
6
Reasoning About Functional Programs

Most programmers know how hard it is to make a program work. In the 1970s, it
became apparent that programmers could no longer cope with software projects
that were growing ever more complex. Systems were delayed and cancelled;
costs escalated. In response to this software crisis, several new methodologies
have arisen — each an attempt to master the complexity of large systems.

Structured programming seeks to organize programs into simple parts with
simple interfaces. An abstract data type lets the programmer view a data struc-
ture, with its operations, as a mathematical object. The next chapter, on modules,
will say more about these topics.

Functional programming and logic programming aim to express computa-
tions directly in mathematics. The complicated machine state is made invisible;
the programmer has to understand only one expression at a time.

Program correctness proofs are introduced in this chapter. Like the other
responses to the software crisis, formal methods aim to increase our understand-
ing. The first lesson is that a program only ‘works’ if it is correct with respect
to its specification. Our minds cannot cope with the billions of steps in an ex-
ecution. If the program is expressed in a mathematical form, however, then
each stage of the computation can be described by a formula. Programs can
be verified — proved correct — or derived from a specification. Most of the
early work on program verification focused on Pascal and similar languages;
functional programs are easier to reason about because they involve no machine
state.

Chapter outline
The chapter presents proofs about functional programs, paying particu-

lar attention to induction. The proof methods are rigorous but informal. Their
purpose is to increase our understanding of the programs.

The chapter contains the following sections:
Some principles of mathematical proof. A class of ML programs can be treated

215



216 6 Reasoning About Functional Programs

within elementary mathematics. Some integer functions are verified using math-
ematical induction.

Structural induction. This principle generalizes mathematical induction to
finite lists and trees. Proofs about higher-order functions are presented.

A general induction principle. Some unusual inductive proofs are discussed.
Well-founded induction provides a uniform framework for such proofs.

Specification and verification. The methods of the chapter are applied to an
extended example: the verification of a merge sort function. Some limitations
of verification are discussed.

Some principles of mathematical proof
The proofs in this chapter are conducted in a style typical of discrete

mathematics. Most proofs are by induction. Much of the reasoning is equa-
tional, replacing equals by equals, although the logical connectives and quanti-
fiers are indispensable.

6.1 ML programs and mathematics
Our proofs treat Standard ML programs as mathematical objects, subject

to mathematical laws. A theory of the full language would be too complicated;
let us restrict the form of programs. Only functional programs will be allowed;
ML’s imperative features will be forbidden. Types will be interpreted as sets,
which restricts the form of datatype declarations. Exceptions are forbidden,
although it would not be hard to incorporate them into our framework. We
shall allow only well-defined expressions. They must be legally typed, and must
denote terminating computations.

If all computations must terminate, recursive function definitions have to be
restricted. Recall the function facti , declared as follows:

fun facti (n,p) =
if n=0 then p else facti(n-1, n*p);

Recall from Section 2.11 that functional programs are computed by reduction:

facti(4, 1)⇒ facti(4− 1, 4× 1)⇒ facti(3, 4)⇒ · · · ⇒ 24

Computing facti(n, p) yields a unique result for all n ≥ 0; thus facti is a
mathematical function satisfying these laws:

facti(0, p) = p

facti(n, p) = facti(n − 1,n × p) for n > 0



6.1 ML programs and mathematics 217

If n < 0 then facti(n, p) produces a computation that runs forever; it is unde-
fined. We may regard facti(n, p) as meaningful only for n ≥ 0, which is the
function’s precondition.

For another example, consider the following declaration:

fun undef (x) = undef (x)-1;

Since undef (x ) does not terminate for any x , we shall not regard it as meaning-
ful. We may not adopt undef (x ) = undef (x ) − 1 as a law about numbers, for
it is clearly false.

It is possible to introduce the value ⊥ (called ‘bottom’) for the value of a
nonterminating computation, and develop a domain theory for reasoning about
arbitrary recursive function definitions. Domain theory interprets undef as the
function satisfying undef (x ) = ⊥ for all x . It turns out that ⊥ − 1 = ⊥, so
undef (x ) = undef (x ) − 1 means simply ⊥ = ⊥, which is valid. But domain
theory is complex and difficult. The value ⊥ induces a partial ordering on all
types. All functions in the theory must be monotonic and continuous over this
partial ordering; recursive functions denote least fixed points. By insisting upon
termination, we can work within elementary set theory.

Restricting ourselves to terminating computations entails some sacrifices. It
is harder to reason about programs that do not always terminate, such as in-
terpreters. Nor can we reason about lazy evaluation — which is a pity, for
using this sophisticated form of functional programming requires mathematical
insights. Most functional programmers eventually learn some domain theory;
there is no other way to understand what computation over an infinite list really
means.

Logical notation. This chapter assumes you have some familiarity with formal
proof. We shall adopt the following notation for logical formulæ:

¬φ not φ
φ ∧ ψ φ and ψ
φ ∨ ψ φ or ψ
φ→ ψ φ implies ψ
φ ↔ ψ φ if and only if ψ
∀x . φ(x ) for all x , φ(x )
∃x . φ(x ) for some x , φ(x )

From highest to lowest precedence, the connectives are ¬, ∧, ∨,→,↔. Here is
an example of precedence in formulæ:

P ∧Q → P ∨ ¬R abbreviates (P ∧Q)→ (P ∨ (¬R))



218 6 Reasoning About Functional Programs

Quantifiers have the widest possible scope to the right:

∀x .P ∧ ∃y .Q → R abbreviates ∀x . (P ∧ (∃y . (Q → R)))

Many logicians prefer a slightly different quantifier notation, omitting the dots.
Then ∀x P ∧ ∃y Q → R abbreviates ((∀x P) ∧ (∃y Q))→ R. Our unconven-
tional notation works well in proofs because typical formulæ have their quanti-
fiers at the front.

Connectives and quantifiers are used to construct formulæ, not as a substitute
for English. We may write ‘for all x , the formula ∀y . φ(x , y) is true.’

Background reading. Most textbooks on discrete mathematics cover predicate
logic and induction. Mattson (1993) has extensive coverage of both topics.

Reeves and Clarke (1990) have little to say about induction but describe logic in detail,
including a chapter on natural deduction. Winskel (1993) includes chapters on basic
logic, induction and domain theory. Gunter (1992) describes domain theory and other
advanced topics related to lazy evaluation, ML and polymorphism.

6.2 Mathematical induction and complete induction
Let us begin with a review of mathematical induction. Suppose φ(n)

is a property that we should like to prove for all natural numbers n (all non-
negative integers). To prove it by induction, it suffices to prove two things: the
base case, namely φ(0), and the induction step, namely that φ(k) implies φ(k+
1) for all k .

The rule can be displayed as follows:

φ(0)
[φ(k)]
φ(k + 1)

φ(n)
proviso: k must not occur in
other assumptions of φ(k + 1).

In this notation, the premises appear above the line and the conclusion below.
These premises are the base case and the induction step. The formula φ(k),
which appears in brackets, is the induction hypothesis; it may be assumed while
proving φ(k +1). The proviso means that k must be a new variable, not already
present in other induction hypotheses (or other assumptions); thus k stands for
an arbitrary value. This rule notation comes from natural deduction, a formal
theory of proofs.

In the induction step, we prove φ(k + 1) under the assumption φ(k). We
assume the very property we are trying to prove, but of k only. This may look
like circular reasoning, especially since n and k are often the same variable (to
avoid having to write the induction hypothesis explicitly). Why is induction
sound? If the base case and induction step hold, then we have φ(0) by the base



6.2 Mathematical induction and complete induction 219

case and φ(1), φ(2), . . . , by repeated use of the induction step. Therefore φ(n)
holds for all n .

As a trivial example of induction, let us prove the following.

Theorem 1 Every natural number is even or odd.

Proof The inductive property is

n is even or n is odd

which we prove by induction on n .
The base case, 0 is even or 0 is odd, is trivial: 0 is even.
In the induction step, we assume the induction hypothesis

k is even or k is odd

and prove

k + 1 is even or k + 1 is odd.

By the induction hypothesis, there are two cases: if k is even then k + 1 is odd;
if k is odd then k+1 is even. Since the conclusion holds in both cases, the proof
is finished. ut

Notice that a box marks the end of a proof.
This proof not only tells us that every natural number is even or odd, but

contains a method for testing a given number. The test can be formalized in ML

as a recursive function:

datatype evenodd = Even | Odd;

fun test 0 = Even
| test n = (case test (n-1) of

Even => Odd
| Odd => Even);

In some formal theories of constructive mathematics, a recursive function can be
extracted automatically from every inductive proof. We shall not study such the-
ories here, but shall try to learn as much as possible from our proofs. Mathemat-
ics would be barren indeed if each proof gave us nothing but a single formula.
By sharpening the statement of the theorem, we can obtain more information
from its proof.

Theorem 2 Every natural number has the form 2m or 2m+1 for some natural
number m .



220 6 Reasoning About Functional Programs

Proof Since this property is fairly complicated, let us express it in logical nota-
tion:

∃m .n = 2m ∨ n = 2m + 1

The proof is by induction on n .
The base case is

∃m . 0 = 2m ∨ 0 = 2m + 1.

This holds with m = 0 since 0 = 2× 0.
For the induction step, assume the induction hypothesis

∃m . k = 2m ∨ k = 2m + 1

and show (renaming m as m ′ to avoid confusion)

∃m ′ . k + 1 = 2m ′ ∨ k + 1 = 2m ′ + 1.

By the induction hypothesis, there exists some m such that either k = 2m
or k = 2m + 1. In either case we can exhibit some m ′ such that k + 1 = 2m ′

or k + 1 = 2m ′ + 1.

• If k = 2m then k + 1 = 2m + 1, so m ′ = m .
• If k = 2m + 1 then k + 1 = 2m + 2 = 2(m + 1), so m ′ = m + 1.

