

fun pairs(xq,yq) =
ImpSeq.cons((ImpSeq.hd xq, ImpSeq.hd yq),

fn()=>pairs(ImpSeq.tl xq, ImpSeq.tl yq));
> val pairs = fn
> : ’a ImpSeq.t * ’b ImpSeq.t -> (’a * ’b) ImpSeq.t
fun add (xq,yq) = ImpSeq.map Int.+ (pairs(xq,yq));
> val add = fn

336 8 Imperative Programming in ML

> : int ImpSeq.t * int ImpSeq.t -> int ImpSeq.t

The sequence of Fibonacci numbers can be defined using cycle:

val fib = ImpSeq.cycle(fn fibf =>
ImpSeq.cons(1, fn()=>

ImpSeq.cons(1, fn()=>
add(fibf (), ImpSeq.tl(fibf ())))));

> val fib = - : int ImpSeq.t

This definition is cyclic. The sequence begins 1, 1, and the remaining elements
are obtained by adding the sequence to its tail:

add(fib, ImpSeq .tl fib)

Initially, fib can be portrayed as follows:

1 1 add

When the third element of fib is inspected by tl (tl fib), the add call computes
a 2 and force updates the sequence as follows:

1 1 2 add

When the next element is inspected, fib becomes

1 1 2 3 add

Because the sequence is cyclic and retains computed elements, each Fibonacci
number is computed only once. This is reasonably fast. If Fibonacci numbers
were defined recursively using the sequences of Section 5.12, the cost of com-
puting the nth element would be exponential in n .

8.5 Ring buffers 337

Exercise 8.10 The Hamming problem is to enumerate all integers of the form
2i3j 5k in increasing order. Declare a cyclic sequence consisting of these num-
bers. Hint: declare a function to merge increasing sequences, and consider the
following diagram:

1

×5

×3

×2

merge

Exercise 8.11 Implement the function iterates , which given f and x creates a
cyclic representation of the sequence [x , f (x), f (f (x)), . . . , f k (x), . . .].

Exercise 8.12 Discuss the difficulty of showing whether a cyclic sequence is
correct — that it generates a sequence of values satisfying a given specification.
Comment on the following sequence:

val fib2 = ImpSeq.cycle(fn fibf =>
ImpSeq.cons(1, fn()=> add(fibf (), ImpSeq.tl(fibf ()))));

Exercise 8.13 Code the functions omitted from structure ImpSeq but specified
in its signature, namely toList , fromList , interleave, concat and filter .

8.5 Ring buffers
A doubly-linked list can be read forwards or backwards, and allow el-

ements to be inserted or deleted at any point. It is cyclic if it closes back on
itself:

a b c

This mutable data structure, sometimes called a ring buffer, should be familiar
to most programmers. We implement it here to make a comparison between
references in Standard ML and pointer variables in procedural languages. Let us
define an abstract type with the following signature:

338 8 Imperative Programming in ML

signature RINGBUF =
sig
eqtype ′a t
exception Empty
val empty : unit -> ′a t
val null : ′a t -> bool
val label : ′a t -> ′a
val moveLeft : ′a t -> unit
val moveRight : ′a t -> unit
val insert : ′a t *

′a -> unit
val delete : ′a t -> ′a
end;

A ring buffer has type α t and is a reference into a doubly-linked list. A new
ring buffer is created by calling the function empty . The function null tests
whether a ring buffer is empty, label returns the label of the current node, and
moveLeft /moveRight move the pointer to the left/right of the current node. As
shown below, insert(buf , e) inserts a node labelled e to the left of the current
node. Two links are redirected to the new node; their initial orientations are
shown by dashed arrows and their final orientations by shaded arrows:

a

e

b

The function delete removes the current node and moves the pointer to the right.
Its value is the label of the deleted node.

The code, which appears in Figure 8.2, is much as it might be written in
Pascal. Each node of the doubly-linked list has type α buf , which contains a
label and references to the nodes on its left and right. Given a node, the functions
left and right return these references.

The constructor Nil represents an empty list and serves as a placeholder, like
Pascal’s nil pointer. If Node were the only constructor of type α buf , no value
of that type could be created. Consider the code for insert . When the first node
is created, its left and right pointers initially contain Nil . They are then updated
to contain the node itself.

Bear in mind that reference equality in ML differs from the usual notion of
pointer equality. The function delete must check whether the only node of a
buffer is about to be deleted. It cannot determine whether Node(lp, x , rp) is the

8.5 Ring buffers 339

Figure 8.2 Ring buffers as doubly-linked lists

structure RingBuf :> RINGBUF =
struct
datatype ′a buf = Nil | Node of ′a buf ref *

′a *
′a buf ref ;

datatype ′a t = Ptr of ′a buf ref ;
exception Empty;

fun left (Node(lp,_,_)) = lp
| left Nil = raise Empty;

fun right (Node(_,_,rp)) = rp
| right Nil = raise Empty;

fun empty() = Ptr(ref Nil);

fun null (Ptr p) = case !p of
Nil => true

| Node(_,x,_) => false;

fun label (Ptr p) = case !p of
Nil => raise Empty

| Node(_,x,_) => x;

fun moveLeft (Ptr p) = (p := !(left(!p)));
fun moveRight (Ptr p) = (p := !(right(!p)));

fun insert (Ptr p, x) =
case !p of

Nil =>
let val lp = ref Nil

and rp = ref Nil
val new = Node(lp,x,rp)

in lp := new; rp := new; p := new end
| Node(lp,_,_) =>

let val new = Node(ref (!lp), x, ref (!p))
in right(!lp) := new; lp := new end;

fun delete (Ptr p) =
case !p of

Nil => raise Empty
| Node(lp,x,rp) =>

(if left(!lp) = lp then p := Nil
else (right(!lp) := !rp; left (!rp) := !lp; p := !rp);
x)

end;

340 8 Imperative Programming in ML

only node by testing whether lp = rp, as a Pascal programmer might expect.
That equality will always be false in a properly constructed buffer; each link
field must be a distinct reference so that it can be updated independently. The
test left(!lp) = lp is correct. If the node on the left (namely !lp) and the current
node have the same left link, then they are the same node and that is the only
node in the buffer.

