
3
Lists

In a public lecture, C. A. R. Hoare (1989a) described his algorithm for finding
the i th smallest integer in a collection. This algorithm is subtle, but Hoare de-
scribed it with admirable clarity as a game of solitaire. Each playing card carried
an integer. Moving cards from pile to pile by simple rules, the required integer
could quickly be found.

Then Hoare changed the rules of the game. Each card occupied a fixed posi-
tion, and could only be moved if exchanged with another card. This described
the algorithm in terms of arrays. Arrays have great efficiency, but they also have
a cost. They probably defeated much of the audience, as they defeat experienced
programmers. Mills and Linger (1986) claim that programmers become more
productive when arrays are restricted to stacks, queues, etc., without subscript-
ing.

Functional programmers often process collections of items using lists. Like
Hoare’s stacks of cards, lists allow items to be dealt with one at a time, with
great clarity. Lists are easy to understand mathematically, and turn out to be
more efficient than commonly thought.

Chapter outline
This chapter describes how to program with lists in Standard ML. It

presents several examples that would normally involve arrays, such as matrix
operations and sorting.

The chapter contains the following sections:
Introduction to lists. The notion of list is introduced. Standard ML operates

on lists using pattern-matching.
Some fundamental list functions. A family of functions is presented. These

are instructive examples of list programming, and are indispensable when tack-
ling harder problems.

Applications of lists. Some increasingly complicated examples illustrate the
variety of problems that can be solved using lists.

The equality test in polymorphic functions. Equality polymorphism is intro-

69

70 3 Lists

duced and demonstrated with many examples. These include a useful collection
of functions on finite sets.

Sorting: A case study. Procedural programming and functional programming
are compared in efficiency. In one experiment, a procedural program runs only
slightly faster than a much clearer functional program.

Polynomial arithmetic. Computers can solve algebraic problems. Lists are
used to add, multiply and divide polynomials in symbolic form.

Introduction to lists
A list is a finite sequence of elements. Typical lists are [3,5,9] and

["fair","Ophelia"]. The empty list, [], has no elements. The order of
elements is significant, and elements may appear more than once. For instance,
the following lists are all different:

[3,4] [4,3] [3,4,3] [3,3,4]

The elements of a list may have any type, including tuples and even other lists.
Every element of a list must have the same type. Suppose this type is τ ; the type
of the list is then τ list . Thus

[(1,"One"), (2,"Two"), (3,"Three")] : (int*string) list
[[3.1], [], [5.7, ˜0.6]] : (real list) list

The empty list, [], has the polymorphic type α list . It can be regarded as having
any type of elements.

Observe that the type operator list has a postfix syntax. It binds more tightly
than × and→. So int × string list is the same type as int × (string list), not
(int × string)list . Also, int list list is the same type as (int list)list .

3.1 Building a list
Every list is constructed by just two primitives: the constant nil and the

infix operator ::, pronounced ‘cons’ for ‘construct.’

• nil is a synonym for the empty list, [].
• The operator :: makes a list by putting an element in front of an existing

list.

Every list is either nil , if empty, or has the form x :: l where x is its head and l
its tail. The tail is itself a list. The list operations are not symmetric: the first
element of a list is much more easily reached than the last.

If l is the list [x1, . . . , xn] and x is a value of correct type then x :: l is the
list [x , x1, . . . , xn]. Making the new list does not affect the value of l . The list

3.1 Building a list 71

[3, 5, 9] is constructed as follows:

nil = []

9 :: [] = [9]

5 :: [9] = [5, 9]

3 :: [5, 9] = [3, 5, 9]

Observe that the elements are taken in reverse order. The list [3, 5, 9] can be
written in many ways, such as 3 :: (5 :: (9 :: nil)), or 3 :: (5 :: [9]), or 3 :: [5, 9].
To save writing parentheses, the infix operator ‘cons’ groups to the right. The
notation [x1, x2, . . . , xn] stands for x1 :: x2 :: · · · :: xn :: nil . The elements may
be given by expressions; a list of the values of various real expressions is

[Math.sin 0.5, Math.cos 0.5, Math.exp 0.5];
> [0.479425539, 0.877582562, 1.64872127] : real list

List notation makes a list with a fixed number of elements. Consider how to
build the list of integers from m to n:

[m,m + 1, . . . ,n]

First compare m and n . If m > n then there are no numbers between m and n;
the list is empty. Otherwise the head of the list is m and the tail is [m+1, . . . ,n].
Constructing the tail recursively, the result is obtained by

m :: [m + 1, . . . ,n].

This process corresponds to a simple ML function:

fun upto (m,n) =
if m>n then [] else m :: upto(m+1,n);

> val upto = fn : int * int -> int list
upto(2,5);
> [2, 3, 4, 5] : int list

Lists in other languages. Weakly typed languages like Lisp and Prolog rep-
resent lists by pairing, as in (3,(5,(9,"nil"))). Here "nil" is some

end marker and the list is [3, 5, 9]. This representation of lists does not work in ML
because the type of a ‘list’ would depend on the number of elements. What type could
upto have?

ML’s syntax for lists differs subtly from Prolog’s. In Prolog, [5|[6]] is the same
list as [5,6]. In ML, [5::[6]] is the same list as [[5,6]].

72 3 Lists

3.2 Operating on a list
Lists, like tuples, are structured values. In ML, a function on tuples can

be written with a pattern for its argument, showing its structure and naming the
components. Functions over lists can be written similarly. For example,

fun prodof 3 [i,j,k] : int = i*j*k;

declares a function to take the product of a list of numbers — but only if there
are exactly three of them!

List operations are usually defined by recursion, treating several cases. What
is the product of a list of integers?

• If the list is empty, the product is 1 (by convention).
• If the list is non-empty, the product is the head times the product of the

tail.

It can be expressed in ML like this:

fun prod [] = 1
| prod (n::ns) = n * (prod ns);

> val prod = fn : int list -> int

The function consists of two clauses separated by a vertical bar (|). Each clause
treats one argument pattern. There may be several clauses and complex patterns,
provided the types agree. Since the patterns involve lists, and the result can be
the integer 1, ML infers that prod maps a list of integers to an integer.

prod[2,3,5];
> 30 : int

Empty versus non-empty is the commonest sort of case analysis for lists. Find-
ing the maximum of a list of integers requires something different, for the empty
list has no maximum. The two cases are

• The maximum of the one-element list [m] is m .
• To find the maximum of a list with two or more elements [m,n, . . .],

remove the smaller of m or n and find the maximum of the remaining
numbers.

This gives the ML function

fun maxl [m] : int = m
| maxl (m::n::ns) = if m>n then maxl(m::ns)

else maxl(n::ns);
> ***Warning: Patterns not exhaustive
> val maxl = fn : int list -> int

3.2 Operating on a list 73

Note the warning message: ML detects that maxl is undefined for the empty
list. Also, observe how the pattern m :: n :: ns describes a list of the form
[m,n, . . .]. The smaller element is dropped in the recursive call.

The function works — except for the empty list.

maxl [˜4, 0, ˜12];
> 0 : int
maxl [];
> Exception: Match

An exception, for the time being, can be regarded as a run-time error. The func-
tion maxl has been applied to an argument for which it is undefined. Normally
exceptions abort execution. They can be trapped, as we shall see in the next
chapter.