This concludes the proof. ut

The function contained in this more detailed proof does not just test whether a
number is even or odd, but also yields the quotient after division by two. This is
enough information to reconstruct the original number. Thus, we have a means
of checking the result.

fun half 0 = (Even, 0)
| half n = (case half (n-1) of

(Even, m) => (Odd, m)
| (Odd, m) => (Even, m+1));

Complete induction. Mathematical induction reduces the problem φ(k) to the
subproblem φ(k − 1), if k > 0. Complete induction reduces φ(k) to the k sub-
problems φ(0), φ(1), . . . , φ(k − 1). It includes mathematical induction as a
special case.

To prove φ(n) for all integer n ≥ 0 by complete induction on n , it suffices to
prove the following induction step:

φ(k) assuming ∀i < k . φ(i)



6.2 Mathematical induction and complete induction 221

The induction step comprises an infinite sequence of statements:

φ(0)

φ(1) assuming φ(0)

φ(2) assuming φ(0) and φ(1)

φ(3) assuming φ(0), φ(1) and φ(2)
...

Clearly it implies φ(n) for all n; complete induction is sound. The rule is por-
trayed as follows:

[∀i < k . φ(i)]
φ(k)
φ(n)

proviso: k must not occur in other
assumptions of the premise.

We now consider a simple proof.

Theorem 3 Every natural number n ≥ 2 can be written as a product of prime
numbers, n = p1 · · · pk .

Proof By complete induction on n . There are two cases.
If n is prime then the result is trivial and k = 1.
If n is not prime then it is divisible by some natural number m such that 1 <

m < n . Since m < n and n/m < n , we may appeal twice to the induction
hypotheses of complete induction, writing these numbers as products of primes:

m = p1 · · · pk and n/m = q1 · · · ql

Now n = m × (n/m) = p1 · · · pkq1 · · · ql . ut

This is the easy part of the Fundamental Theorem of Arithmetic. The hard
part is to show that the factorization into primes is unique, regardless of the
choice of m in the proof (Davenport, 1952). As it stands, the proof provides a
nondeterministic algorithm for factoring numbers into primes.

Proofs as programs. There is a precise correspondence between constructive
proofs and functional programs. If we can extract programs from proofs, then

by proving theorems we obtain verified programs. Of course, not every proof is suitable.
Not only must the proof be constructive (crucial parts of it at least), but it has to describe
an efficient construction. The usual conception of the natural numbers corresponds to
unary notation, which leads to hopelessly inefficient programs. The extracted programs
contain computations that correspond to logical arguments; as they do not affect the
result, they ought to be removed. Many people are investigating questions such as
these. Thompson (1991) and Turner (1991) introduce this research area.



222 6 Reasoning About Functional Programs

Exercise 6.1 Prove, by induction, the basic theorem of integer division: if n
and d are natural numbers with d 6= 0, then there exist natural numbers q and r
such that n = dq + r and 0 ≤ r < d . Express the corresponding division
function in ML. How efficient is it?

Exercise 6.2 Show that if φ(n) can be proved by mathematical induction on n ,
then it can also be proved by complete induction.

Exercise 6.3 Show that if φ(n) can be proved by complete induction on n ,
then it can also be proved using mathematical induction. (Hint: use a different
induction formula.)

6.3 Simple examples of program verification
A specification is a precise description of the properties required of a

program execution. It specifies the result of the computation, not the method.
The specification of sorting states that the output contains the same elements
as the input, arranged in increasing order. Any sorting algorithm satisfies this
specification. A specification (for the present purposes, at least) says nothing
about performance.

Program verification means proving that a program satisfies its specification.
The complexity of a realistic specification makes verification difficult. Each
of the programs verified below has a trivial specification: the result is a sim-
ple function of the input. We shall verify ML functions to compute factorials,
Fibonacci numbers and powers.

The key step in these proofs is to formulate an induction suitable for the func-
tion. To be of any use, the induction hypothesis should be applicable to some
recursive call of the function. The base case and induction step are simplified
using function definitions, other mathematical laws and the induction hypothe-
sis. If we are lucky, the simplified formula will be trivially true; if not, it may at
least suggest a lemma to prove first.

Factorials. The iterative function facti is intended to compute factorials. Let
us prove that facti(n, 1) = n! for all n ≥ 0. Recall that 0! = 1 and n! =
(n − 1)! × n for n > 0. The definition of facti was repeated in Section 6.1.

Induction on facti(n, 1) = n! leads nowhere because it says nothing about
argument p of facti . The induction hypothesis would be useless. We must find a
relationship involving facti(n, p) and n! that implies facti(n, 1) = n! and that
can be proved by induction. A good try is facti(n, p) = n! × p, but this will
not quite do. It refers to some particular n and p, but p varies in the recursive



6.3 Simple examples of program verification 223

calls. The correct formulation has a universal quantifier:

∀p . facti(n, p) = n! × p

As an induction hypothesis about some fixed n , it asserts the equality for all p.

Theorem 4 For every natural number n , facti(n, 1) = n!

Proof This will follow by putting p = 1 in the following formula, which is
proved by induction on n:

∀p . facti(n, p) = n! × p

By using n rather than k in the induction step, we can use this formula as the
induction hypothesis.

For the base case we must show

∀p . facti(0, p) = 0! × p.

This holds because facti(0, p) = p = 1× p = 0! × p.
For the induction step, the induction hypothesis is as stated above. We must

show

∀p . facti(n + 1, p) = (n + 1)! × p.

Let us drop the universal quantifier and show the equality for arbitrary p. To
simplify the equality, reduce the left side to the right side:

facti(n + 1, p) = facti(n, (n + 1)× p) [facti ]

= n! × ((n + 1)× p) [ind hyp]

= (n! × (n + 1))× p [associativity]

= (n + 1)! × p [factorial]

The comments in brackets are read as follows:

[facti ] means ‘by the definition of facti ’
[ind hyp] means ‘by the induction hypothesis’

[associativity] means ‘by the associative law for ×’
[factorial] means ‘by the definition of factorials’

Both sides are equal in the induction step. Observe that the quantified variable p
of the induction hypothesis is replaced by (n + 1)× p. ut

Formal proofs should help us understand our programs. This proof explains
the rôle of p in facti(n, p). The induction formula is analogous to a loop invari-
ant in procedural program verification. Since the proof depends on the associa-
tive law for ×, it suggests that facti(n, 1) computes n! by multiplying the same



224 6 Reasoning About Functional Programs

numbers in a different order. Later we shall generalize this to a theorem about
transforming recursive functions into iterative functions (Section 6.9). Many of
our theorems concern implementing some function efficiently.

Fibonacci numbers. Recall that the Fibonacci sequence is defined by F0 = 0,
F1 = 1 and Fn = Fn−2 + Fn−1 for n ≥ 2. We shall prove that they can be
computed by the function itfib (from Section 2.15):

fun itfib (n, prev, curr) : int =
if n=1 then curr
else itfib (n-1, curr, prev+curr);

Observing that itfib(n, prev , curr) is defined for all n ≥ 1, we set out to prove
itfib(n, 0, 1) = Fn . As in the previous example, the induction formula must
be generalized to say something about all the arguments of the function. There
is no automatic procedure for doing this, but examining some computations of
itfib(n, 0, 1) reveals that prev and curr are always Fibonacci numbers. This
suggests the relationship

itfib(n,Fk ,Fk+1) = Fk+n .

Again, a universal quantifier must be inserted before induction.

Theorem 5 For every integer n ≥ 1, itfib(n, 0, 1) = Fn .

Proof Put k = 0 in the following formula, which is proved by induction on n:

∀k . itfib(n,Fk ,Fk+1) = Fk+n

Since n ≥ 1, the base case is to prove this for n = 1:

∀k . itfib(1,Fk ,Fk+1) = Fk+1

This is immediate by the definition of itfib.
For the induction step, the induction hypothesis is given above; we must show

∀k . itfib(n + 1,Fk ,Fk+1) = Fk+(n+1).

We prove this by simplifying the left side:

itfib(n + 1,Fk ,Fk+1)

= itfib(n,Fk+1,Fk + Fk+1) [itfib]

= itfib(n,Fk+1,Fk+2) [Fibonacci]

= F(k+1)+n [ind hyp]

= Fk+(n+1) [arithmetic]



6.3 Simple examples of program verification 225

The induction hypothesis is applied with k + 1 in place of k , instantiating the
quantifier. ut

This proof shows how pairs of Fibonacci numbers are generated successively.
The induction formula is a key property of itfib, and is not at all obvious. It is
good practice to state such a formula as a comment by the function declaration.

Powers. We now prove that power(x , k) = x k for every real number x and
integer k ≥ 1. Recall the definition of power (Section 2.14):

fun power(x,k) : real =
if k=1 then x
else if k mod 2 = 0 then power(x*x, k div 2)

else x * power(x*x, k div 2);
> val power = fn : real * int -> real

The proof will assume that ML’s real arithmetic is exact, ignoring roundoff er-
rors. It is typical of program verification to ignore the limitations of physical
hardware. To demonstrate that power is suitable for actual computers would
require an error analysis as well, which would involve much more work.

We must check that power(x , k) is defined for k ≥ 1. The case k = 1 is
obvious. If k ≥ 2 then we need to examine the recursive calls, which replace k
by k div 2. These terminate because 1 ≤ k div 2 < k .

Since x varies during the computation of power(x , k), the induction formula
must have a quantifier:

∀x . power(x , k) = x k

However, ordinary mathematical induction is not appropriate. In power(x , k)
the recursive call replaces k by k div 2, not k − 1. We use complete induction
in order to have an induction hypothesis for k div 2.

Theorem 6 For every integer k ≥ 1, ∀x . power(x , k) = x k .

Proof The formula is proved by complete induction on k .
Although complete induction has no separate base case, we may perform case

analysis on k . Since k ≥ 1, let us consider k = 1 and k ≥ 2 separately.
Case k = 1. We must prove

∀x . power(x , 1) = x 1.