Here is a small demonstration of ring buffers. First, let us create an empty
buffer. Because the call to empty is not a syntactic value, we must constrain
its result to some monotype, here string . (Compare with the empty sequence
ImpSeq.empty , which contains no references and is polymorphic.)

val buf : string RingBuf .t = RingBuf .empty();
> val buf = - : string RingBuf.t
RingBuf .insert(buf , "They");

If only insert and delete are performed, then a ring buffer behaves like a muta-
ble queue; elements can be inserted and later retrieved in the same order.

RingBuf .insert(buf , "shall");
RingBuf .delete buf ;
> "They" : string
RingBuf .insert(buf , "be");
RingBuf .insert(buf , "famed");
RingBuf .delete buf ;
> "shall" : string
RingBuf .delete buf ;
> "be" : string
RingBuf .delete buf ;
> "famed" : string

Exercise 8.14 Modify delete to return a boolean value instead of a label: true
if the modified buffer is empty and otherwise false .

Exercise 8.15 Which of the equalities below are suitable for testing whether
Node(lp, x , rp) is the only node in a ring buffer?

!lp =!rp right(!lp) = lp right(!lp) = rp

Exercise 8.16 Compare the following insertion function with insert ; does it
have any advantages or disadvantages?

8.6 Mutable and functional arrays 341

fun insert2 (Ptr p, x) =
case !p of

Nil => p := Node(p,x,p)
| Node(lp,_,_) =>

let val new = Node(lp,x,p)
in right(!lp) := new; lp := new end;

Exercise 8.17 Code a version of insert that inserts the new node to the right
of the current point, rather than to the left.

Exercise 8.18 Show that if a value of type αRingBuf .t (with a strong type
variable) could be declared, a run-time type error could ensue.

Exercise 8.19 What good is equality testing on type αRingBuf .t?

8.6 Mutable and functional arrays
The Definition of Standard ML says nothing about arrays, but the stan-

dard library provides a structure Array with the following signature:

signature ARRAY =
sig
eqtype ′a array
val array : int *

′a -> ′a array
val fromList : ′a list -> ′a array
val tabulate : int * (int -> ′a) -> ′a array
val sub : ′a array * int -> ′a
val update : ′a array * int *

′a -> unit
val length : ′a array -> int
...

end;

Each array has a fixed size. An n-element array admits subscripts from 0 to n−
1. The operations raise exception Subscript if the array bound is exceeded and
raise Size upon any attempt to create an array of negative (or grossly excessive)
size.2

Here is a brief description of the main array operations:

• array(n, x) creates an n-element array with x stored in each cell.
• fromList[x0, x1, . . . , xn−1] creates an n-element array with xk stored in

cell k , for k = 0, . . . , n − 1.
• tabulate(n, f) creates an n-element array with f (k) stored in cell k , for

k = 0, . . . , n − 1.

2 These exceptions are declared in the library structure General .

342 8 Imperative Programming in ML

• sub(A, k) returns the contents of cell k of array A.
• update(A, k , x) updates cell k of array A to contain x .
• length(A) returns the size of array A.

Array are mutable objects and behave much like references. They always admit
equality: two arrays are equal if and only if they are the same object. Arrays of
arrays may be created, as in Pascal, to serve as multi-dimensional arrays.

Standard library aggregate structures. Arrays of type α array can be updated.
Immutable arrays provide random access to static data, and can make func-

tional programs more efficient. The library structure Vector declares a type α vector of
immutable arrays. It provides largely the same operations as Array , excluding update.
Functions tabulate and fromList create vectors, while Array.extract extracts a vector
from an array.

Because types α array and α vector are polymorphic, they require an additional in-
direction for every element. Monomorphic arrays and vectors can be represented more
compactly. The library signature MONO ARRAY specifies the type array of mutable
arrays over another type elem . Signature MONO VECTOR is analogous, specifying a
type vector of immutable arrays. Various standard library structures match these signa-
tures, giving arrays of characters, floating point numbers, etc.

The library regards arrays, vectors and even lists as variations on one concept: ag-
gregates. The corresponding operations agree as far as possible. Arrays, like lists, have
app and fold functionals. The function Array.fromList converts a list to an array, and
the inverse operation is easy to code:

fun toList l = Array.foldr op:: [] l;

Lists, like arrays, have a tabulate function. They both support subscripting, indexed
from zero, and both raise exception Subscript if the upper bound is exceeded.

Representing functional arrays. Holmström and Hughes have developed a hy-
brid representation of functional arrays, exploiting mutable arrays and associa-
tion lists. An association list consisting of (index , contents) pairs has a func-
tional update operation: simply add a new pair to the front of the list. Update
is fast, but lookup requires an expensive search. Introducing a mutable array,
called the vector, makes lookups faster (Aasa et al., 1988).