Intermediate lists. Lists are sometimes generated and consumed within a com-
putation. For instance, the factorial function has a clever definition using prod
and upto:

fun factl (n) = prod (upto (1,n));
> val factl = fn : int -> int
factl 7;
> 5040 : int

This declaration is concise and clear, avoiding explicit recursion. The cost of
building the list [1, 2, . . . ,n]may not matter. However, functional programming
should facilitate reasoning about programs. This does not happen here. The
trivial law

factl(m + 1) = (m + 1)× factl(m)

has no obvious proof. Opening up its definition, we get

factl(m + 1) = prod(upto(1,m + 1)) =?

The next step is unclear because the recursion in upto follows its first argument,
not the second. The honest recursive definition of factorial seems better.

Strings and lists. Lists are important in string processing. Most functional lan-
guages provide a type of single characters, regarding strings as lists of charac-
ters. With the new standard library, ML has acquired a character type — but it
does not regard strings as lists. The built-in function explode converts a string
to a list of characters. The function implode performs the inverse operation,
joining a list of characters to form a string.

74 3 Lists

explode "Banquo";
> [#"B", #"a", #"n", #"q", #"u", #"o"] : char list
implode it;
> "Banquo" : string

Similarly, the function concat joins a list of strings to form a string.

Some fundamental list functions
Given a list we can find its length, select the nth element, take a prefix

or suffix, or reverse the order of its elements. Given two lists we can append
one to the other, or, if they have equal length, pair corresponding elements. The
functions declared in this section are indispensable, and will be taken for granted
in the rest of the book. All of these functions are polymorphic.

Efficiency becomes a central concern here. For some functions, a naı̈ve recur-
sive definition is less efficient than an iterative version. For others, an iterative
style impairs both readability and efficiency.

3.3 Testing lists and taking them apart
The three basic functions on lists are null , hd and tl .

The function null. This function tests whether a list is empty:

fun null [] = true
| null (_::_) = false;

> val null = fn : ’a list -> bool

The function is polymorphic: testing whether a list is empty does not examine its
elements. The underscores () in the second pattern take the place of components
whose values are not needed in the clause. These underscores, called wildcard
patterns, save us from inventing names for such components.

The function hd. This function returns the head (the first element) of a non-
empty list:

fun hd (x::_) = x;
> ***Warning: Patterns not exhaustive
> val hd = fn : ’a list -> ’a

This pattern has a wildcard for the tail, while the head is called x . Since there
is no pattern for the empty list, ML prints a warning. It is a partial function
like maxl .

Here we have a list of lists. Its head is a list and the head of that is an integer.
Each use of hd removes one level of brackets.

3.3 Testing lists and taking them apart 75

hd[[[1,2], [3]], [[4]]];
> [[1, 2], [3]] : (int list) list
hd it;
> [1, 2] : int list
hd it;
> 1 : int

What if we type hd it; once more?

The function tl. This returns the tail of a non-empty list. The tail, remember, is
the list consisting of the all elements but the first.

fun tl (_::xs) = xs;
> ***Warning: Patterns not exhaustive
> val tl = fn : ’a list -> ’a list

Like hd, this is a partial function. Its result is always another list:

tl ["Out","damned","spot!"];
> ["damned", "spot!"] : string list
tl it;
> ["spot!"] : string list
tl it;
> [] : string list
tl it;
> Exception: Match

Attempting to take the tail of the empty list is an error.
Through null , hd and tl , all other list functions can be written without pattern-

matching. The product of a list of integers can be computed like this:

fun prod ns = if null ns then 1
else (hd ns) * (prod (tl ns));

If you prefer this version of prod, you might as well give up ML for Lisp. For
added clarity, Lisp primitives have names like CAR and CDR. Normal people find
pattern-matching more readable than hd and tl. A good ML compiler analyses
the set of patterns to generate the best code for the function. More importantly,
the compiler prints a warning if the patterns do not cover all possible arguments
of the function.

Exercise 3.1 Write a version of maxl using null , hd and tl , instead of pattern-
matching.

Exercise 3.2 Write a function to return the last element of a list.

76 3 Lists

3.4 List processing by numbers
We now declare the functions length , take and drop, which behave as

follows:

l = [x0, . . . , xi−1︸ ︷︷ ︸
take(l , i)

, xi , . . . , xn−1︸ ︷︷ ︸
drop(l , i)

] length(l) = n

The function length. The length of a list can be computed by a naı̈ve recursion:

fun nlength [] = 0
| nlength (x::xs) = 1 + nlength xs;

> val nlength = fn : ’a list -> int

Its type, α list → int , permits nlength to be applied to a list regardless of the
type of its elements. Let us try it on a list of lists:

nlength[[1,2,3], [4,5,6]];
> 2 : int

Did you think the answer would be 6?
Although correct, nlength is intolerably wasteful for long lists:

nlength[1, 2, 3, . . . , 10000] ⇒ 1+ nlength[2, 3, . . . , 10000]

⇒ 1+ (1+ nlength[3, . . . , 10000])
...

⇒ 1+ (1+ 9998)

⇒ 1+ 9999⇒ 10000

The ones pile up, wasting space proportional to the length of the list, and could
easily cause execution to abort. Much better is an iterative version of the func-
tion that accumulates the count in another argument:

local
fun addlen (n, []) = n

| addlen (n, x::l) = addlen (n+1, l)
in

fun length l = addlen (0,l)
end;
> val length = fn : ’a list -> int
length (explode"Throw physic to the dogs!");
> 25 : int

The function addlen adds the length of a list to another number, initially 0.
Since addlen has no other purpose, it is declared local to length . It executes

3.4 List processing by numbers 77

as follows:

addlen(0, [1, 2, 3, . . . , 10000])⇒ addlen(1, [2, 3, . . . , 10000])

⇒ addlen(2, [3, . . . , 10000])
...

⇒ addlen(10000, [])⇒ 10000

The greatly improved efficiency compensates for the loss of readability.

The function take. Calling take(l,i) returns the list of the first i elements of l :

fun take ([], i) = []
| take (x::xs, i) = if i>0 then x::take(xs, i-1)

else [];
> val take = fn : ’a list * int -> ’a list
take (explode"Throw physic to the dogs!", 5);
> [#"T", #"h", #"r", #"o", #"w"] : char list

Here is a sample computation:

take([9, 8, 7, 6], 3)⇒ 9 :: take([8, 7, 6], 2)

⇒ 9 :: (8 :: take([7, 6], 1))

⇒ 9 :: (8 :: (7 :: take([6], 0)))

⇒ 9 :: (8 :: (7 :: []))

⇒ 9 :: (8 :: [7])

⇒ 9 :: [8, 7]

⇒ [9, 8, 7]

Observe that 9 :: (8 :: (7 :: [])) above is an expression, not a value. Evaluating
it constructs the list [9, 8, 7]. Allocating the necessary storage takes time, par-
ticularly if we consider its contribution to the cost of later garbage collections.
Indeed, take probably spends most of its time building its result.