This holds because power(x , 1) = x = x 1.
Case k ≥ 2. We consider subcases. If k is even then k = 2j , and if k is odd

then k = 2j + 1, for some integer j (namely k div 2). In both cases 1 ≤ j < k ,



226 6 Reasoning About Functional Programs

so there is an induction hypothesis for j :

∀x . power(x , j ) = x j

If k = 2j then k mod 2 = 0 and

power(x , 2j ) = power(x 2, j ) [power ]

= (x 2)j [ind hyp]

= x 2j . [arithmetic]

If k = 2j + 1 then k mod 2 = 1 and

power(x , 2j + 1) = x × power(x 2, j ) [power ]

= x × (x 2)j [ind hyp]

= x 2j+1. [arithmetic]

In both of these cases, the induction hypothesis is applied with x 2 in place of x .
ut

Exercise 6.4 Verify that introot computes integer square roots (Section 2.16).

Exercise 6.5 Recall sqroot of Section 2.17, which computes real square roots
by the Newton-Raphson method. Discuss the problems involved in verifying
this function.

Structural induction
Mathematical induction establishes φ(n) for all natural numbers n by

considering how a natural number is constructed. Although there are infinitely
many natural numbers, they are constructed in just two ways:

• 0 is a number.
• If k is a number then so is k + 1.

Strictly speaking, we should introduce the successor function suc and reformu-
late the above:

• If k is a number then so is suc(k).

Addition and other arithmetic functions are then defined recursively in terms of
0 and suc, which are essentially the constructors of an ML datatype. Structural
induction is a generalization of mathematical induction to datatypes such as lists
and trees.



6.4 Structural induction on lists 227

6.4 Structural induction on lists
Suppose φ(xs) is a property that we should like to prove for all lists xs .

Let xs have type τ list for some type τ . To prove φ(xs) by structural induction,
it suffices to prove two premises:

• The base case is φ([]).
• The induction step is that φ(ys) implies φ(y :: ys) for all y of type τ

and ys of type τ list . The induction hypothesis is φ(ys).

The rule can be displayed as follows:

φ([])

[φ(ys)]
φ(y :: ys)

φ(xs)
proviso: y and ys must not occur in
other assumptions of φ(y :: ys).

Why is structural induction sound? We have φ([]) by the base case. By the
induction step, we have φ([y]) for all y ; the conclusion holds for all 1-element
lists. Using the induction step again, the conclusion holds for all 2-element lists.
Continuing this process, the conclusion φ(xs) holds for every n-element list xs;
all lists are reached eventually. The rule can also be justified by mathematical
induction on the length of the list.

To illustrate the rule, let us prove a fundamental property of lists.

Theorem 7 No list equals its own tail.

Proof The statement of the theorem can be formalized as follows:

∀x . x :: xs 6= xs

This is proved by structural induction on the list xs .
The base case, ∀x . [x ] 6= [], is trivial by the definition of equality on lists.

Two lists are equal if they have the same length and the corresponding elements
are equal.

In the induction step, assume the induction hypothesis

∀x . x :: ys 6= ys

and show (for arbitrary y and ys)

∀x . x :: (y :: ys) 6= y :: ys

By the definition of list equality, it is enough to show that the tails differ: to
show y :: ys 6= ys . This follows by the induction hypothesis, putting y for the
quantified variable x . Again, the quantifier in the induction formula is essential.

ut



228 6 Reasoning About Functional Programs

This theorem does not apply to infinite lists, for [1,1,1,. . . ] equals its own tail.
The structural induction rules given here are sound for finite objects only. In
domain theory, induction can be extended to infinite lists — but not for arbitrary
formulæ! The restrictions are complicated; roughly speaking, the conclusion
holds for infinite lists only if the induction formula is a conjunction of equations.
So x :: xs 6= xs cannot be proved for infinite lists.

Let us prove theorems about some of the list functions of Chapter 3. Each of
these functions terminates for all arguments because each recursive call involves
a shorter list.

The length of a list:

fun nlength [] = 0
| nlength (x::xs) = 1 + nlength xs;

The infix operator @, which appends two lists:

fun [] @ ys = ys
| (x::xs) @ ys = x :: (xs@ys);

The naı̈ve reverse function:

fun nrev [] = []
| nrev (x::xs) = (nrev xs) @ [x];

An efficient reverse function:

fun revAppend ([], ys) = ys
| revAppend (x::xs, ys) = revAppend (xs, x::ys);

Length and append. Here is an obvious property about the length of the con-
catenation of two lists.

Theorem 8 For all lists xs and ys , nlength(xs@ys) = nlength xs+nlength ys .

Proof By structural induction on xs . We avoid renaming this variable; thus, the
formula above also serves as the induction hypothesis.

The base case is

nlength([]@ ys) = nlength[] + nlength ys.

This holds because

nlength([]@ ys) = nlength ys [@]

= 0+ nlength ys [arithmetic]

= nlength[] + nlength ys. [nlength]



6.4 Structural induction on lists 229

For the induction step, assume the induction hypothesis and show, for all x
and xs , that

nlength((x :: xs)@ ys) = nlength(x :: xs)+ nlength ys.

This holds because

nlength((x :: xs)@ ys)

= nlength(x :: (xs @ ys)) [@]

= 1+ nlength(xs @ ys) [nlength]

= 1+ (nlength xs + nlength ys) [ind hyp]

= (1+ nlength xs)+ nlength ys [associativity]

= nlength(x :: xs)+ nlength ys. [nlength]

We could have written 1+nlength xs+nlength ys , omitting parentheses, instead
of applying the associative law explicitly. ut

The proof brings out the correspondence between inserting the list elements
and counting them. Induction on xs works because the base case and induction
step can be simplified using function definitions. Induction on ys leads nowhere:
try it.

Efficient list reversal. The function nrev is a mathematical definition of list re-
versal, while revAppend reverses lists efficiently. The proof that they are equiv-
alent is similar to Theorem 4, the correctness of facti . In both proofs, the induc-
tion formula is universally quantified over an accumulating argument.

Theorem 9 For every list xs , we have ∀ys . revAppend(xs, ys) = nrev(xs)@
ys .

Proof By structural induction on xs , taking the formula above as the induction
hypothesis. The base case is

∀ys . revAppend([], ys) = nrev []@ ys.

It holds because revAppend([], ys) = ys = []@ ys = nrev []@ ys .
The induction step is to show, for arbitrary x and xs , the formula

∀ys . revAppend(x :: xs, ys) = nrev(x :: xs)@ ys.

Simplifying the right side of the equality yields

nrev(x :: xs)@ ys = (nrev(xs)@ [x ])@ ys. [nrev ]



230 6 Reasoning About Functional Programs

Simplifying the left side yields

revAppend(x :: xs, ys) = revAppend(xs, x :: ys) [revAppend ]

= nrev(xs)@ (x :: ys) [ind hyp]

= nrev(xs)@ ([x ]@ ys). [@]

The induction hypothesis is applied with x :: xs for the quantified variable ys .
Are we finished? Not quite: the parentheses do not agree. It remains to show

nrev(xs)@ ([x ]@ ys) = (nrev(xs)@ [x ])@ ys.

This formula looks more complicated than the one we set out to prove. How
shall we proceed? Observe that the formula is a special case of something simple
and plausible: that @ is associative. We have only to prove

l1 @ (l2 @ l3) = (l1 @ l2)@ l3.

This routine induction is left as an exercise. ut

It would be tidier to prove each theorem in the correct order, making a flawless
presentation. This example attempts to show how the need for a theorem is
discovered. The hardest problem in a verification is recognizing what properties
ought to be proved. The need here for the associative law may be obvious —
but not if we are dazzled by the symbols, which happens all too easily.

Append and reverse. We now prove a relationship involving list concatenation
and reversal.

Theorem 10 For all lists xs and ys , nrev(xs @ ys) = nrev ys @ nrev xs .

Proof By structural induction on xs . The base case is

nrev([]@ ys) = nrev ys @ nrev [].

This holds using the lemma l @ [] = l , which is left as an exercise.
The induction step is

nrev((x :: xs)@ ys) = nrev ys @ nrev(x :: xs).

This holds because

nrev((x :: xs)@ ys) = nrev(x :: (xs @ ys)) [@]

= nrev(xs @ ys)@ [x ] [nrev ]

= nrev ys @ nrev xs @ [x ] [ind hyp]

= nrev ys @ nrev(x :: xs). [nrev ]



6.5 Structural induction on trees 231

In nrev ys @ nrev xs @ [x ] we have implicitly applied the associativity of @ by
omitting parentheses. ut

These last two theorems show that nrev , though inefficient to compute, is a
good specification of reversal. It permits simple proofs. A literal specification,
like

reverse[x1, x2, . . . , xn ] = [xn , . . . , x2, x1] ,

would be most difficult to formalize. The function revAppend is not a good
specification either; its performance is irrelevant and it is too complicated. But
nlength is a good specification of the length of a list.

Exercise 6.6 Prove xs @ [] = xs for every list xs , by structural induction.

Exercise 6.7 Prove l1 @ (l2 @ l3) = (l1 @ l2)@ l3 for all lists l1, l2 and l3, by
structural induction.

Exercise 6.8 Prove nrev(nrev xs) = xs for every list xs .

Exercise 6.9 Show that nlength xs = length xs for every list xs . (The func-
tion length was defined in Section 3.4.)

6.5 Structural induction on trees
In Chapter 4 we studied binary trees defined as follows:

datatype ′a tree = Lf
| Br of ′a *

′a tree *
′a tree;

Binary trees admit structural induction. In most respects, their treatment resem-
bles that of lists. Suppose φ(t) is a property of trees, where t has type τ tree.
To prove φ(t) by structural induction, it suffices to prove two premises:

• The base case is φ(Lf ).
• The induction step is to show that φ(t1) and φ(t2) imply φ(Br(x , t1, t2))

for all x of type τ and t1, t2 of type τ tree. There are two induction hy-
potheses: φ(t1) and φ(t2).

The rule can be portrayed thus:

φ(Lf )
[φ(t1), φ(t2)]

φ(Br(x , t1, t2))

φ(t)
proviso: x , t1 and t2 must not occur in
other assumptions of φ(Br(x , t1, t2)).



232 6 Reasoning About Functional Programs

This structural induction rule is sound because it covers all the ways of building
a tree. The base case establishes φ(Lf ). Applying the induction step once
establishes φ(Br(x ,Lf ,Lf )) for all x , covering all trees containing one Br
node. Applying the induction step twice establishes φ(t) where t is any tree
containing two Br nodes. Further applications of the induction step cover larger
trees.