Initially, a functional array is represented by a vector. Update operations build
an association list in front of the vector, indicating differences between the cur-
rent contents of the vector and the values of various arrays. Consider two cells i
and j of a functional array A, with i 6= j , and suppose A[i] = u and A[j] = v .
Now perform some functional updates. Obtain B from A by storing x in posi-
tion i ; obtain C from B by storing y in position j :

8.6 Mutable and functional arrays 343

j y

i x

C

B

A

i j

u v

Other links into A, B and C are shown; these come from arrays created by
further updating. The arrays form a tree, called a version tree since its nodes
are ‘versions’ of the vector. Unlike ordinary trees, its links point towards the
root rather than away from it. The root of the tree is A, which is a dummy node
linked to the vector. The dummy node contains the only direct link into the
vector, in order to simplify the re-rooting operation.

Re-rooting the version tree. Although C has the correct value, with C [i] = x ,
C [j] = y and the other elements like in A, lookups to C are slower than they
could be. If C is the most heavily used version of the vector, then the root of
the version tree ought to be moved to C . The links from C to the vector are
reversed; the updates indicated by those nodes are executed in the vector; the
previous contents of those vector cells are recorded in the nodes.

i j

x y

C

B

A

j v

i u

This operation does not affect the values of the functional arrays, but lookups
to A become slower while lookups to C become faster. The dummy node is
now C . Nodes of the version tree that refer to A, B , or C likewise undergo a
change in lookup time, but not in value. Re-rooting does not require locating
those other nodes. If there are no other references to A or B then the ML storage
allocator will reclaim them.

344 8 Imperative Programming in ML

Figure 8.3 Functional arrays as version trees

structure Varray :> VARRAY =
struct
datatype ′a t = Modif of {limit : int,

index : int ref ,
elem : ′a ref ,
next : ′a t ref }

| Main of ′a Array.array;

fun array (n,x) =
if n < 0 then raise Size
else Modif {limit=n, index=ref 0, elem=ref x,

next=ref (Main(Array.array(n,x)))};

fun reroot (va as Modif {index, elem, next,...}) =
case !next of

Main _ => va (*have reached root*)
| Modif _ =>

let val Modif {index=bindex,elem=belem,next=bnext,...} =
reroot (!next)

val Main ary = !bnext
in bindex := !index;

belem := Array.sub(ary, !index);
Array.update(ary, !index, !elem);
next := !bnext;
bnext := va;
va

end;

fun sub (Modif {index,elem,next,...}, i) =
case !next of

Main ary => Array.sub(ary,i)
| Modif _ => if !index = i then !elem

else sub(!next,i);

fun justUpdate(va as Modif {limit,...}, i, x) =
if 0<=i andalso i<limit
then Modif {limit=limit, index= ref i, elem=ref x, next=ref va}
else raise Subscript;

fun update(va,i,x) = reroot(justUpdate(va,i,x));
end;

8.6 Mutable and functional arrays 345

An implementation. Figure 8.3 shows an ML structure declaration for version
tree arrays, called v -arrays for short. It matches the following signature:

signature VARRAY =
sig
type ′a t
val array : int *

′a -> ′a t
val reroot : ′a t -> ′a t
val sub : ′a t * int -> ′a
val justUpdate : ′a t * int *

′a -> ′a t
val update : ′a t * int *

′a -> ′a t
end;

An opaque signature constraint hides the representation of v -arrays, including
their equality test. The underlying equality compares identity of stored objects,
which is not functional behaviour.

The type of v -arrays is α t , which has constructors Modif and Main . A
Modif (for modification) node is a record with four fields. The upper limit of
the v -array is stored for subscript checking. The other fields are references to an
index, an element and the next v -array; these are updated during re-rooting. A
Main node contains the mutable array.

Calling array(n, x) constructs a v -array consisting of a vector and a dummy
node. The recursive function reroot performs re-rooting. The subscript op-
eration sub(va, i) searches in the nodes for i and if necessary looks up that
subscript in the vector. The function justUpdate simply creates a new node,
while update follows this operation by re-rooting at the new array. The library
exceptions Subscript and Size can be raised explicitly and from the Array op-
erations.

Programs frequently use functional arrays in a single-threaded fashion, dis-
carding the previous value of the array after each update. In this case, we should
re-root after each update. If many versions of a functional array are active then
version trees could be inefficient; only one version can be represented by the
vector. In this case, we should represent functional arrays by binary trees, as in
Section 4.15. Binary trees would also allow an array to grow and shrink.

Experimental results for v -arrays. The code above is based upon Aasa et al.
(1988). For several single-threaded algorithms, they found v -arrays to be more

efficient than other representations of functional arrays. At best, v -arrays can perform
lookups and updates in constant time, although more slowly than mutable arrays. Quick
sort on v -arrays turns out to be no faster than quick sort on lists, suggesting that arrays
should be reserved for tasks requiring random access. Lists are efficient for processing
elements sequentially.

346 8 Imperative Programming in ML

Exercise 8.20 Recall the function allChange of Section 3.7. With the help of
arrays, write a function that can efficiently determine the value of

length(allChange([], [5,2], 16000));

Exercise 8.21 Add a function fromList to structure Varray , to create a v -
array from a non-empty list.

Exercise 8.22 Add a function copy to structure Varray , such that copy(va)
creates a new v -array having the same value as va .

Exercise 8.23 Declare a structure Array2 for mutable arrays of 2 dimensions,
with components analogous to those of Array .