The recursive calls to take get deeper and deeper, like nlength , which we
have recently deplored. Let us try to make an iterative version of take by accu-
mulating the result in an argument:

fun rtake ([], _, taken) = taken
| rtake (x::xs, i, taken) =

if i>0 then rtake(xs, i-1, x::taken)
else taken;

> val rtake = fn : ’a list * int * ’a list -> ’a list

78 3 Lists

The recursion is nice and shallow . . .

rtake([9, 8, 7, 6], 3, [])⇒ rtake([8, 7, 6], 2, [9])

⇒ rtake([7, 6], 1, [8, 9])

⇒ rtake([6], 0, [7, 8, 9])

⇒ [7, 8, 9]

. . . but the output is reversed!
If a reversed output is acceptable, rtake is worth considering. However, the

size of the recursion in take is tolerable compared with the size of the result.
While nlength returns an integer, take returns a list. Building a list is slow,
which is usually more important than the space temporarily consumed by deep
recursion. Efficiency is a matter of getting the costs into proportion.

The function drop. The list drop(l,i) contains all but the first i elements of l :

fun drop ([],) = []
| drop (x::xs, i) = if i>0 then drop (xs, i-1)

else x::xs;
> val drop = fn : ’a list * int -> ’a list

Luckily, the obvious recursion is iterative.

take (["Never","shall","sun","that","morrow","see!"], 3);
> ["Never", "shall", "sun"] : string list
drop (["Never","shall","sun","that","morrow","see!"], 3);
> ["that", "morrow", "see!"] : string list

Exercise 3.3 What do take(l,i) and drop(l,i) return when i > length(l),
and when i < 0? (The library versions of take and drop would raise excep-
tions.)

Exercise 3.4 Write a function nth(l,n) to return the nth element of l (where
the head is element 0).

3.5 Append and reverse
The infix operator @, which appends one list to another, and rev, which

reverses a list, are built-in functions. Their definitions deserve close attention.

The append operation. Append puts the elements of one list after those of an-
other list:

[x1, . . . , xm]@ [y1, . . . yn] = [x1, . . . , xm , y1, . . . yn]

3.5 Append and reverse 79

What sort of recursion accomplishes this? The traditional name append suggests
that the action takes place at the end of a list, but lists are always built from the
front. The following definition, in its essentials, dates to the early days of Lisp:

infixr 5 @;
fun ([] @ ys) = ys
| ((x::xs) @ ys) = x :: (xs@ys);

> val @ = fn : ’a list * ’a list -> ’a list

Its type, α list × α list → α list , accepts any two lists with the same element
type — say, lists of strings and lists of lists:

["Why", "sinks"] @ ["that", "cauldron?"];
> ["Why", "sinks", "that", "cauldron?"] : string list
[[2,4,6,8], [3,9]] @ [[5], [7]];
> [[2, 4, 6, 8], [3, 9], [5], [7]] : int list list

The computation of [2, 4, 6]@ [8, 10] goes like this:

[2, 4, 6]@ [8, 10] ⇒ 2 :: ([4, 6]@ [8, 10])

⇒ 2 :: (4 :: ([6]@ [8, 10]))

⇒ 2 :: (4 :: (6 :: ([]@ [8, 10])))

⇒ 2 :: (4 :: (6 :: [8, 10]))

⇒ 2 :: (4 :: [6, 8, 10])

⇒ 2 :: [4, 6, 8, 10]

⇒ [2, 4, 6, 8, 10]

The last three steps put the elements from the first list on to the second. As
with take , the cost of building the result exceeds that of the deep recursion; an
iterative version is not needed. The cost of evaluating xs @ ys is proportional
to the length of xs and is completely independent of ys . Even xs @ [] makes a
copy of xs .

In Pascal and C you can implement lists using pointer types, and join them
by updating the last pointer of one list to point towards another. Destructive
updating is faster than copying, but if you are careless your lists could end up
in knots. What happens if the two lists happen to be the same pointer? ML

lists involve internal pointers used safely. If you like living dangerously, ML has
explicit pointer types — see Chapter 8.

The function rev. List reversal can be defined using append. The head of the list
becomes the last element of the reversed list:

80 3 Lists

fun nrev [] = []
| nrev (x::xs) = (nrev xs) @ [x];

> val nrev = fn : ’a list -> ’a list

This is grossly inefficient. If nrev is given a list of length n > 0, then append
calls cons (::) exactly n − 1 times to copy the reversed tail. Constructing the
list [x] calls cons again, for a total of n calls. Reversing the tail requires n − 1
more conses, and so forth. The total number of conses is

0+ 1+ 2+ · · · + n =
n(n + 1)

2
.

This cost is quadratic: proportional to n2.
We have already seen, in rtake , another way of reversing a list: repeatedly

move elements from one list to another.

fun revAppend ([], ys) = ys
| revAppend (x::xs, ys) = revAppend (xs, x::ys);

> val revAppend = fn : ’a list * ’a list -> ’a list

Append is never called. The number of steps is proportional to the length of
the list being reversed. The function resembles append but reverses its first
argument:

revAppend (["Macbeth","and","Banquo"], ["all", "hail!"]);
> ["Banquo","and","Macbeth","all","hail!"] : string list

The efficient reversal function calls revAppend with an empty list:

fun rev xs = revAppend(xs,[]);
> val rev = fn : ’a list -> ’a list

Here a slightly longer definition pays dramatically. Reversing a 1000-element
list, rev calls :: exactly 1000 times, nrev 500,500 times. Furthermore, the re-
cursion in revAppend is iterative. Its key idea — of accumulating list elements
in an extra argument rather than appending — applies to many other functions.

Exercise 3.5 Modify the append function to handle xs @ [] efficiently.

Exercise 3.6 What would happen if we changed [x] to x in the definition of
nrev?

Exercise 3.7 Show the computation steps to reverse the list [1, 2, 3, 4] using
nrev and then rev .

3.6 Lists of lists, lists of pairs 81

3.6 Lists of lists, lists of pairs
Pattern-matching and polymorphism cope nicely with combinations of

data structures. Observe the types of these functions.

The function concat. This function makes a list consisting of all the elements of
a list of lists:

fun concat [] = []
| concat(l::ls) = l @ concat ls;

> val concat = fn : ’a list list -> ’a list
concat [["When","shall"], ["we","three"], ["meet","again"]];
> ["When", "shall", "we", "three", "meet", "again"]
> : string list

The copying in l @ concat ls is reasonably fast, for l is usually much shorter than
concat ls .

The function zip. This function pairs corresponding members of two lists:

zip([x1, . . . , xn], [y1, . . . , yn]) = [(x1, y1), . . . , (xn , yn)]

If the two lists differ in length, let us ignore surplus elements. The declaration
requires complex patterns:

fun zip(x::xs,y::ys) = (x,y) :: zip(xs,ys)
| zip _ = [];

> val zip = fn : ’a list * ’b list -> (’a*’b) list

The second pattern in the definition of zip, with its wildcard, matches all possi-
bilities. But it is only considered if the first pattern fails to match. ML considers
a function’s patterns in the order given.

The function unzip. The inverse of zip, called unzip, takes a list of pairs to a
pair of lists:

unzip[(x1, y1), . . . , (xn , yn)] = ([x1, . . . , xn], [y1, . . . , yn])

Building two lists simultaneously can be tricky in functional languages. One
approach uses an extra function:

fun conspair ((x,y), (xs,ys)) = (x::xs, y::ys);

fun unzip [] = ([],[])
| unzip(pair::pairs) = conspair(pair, unzip pairs);

A let declaration, where pattern-matching takes apart the result of the recursive
call, eliminates the function conspair :

82 3 Lists

fun unzip [] = ([],[])
| unzip((x,y)::pairs) =

let val (xs,ys) = unzip pairs
in (x::xs, y::ys) end;

> val unzip = fn : (’a*’b) list -> ’a list * ’b list

An iterative function can construct several results in its arguments. This is the
simplest way to unzip a list, but the resulting lists are reversed.

fun revunzip([], xs, ys) = (xs,ys)
| revunzip((x,y)::pairs, xs, ys) =

revunzip(pairs, x::xs, y::ys);

Lists and the standard library. The standard library provides most of the func-
tions described above. Append (the infix @), reverse (rev), null , hd , tl and

length are available at top level. List provides take , drop and concat , among others.
ListPair provides zip and unzip.