We can also justify the rule by complete induction on the number of labels
in the tree, because every tree is finite and its subtrees are smaller than itself.
Structural induction is not sound in general for infinite trees.

We shall prove some facts about the following functions on binary trees, from
Section 4.10.

The number of labels in a tree:

fun size Lf = 0
| size (Br(v,t1,t2)) = 1 + size t1 + size t2;

The depth of a tree:

fun depth Lf = 0
| depth (Br(v,t1,t2)) = 1 + Int.max(depth t1, depth t2);

Reflection of a tree:

fun reflect Lf = Lf
| reflect (Br(v,t1,t2)) = Br(v, reflect t2, reflect t1);

The preorder listing of a tree’s labels:

fun preorder Lf = []
| preorder (Br(v,t1,t2)) = [v] @ preorder t1 @ preorder t2;

The postorder listing of a tree’s labels:

fun postorder Lf = []
| postorder (Br(v,t1,t2)) = postorder t1 @ postorder t2 @ [v];

Double reflection. We begin with an easy example: reflecting a tree twice yields
the original tree.

Theorem 11 For every binary tree t , reflect(reflect t) = t .

Proof By structural induction on t . The base case is

reflect(reflect Lf ) = Lf .

This holds by the definition of reflect : reflect(reflect Lf ) = reflect Lf = Lf .



6.5 Structural induction on trees 233

For the induction step we have the two induction hypotheses

reflect(reflect t1) = t1 and reflect(reflect t2) = t2

and must show

reflect(reflect(Br(x , t1, t2))) = Br(x , t1, t2).

Simplifying,

reflect(reflect(Br(x , t1, t2)))

= reflect(Br(x , reflect t2, reflect t1)) [reflect]

= Br(x , reflect(reflect t1), reflect(reflect t2)) [reflect]

= Br(x , t1, reflect(reflect t2)) [ind hyp]

= Br(x , t1, t2). [ind hyp]

Both induction hypotheses have been applied. We can observe the two calls of
reflect cancelling each other. ut

Preorder and postorder. If the concepts of preorder and postorder are obscure to
you, then the following theorem may help. A key fact is Theorem 10, concerning
nrev and @, which we have recently proved.

Theorem 12 For every binary tree t , postorder(reflect t) = nrev(preorder t).

Proof By structural induction on t . The base case is

postorder(reflect Lf ) = nrev(preorder Lf ).

This is routine; both sides are equal to [].
For the induction step we have the induction hypotheses

postorder(reflect t1) = nrev(preorder t1)

postorder(reflect t2) = nrev(preorder t2)

and must show

postorder(reflect(Br(x , t1, t2))) = nrev(preorder(Br(x , t1, t2))).

First, we simplify the right-hand side:

nrev(preorder(Br(x , t1, t2)))

= nrev([x ]@ preorder t1 @ preorder t2) [preorder ]

= nrev(preorder t2)@ nrev(preorder t1)@ nrev [x ] [Theorem 10]

= nrev(preorder t2)@ nrev(preorder t1)@ [x ] [nrev ]



234 6 Reasoning About Functional Programs

Some steps have been skipped. Theorem 10 has been applied twice, to both
occurrences of @, and nrev [x ] is simplified directly to [x ].

Now we simplify the left-hand side:

postorder(reflect(Br(x , t1, t2)))

= postorder(Br(x , reflect t2, reflect t1)) [reflect]

= postorder(reflect t2)@ postorder(reflect t1)@ [x ] [postorder ]

= nrev(preorder t2)@ nrev(preorder t1)@ [x ] [ind hyp]

Thus, both sides are equal. ut

Count and depth. We now prove a law relating the number of labels in a binary
tree to its depth. The theorem is an inequality, reminding us that formal methods
involve more than mere equations.

Theorem 13 For every binary tree t , size t ≤ 2depth t
− 1.

Proof By structural induction on t . The base case is

size Lf ≤ 2depth Lf
− 1.

It holds because size Lf = 0 = 20
− 1 = 2depth Lf

− 1.
In the induction step the induction hypotheses are

size t1 ≤ 2depth t1 − 1 and size t2 ≤ 2depth t2 − 1

and we must demonstrate

size(Br(x , t1, t2)) ≤ 2depth(Br (x ,t1,t2)) − 1.

First, simplify the right-hand side:

2depth(Br (x ,t1,t2)) − 1 = 21+max(depth t1,depth t2) − 1 [depth]

= 2× 2max(depth t1,depth t2) − 1 [arithmetic]

Next, show that the left side is less than or equal to this:

size (Br(x , t1, t2)) = 1+ size t1 + size t2 [size]

≤ 1+ (2depth t1 − 1)+ (2depth t2 − 1) [ind hyp]

= 2depth t1 + 2depth t2 − 1 [arithmetic]

≤ 2× 2max(depth t1,depth t2) − 1 [arithmetic]

Here we have identified max, the mathematical function for the maximum of
two integers, with the library function Int.max . ut



6.6 Function values and functionals 235

Problematical datatypes. Our simple methods do not admit all ML datatypes.
Consider this declaration:

datatype lambda = F of lambda -> lambda;

The mathematics in this chapter is based on set theory. Since there is no set A that is
isomorphic to the set of functions A→ A, we can make no sense of this declaration.
In domain theory, this declaration can be interpreted because there is a domain D iso-
morphic to D → D , which is the domain of continuous functions from D to D . Even
in domain theory, no induction rule useful for reasoning about D is known. This is
because the type definition involves recursion to the left of the function arrow (→). We
shall not consider datatypes involving functions.

The declaration of type term (Section 5.11) refers to lists:

datatype term = Var of string
| Fun of string * term list;

Type term denotes a set of finite terms and satisfies a structural induction rule. However,
the involvement of lists in the type complicates the theory and proofs (Paulson, 1995,
Section 4.4).

Exercise 6.10 Formalize and prove: No binary tree equals its own left subtree.

Exercise 6.11 Prove size(reflect t) = size t for every binary tree t .

Exercise 6.12 Prove nlength(preorder t) = size t for every binary tree t .

Exercise 6.13 Prove nrev(inorder(reflect t)) = inorder t for every binary
tree t .

Exercise 6.14 Define a function leaves to count the Lf nodes in a binary tree.
Then prove leaves t = size t + 1 for all t .

Exercise 6.15 Verify the function preord of Section 4.11. In other words,
prove preord(t, []) = preorder t for every binary tree t .

6.6 Function values and functionals
Our mathematical methods extend directly to proofs about higher-order

functions (functionals). The notion of ‘functions as values’ is familiar to math-
ematicians. In set theory, for example, functions are sets and are treated no
differently from other sets.

We can prove many facts about functionals without using any additional rules.
The laws of the λ-calculus could be introduced for reasoning about ML’s fn no-
tation, although this will not be done here. Our methods, needless to say, apply
only to pure functions — not to ML functions with side effects.



236 6 Reasoning About Functional Programs

Equality of functions. The law of extensionality states that functions f and g
are equal if f (x ) = g(x ) for all x (of suitable type). For instance, these three
doubling functions are extensionally equal:

fun double1(n) = 2*n;
fun double2(n) = n*2;
fun double3(n) = (n-1)+(n+1);

The extensionality law is valid because the only operation that can be performed
on an ML function is application to an argument. Replacing f by g , if these
functions are extensionally equal, does not affect the value of any application
of f .1

A different concept of equality, called intensional equality, regards two func-
tions as equal only if their definitions are identical. Our three doubling func-
tions are all distinct under intensional equality. This concept resembles function
equality in Lisp, where a function value is a piece of Lisp code that can be taken
apart.

There is no general, computable method of testing whether two functions are
extensionally equal. Therefore ML has no equality test for function values. Lisp
tests equality of functions by comparing their internal representations.

We now prove a few statements about function composition (the infix o) and
the functional map (of Section 5.7).

fun (f o g) x = f (g x);

fun map f [] = []
| map f (x::xs) = (f x) :: map f xs;

The associativity of composition. Our first theorem is trivial. It asserts that func-
tion composition is associative.

Theorem 14 For all functions f , g and h (of appropriate type),

(f ◦ g) ◦ h = f ◦ (g ◦ h).

Proof By the law of extensionality, it is enough to show

((f ◦ g) ◦ h) x = (f ◦ (g ◦ h)) x

1 The extensionality law relies on our global assumption that functions termi-
nate. ML distinguishes ⊥ (the undefined function value) from λx .⊥ (the func-
tion that never terminates when applied) although both functions yield⊥ when
applied to any argument.



6.6 Function values and functionals 237

for all x . This holds because

((f ◦ g) ◦ h) x = (f ◦ g)(h x )

= f (g(h x ))

= f ((g ◦ h) x )

= (f ◦ (g ◦ h)) x .

Each step holds by the definition of composition. ut

As stated, the theorem holds only for functions of appropriate type; the equa-
tion must be properly typed. Typing restrictions apply to all our theorems and
will not be mentioned again.

The list functional map. Functionals enjoy many laws. Here is a theorem about
map and composition that can be used to avoid computing intermediate lists.

Theorem 15 For all functions f and g , (map f ) ◦ (map g) = map (f ◦ g).

Proof By the extensionality law, this equality holds if

((map f ) ◦ (map g)) xs = map (f ◦ g) xs

for all xs . Using the definition of ◦, this can be simplified to

map f (map g xs) = map (f ◦ g) xs

Since xs is a list, we may use structural induction. This formula will also be our
induction hypothesis. The base case is

map f (map g []) = map (f ◦ g) [].

It holds because both sides equal []:

map f (map g []) = map f [] = [] = map (f ◦ g) []

For the induction step, we assume the induction hypothesis and show (for arbi-
trary x and xs)

map f (map g (x :: xs)) = map (f ◦ g) (x :: xs).