Exercise 8.24 Declare a structure Varray2 for v -arrays of 2 dimensions, with
components analogous to those of Varray .

Exercise 8.25 What are the contents of the dummy node? Could an alternative
representation of v -arrays eliminate this node?

Input and output
Input/output can be a tiresome subject. Reading data in and printing

results out seems trivial compared with the computation lying in between —
especially as the operations must conform to the arbitrary features of common
operating systems. Input/output brings our secure, typed and mainly functional
world into contact with byte-oriented, imperative devices. Small wonder that the
ML Definition specified a parsimonious set of primitives. The Algol 60 definition
did not bother with input/output at all.

The ML library rectifies this omission, specifying several input/output mod-
els and dozens of operations. It also provides string processing functions for
scanning inputs and formatting outputs. We shall examine a selection of these.

Input/output of linked data structures such as trees poses special difficul-
ties. Flattening them to character strings destroys the usually extensive shar-
ing of subtrees, causing exponential blowup. A persistent store, like the one in
Poly/ML, can save arbitrary data structures efficiently. Such facilities are hard to
find and can be inflexible.

8.7 String processing
The library provides extensive functions for processing strings and sub-

strings. Structures Int , Real and Bool (among others) contain functions for

8.7 String processing 347

translating between basic values and strings. The main functions are toString ,
fromString, fmt and scan . Instead of overloading these functions at top level, the
library declares specialized versions in every appropriate structure. You might
declare these functions in some of your own structures.

Converting to strings. The function toString expresses its argument as a string
according to a default format:

Int.toString (˜23 mod 10);
> "7" : string
Real.toString Math.pi;
> "3.14159265359" : string
Bool.toString (Math.pi = 22.0/7.0);
> "false" : string

Structure StringCvt supports more elaborate formatting. You can specify how
many decimal places to display, and pad the resulting string to a desired length.
You even have a choice of radix. For example, the DEC PDP-8 used octal nota-
tion, and padded integers to four digits:

Int.fmt StringCvt.OCT 31;
> "37" : string
StringCvt.padLeft #"0" 4 it;
> "0037" : string

Operations like String.concat can combine formatted results with other text.

Converting from strings. The function fromString converts strings to basic val-
ues. It is permissive; numeric representations go well beyond what is valid in
ML programs. For instance, the signs + and - are accepted as well as ˜:

Real.fromString "+.6626e-33";
> SOME 6.626E˜34 : real option

The string is scanned from left to right and trailing characters are ignored. User
errors may go undetected:

Int.toString "1o24";
> SOME 1 : int option
Bool.fromString "falsetto";
> SOME false : bool option

Not every string is meaningful, no matter how permissive we are:

Int.fromString "My master’s mind";
> NONE : int option

348 8 Imperative Programming in ML

Figure 8.4 Scanning dates from strings

val months = ["JAN", "FEB", "MAR", "APR", "MAY", "JUN",
"JUL", "AUG", "SEP", "OCT", "NOV", "DEC"];

fun dateFromString s =
let val sday::smon::syear::_ = String.tokens (fn c => c = #"-") s

val SOME day = Int.fromString sday
val mon = String.substring (smon, 0, 3)
val SOME year = Int.fromString syear

in if List.exists (fn m => m=mon) months
then SOME (day, mon, year)
else NONE

end
handle Subscript => NONE

| Bind => NONE;

Splitting strings apart. Since fromString ignores leftover characters, how are
we to translate a series of values in a string? The library structures String and
Substring provide useful functions for scanning. The function String.tokens
extracts a list of tokens from a string. Tokens are non-empty substrings sepa-
rated by one or more delimiter characters. A predicate of type char → bool
defines the delimiter characters; structure Char contains predicates for recog-
nizing letters (isAlpha), spaces (isSpace) and punctuation (isPunct). Here are
some sample invocations:

String.tokens Char.isSpace
"What is thy name? I know thy quality.";

> ["What", "is", "thy", "name?",
> "I", "know", "thy", "quality."] : string list
String.tokens Char.isPunct

"What is thy name? I know thy quality.";
> ["What is thy name", " I know thy quality"]
> : string list

We thus can split a string of inputs into its constituent parts, and pass them to
fromString. Function dateFromString (Figure 8.4) decodes dates of the form
dd -MMM -yyyy . It takes the first three hyphen-separated tokens of the input. It
parses the day and year using Int.fromString , and shortens the month to three
characters using String.substring . It returns NONE if the month is unknown,
or if exceptions are raised; Bind could arise in three places.

dateFromString "25-OCTOBRE-1415-shall-live-forever";

8.7 String processing 349

> SOME (25, "OCT", 1415) : (int * string * int) option
dateFromString "2L-DECX-18o5";
> SOME (2, "DEC", 18) : (int * string * int) option

We see that dateFromString is as permissive as the other fromString functions.

Scanning from character sources. The scan functions, found in several library
structures, give precise control over text processing. They accept any functional
character source, not just a string. If you can write a function

getc : σ → (char × σ)option

then type σ can be used as a character source. Calling getc either returns NONE
or else packages the next character with a further character source.