Please use the library versions of these functions. Those given here omit error han-
dling. The library versions respond to erroneous inputs by raising exceptions such as
List.Empty (if you request the head of the empty list) and Subscript (if you attempt
to take more elements than exist). Library versions will also be tuned for efficiency.

Exercise 3.8 Compare the following function with concat , considering its ef-
fect and efficiency:

fun f [] = []
| f ([]::ls) = f (ls)
| f ((x::l)::ls) = x :: f (l::ls);

Exercise 3.9 Give an equivalent definition of zip that does not depend upon
the order in which patterns are considered.

Exercise 3.10 Is rev(rtake(l,i,[])) more efficient than take(l,i)? Con-
sider all the costs involved.

Applications of lists
This section demonstrates how lists can perform sophisticated tasks, like

binary arithmetic and matrix operations. Feel free to skip the harder ones if you
like.

Two examples from the classic book A Discipline of Programming (Dijkstra,
1976) are also solved. Dijkstra presents programs in all their ‘compelling and
deep logical beauty.’ His programs use arrays; do lists possess greater beauty?

3.7 Making change 83

3.7 Making change

Let us start with something simple: making change. The task is to
express some amount of money in terms of coins drawn from a list of coin
values. Naturally, we expect to receive change using the largest coins possible.
This is easy if coin values are supplied in decreasing order:

fun change (coinvals, 0) = []
| change (c::coinvals, amount) =

if amount<c then change(coinvals, amount)
else c :: change(c::coinvals, amount-c);

> ***Warning: Patterns not exhaustive
> val change = fn : int list * int -> int list

The function definition could hardly be more intuitive. If the target amount is
zero, no coins are required; if the largest coin value c is too large, discard it;
otherwise use it and make change for the amount less c.

Let us declare ML identifiers for British and U.S. coin values:

val gbcoins = [50,20,10,5,2,1]
and uscoins = [25,10,5,1];

Thus, 43 pence is expressed differently from 43 cents:

change(gbcoins, 43);
> [20, 20, 2, 1] : int list
change(uscoins, 43);
> [25, 10, 5, 1, 1, 1] : int list

Making change is less trivial than it first appears. Suppose the only coin values
we have are 5 and 2?

change([5,2], 16);
> Exception: Match

The compiler warned us of this possibility when we declared change . But 16
is easily expressed using fives and twos! Our algorithm is greedy: it always
chooses the largest coin value, trying to express 16 as 5+ 5+ 5+ c, only now
c = 1 is not possible.

Can we design a better algorithm? Backtracking means responding to failure
by undoing the most recent choice and trying again. One way of implementing
backtracking involves exceptions, as shown below in Section 4.8. An alternative
approach is to compute the list of all solutions. Observe the use of coins to hold
the list of coins chosen so far.

84 3 Lists

fun allChange (coins, coinvals, 0) = [coins]
| allChange (coins, [], amount) = []
| allChange (coins, c::coinvals, amount) =

if amount<0 then []
else allChange(c::coins, c::coinvals, amount-c) @

allChange(coins, coinvals, amount);
> val allChange = fn
> : int list * int list * int -> int list list

The ‘patterns not exhaustive’ warning has disappeared; the function considers
all cases. Given an impossible problem, it returns the empty list instead of rais-
ing an exception:

allChange([], [10,2], 27);
> [] : int list list

Let us try some more interesting examples:

allChange([], [5,2], 16);
> [[2, 2, 2, 5, 5], [2, 2, 2, 2, 2, 2, 2, 2]]
> : int list list
allChange([], gbcoins, 16);
> [[1, 5, 10], [2, 2, 2, 10], [1, 1, 2, 2, 10], ...]
> : int list list

There are 25 ways of making change for 16 pence! At first sight, this approach
looks untenable. To control the exponential growth in solutions we can use lazy
evaluation, generating only the solutions required (see Section 5.14).

Further reading. Making change is much harder than it first appears, in the
general case. It is closely related to the subset-sum problem, which is NP-

complete. This means it is highly unlikely that there exists an efficient algorithm to
decide whether or not a given set of coins can be used to express a given sum. Cormen
et al. (1990) discuss algorithms for finding approximate solutions.

Exercise 3.11 Write a function to express integers as Roman numerals. Sup-
plied with suitable arguments, your function should be able to express 1984 as
either MDCCCCLXXXIIII or MCMLXXXIV.

Exercise 3.12 The change functions expect coinvals to consist of strictly de-
creasing positive integers. What happens if this precondition is violated?

Exercise 3.13 We are seldom fortunate enough to have an infinite supply of
coins. Modify allChange to make change from a finite purse.

3.8 Binary arithmetic 85

Exercise 3.14 Modify allChange to accumulate its result in an extra argu-
ment, eliminating the call to append. Compare its efficiency with the original
version by making change for 99 pence.

3.8 Binary arithmetic
Functional programming may seem far removed from hardware, but

lists are good for simulating digital circuits. Binary addition and multiplication
are defined here for lists of zeros and ones.

Addition. If you have forgotten the rules for binary sums, have a look at the
binary version of 11+ 30 = 41:

11110
+ 1011

101001

Addition works from right to left. The two bits plus any carry (from the right)
give a sum bit for this position and a carry to the left. Right to left is the wrong
direction for lists; the head of a list is its leftmost element. So the bits will be
kept in reverse order.

The two binary numerals may have unequal lengths. If one bit list terminates
then the carry must be propagated along the other bit list.

fun bincarry (0, ps) = ps
| bincarry (1, []) = [1]
| bincarry (1, p::ps) = (1-p) :: bincarry(p, ps);

> ***Warning: Patterns not exhaustive
> val bincarry = fn : int * int list -> int list

Yes, patterns may contain constants: integers, reals, booleans and strings. Func-
tion bincarry can propagate a carry of 0 or 1, the only sensible values. It is
undefined for others.