238 6 Reasoning About Functional Programs

Straightforward reasoning yields

map f (map g (x :: xs))

= map f ((g x ) :: (map g xs)) [map]

= f (g x ) :: (map f (map g xs)) [map]

= f (g x ) :: (map (f ◦ g) xs) [ind hyp]

= (f ◦ g)(x ) :: (map (f ◦ g) xs) [◦]

= map (f ◦ g) (x :: xs). [map]

Despite the presence of function values, the proof is a routine structural induc-
tion. ut

The list functional foldl. The functional foldl applies a 2-argument function
over the elements of a list. Recall its definition from Section 5.10:

fun foldl f e [] = e
| foldl f e (x::xs) = foldl f (f (x, e)) xs;

If⊕ is an associative operator then foldl (op⊕) (y⊕z ) xs = (foldl (op⊕) y xs)⊕
z . For if xs = [x1, x2, . . . , xn ], this is equivalent to

xn ⊕ · · · (x2 ⊕ (x1 ⊕ (y ⊕ z ))) · · · = xn ⊕ · · · (x2 ⊕ (x1 ⊕ y))⊕ z .

Since ⊕ is associative we may erase the parentheses, reducing both sides to
xn ⊕ · · · x2 ⊕ x1 ⊕ y ⊕ z . We see the notational advantage of working with an
infix operator ⊕ instead of a function f . Now let us see the formal proof.

Theorem 16 Suppose ⊕ is an infix operator that is associative, satisfying x ⊕
(y ⊕ z ) = (x ⊕ y)⊕ z for all x , y and z . Then for all y , z and xs ,

∀y . foldl (op⊕) (y ⊕ z ) xs = (foldl (op⊕) y xs)⊕ z .

Proof By structural induction on the list xs . The base case,

foldl (op⊕) (y ⊕ z ) [] = (foldl (op⊕) y [])⊕ z ,

is trivial; both sides reduce to y ⊕ z .
For the induction step we show

foldl (op⊕) (y ⊕ z ) (x :: xs) = (foldl (op⊕) y (x :: xs))⊕ z .



6.6 Function values and functionals 239

for arbitrary y , x and xs:

foldl (op⊕) (y ⊕ z ) (x :: xs)

= foldl (op⊕) (x ⊕ (y ⊕ z )) xs [foldl ]

= foldl (op⊕) ((x ⊕ y)⊕ z ) xs [associativity]

= (foldl (op⊕) (x ⊕ y) xs)⊕ z [ind hyp]

= (foldl (op⊕) y (x :: xs))⊕ z [foldl ]

The induction hypothesis has been applied with x ⊕ y replacing the quantified
variable y . ut

Exercise 6.16 Prove map f (xs @ ys) = (map f xs)@ (map f ys).

Exercise 6.17 Prove (map f ) ◦ nrev = nrev ◦ (map f ).

Exercise 6.18 Declare a functional maptree on binary trees, satisfying the
following equations (which you should prove):

(maptree f ) ◦ reflect = reflect ◦ (maptree f )

(map f ) ◦ preorder = preorder ◦ (maptree f )

Exercise 6.19 Prove foldr (op ::) ys xs = xs @ ys .

Exercise 6.20 Prove foldl f z (xs @ ys) = foldl f (foldl f z xs) ys).

Exercise 6.21 Suppose that � and e satisfy, for all x , y and z ,

x � (y � z ) = (x � y)� z and e � x = x .

Let F abbreviate foldr (op�). Prove that for all y and l , (F e l)� y = F y l .

Exercise 6.22 Let �, e and F be as in the previous exercise. Define the func-
tion G by G(l , z ) = F z l . Prove that for all ls , foldr G e ls = F e (map (F e) ls).

A general induction principle
In a structural induction proof on lists, we assume φ(xs) and then show

φ(x :: xs). Typically the induction formula involves a recursive list function
such as nrev . The induction hypothesis, φ(xs), says something about nrev(xs).
Since nrev(x :: xs) is defined in terms of nrev(xs), we can reason about nrev(x ::
xs) to show φ(x :: xs).



240 6 Reasoning About Functional Programs

The list function nrev makes its recursive call on the tail of its argument.
This kind of recursion is called structural recursion by analogy with structural
induction. However, recursive functions can shorten the list in other ways. The
function maxl , when applied to m :: n :: ns , may call itself on m :: ns:

fun maxl [m] : int = m
| maxl (m::n::ns) = if m>n then maxl(m::ns)

else maxl(n::ns);

Quick sort and merge sort divide a list into two smaller lists and sort them recur-
sively. Matrix transpose (Section 3.9) and Gaussian elimination make recursive
calls on a smaller matrix obtained by deleting rows and columns.

Most functions on trees use structural recursion: their recursive calls involve a
node’s immediate subtrees. The function nnf , which converts a proposition into
negation normal form, is not structurally recursive. We shall prove theorems
about nnf in this section.

Structural induction works best with functions that are structurally recursive.
With other functions, well-founded induction is often superior. Well-founded
induction is a powerful generalization of complete induction. Because the rule
is abstract and seldom required in full generality, our proofs will be done by a
special case: induction on size. For instance, the function nlength formalizes the
size of a list. In the induction step we have to prove φ(xs) under the induction
hypothesis

∀ys .nlength ys < nlength xs → φ(ys).

Thus, we may assume φ(ys) provided ys is a shorter list than xs .

6.7 Computing normal forms
Our tautology checker uses functions to compute normal forms of propo-

sitions (Section 4.19). These functions involve unusual recursions; structural
induction seems inappropriate. First, let us recall some definitions.

The declaration of prop, the datatype of propositions, is

datatype prop = Atom of string
| Neg of prop
| Conj of prop * prop
| Disj of prop * prop;

Function nnf computes the negation normal form of a proposition. It is practi-
cally a literal rendering of the rewrite rules for this normal form, and has com-
plex patterns.



6.7 Computing normal forms 241

fun nnf (Atom a) = Atom a
| nnf (Neg (Atom a)) = Neg (Atom a)
| nnf (Neg (Neg p)) = nnf p
| nnf (Neg (Conj(p,q))) = nnf (Disj(Neg p, Neg q))
| nnf (Neg (Disj(p,q))) = nnf (Conj(Neg p, Neg q))
| nnf (Conj(p,q)) = Conj(nnf p, nnf q)
| nnf (Disj(p,q)) = Disj(nnf p, nnf q);

The mutually recursive functions nnfpos and nnfneg compute the same normal
form, but more efficiently:

fun nnfpos (Atom a) = Atom a
| nnfpos (Neg p) = nnfneg p
| nnfpos (Conj(p,q)) = Conj(nnfpos p, nnfpos q)
| nnfpos (Disj(p,q)) = Disj(nnfpos p, nnfpos q)

and nnfneg (Atom a) = Neg (Atom a)
| nnfneg (Neg p) = nnfpos p
| nnfneg (Conj(p,q)) = Disj(nnfneg p, nnfneg q)
| nnfneg (Disj(p,q)) = Conj(nnfneg p, nnfneg q);

We must verify that these functions terminate. The functions nnfpos and nnfneg
are structurally recursive — recursion is always applied to an immediate con-
stituent of the argument — and therefore terminate. For nnf , termination is not
so obvious. Consider nnf (Neg(Conj (p, q))), which makes a recursive call on
a large expression. But this reduces in a few steps to

Disj (nnf (Neg p),nnf (Neg q)).

Thus the recursive calls after Neg(Conj (p, q)) involve the smaller propositions
Neg p and Neg q . The other complicated pattern, Neg(Disj (p, q)), behaves
similarly. In every case, recursive computations in nnf involve smaller and
smaller propositions, and therefore terminate.

Let us prove that nnfpos and nnf are equal. The termination argument sug-
gests that theorems involving nnf p should be proved by induction on the size
of p. Let us write nodes(p) for the number of Neg , Conj and Disj nodes in p.
This function can easily be coded in ML.

Theorem 17 For all propositions p, nnf p = nnfpos p.

Proof By mathematical induction on nodes(p), taking as induction hypotheses
nnf q = nnfpos q for all q such that nodes(q) < nodes(p). We consider seven
cases, corresponding to the definition of nnf .

If p = Atom a then nnf (Atom a) = Atom a = nnfpos(Atom a).
If p = Neg(Atom a) then

nnf (Neg(Atom a)) = Neg(Atom a) = nnfpos(Neg(Atom a)).



242 6 Reasoning About Functional Programs

If p = Conj (r , q) then

nnf (Conj (r , q)) = Conj (nnf r ,nnf q) [nnf ]

= Conj (nnfpos r ,nnfpos q) [ind hyp]

= nnfpos(Conj (r , q)). [nnfpos]

The case p = Disj (r , q) is similar.
If p = Neg(Conj (r , q)) then

nnf (Neg(Conj (r , q))) = nnf (Disj (Neg r ,Neg q)) [nnf ]

= Disj (nnf (Neg r),nnf (Neg q)) [nnf ]

= Disj (nnfpos(Neg r),nnfpos(Neg q)) [ind hyp]

= nnfneg(Conj (r , q)) [nnfneg]

= nnfpos(Neg(Conj (r , q))). [nnfpos]

We have induction hypotheses for Neg r and Neg q because they are smaller, as
measured by nodes , than Neg(Conj (r , q)).

The case p = Neg(Disj (r , q)) is similar.
If p = Neg(Neg r) then

nnf (Neg(Neg r)) = nnf r [nnf ]

= nnfpos r [ind hyp]

= nnfneg(Neg r) [nnfneg]

= nnfpos(Neg(Neg r)). [nnfpos]

An induction hypothesis applies since r contains fewer nodes than Neg(Neg r).
ut

The conjunctive normal form. We now consider a different question: whether
computing the conjunctive normal form preserves the meaning of a proposition.
A truth valuation for propositions is a predicate that respects the connectives:

Tr(Neg p)↔ ¬Tr(p)

Tr(Conj (p, q))↔ Tr(p) ∧ Tr(q)

Tr(Disj (p, q))↔ Tr(p) ∨ Tr(q)

The predicate is completely determined by its valuation of atoms, Tr(Atom a).
To show that the normal forms preserve truth for all valuations, we make no
assumptions about which atoms are true.