The scan functions read a basic value, consuming as many characters as pos-
sible and leaving the rest for subsequent processing. For example, let us define
lists as a character source:

fun listGetc (x::l) = SOME (x,l)
| listGetc [] = NONE;

> val listGetc = fn : ’a list -> (’a * ’a list) option

The scan functions are curried, taking the character source as their first argu-
ment. The integer scan function takes, in addition, the desired radix; DEC means
decimal. Let us scan some faulty inputs:

Bool.scan listGetc (explode "mendacious");
> NONE : (bool * char list) option
Bool.scan listGetc (explode "falsetto");
> SOME (false, [#"t", #"t", #"o"])
> : (bool * char list) option
Real.scan listGetc (explode "6.626x-34");
> SOME (6.626, [#"x", #"-", #"3", #"4"])
> : (real * char list) option
Int.scan StringCvt.DEC listGetc (explode "1o24");
> SOME (1, [#"o", #"2", #"4"])
> : (int * char list) option

The mis-typed characters x and o do not prevent numbers from being scanned,
but they remain in the input. Such errors can be detected by checking that the in-
put has either been exhausted or continues with an expected delimiter character.
In the latter case, delimiters can be skipped and further values scanned.

The fromString functions are easy to use but can let errors slip by. The scan
functions form the basis for robust input processing.

350 8 Imperative Programming in ML

Exercise 8.26 Declare function writeCheque for printing amounts on cheques.
Calling writeCheque w (dols,cents) should express the given sum in dol-
lars and cents to fit a field of width w . For instance, writeCheque 9 (57,8)
should return the string "$***57.08"

Exercise 8.27 Write a function toUpper for translating all the letters in a string
to upper case, leaving other characters unchanged. (Library structures String
and Char have relevant functions.)

Exercise 8.28 Repeat the examples above using substrings instead of lists as
the source of characters. (The library structure Substring declares useful func-
tions including getc.)

Exercise 8.29 Use the scan functions to code a function for scanning dates.
It should accept an arbitrary character source. (Library structure StringCvt has
relevant functions.)

8.8 Text input/output
ML’s simplest input/output model supports imperative operations on text

files. A stream connects an external file (or device) to the program for transmit-
ting characters. An input stream is connected to a producer of data, such as
the keyboard; characters may be read from it until the producer terminates the
stream. An output stream is connected to a consumer of data, such as a printer;
characters may be sent to it until the program terminates the stream.

The input and output operations belong to structure TextIO , whose signature
is in effect an extension of the following:

signature TEXTI O =
sig
type instream and outstream
exception Io of {name: string, function: string, cause: exn}
val stdIn : instream
val stdOut : outstream
val openIn : string -> instream
val openOut : string -> outstream
val closeIn : instream -> unit
val closeOut : outstream -> unit
val inputN : instream * int -> string
val inputLine : instream -> string
val inputAll : instream -> string
val lookahead : instream -> char option

8.8 Text input/output 351

val endOfStream : instream -> bool
val output : outstream * string -> unit
val flushOut : outstream -> unit
val print : string -> unit
end;

Here are brief descriptions of these items. Consult the library documentation for
more details.

• Input streams have type instream while output streams have type out-
stream. These types do not admit equality.
• Exception Io indicates that some low-level operation failed. It bundles

up the name of the affected file, a primitive function and the primitive
exception that was raised.
• stdIn and stdOut , the standard input and output streams, are connected

to the terminal in an interactive session.
• openIn(s) and openOut(s) create a stream connected to the file named s .
• closeIn(is) and closeOut(os) terminate a stream, disconnecting it from

its file. The stream may no longer transmit characters. An input stream
may be closed by its device, for example upon end of file.
• inputN (is,n) removes up to n characters from stream is and returns

them as a string. If fewer than n characters are present before the stream
closes then only those characters are returned.
• inputLine(is) reads the next line of text from stream is and returns it

as a string ending in a newline character. If stream is has closed, then
the empty string is returned.
• inputAll(is) reads the entire contents of stream is and returns them as a

string. Typically it reads in an entire file; it is not suitable for interactive
input.
• lookahead(is) returns the next character, if it exists, without removing

it from the stream is .
• endOfStream(is) is true if the stream is has no further characters be-

fore its terminator.
• output(os, s)writes the characters of string s to the stream os , provided

it has not been closed.
• flushOut(os) sends to their ultimate destination any characters waiting

in system buffers.
• print(s) writes the characters in s to the terminal, as might otherwise

be done using output and flushOut . Function print is available at top
level.

352 8 Imperative Programming in ML

The input operations above may block: wait until the required characters appear
or the stream closes.

Suppose the file Harry holds some lines by Henry V, from his message to
the French shortly before the battle of Agincourt:

My people are with sickness much enfeebled,
my numbers lessened, and those few I have
almost no better than so many French ...
But, God before, we say we will come on!

Let infile be an input stream to Harry. We peek at the first character:

val infile = TextIO.openIn("Harry");
> val infile = ? : TextIO.instream
TextIO.lookahead infile;
> SOME #"M" : char option

Calling lookahead does not advance into the file. But now we extract ten char-
acters as a string, then read the rest of the line.

TextIO.inputN (infile,10);
> "My people " : string
TextIO.inputLine infile;
> "are with sickness much enfeebled;\n" : string

Calling inputAll gets the rest of the file as a long and unintelligible string, which
we then output to the terminal:

TextIO.inputAll infile;
> "my numbers lessened, and those few I have\nalmo#
print it;
> my numbers lessened, and those few I have
> almost no better than so many French ...
> But, God before, we say we will come on!

A final peek reveals that we are at the end of the file, so we close it:

TextIO.lookahead infile;
> NONE : char option
TextIO.inputLine infile;
> "" : string
TextIO.closeIn infile;

Closing streams when you are finished with them conserves system resources.

8.9 Text processing examples 353

8.9 Text processing examples
A few small examples will demonstrate how to process text files in ML.

The amount of actual input/output is surprisingly small; string processing func-
tions such as String.tokens do most of the work.