The binary sum is defined for two bit lists and a carry. When either list termi-
nates, bincarry deals with the other. If there are two bits to add, their sum and
carry are computed:

fun binsum (c, [], qs) = bincarry (c,qs)
| binsum (c, ps, []) = bincarry (c,ps)
| binsum (c, p::ps, q::qs) =

((c+p+q) mod 2) :: binsum((c+p+q) div 2, ps, qs);
> val binsum = fn
> : int * int list * int list -> int list

Let us try 11+ 30 = 41, remembering that the bits are kept in reverse order:

86 3 Lists

binsum(0, [1,1,0,1], [0,1,1,1,1]);
> [1, 0, 0, 1, 0, 1] : int list

Multiplication. The binary product is computed by shifting and adding. For
instance, 11× 30 = 330:

11110
× 1011

11110
11110

+ 11110
101001010

Here, shifting is performed by inserting a 0:

fun binprod ([], _) = []
| binprod (0::ps, qs) = 0::binprod(ps,qs)
| binprod (1::ps, qs) = binsum(0, qs, 0::binprod(ps,qs));

> ***Warning: Patterns not exhaustive
> val binprod = fn : int list * int list -> int list

Let us evaluate 11× 30 = 330:

binprod([1,1,0,1], [0,1,1,1,1]);
> [0, 1, 0, 1, 0, 0, 1, 0, 1] : int list

A structure for binary arithmetic. In a large program, it is poor style to associate
related functions merely by a naming convention such as the prefix bin . The bi-
nary arithmetic functions should be grouped into a structure, say Bin . Shorter
names can be used inside the structure, making the code more readable. Out-
side, the structure’s components have uniform compound names. The function
declarations above can easily be packaged into a structure:

structure Bin =
struct
fun carry (0, ps) = ...
fun sum (c, [], qs) = ...
fun prod ([], _) = ...
end;

With a little more effort, structure Bin can be made to match signature ARITH
of Section 2.22. This would give the operators for binary numerals precisely the
same interface as those for complex numbers. It would include binary arithmetic
in our collection of structures that can be used in generic arithmetic packages.
But binary arithmetic is quite different from complex arithmetic; division is not

3.9 Matrix transpose 87

exact, for example. Noting which properties are needed in a particular case is
our responsibility.

Exercise 3.15 Write functions to compute the binary sum and product of a list
of boolean values, using no built-in arithmetic.

Exercise 3.16 Write a function to divide one binary numeral by another.

Exercise 3.17 Using the results of the previous exercise, or by writing dummy
functions, extend structure Bin so that it matches signature ARITH.

Exercise 3.18 Decimal numerals can be held as lists of integers from 0 to 9.
Write functions to convert between binary and decimal: both directions. Com-
pute the factorial of 100.

3.9 Matrix transpose
A matrix can be viewed as a list of rows, each row a list of matrix

elements. The matrix
(

a b c
d e f

)
, for instance, can be declared in ML by

val matrix = [["a","b","c"],
["d","e","f"]];

> val matrix = [["a", "b", "c"], ["d", "e", "f"]]
> : string list list

Matrix transpose works well with this list representation because it goes sequen-
tially along rows and columns, with no jumping. The transpose function changes
the list of rows

A =

[[x11, x12, . . . , x1m],
...

...
...

[xn1, xn2, . . . , xnm]]

to the list of the columns of A:

AT
=

[[x11, . . . , xn1],

[x12, . . . , xn2],
...

...

[x1m , . . . , xnm]]

One way to transpose a matrix is by repeatedly taking columns from it. The
heads of the rows form the first column of the matrix:

88 3 Lists

fun headcol [] = []
| headcol ((x::_) :: rows) = x :: headcol rows;

> ***Warning: Patterns not exhaustive
> val headcol = fn : ’a list list -> ’a list

The tails of the rows form a matrix of the remaining columns:

fun tailcols [] = []
| tailcols ((_::xs) :: rows) = xs :: tailcols rows;

> ***Warning: Patterns not exhaustive
> val tailcols = fn : ’a list list -> ’a list list

Consider their effect on our small matrix:

headcol matrix;
> ["a", "d"] : string list
tailcols matrix;
> [["b", "c"], ["e", "f"]] : string list list

Calling headcol and tailcols chops the matrix like this:(
a b c
d e f

)
These functions lead to an unusual recursion: tailcols takes a list of n lists and
returns a list of n shorter lists. This terminates with n empty lists.

fun transp ([]::rows) = []
| transp rows = headcol rows :: transp (tailcols rows);

> val transp = fn : ’a list list -> ’a list list
transp matrix;
> [["a", "d"], ["b", "e"], ["c", "f"]] : string list list

The transposed matrix is a d
b e
c f

 .
A neater way. Many of the programs presented here can be expressed more
concisely using higher-order functions such as map, which applies a function

to every element of a list. Higher-order functions are discussed later on. You may want
to peek at Section 5.7, where matrix transpose is reconsidered.

Exercise 3.19 What input pattern do headcol and tailcols not handle? What
does transp return if the rows of the ‘matrix’ do not have the same length?

Exercise 3.20 What does transp do given the empty list? Explain.

3.10 Matrix multiplication 89

Exercise 3.21 Write an alternative transpose function. Instead of turning col-
umns into rows, it should turn rows into columns.

3.10 Matrix multiplication
We begin with a quick review of matrix multiplication. The dot product

(or inner product) of two vectors is

(a1, . . . , ak) · (b1, . . . , bk) = a1b1 + · · · + akbk .

If A is an m × k matrix and B is a k × n matrix then their product A×B is an
m × n matrix. For each i and j , the (i , j) element of A× B is the dot product
of row i of A with column j of B . Example:

2 0
3 −1
0 1
1 1

× (1 0 2
4 −1 0

)
=

2 0 4
−1 1 6
4 −1 0
5 −1 2

The (1,1) element of the product above is computed by

(2, 0) · (1, 4) = 2× 1+ 0× 4 = 2.

In the dot product function, the two vectors must have the same length; ML

prints a warning that some cases are not covered. Henceforth these warnings
will usually be omitted.

fun dotprod([], []) = 0.0
| dotprod(x::xs,y::ys) = x*y + dotprod(xs,ys);

> ***Warning: Patterns not exhaustive
> val dotprod = fn : real list * real list -> real

If A has just one row, so does A× B . Function rowprod computes the product
of a row with B . The matrix B must be given as its transpose: a list of columns,
not a list of rows.

fun rowprod(row, []) = []
| rowprod(row, col::cols) =

dotprod(row,col) :: rowprod(row,cols);
> val rowprod = fn
> : real list * real list list -> real list

Each row of A×B is obtained by multiplying a row of A by the columns of B :

fun rowlistprod([], cols) = []
| rowlistprod(row::rows, cols) =

rowprod(row,cols) :: rowlistprod(rows,cols);
> val rowlistprod = fn
> : real list list * real list list -> real list list

90 3 Lists

The matrix product function makes transp construct a list of the columns of B :

fun matprod(rowsA,rowsB) = rowlistprod(rowsA, transp rowsB);
> val matprod = fn
> : real list list * real list list -> real list list

Here are the declarations of the sample matrices, omitting ML’s response:

val rowsA = [[2.0, 0.0],
[3.0, ˜1.0],
[0.0, 1.0],
[1.0, 1.0]]

and rowsB = [[1.0, 0.0, 2.0],
[4.0, ˜1.0, 0.0]];

Here is their product:

matprod(rowsA,rowsB);
> [[2.0, 0.0, 4.0],
> [˜1.0, 1.0, 6.0],
> [4.0, ˜1.0, 0.0],
> [5.0, ˜1.0, 2.0]] : real list list

Exercise 3.22 A matrix is negated by negating each of its components; thus
−
(

a b
c d

)
=
(
−a −b
−c −d

)
. Write a function to negate a matrix.

Exercise 3.23 Two matrices of the same dimensions are added by adding cor-
responding components; thus

(
a b
c d

)
+
(

a ′ b ′

c′ d ′

)
=

(
a+a ′ b+b ′

c+c′ d+d ′

)
. Write a function

to add two matrices.