Most of the work of computing CNF is performed by distrib:



6.7 Computing normal forms 243

fun distrib (p, Conj(q,r)) = Conj(distrib(p,q), distrib(p,r))
| distrib (Conj(q,r), p) = Conj(distrib(q,p), distrib(r,p))
| distrib (p, q) = Disj(p,q) (*no conjunctions*);

This function is unusual in its case analysis and its recursive calls.
The first two cases overlap if both arguments in distrib(p, q) are conjunc-

tions. Because ML tries the first case before the second, the second case can-
not simply be taken as an equation. There seems to be no way of making the
cases separate except to write nearly every combination of one Atom , Neg , Disj
or Conj with another: at least 13 cases seem necessary. To avoid this, take the
second case of distrib as a conditional equation; if p does not have the form
Conj (p1, p2) then

distrib(Conj (q, r), p) = Conj (distrib(q, p), distrib(r , p)).

The computation of distrib(p, q) may make recursive calls affecting either p
or q . It terminates because every call reduces the value of nodes(p)+nodes(q).
We shall use this measure for induction.

The task of distrib(p, q) is to compute a proposition equivalent to Disj (p, q),
but in conjunctive normal form. Its correctness can be stated as follows.

Theorem 18 For all propositions p, q and truth valuations Tr ,

Tr(distrib(p, q))↔ Tr(p) ∨ Tr(q).

Proof We prove this by induction on nodes(p) + nodes(q). The induction
hypothesis is

Tr(distrib(p ′, q ′))↔ Tr(p ′) ∨ Tr(q ′)

for all p ′ and q ′ such that nodes(p ′)+ nodes(q ′) < nodes(p)+ nodes(q). The
proof considers the same cases as in the definition of distrib.

If q = Conj (q ′, r) then

Tr(distrib(p,Conj (q ′, r)))

↔ Tr(Conj (distrib(p, q ′), distrib(p, r))) [distrib]

↔ Tr(distrib(p, q ′)) ∧ Tr(distrib(p, r)) [Tr ]

↔ (Tr(p) ∨ Tr(q ′)) ∧ (Tr(p) ∨ Tr(r)) [ind hyp]

↔ Tr(p) ∨ (Tr(q ′) ∧ Tr(r)) [distributive law]

↔ Tr(p) ∨ Tr(Conj (q ′, r)). [Tr ]



244 6 Reasoning About Functional Programs

The induction hypothesis has been applied twice using these facts:

nodes(p)+ nodes(q ′) < nodes(p)+ nodes(Conj (q ′, r))

nodes(p)+ nodes(r) < nodes(p)+ nodes(Conj (q ′, r))

We may now assume that q is not a Conj . If p = Conj (p ′, r) then the conclu-
sion follows as in the previous case. If neither p nor q is a Conj then

Tr(distrib(p, q))↔ Tr(Disj (p, q)) [distrib]

↔ Tr(p) ∨ Tr(q). [Tr ]

The conclusion holds in every case. ut

The proof exploits the distributive law of ∨ over ∧, as might be expected. The
overlapping cases in distrib do not complicate the proof at all. On the contrary,
they permit a concise definition of this function and a simple case analysis.

Exercise 6.23 State and justify a rule for structural induction on values of type
prop. To demonstrate it, prove the following formula by structural induction
on p:

nnf p = nnfpos p ∧ nnf (Neg p) = nnfneg p

Exercise 6.24 Define a predicate Isnnf on propositions such that Isnnf (p)
holds exactly when p is in negation normal form. Prove Isnnf (nnf p) for every
proposition p.

Exercise 6.25 Let Tr be an arbitrary truth valuation for propositions. Prove
Tr(nnf p)↔ Tr(p) for every proposition p.

6.8 Well-founded induction and recursion
Our treatment of induction is rigorous enough for the informal proofs

we have been performing, but is not formal enough to be automated. Many
induction rules can be formally derived from mathematical induction alone. A
more uniform approach is to adopt the rule of well-founded induction, which
includes most other induction rules as instances.

Well-founded relations. The relation ≺ is well-founded if there exist no infinite
decreasing chains

· · · ≺ xn ≺ · · · ≺ x2 ≺ x1.



6.8 Well-founded induction and recursion 245

For instance, ‘less than’ (<) on the natural numbers is well-founded. ‘Less than’
on the integers is not well-founded: there exists the decreasing chain

· · · < −n < · · · < −2 < −1.

‘Less than’ on the rational numbers is not well-founded either; consider

· · · <
1
n
< · · · <

1
2
<

1
1
.

Observe that we have to state the domain of the relation — the set of values it is
defined over — and not simply say that < is well-founded.

Another well-founded relation is the lexicographic ordering of pairs of natu-
ral numbers, defined by

(i ′, j ′) ≺lex (i , j ) if and only if i ′ < i ∨ (i ′ = i ∧ j ′ < j ).

To see that ≺lex is well-founded, suppose there is an infinite decreasing chain

· · · ≺lex (in , jn) ≺lex · · · ≺lex (i2, j2) ≺lex (i1, j1).

If (i ′, j ′) ≺lex (i , j ) then i ′ ≤ i . Since< is well-founded on the natural numbers,
the decreasing chain

· · · ≤ in ≤ · · · ≤ i2 ≤ i1

reaches some constant value i after say M steps: thus in = i for all n ≥ M .
Now consider the strictly decreasing chain

· · · < jM+n < · · · < jM+1 < jM .

This must eventually terminate at some constant value j after say N steps: thus
(in , jn) = (i , j ) for all n ≥ M + N . At this point the chain of pairs becomes
constant, contradicting our assumption that it was decreasing under ≺lex.

Similar reasoning shows that lexicographic orderings for triples, quadruples
and so forth, are well-founded. The lexicographic ordering is not well-founded
for lists of natural numbers; it admits an infinite decreasing chain:

· · · ≺ [1, 1, . . . , 1, 2] ≺ · · · ≺ [1, 2] ≺ [2]

Another sort of well-founded relation is given by a measure function. If f is
a function into the natural numbers, then there is a well-founded relation ≺f

defined by

x ≺f y if and only if f (x ) < f (y).

Clearly, if there were an infinite decreasing chain

· · · ≺f xn ≺f · · · ≺f x2 ≺f x1



246 6 Reasoning About Functional Programs

then there would be an infinite decreasing chain

· · · < f (xn) < · · · < f (x2) < f (x1)

in the natural numbers, which is impossible. Here f typically ‘measures’ the size
of something. The well-founded relations ≺nlength and ≺size compare lists and
trees by size. Our proof about distrib used the measure nodes(p) + nodes(q)
on pairs (p, q) of propositions.

The demonstration that ≺f is well-founded applies just as well if < is re-
placed by any other well-founded relation. For instance, f could return pairs
of natural numbers to be compared by ≺lex. Similarly, the construction of ≺lex

may be applied to any existing well-founded relations. There are several ways
of constructing well-founded relations from others. Frequently we can show
that a relation is well-founded by construction, without having to argue about
decreasing chains.

Well-founded induction. Let≺ be a well-founded relation over some type τ , and
φ(x ) a property to be proved for all x of type τ . To prove it by well-founded
induction, it suffices to prove, for all y , the following induction step:

if φ(y ′) for all y ′ ≺ y then φ(y)

The rule may be portrayed as follows:

[∀y ′ ≺ y . φ(y ′)]
φ(y)
φ(x )

proviso: y must not occur in other
assumptions of the premise.

The rule is sound by contradiction: if φ(x ) is false for any x then we obtain
an infinite decreasing chain in ≺. By the induction step we know that ∀y ′ ≺
x . φ(y ′) implies φ(x ). If ¬φ(x ) then ¬φ(y1) for some y1 ≺ x . Repeating this
argument for y1, we get ¬φ(y2) for some y2 ≺ y1. We then get y3 ≺ y2, and so
forth.2

Complete induction is an instance of this rule, where ≺ is the well-founded
relation < (on the natural numbers). Our other induction rules are instances of
well-founded induction for suitable choices of ≺.

2 Infinite decreasing chains are intuitively appealing, but other definitions of
well-foundedness permit simpler proofs. For instance, ≺ is well-founded just
if every non-empty set contains a ≺-minimal element. There also exist defini-
tions suited for constructive logic.



6.8 Well-founded induction and recursion 247

The predecessor relation on the natural numbers, where m ≺N n just if m +
1 = n , is obviously well-founded. Now consider proving φ(y) under the induc-
tion hypothesis ∀y ′ ≺N y . φ(y ′). There are two cases:

• If y = 0 then, since y ′ ≺N 0 never holds, we must prove φ(0) outright.
• If y = k + 1 then y ′ ≺N k + 1 holds just if y ′ = k , so we may assume
φ(k) when proving φ(k + 1).

Therefore, well-founded induction over≺N is precisely mathematical induction.
Structural induction is obtained similarly. Let ≺L be the relation on lists such

that xs ≺L ys just if x :: xs = ys for some x . Informally, xs ≺L ys means
that xs is the tail of ys . Induction on ≺L, which is clearly well-founded, yields
structural induction on lists. Let ≺T be the relation on trees such that t ′ ≺T t
just if Br(x , t ′, t ′′) = t or Br(x , t ′′, t ′) = t for some x and t ′′. Well-founded
induction on this ‘subtree of’ relation yields structural induction on trees.

A well-founded relation given by a measure function yields induction on the
size of an object. In reasoning about distrib, induction on the size of the pair
(p, q) saves us from performing nested structural inductions on q and then p.

Well-founded induction can also simulate induction on a quantified formula,
as when we proved

∀p . facti(n, p) = n! × p

by mathematical induction. It suffices to prove facti(n, p) = n! × p by well-
founded induction on the pair (n, p) under the relation ≺fst , where

(n ′, p ′) ≺fst (n, p) if and only if n ′ + 1 = n.

Although many induction principles can be derived from mathematical induc-
tion alone, the derivations typically involve quantifiers. Well-founded induction
makes significant proofs possible within quantifier-free logic.

Well-founded recursion. Let ≺ be a well-founded relation over some type τ . If
f is a function with formal parameter x that makes recursive calls f (y) only
if y ≺ x , then f (x ) terminates for all x . In this case, f is defined by well-
founded recursion on ≺.

Informally, f (x ) terminates because≺ has no infinite decreasing chains: there
can be no infinite recursion. A formal justification of well-founded recursion is
complex; besides termination, it must show that f (x ) is uniquely defined.