Batch input/output. Our first example is a program to read a series of lines and
print the initial letters of each word. Words are tokens separated by spaces;
subscripting gets their initial characters and implode joins them to form a string:

fun firstChar s = String.sub(s,0);
> val firstChar = fn : string -> char
val initials = implode o (map firstChar) o

(String.tokens Char.isSpace);
> val initials = fn : string -> string
initials "My ransom is this frail and worthless trunk";
> "Mritfawt" : string

The function batchInitials , given input and output streams, repeatedly reads a
line from the input and writes its initials to the output. It continues until the
input stream is exhausted.

fun batchInitials (is, os) =
while not (TextIO.endOfStream is)
do TextIO.output(os, initials (TextIO.inputLine is) ˆ "\n");

> val batchInitials = fn
> : TextIO.instream * TextIO.outstream -> unit

Let infile be a fresh input stream to Harry. We apply batchInitials to it:

val infile = TextIO.openIn("Harry");
> val infile = ? : TextIO.instream
batchInitials(infile, TextIO.stdOut);
> Mpawsme
> mnlatfIh
> anbtsmF.
> BGbwswwco

The output appears at the terminal because stdOut has been given as the output
stream.

Interactive input/output. We can make batchInitials read from the terminal just
by passing stdIn as its first argument. But an interactive version ought to display
a prompt before it pauses to accept input. A naı̈ve attempt calls output just
before calling inputLine:

while not (TextIO.endOfStream is)
do (TextIO.output(os, "Input line? ");

354 8 Imperative Programming in ML

TextIO.output(os, initials(TextIO.inputLine is) ˆ "\n"));

But this does not print the prompt until after it has read the input! There are two
mistakes. (1) We must call flushOut to ensure that the output really appears,
instead of sitting in some buffer. (2) We must print the prompt before calling
endOfStream , which can block; therefore we must move the prompting code
between the while and do keywords. Here is a better version:

fun promptInitials (is, os) =
while (TextIO.output(os, "Input line? ");

TextIO.flushOut os;
not (TextIO.endOfStream is))

do TextIO.output(os, "Initials: " ˆ
initials(TextIO.inputLine is) ˆ "\n");

> val promptInitials = fn
> : TextIO.instream * TextIO.outstream -> unit

Recall that evaluating the expression (E1;E2; . . . ;En) evaluates E1, E2, . . . , En

in that order and returns the value of En . We can execute any commands before
the testing the loop condition. In this sample execution, text supplied to the
standard input is underlined:

promptInitials(TextIO.stdIn, TextIO.stdOut);
> Input line? If we may pass, we will;
> Initials: Iwmpww
> Input line? If we be hindered ...
> Initials: Iwbh.
> Input line?

The final input above was Control-D, which terminates the input stream. That
does not prevent our reading further characters from stdIn in the future. Simi-
larly, after we reach the end of a file, some other process could extend the file.
Calling endOfStream can return true now and false later.

If the output stream is always the terminal, using print further simplifies the
while loop:

while (print "Input line? "; not (TextIO.endOfStream is))
do print ("Initials: " ˆ initials(TextIO.inputLine is) ˆ "\n");

Translating into HTML. Our next example performs only simple input/output,
but illustrates the use of substrings. A value of type substring is represented
by a string s and two integers i and n; it stands for the n-character segment
of s starting at position i . Substrings support certain forms of text processing
efficiently, with minimal copying and bounds checking. A substring can be

8.9 Text processing examples 355

Figure 8.5 Raw input prior to conversion

Westmoreland. Of fighting men they have full three score thousand.

Exeter. There’s five to one; besides, they all are fresh.

Westmoreland. O that we now had here
But one ten thousand of those men in England
That do no work to-day!

King Henry V. What’s he that wishes so?
My cousin Westmoreland? No, my fair cousin:
If we are marked to die, we are enough
To do our country loss; and if to live,
The fewer men, the greater share of honour.

divided into tokens or scanned from the left or right; the results are themselves
substrings.

Our task is to translate plays from plain text into HTML, the HyperText Markup
Language used for the World Wide Web. Figure 8.5 shows a typical input. Blank
lines separate paragraphs. Each speech is a paragraph; the corresponding output
must insert the <P> markup tag. The first line of a paragraph gives the char-
acter’s name, followed by a period; the output must emphasize this name by
enclosing it in the and tags. To preserve line breaks, the transla-
tion should attach the
 tag to subsequent lines of each paragraph.

Function firstLine deals with the first line of a paragraph, separating the name
from the rest of line. It uses three components of the library structure Substring ,
namely all , splitl and string . Calling all s creates a substring representing
the whole of string s . The call to splitl scans this substring from left to right,
returning in name the substring before the first period, and in rest the remainder
of the original substring. The calls to string convert these substrings to strings
so that they can be concatenated with other strings containing the markup tags.

fun firstLine s =
let val (name,rest) =

Substring.splitl (fn c => c <> #".") (Substring.all s)
in "\n<P>" ˆ Substring.string name ˆ

"" ˆ Substring.string rest
end;

356 8 Imperative Programming in ML

Figure 8.6 Displayed output from HTML

Westmoreland. Of fighting men they have full three score thousand.

Exeter. There’s five to one; besides, they all are fresh.

Westmoreland. O that we now had here
But one ten thousand of those men in England
That do no work to-day!

King Henry V. What’s he that wishes so?
My cousin Westmoreland? No, my fair cousin:
If we are marked to die, we are enough
To do our country loss; and if to live,
The fewer men, the greater share of honour.