3.11 Gaussian elimination
One of the classic matrix algorithms, Gaussian elimination may seem

an unlikely candidate for functional programming. This algorithm (Sedgewick,
1988) can compute the determinant or inverse of a matrix, or solve systems of
independent linear equations such as the following:

x + 2y + 7z = 7

−4w + 3y − 5z = −2 (∗)

4w − x − 2y − 3z = 9

−2w + x + 2y + 8z = 2

Gaussian elimination works by isolating each of the variables in turn. Equa-
tion (∗), properly scaled and added to another equation, eliminates w from it.
Repeating this operation, which is called pivoting, eventually reduces the system

3.11 Gaussian elimination 91

to a triangular form:

−4w + 3y − 5z = −2

x + 2y + 7z = 7

3y − z = 14

3z = 3

Now the solutions come out, beginning with z = 1.
Equation (∗) is a good choice for eliminating w because the absolute value (4)

of its coefficient is maximal. Scaling divides the equation by this value; a small
divisor (not to mention zero!) could cause numerical errors. Function pivotrow ,
given a list of rows, returns one whose head is greatest in absolute value.

fun pivotrow [row] = row : real list
| pivotrow (row1::row2::rows) =

if abs(hd row1) >= abs(hd row2)
then pivotrow(row1::rows)
else pivotrow(row2::rows);

> val pivotrow = fn : real list list -> real list

If the selected row has head p, then delrow(p, rows) removes it from the list of
rows.

fun delrow (p, []) = []
| delrow (p, row::rows) = if p = hd row then rows

else row :: delrow(p, rows);
> val delrow = fn : ’’a * ’’a list list -> ’’a list list

Function scalarprod multiplies a row or vector by a constant k :

fun scalarprod(k, []) = [] : real list
| scalarprod(k, x::xs) = k*x :: scalarprod(k,xs);

> val scalarprod = fn : real * real list -> real list

Function vectorsum adds two rows or vectors:

fun vectorsum ([], []) = [] : real list
| vectorsum (x::xs,y::ys) = x+y :: vectorsum(xs,ys);

> val vectorsum = fn : real list * real list -> real list

Function elimcol , declared inside gausselim , refers to the current pivot row by
its head p (the leading coefficient) and tail prow . Given a list of rows, elimcol
replaces each by its sum with prow , properly scaled. The first element of each
sum is zero, but these zeros are never computed; the first column simply disap-
pears.

92 3 Lists

fun gausselim [row] = [row]
| gausselim rows =

let val p::prow = pivotrow rows
fun elimcol [] = []
| elimcol ((x::xs)::rows) =

vectorsum(xs, scalarprod(˜x/p, prow))
:: elimcol rows

in (p::prow) :: gausselim(elimcol(delrow(p,rows)))
end;

> val gausselim = fn : real list list -> real list list

Function gausselim removes the pivot row, eliminates a column, and calls itself
recursively on the reduced matrix. It returns a list of pivot rows, decreasing in
length, forming an upper triangular matrix.

A system of n equations is solved by Gaussian elimination on an n × (n + 1)
matrix, where the extra column contains the right-side values. The solutions
are generated recursively from the triangular matrix. Known solutions are mul-
tiplied by their coefficients and added — this is a vector dot product — and
divided by the leading coefficient. To subtract the right-side value we employ a
trick: a spurious solution of −1.

fun solutions [] = [˜1.0]
| solutions((x::xs)::rows) =

let val solns = solutions rows
in ˜(dotprod(solns,xs)/x) :: solns end;

> val solutions = fn : real list list -> real list

One way of understanding this definition is by applying it to the example above.
We compute the triangular matrix:

gausselim [[0.0, 1.0, 2.0, 7.0, 7.0],
[˜4.0, 0.0, 3.0, ˜5.0, ˜2.0],
[4.0, ˜1.0, ˜2.0, ˜3.0, 9.0],
[˜2.0, 1.0, 2.0, 8.0, 2.0]];

> [[˜4.0, 0.0, 3.0, ˜5.0, ˜2.0],
> [1.0, 2.0, 7.0, 7.0],
> [3.0, ˜1.0, 14.0],
> [3.0, 3.0]] : real list list

Ignoring the final −1, the solutions are w = 3, x = −10, y = 5 and z = 1.

solutions it;
> [3.0, ˜10.0, 5.0, 1.0, ˜1.0] : real list%

Further reading. Researchers at the University of Wales have applied the lan-
guage Haskell to computational fluid dynamics problems. The aim is to in-

vestigate the practical utility of functional programming. One paper compares different
representations of matrices (Grant et al., 1996). Another considers the possibility of ex-

3.12 Writing a number as the sum of two squares 93

ploiting parallelism, using a simulated parallel processor (Grant et al., 1995). Compared
with conventional Fortran implementations, the Haskell ones are much slower and need
more space; the authors list some developments that could improve the efficiency.

Exercise 3.24 Show that if the input equations are linearly independent, then
division by zero cannot occur within gausselim .

Exercise 3.25 Do pivotrow and delrow work correctly if the heads of several
rows have the same absolute value?

Exercise 3.26 Write a function to compute the determinant of a matrix.

Exercise 3.27 Write a function to invert a matrix.

Exercise 3.28 Write a structure Matrix that matches signature ARITH. You
can either use the previous exercise and those of Section 3.10, or write dummy
functions. This adds matrices to our collection of arithmetic structures.1

3.12 Writing a number as the sum of two squares
Dijkstra (1976) presents a program that, given an integer r , finds all

integer solutions of x 2
+ y2

= r . (Assume x ≥ y ≥ 0 to suppress symmetries.)
For instance, 25 = 42

+ 32
= 52
+ 02, while 48,612,265 has 32 solutions.

Brute force search over all (x , y) pairs is impractical for large numbers, but
fortunately the solutions have some structure: if x 2

+ y2
= r = u2

+ v 2 and
x > u then y < v . If x sweeps downwards from

√
r as y sweeps upwards from

0, then all solutions can be found in a single pass.
Let Bet(x , y) stand for the set of all solutions between x and y :

Bet(x , y) = {(u, v) | u2
+ v 2

= r ∧ x ≥ u ≥ v ≥ y}

The search for suitable x and y is guided by four observations:

1 If x 2
+ y2 < r then Bet(x , y) = Bet(x , y + 1). There are plainly no

solutions of the form (u, y) for u < x .
2 If x 2

+ y2
= r then Bet(x , y) = {(x , y)} ∪ Bet(x − 1, y + 1). A

solution! There can be no other for the same x or y .
3 If x 2

+ y2 > r > x 2
+ (y − 1)2 then Bet(x , y) = Bet(x − 1, y). There

can be no solutions of the form (x , v).

1 There is a serious problem: what is the component zero? The obvious choice
is [], but the matrix operations will require careful modification in order to treat
this correctly as the zero matrix.