For most of our recursive functions, the well-founded relation is obvious.
If n > 0 then fact(n) recursively calls fact(n − 1), so fact is defined by



248 6 Reasoning About Functional Programs

well-founded recursion on the predecessor relation, ≺N . When facti(n, p) re-
cursively calls facti(n − 1,n × p) it changes the second argument; its well-
founded relation is ≺fst . The list functions nlength , @ and nrev are recursive
over the ‘tail of’ relation, ≺L.

Proving that a function terminates suggests a useful form of induction for it
— recall our proofs involving nnf and distrib. If a function is defined by well-
founded recursion on≺, then its properties can often be proved by well-founded
induction on ≺.

Well-founded relations in use. Well-founded relations are central to the Boyer
and Moore (1988) theorem prover, also called NQTHM. It accepts functions

defined by well-founded recursion and employs elaborate heuristics to choose the right
relation for well-founded induction. Its logic is quantifier-free, but as we have seen,
this is not a fatal restriction. NQTHM is one of the most important theorem provers in
existence. Demanding proofs in numerous areas of mathematics and computer science
have been performed using it. The theorem prover Isabelle formally develops a theory
of well-founded relations (Paulson, 1995, Section 3).

6.9 Recursive program schemes
Well-founded relations permit reasoning about program schemes. Sup-

pose that p and g are functions and that ⊕ is an infix operator, and consider the
ML declarations

fun f 1(x) = if p(x) then e else f 1(g x) ⊕ x;
fun f 2(x,y) = if p(x) then y else f 2(g x, x ⊕ y);

Suppose that we are also given a well-founded relation ≺ such that g(x ) ≺ x
for all x such that p(x ) = false . We then know that f 1 and f 2 terminate, and
can prove theorems about them.

Theorem 19 Suppose ⊕ is an infix operator that is associative and has iden-
tity e; that is, for all x , y and z ,

x ⊕ (y ⊕ z ) = (x ⊕ y)⊕ z

e ⊕ x = x = x ⊕ e.

Then for all x and a we have f 2(x , e) = f 1(x ).

Proof It suffices to prove the following formula, then put y = e:

∀y . f 2(x , y) = f 1(x )⊕ y .

This holds by well-founded induction over ≺. There are two cases.



6.9 Recursive program schemes 249

If p(x ) = true then

f 2(x , y) = y [f 2]

= e ⊕ y [identity]

= f 1(x )⊕ y . [f 1]

If p(x ) = false then

f 2(x , y) = f 2(g x , x ⊕ y) [f 2]

= f 1(g x )⊕ x ⊕ y [ind hyp]

= f 1(x )⊕ y . [f 1]

The induction hypothesis applies because g(x ) ≺ x . We have implicitly used
the associativity of ⊕. ut

Thus we can transform a recursive function (f 1) into an iterative function with
an accumulator (f 2). The theorem applies to the computation of factorials. Put

e = 1

⊕ = ×

g(x ) = x − 1

p(x ) = (x = 0)

≺ = ≺N

Then f 1 is the factorial function while f 2 is the function facti . The theorem
generalizes Theorem 4.

Our approach to program schemes is simpler than resorting to domain theory,
but is less general. In domain theory it is simple to prove that any ML function
of the form

fun h x = if p x then x else h(h(g x));

satisfies h(h x ) = h x for all x — regardless of whether the function terminates.
Our approach cannot easily handle this. What well-founded relation should we
use to demonstrate the termination of the nested recursive call in h?

Exercise 6.26 Recall the function fst , such that fst(x , y) = x for all x and y .
Give an example of a well-founded relation that uses fst as a measure function.

Exercise 6.27 Consider the function ack :

fun ack(0,n) = n+1
| ack(m,0) = ack(m-1, 1)
| ack(m,n) = ack(m-1, ack(m,n-1));



250 6 Reasoning About Functional Programs

Use a well-founded relation to show that ack(m,n) is defined for all natural
numbers m and n . Prove ack(m,n) > m + n by well-founded induction.

Exercise 6.28 Give an example of a well-founded relation that is not transitive.
Show that if ≺ is well-founded then so is ≺+, its transitive closure.

Exercise 6.29 Consider the function half :

fun half 0 = 0
| half n = half (n-2);

Show that this function is defined by well-founded recursion. Be sure to specify
the domain of the well-founded relation.

Exercise 6.30 Show that well-founded induction on the ‘tail of’ relation ≺L is
equivalent to structural induction for lists.

Specification and verification
Sorting is a good example for program verification: it is simple but not

trivial. Considerable effort is required just to specify what sorting is. Most of
our previous correctness proofs concerned the equivalence of two functions, and
took little more than a page. Proving the correctness of the function tmergesort
takes most of this section, even though many details are omitted.

First, consider a simpler specification task: the Greatest Common Divisor. If
m and n are natural numbers then k is their GCD just if k divides both m and n
exactly, and is the greatest number to do so. Given this specification, it is not
hard to verify an ML function that computes the GCD by Euclid’s Algorithm:

fun gcd(m,n) =
if m=0 then n else gcd(n mod m, m);

The simplest approach is to observe that the specification defines a mathematical
function:

GCD(m,n) = max{k | k divides both m and n}

The value of GCD(m,n) is uniquely defined unless m = n = 0, when the max-
imum does not exist; we need not know whether GCD(m,n) is computable.
Using simple number theory it is possible to prove these facts:

GCD(0,n) = n for n > 0

GCD(m,n) = GCD(n mod m,m) for m > 0



6.9 Recursive program schemes 251

A trivial induction proves that gcd(m,n) = GCD(m,n) for all natural num-
bers m and n not both zero. We thereby learn that GCD(m,n) is computable.

A sorting function is not verified like this. It is not practical to define a math-
ematical function sorting and to prove tmergesort(xs) = sorting(xs). Sorting
involves two different correctness properties, which can be considered sepa-
rately:

1 The output must be an ordered list.

2 The output must be some rearrangement of the elements of the input.

Too often in program verification, some of the correctness properties are ig-
nored. This is dangerous. A function can satisfy property 1 by returning the
empty list, or property 2 by returning its input unchanged. Either property alone
is useless.

The specification does not have to specify the output uniquely. We might
specify that a compiler generates correct code, but should not specify the pre-
cise code to generate. This would be too complicated and would forbid code
optimizations. We might specify that a database system answers queries cor-
rectly, but should not specify the precise storage layout.

The next sections will prove that tmergesort is correct, in the sense that it
returns an ordered rearrangement of its input. Let us recall some functions from
Chapter 3. Proving that they terminate is left as an exercise.

The list utilities take and drop:

fun take ([], i) = []
| take (x::xs, i) = if i>0 then x::take(xs, i-1) else [];

fun drop ([], ) = []
| drop (x::xs, i) = if i>0 then drop (xs, i-1) else x::xs;

The merging function:

fun merge([],ys) = ys : real list
| merge(xs,[]) = xs
| merge(x::xs, y::ys) = if x<=y then x::merge(xs, y::ys)

else y::merge(x::xs, ys);

The top-down merge sort:



252 6 Reasoning About Functional Programs

fun tmergesort [] = []
| tmergesort [x] = [x]
| tmergesort xs =

let val k = length xs div 2
in merge (tmergesort (List.take(xs,k)),

tmergesort (List.drop(xs,k)))
end;

6.10 An ordering predicate
The predicate ordered expresses that the elements of a list are in in-

creasing order under ≤. Its properties include the following:

ordered([])

ordered([x ])

ordered(x :: y :: ys)↔ x ≤ y ∧ ordered(y :: ys).

Note that ordered(x :: xs) implies ordered(xs). We now prove that merging
two ordered lists yields another ordered list.

Theorem 20 For all lists xs and ys ,

ordered(xs) ∧ ordered(ys)→ ordered(merge(xs, ys)).

Proof By induction on the value of nlength xs + nlength ys .
If xs = [] or ys = [] then the conclusion follows by the definition of merge.

So assume xs = x :: xs ′ and ys = y :: ys ′ for some xs ′ and ys ′. We may assume

ordered(x :: xs ′) and ordered(y :: ys ′)

and must show

ordered(merge(x :: xs ′, y :: ys ′)).

Consider the case where x ≤ y . (The case where x > y is similar and is left as
an exercise.) By the definition of merge, it remains to show

ordered(x :: merge(xs ′, y :: ys ′)).

As we know ordered(xs ′), we may apply the induction hypothesis, obtaining

ordered(merge(xs ′, y :: ys ′)).

Finally we have to show x ≤ u , where u is the head of merge(xs ′, y :: ys ′).
Determining the head requires further case analysis.

If xs ′ = [] then merge(xs ′, y :: ys ′) = y :: ys ′. Its head is y and we have
already assumed x ≤ y .

If xs ′ = v :: vs then there are two subcases:



6.11 Expressing rearrangement through multisets 253

• If v ≤ y then merge(xs ′, y :: ys ′) = v :: merge(vs, y :: ys ′). The head
is v and x ≤ v follows from ordered(xs) since xs = x :: v :: vs .
• If v > y then merge(xs ′, y :: ys ′) = y :: merge(xs ′, ys ′). The head is

y and we have assumed x ≤ y . ut

The proof is surprisingly tedious. Perhaps merge is less straightforward than it
looks. Anyway, we are now ready to show that tmergesort returns an ordered
list.

Theorem 21 For every list xs , ordered(tmergesort xs).

Proof By induction on the length of xs . If xs = [] or xs = [x ] then the
conclusion is obvious, so assume nlength xs ≥ 2.

Let k = (nlength xs) div 2. Then 1 ≤ k < nlength xs . It is easy to show
these inequalities:

nlength(take(xs, k)) = k < nlength xs

nlength(drop(xs, k)) = nlength xs − k < nlength xs

By the induction hypotheses, we obtain corresponding facts:

ordered(tmergesort(take(xs, k)))

ordered(tmergesort(drop(xs, k)))

Since both arguments of merge are ordered, the conclusion follows by the pre-
vious theorem. ut

Exercise 6.31 Fill in the details of the proofs in this section.