> val firstLine = fn : string -> string

In this example, observe the placement of the markup tags:

firstLine "King Henry V. What’s he that wishes so?";
> "\n<P>King Henry V. What’s he that wishes so?"
> : string

Function htmlCvt takes a filename and opens input and output streams. Its
main loop is the recursive function cvt , which translates one line at a time,
keeping track of whether or not it is the first line of a paragraph. An empty
string indicates the end of the input, while an empty line (containing just the
newline character) starts a new paragraph. Other lines are translated according
as whether or not they are the first. The translated line is output and the process
repeats.

fun htmlCvt fileName =
let val is = TextIO.openIn fileName

and os = TextIO.openOut (fileName ˆ ".html")
fun cvt _ "" = ()
| cvt _ "\n" = cvt true (TextIO.inputLine is)
| cvt first s =

(TextIO.output (os,
if first then firstLine s
else "
" ˆ s);

cvt false (TextIO.inputLine is));
in cvt true "\n"; TextIO.closeIn is; TextIO.closeOut os
end;

> val htmlCvt = fn : string -> unit

8.10 A pretty printer 357

Finally, htmlCvt closes the streams. Closing the output stream ensures that text
held in buffers actually reaches the file. Figure 8.6 on the preceding page shows
how a Web browser displays the translated text.

Input/output and the standard library. Another useful structure is BinIO ,
which supports input/output of binary data in the form of 8-bit bytes. Char-

acters and bytes are not the same thing: characters occupy more than 8 bits on some
systems, and they assign special interpretations to certain codes. Binary input/output
has no notion of line breaks, for example.

The functors ImperativeIO , StreamIO and PrimIO support input/output at lower
levels. (The library specifies them as optional, but better ML systems will provide
them.) ImperativeIO supports imperative operations, with buffering. StreamIO pro-
vides functional operations for input: items are not removed from an instream, but yield
a new instream. PrimIO is the most primitive level, without buffering and implemented
in terms of operating system calls. The functors can be applied to support specialized
input/output, say for extended character sets.

Andrew Appel designed this input/output interface with help from John Reppy and
Dave Berry.

Exercise 8.30 Write an ML program to count how many lines, words and char-
acters are contained in a file. A word is a string of characters delimited by
spaces, tabs, or newlines.

Exercise 8.31 Write a procedure to prompt for the radius of a circle, print the
corresponding area (using A = πr 2) and repeat. If the attempt to decode a real
number fails, it should print an error message and let the user try again.

Exercise 8.32 The four characters < > & " have special meanings in HTML.
Occurrences of them in the input should be replaced by the escape sequences
< > & " (respectively). Modify htmlCvt to do this.

8.10 A pretty printer
Programs and mathematical formulæ are easier to read if they are laid

out with line breaks and indentation to emphasize their structure. The tautology
checker of Section 4.19 includes the function show , which converts a propo-
sition to a string. If the string is too long to fit on one line, we usually see
something like this (for a margin of 30):

((((landed | saintly) | ((˜lan
ded) | (˜saintly))) & (((˜rich
) | saintly) | ((˜landed) | (˜
saintly)))) & (((landed | rich
) | ((˜landed) | (˜saintly)))

358 8 Imperative Programming in ML

Figure 8.7 Output of the pretty printer

((˜(((˜landed) | rich) &
(˜(saintly & rich)))) |

((˜landed) | (˜saintly)))

((((landed | saintly) |
((˜landed) | (˜saintly))) &

(((˜rich) | saintly) |
((˜landed) |
(˜saintly)))) &

(((landed | rich) |
((˜landed) | (˜saintly))) &

(((˜rich) | rich) |
((˜landed) | (˜saintly)))))

((˜(((˜landed) | rich) & (˜(saintly & rich)))) |
((˜landed) | (˜saintly)))

((((landed | saintly) | ((˜landed) | (˜saintly))) &
(((˜rich) | saintly) | ((˜landed) | (˜saintly)))) &

(((landed | rich) | ((˜landed) | (˜saintly))) &
(((˜rich) | rich) | ((˜landed) | (˜saintly)))))

& (((˜rich) | rich) | ((˜lande
d) | (˜saintly)))))

Figure 8.7 shows the rather better display produced by a pretty printer. Two
propositions (including the one above) are formatted to margins of 30 and 60.
Finding the ideal presentation of a formula may require judgement and taste, but
a simple scheme for pretty printing gives surprisingly good results. Some ML

systems provide pretty-printing primitives similar to those described below.

The pretty printer accepts a piece of text decorated with information about
nesting and allowed break points. Let us indicate nesting by angle brackets
(
〈 〉

) and possible line breaks by a vertical bar (
∣∣). An expression of the form〈

e1 . . . en

〉
is called a block.

For instance, the block

〈〈
a *

∣∣∣ b
〉
-

∣∣∣ 〈 (
〈
c +

∣∣∣ d
〉
)
〉〉

8.10 A pretty printer 359

represents the string a*b-(c+d). It allows line breaks after the characters *, -
and +.

When parentheses are suppressed according to operator precedences, correct
pretty printing is essential. The nesting structure of the block corresponds to the
formula

(a × b)− (c + d) rather than a × (b − (c + d)).

If a*b-(c+d) does not fit on one line, then it should be broken after the - char-
acter; outer blocks are broken before inner blocks.