94 3 Lists

4 Finally, Bet(x , y) = ∅ if x < y .

These suggest a recursive — indeed iterative — search method. Case 3 requires
special care if it is to be used efficiently. At the start, make sure x 2

+ y2 < r
holds. Increase y until x 2

+ y2
≥ r . If x 2

+ y2 > r then y must be the least
such, and so Case 3 applies. Decreasing x by one re-establishes x 2

+ y2 < r .
Initially y = 0 and x =

√
r (the integer square root of r), so the starting con-

dition holds. Since x > y , we know that y will be increased several times when
x is decreased. As a further concession to efficiency, therefore, the program
takes the computation of x 2 outside the inner recursion:

fun squares r =
let fun between (x,y) = (*all pairs between x and y*)

let val diff = r - x*x
fun above y = (*all pairs above y*)

if y>x then []
else if y*y<diff then above (y+1)
else if y*y=diff then (x,y)::between(x-1,y+1)
else (* y*y>diff *) between(x-1,y)

in above y end;
val firstx = floor(Math.sqrt(real r))

in between (firstx, 0) end;
> val squares = fn : int -> (int*int) list

Execution is fast, even for large r :

squares 50;
> [(7, 1), (5, 5)] : (int*int) list
squares 1105;
> [(33, 4), (32, 9), (31, 12), (24, 23)] : (int*int) list
squares 48612265;
> [(6972, 59), (6971, 132), (6952, 531), (6948, 581),
> (6944, 627), (6917, 876), (6899, 1008), (6853, 1284),
> (6789, 1588), (6772, 1659), ...] : (int*int) list

Dijkstra’s program has a different search method: x and y start with equal val-
ues, then sweep apart. Our method could well be the one he rejected because
‘the demonstration that no solutions had been omitted always required a draw-
ing.’

A smarter way? A number is the sum of two squares precisely if, in its prime
factorization, every factor of the form 4k + 3 appears with an even exponent.

For example, 48, 612, 265 = 5 × 13 × 17 × 29 × 37 × 41 and none of these primes
has the form 4k + 3. The criterion itself merely tells us whether solutions exist, but the
theory also provides a means of enumerating the solutions (Davenport, 1952, Chapter
V). A program exploiting this theory would pay off only for huge numbers.

3.13 The problem of the next permutation 95

3.13 The problem of the next permutation
Given a list of integers, we are asked to rearrange the elements to pro-

duce the permutation that is next greater under lexicographic ordering. The new
permutation should be greater than the one given, with no other permutation in
between.

Let us modify the problem slightly. Lexicographic order means the head of
the list has the most significance. The next greater permutation will probably
differ in the least significant elements. Since the head of a list is the easiest
element to reach, let us make it least significant. Fighting the natural order of
lists would be foolish. We therefore compute the next permutation under reverse
lexicographic ordering.

The problem is hard to visualize — even Dijkstra gives an example. Here are
the next eight permutations after 4 3 2 1 (the initial permutation):

3 4 2 1
4 2 3 1
2 4 3 1
3 2 4 1
2 3 4 1
4 3 1 2
3 4 1 2
4 1 3 2

The affected part of each is underlined. The sequence of permutations termi-
nates at 1 2 3 4, which has no successor.

To make a greater permutation, some element of the list must be replaced by
a larger element to its left. To make the very next permutation, this replacement
must happen as far to the left — the least significant position — as possible. The
replacement value must be as small as possible, and the elements to the left of
the replacement must be arranged in descending order. All this can be done in
two steps:

1 Find the leftmost element y that has a greater element to its left. The
elements to its left will therefore be an increasing sequence x1 ≤ · · · ≤

xn . (We are really speaking of positions rather than elements, but this
only matters if the elements are not distinct.)

2 Replace y by the smallest xi , with 1 ≤ i ≤ n , such that y < xi ,
and arrange x1, . . . , xi−1, y, xi+1, . . . , xn in descending order. This can
be accomplished by scanning xn , xn−1, . . . , x1 until the correct value is
found for xi , placing larger elements in front of the final result.

96 3 Lists

Calling next(xlist, ys) finds the y in ys to replace, while xlist accumulates the
elements passed over. When xlist holds the reversed list [xn , . . . , x1], the func-
tion swap performs the replacement and rearrangement. The list manipulations
are delicate.

fun next(xlist, y::ys) : int list =
if hd xlist <= y then next(y::xlist, ys)
else (*swap y with greatest xk such that x>=xk>y*)

let fun swap [x] = y::x::ys
| swap (x::xk::xs) = (*x >= xk*)

if xk>y then x::swap(xk::xs)
else (y::xk::xs)@(x::ys)
(*x > y >= xk >= xs*)

in swap(xlist) end;
> val next = fn : int list * int list -> int list

Function nextperm starts the scan.

fun nextperm (y::ys) = next([y], ys);
> val nextperm = fn : int list -> int list
nextperm [1,2,4,3];
> [3, 2, 1, 4] : int list
nextperm it;
> [2, 3, 1, 4] : int list
nextperm it;
> [3, 1, 2, 4] : int list

It also works when the elements are not distinct:

nextperm [3,2,2,1];
> [2, 3, 2, 1] : int list
nextperm it;
> [2, 2, 3, 1] : int list
nextperm it;
> [3, 2, 1, 2] : int list

Exercise 3.29 Write the steps to compute nextperm[2, 3, 1, 4].

Exercise 3.30 Does next still work if the ≤ comparison is replaced by < in
its second line? Justify your answer in terms of the two steps described above.

Exercise 3.31 What does nextperm(ys) return if there is no next permutation
of ys? Modify the program so that it returns the initial permutation in that case.

The equality test in polymorphic functions
Polymorphic functions like length and rev accept lists having elements

of any type because they do not perform any operations on those elements. Now

3.14 Equality types 97

consider a function to test whether a value e is a member of a list l . Is this
function polymorphic? Each member of l must be tested for equality with e .
Equality testing is polymorphic, but in a restricted sense.

3.14 Equality types
An equality type is a type whose values admit equality testing. Equality

testing is forbidden on function types and abstract types:

• The equality test on functions is not computable because f and g are
equal just when f (x) equals g(x) for every possible argument x . There
are other ways of defining equality of functions, but there is no escaping
the problem.
• An abstract type provides only those operations specified in its defini-

tion. ML hides the representation’s equality test, for it seldom coincides
with the desired abstract equality.2

Equality is defined for the basic types: integers, reals, characters, strings, bool-
eans. For structured values, the equality test compares corresponding compo-
nents; equality is thus defined for tuples, records, lists and datatypes (introduced
in the next chapter) built over the basic types. It is not defined for values con-
taining functions or elements of abstract types.

Standard ML provides equality type variables α=, β=, γ=, . . . ranging over
the equality types. Equality types contain no type variables other than equality
type variables. For example, int , bool × string and (int list)× β= are equality
types, while int → bool and bool × β are not.

Here is the type of the equality test itself, the infix operator (=):

op= ;
> fn : (’’a * ’’a) -> bool

In mathematical notation this type is α= × α= → bool . In ML, an equality type
variable begins with two ’ characters.

Now let us declare the membership testing function:

infix mem;
fun (x mem []) = false
| (x mem (y::l)) = (x=y) orelse (x mem l);

> val mem = fn : ’’a * ’’a list -> bool

The type α= × (α=list) → bool means that mem may be applied to any list
whose elements permit equality testing.

2 Chapter 7 describes abstract types in detail.

98 3 Lists

"Sally" mem ["Regan","Goneril","Cordelia"];
> false : bool

3.15 Polymorphic set operations
A function’s type contains equality type variables if it performs poly-

morphic equality testing, even indirectly, for instance via mem . The function
newmem adds a new element to a list, provided it is really new:

fun newmem(x,xs) = if x mem xs then xs else x::xs;
> val newmem = fn : ’’a * ’’a list -> ’’a list

Lists constructed by newmem can be regarded as finite sets.3 Let us declare
some set operations and note their types. If equality type variables appear, then
equality tests are involved.