Exercise 6.32 Write another predicate to define the notion of ordered list, and
prove that it is equivalent to ordered .

6.11 Expressing rearrangement through multisets
If the output of the sort is a rearrangement of the input, then there is a

function, called a permutation, that maps element positions in the input to the
corresponding positions in the output. To show the correctness of sorting, we
could provide a method of exhibiting the permutation. However, we do not need
so much information; it would complicate the proof. This specification is too
concrete.

We could show that the input and output of the sort contained the same set
of elements, not considering where each element was moved. Unfortunately,



254 6 Reasoning About Functional Programs

this approach accepts [1,1,1,1,2] as a valid sorting of [2,1,2]. Sets do not take
account of repeated elements. This specification is too abstract.

Multisets are a good way to specify sorting. A multiset is a collection of
elements that takes account of their number but not of their order. The multi-
sets 〈1, 1, 2〉 and 〈1, 2, 1〉 are equal; they differ from 〈1, 2〉. Multisets are often
called bags, for reasons that should be obvious. Here are some ways of forming
multisets:

• ∅, the empty bag, contains no elements.
• 〈u〉, the singleton bag, contains one occurrence of u .
• b1 ] b2, the bag sum of b1 and b2, contains all elements in the bags b1

and b2 (accumulating repetitions of elements).

Rather than assume bags as primitive, let us represent them as functions into the
natural numbers. If b is a bag then b(x ) is the number of occurrences of x in b.
Thus, for all x ,

∅(x ) = 0

〈u〉(x ) =

{
0 if u 6= x

1 if u = x

(b1 ] b2)(x ) = b1(x )+ b2(x ).

These laws are easily checked:

b1 ] b2 = b2 ] b1

(b1 ] b2) ] b3 = b1 ] (b2 ] b3)

∅ ] b = b.

Let us define a function to convert lists into bags:

bag[] = ∅

bag(x :: xs) = 〈x 〉 ] bag xs.

The ‘rearrangement’ correctness property can finally be specified:

bag(tmergesort xs) = bag xs

A preliminary proof. To illustrate reasoning about multisets, let us work through
a proof. It is a routine induction.3

3 It would be less routine if we adopted the standard library definitions of take
and drop, where take(xs, k) raises an exception unless 0 ≤ k < length xs .



6.11 Expressing rearrangement through multisets 255

Theorem 22 For every list xs and integer k ,

bag(take(xs, k)) ] bag(drop(xs, k)) = bag xs.

Proof By structural induction on the list xs . In the base case,

bag(take([], k)) ] bag(drop([], k))

= bag[] ] bag[] [take ,drop]

= ∅ ] ∅ [bag]

= ∅ []]

= bag[]. [bag]

For the induction step, we must prove

bag(take(x :: xs, k)) ] bag(drop(x :: xs, k)) = bag(x :: xs).

If k > 0 then

bag(take(x :: xs, k)) ] bag(drop(x :: xs, k))

= bag(x :: take(xs, k − 1)) ]

bag(drop(xs, k − 1)) [take ,drop]

= 〈x 〉 ] bag(take(xs, k − 1)) ]

bag(drop(xs, k − 1)) [bag]

= 〈x 〉 ] bag xs [ind hyp]

= bag(x :: xs). [bag]

If k ≤ 0 then

bag(take(x :: xs, k)) ] bag(drop(x :: xs, k))

= bag[] ] bag(x :: xs) [take ,drop]

= ∅ ] bag(x :: xs) [bag]

= bag(x :: xs). []]

Therefore, the conclusion holds for every integer k . ut

The next step is to show that merge combines the elements of its arguments
when forming its result.

Theorem 23 For all lists xs and ys , bag(merge(xs, ys)) = bag xs ] bag ys .

We should have to constrain k in the statement of the theorem and modify the
proof accordingly.



256 6 Reasoning About Functional Programs

Proof By induction on the value of nlength xs + nlength ys .
If xs = [] or ys = [] then the conclusion is immediate, so assume xs = x ::

xs ′ and ys = y :: ys ′ for some xs ′ and ys ′. We must prove

bag(merge(x :: xs ′, y :: ys ′)) = bag(x :: xs ′) ] bag(y :: ys ′).

If x ≤ y then

bag(merge(x :: xs ′, y :: ys ′))

= bag(x :: merge(xs ′, y :: ys ′)) [merge]

= 〈x 〉 ] bag(merge(xs ′, y :: ys ′)) [bag]

= 〈x 〉 ] bag xs ′ ] bag(y :: ys ′) [ind hyp]

= bag(x :: xs ′) ] bag(y :: ys ′). [bag]

The case x > y is similar. ut

Finally, we prove that merge sort preserves the bag of elements given to it.

Theorem 24 For every list xs , bag(tmergesort xs) = bag xs .

Proof By induction on the length of xs . The only hard case is if nlength xs ≥ 2.
As in Theorem 21, the induction hypotheses apply to take(xs, k) and drop(xs, k):

bag(tmergesort(take(xs, k))) = bag(take(xs, k))

bag(tmergesort(drop(xs, k))) = bag(drop(xs, k))

Therefore

bag(tmergesort xs)

= bag(merge(tmergesort(take(xs, k)),

tmergesort(drop(xs, k)))) [tmergesort]

= bag(tmergesort(take(xs, k))) ]

bag(tmergesort(drop(xs, k))) [Theorem 23]

= bag(take(xs, k)) ] bag(drop(xs, k)) [ind hyp]

= bag xs. [Theorem 22]

This concludes the verification of tmergesort . ut

Exercise 6.33 Verify that ] is commutative and associative. (Hint: recall the
extensional equality of functions.)



6.12 The significance of verification 257

Exercise 6.34 Prove that insertion sort preserves the bag of elements it is
given. In particular, prove these facts:

bag(ins(x , xs)) = 〈x 〉 ] bag xs

bag(insort xs) = bag xs

Exercise 6.35 Modify merge sort to suppress repetitions: each input element
should appear exactly once in the output. Formalize this property and state the
theorems required to verify it.

6.12 The significance of verification
We could now announce that tmergesort has been verified — but would

this mean anything? What, exactly, have we established about tmergesort?
Formal verification has three fundamental limitations:

1 The model of computation may be too imprecise. Typically the hard-
ware is assumed to be infallible. A model can be designed to cope with
specific errors, like arithmetic overflow, rounding errors, or running out
of store. However, a computer can fail in unanticipated ways. What if
somebody takes an axe to it?

2 The specification may be incomplete or wrong. Design requirements
are difficult to formalize, especially if they pertain to the real world.
Satisfying a faulty specification will not satisfy the customer. Software
engineers understand the difference between verification (did we build
the product right?) and validation (did we build the right product?).

3 Proofs may contain errors. Automated theorem proving can reduce but
not eliminate the likelihood of error. All human efforts may have flaws,
even our principles of mathematics. This is not merely a philosophi-
cal problem. Many errors have been discovered in theorem provers, in
proof rules and in published proofs.

Apart from these fundamental limitations, there is a practical one: formal proof
is tedious. Look back over the proofs in this chapter; usually they take great
pains to prove something elementary. Now consider verifying a compiler. The
specification will be gigantic, comprising the syntax and semantics of a pro-
gramming language along with the complete instruction set of the target ma-
chine. The compiler will be a large program. The proof should be divided into
parts, separately verifying the parser, the type checker, the intermediate code
generator and so forth. There may only be time to verify the most interesting



258 6 Reasoning About Functional Programs

part of the program: say, the code generator. So the ‘verified’ compiler could
fail due to faulty parsing.

Let us not be too negative. Writing a formal specification reveals ambiguities
and inconsistencies in the design requirements. Since design errors are far more
serious than coding errors, writing a specification is valuable even if the code
will not be verified. Many companies go to great expense to produce specifica-
tions that are rigorous, if not strictly formal.

The painstaking work of verification yields rewards. Most programs are in-
correct, and an attempted proof often pinpoints the error. To see this, insert an
error into any program verified in this chapter, and work through the proof again.
The proof should fail, and the location of this failure should indicate the precise
conditions under which the modified program fails.

A correctness proof is a detailed explanation of how the program or system
works. If the proof is simple, we can go through it line by line, reading it as a
series of snapshots of the execution. The inductive step traces what happens at
a recursive function call. A large proof may consist of hundreds of theorems,
examining every component or subsystem.

Specification and verification yield a fuller knowledge of the program and its
task. This leads to increased confidence in the system. Formal proof does not
eliminate the need for systematic testing, especially for a safety-critical system.
Testing is the only way to investigate whether the computational model and the
formal specification accurately reflect the real world. However, while testing
can detect errors, it cannot guarantee success; nor does it provide insights into
how a program works.

Further reading. Bevier et al. (1989) have verified a tiny computer system
consisting of several levels, both software and hardware. Avra Cohn (1989a)

has verified some correctness properties of the Viper microprocessor. Taking her proofs
as an example, Cohn (1989b) discusses the fundamental limitations of verification.

Fitzgerald et al. (1995) report a study in which two teams independently develop a
trusted gateway. The control team uses conventional methods while the experimental
team augments these methods by writing a formal specification. An unusually large
study involves the AAMP5 pipelined microprocessor. This is a commercial product de-
signed for use in avionics. It has been specified on two levels and some of its microcode
proved correct (Srivas and Miller, 1995). Both studies suggest that writing formal spec-
ifications — whether or not they are followed up by formal proofs — uncovers errors.

A major study by Susan Gerhart et al. (1994) investigated 12 cases involving the use
of formal methods. And in a famous philosophical monograph, Lakatos (1976) argues
that we can learn from partial, even faulty, proofs.



6.12 The significance of verification 259

Summary of main points
• Many functional programs can be given a meaning within elementary

mathematics. Higher-order functions can be handled, but not lazy eval-
uation or infinite data structures.
• The proof that a function terminates has the same general form as most

other proofs about the function.
• Mathematical induction applies to recursive functions over the natural

numbers.
• Structural induction applies to recursive functions over lists and trees.
• Well-founded induction and recursion handle a wide class of terminat-

ing computations.
• Program proofs require precise and simple program specifications.
• Proofs can be fallible, but usually convey valuable information.