The pretty printing algorithm keeps track of how much space remains on the
current line. When it encounters a break, it determines how many characters
there are until the next break in the same block or in an enclosing block. (Thus it
ignores breaks in inner blocks.) If that many characters will not fit on the current
line, then the algorithm prints a new line, indented to match the beginning of the
current block.

The algorithm does not insist that a break should immediately follow every
block. In the previous example, the block〈

c +
∣∣∣ d

〉
is followed by a) character; the string d) cannot be broken. Determining the
distance until the next break is therefore somewhat involved.

The pretty printer has the signature

signature PRETTY =
sig
type t
val blo : int * t list -> t
val str : string -> t
val brk : int -> t
val pr : TextIO.outstream * t * int -> unit
end;

and provides slightly fancier primitives than those just described:

• t is the type of symbolic expressions, namely blocks, strings and breaks.
• blo(i , [e1, . . . , en]) creates a block containing the given expressions,

and specifies that the current indentation be increased by i . This inden-
tation will be used if the block is broken.
• str(s) creates an expression containing the string s .
• brk(l) creates a break of length l ; if no line break is required then l spaces

will be printed instead.
• pr(os, e,m) prints expression e on stream os with a right margin of m .

360 8 Imperative Programming in ML

Figure 8.8 presents the pretty printer. Observe that Block stores the total size of
a block, as computed by blo. Also, after holds the distance from the end of the
current block to the next break.

The output shown above in Figure 8.7 was produced by augmenting our tau-
tology checker as follows:

local open Pretty
in

fun prettyshow (Atom a) = str a
| prettyshow (Neg p) =

blo(1, [str"(˜", prettyshow p, str")"])
| prettyshow (Conj(p,q)) =

blo(1, [str"(", prettyshow p, str" &",
brk 1, prettyshow q, str")"])

| prettyshow (Disj(p,q)) =
blo(1, [str"(", prettyshow p, str" |",

brk 1, prettyshow q, str")"]);

end;
> val prettyshow = fn : prop -> Pretty.t

Calling Pretty.pr with the result of prettyshow does the pretty printing.

Further reading. The pretty printer is inspired by Oppen (1980). Oppen’s
algorithm is complicated but requires little storage; it can process an enormous

file, storing only a few linefuls. Our pretty printer is adequate for displaying theorems
and other computed results that easily fit in store. Kennedy (1996) presents an ML
program for drawing trees.

Exercise 8.33 Give an example of how a block of the form〈〈
E1 *

∣∣∣ E2

〉
-

∣∣∣ 〈 (
〈
E3 +

∣∣∣ E4

〉
)
〉〉

could be pretty printed with a line break after the * character and none after
the - character. How serious is this problem? Suggest a modification to the
algorithm to correct it.

Exercise 8.34 Implement a new kind of block, with ‘consistent breaks’: unless
the entire block fits on the current line, all of its breaks are forced. For instance,
consistent breaking of〈

if E
∣∣∣ then E1

∣∣∣ else E2

〉

would produce
if E
then E1
else E2

and never if E then E1
else E2

8.10 A pretty printer 361

Figure 8.8 The pretty printer

structure Pretty : PRETTY =
struct
datatype t = Block of t list * int * int

| String of string
| Break of int;

fun breakdist (Block(_,_,len)::es, after) = len + breakdist (es,after)
| breakdist (String s :: es, after) = size s + breakdist (es,after)
| breakdist (Break _ :: es, after) = 0
| breakdist ([], after) = after;

fun pr (os, e, margin) =
let val space = ref margin

fun blanks n = (TextIO.output(os, StringCvt.padLeft #" " n "");
space := !space - n)

fun newline () = (TextIO.output(os,"\n"); space := margin)

fun printing ([], _, _) = ()
| printing (e::es, blockspace, after) =
(case e of

Block(bes,indent,len) =>
printing(bes, !space-indent, breakdist (es,after))

| String s => (TextIO.output(os,s); space := !space - size s)
| Break len =>

if len + breakdist (es,after) <= !space
then blanks len
else (newline(); blanks(margin-blockspace));

printing (es, blockspace, after))
in printing([e], margin, 0); newline() end;

fun length (Block(_,_,len)) = len
| length (String s) = size s
| length (Break len) = len;

val str = String and brk = Break;

fun blo (indent,es) =
let fun sum ([], k) = k

| sum (e::es, k) = sum(es, length e + k)
in Block(es, indent, sum(es,0)) end;

end;

362 8 Imperative Programming in ML

Exercise 8.35 Write a purely functional version of the pretty printer. Instead
of writing to a stream, it should return a list of strings. Does the functional
version have any practical advantages?

Exercise 8.36 The Fortran statement

FORMAT (’ Input =’, I6, ’ Output =’, F8.2)

describes a line of text beginning with the string ’ Input =’, followed by an
integer taking up 6 characters, followed by the string ’ Output =’, followed
by a floating point (real) number taking up 8 characters, with 2 digits to the
right of the decimal point. A file written under a Fortran format can be read
under the same format. Discuss how this kind of formatted input/output could
be implemented in ML. How would formats and data be represented?

Summary of main points
• References denote mutable cells in the store, like the variables and

pointers of procedural languages.
• In ML, variables cannot be updated; only references and arrays can be

updated.
• To prevent polymorphic references from causing run-time type errors,

the expression in a polymorphic val declaration must be a syntactic
value.
• Cyclic data structures, like ring buffers, can be constructed using refer-

ences.
• A function can exploit imperative features while exhibiting purely func-

tional behaviour.
• Input and output commands transmit characters between the program

and external devices.