The function setof converts a list to a ‘set’ by eliminating repeated elements:

fun setof [] = []
| setof (x::xs) = newmem(x, setof xs);

> val setof = fn : ’’a list -> ’’a list
setof [true,false,false,true,false];
> [true, false] : bool list

Observe that setof may perform many equality tests. To minimize the use of
setof , the following functions can be applied to ‘sets’ — lists of distinct ele-
ments — to ensure that their result is a ‘set.’

Union. The list union(xs, ys) includes all elements of xs not already in ys ,
which is assumed to consist of distinct elements:

fun union([],ys) = ys
| union(x::xs, ys) = newmem(x, union(xs, ys));

> val union = fn : ’’a list * ’’a list -> ’’a list

The type variable ’’a indicates equality testing, here via newmem .

union([1,2,3], [0,2,4]);
> [1, 3, 0, 2, 4] : int list

Intersection. Similarly, inter(xs, ys) includes all elements of xs that also be-
long to ys:

3 Section 3.22 below considers more deeply the question of representing one
data structure using another.

3.15 Polymorphic set operations 99

fun inter([],ys) = []
| inter(x::xs, ys) = if x mem ys then x::inter(xs, ys)

else inter(xs, ys);
> val inter = fn : ’’a list * ’’a list -> ’’a list

A baby’s name can be chosen by intersecting the preferences of both parents . . .

inter(["John","James","Mark"], ["Nebuchadnezzar","Bede"]);
> [] : string list

. . . although this seldom works.

The subset relation. Set T is a subset of S if all elements of T are also elements
of S :

infix subs;
fun ([] subs ys) = true
| ((x::xs) subs ys) = (x mem ys) andalso (xs subs ys);

> val subs = fn : ’’a list * ’’a list -> bool

Recall that equality types may involve tuples, lists and so forth:

[("May",5), ("June",6)] subs [("July",7)];
> false : bool

Equality of sets. The built-in list equality test is not valid for sets. The lists
[3, 4] and [4, 3] are not equal, yet they denote the same set, {3, 4}. Set equality
ignores order. It can be defined in terms of subsets:

infix seq;
fun (xs seq ys) = (xs subs ys) andalso (ys subs xs);
> val seq = fn : ’’a list * ’’a list -> bool
[3,1,3,5,3,4] seq [1,3,4,5];
> true : bool

Sets ought to be declared as an abstract type, hiding the equality test on lists.

Powerset. The powerset of a set S is the set consisting of all the subsets of S ,
including the empty set and S itself. It can be computed by removing some
element x from S and recursively computing the powerset of S − {x }. If T is a
subset of S − {x } then both T and T ∪ {x } are subsets of S and elements of the
powerset. The argument base accumulates items (like x) that must be included
in each element of the result. In the initial call, base should be empty.

fun powset ([], base) = [base]
| powset (x::xs, base) =

powset(xs, base) @ powset(xs, x::base);
> val powset = fn : ’a list * ’a list -> ’a list list

100 3 Lists

The ordinary type variables indicate that powset does not perform equality tests.

powset (rev ["the","weird","sisters"], []);
> [[], ["the"], ["weird"], ["the", "weird"], ["sisters"],
> ["the", "sisters"], ["weird", "sisters"],
> ["the", "weird", "sisters"]] : string list list

Using set notation, the result of powset can be described as follows, ignoring
the order of list elements:

powset(S ,B) = {T ∪ B | T ⊆ S }

Cartesian product. The Cartesian product of S and T is the set of all pairs
(x , y) with x ∈ S and y ∈ T . In set notation,

S × T = {(x , y) | x ∈ S , y ∈ T }.

Several functional languages support some set notation, following David Turner;
see Bird and Wadler (1988) for examples. Since ML does not, we must use
recursion over lists. The function to compute Cartesian products is surprisingly
complex.

fun cartprod ([], ys) = []
| cartprod (x::xs, ys) =

let val xsprod = cartprod(xs,ys)
fun pairx [] = xsprod
| pairx(y::ytail) = (x,y) :: (pairx ytail)

in pairx ys end;
> val cartprod = fn : ’a list * ’b list -> (’a * ’b) list

The function cartprod does not perform equality tests.

cartprod([2,5], ["moons","stars","planets"]);
> [(2, "moons"), (2, "stars"), (2, "planets"),
> (5, "moons"), (5, "stars"), (5, "planets")]
> : (int * string) list

Section 5.10 will demonstrate how higher-order functions can express this func-
tion. For now, let us continue with simple methods.

Exercise 3.32 How many equality tests does ML perform when evaluating the
following expressions?

1 mem upto(1,500)
setof (upto(1,500))

3.16 Association lists 101

Exercise 3.33 Compare union with the function itunion declared below. Which
function is more efficient?

fun itunion([],ys) = ys
| itunion(x::xs, ys) = itunion(xs, newmem(x, ys));

Exercise 3.34 Write a function choose such that choose(k , xs) generates the
set of all k -element subsets of xs . For instance, choose(29, upto(1, 30)) should
return a list containing 30 subsets.

Exercise 3.35 The following function is simpler than cartprod . Is it better for
computing Cartesian products?

fun cprod ([], ys) = []
| cprod (x::xs, ys) =

let fun pairx [] = cprod(xs,ys)
| pairx(y::ytail) = (x,y) :: (pairx ytail)

in pairx ys end;

3.16 Association lists
A dictionary or table can be represented by a list of pairs. Functions to

search such tables involve equality polymorphism. To store the dates of history’s
greatest battles we could write

val battles =
[("Crecy",1346), ("Poitiers",1356), ("Agincourt",1415),
("Trafalgar",1805), ("Waterloo",1815)];

A list of (key, value) pairs is called an association list. The function assoc finds
the value associated with a key by sequential search:

fun assoc ([], a) = []
| assoc ((x,y)::pairs, a) = if a=x then [y]

else assoc(pairs, a);
> val assoc = fn : (’’a * ’b) list * ’’a -> ’b list

Its type, (α=×β)list×α=→ β list , indicates that keys must have some equality
type α=, while values may have any type β at all. Calling assoc(pairs,x)
returns [] if the key x is not found, and returns [y] if y is found paired with x .
Returning a list of results is a simple method of distinguishing success from
failure.

assoc(battles, "Agincourt");
> [1415] : int list
assoc(battles, "Austerlitz");

102 3 Lists

> [] : int list

Searching can be slow, but updating is trivial: put a new pair in front. Since
assoc returns the first value it finds, existing associations can be overridden.
Pairing names with types in a block-structured language is a typical application.
A name will be paired with several types in the association list if it is declared
in nested blocks.

Equality types: good or bad? Appel (1993) criticises ML’s equality polymor-
phism on several grounds. They complicate the language definition. They

complicate the implementation; data must have run-time tags to support equality test-
ing, or else an equality test must be passed implicitly to functions. Sometimes the
standard equality test is inappropriate, as in the case of a set of sets. The polymorphic
equality test can be slow.

Part of the justification for equality polymorphism is historical. ML is related to Lisp,
where functions like mem and assoc are among the most basic primitives. But even
Lisp has to provide different versions of these functions, performing different sorts of
equality tests. If ML did not have equality polymorphism, those functions could still be
expressed by taking the testing function as an extra argument.

Equality is really overloaded: its meaning depends upon its type. Other overloaded
functions are the arithmetic operators and functions to express values as strings. ML’s
treatment of overloading seems unsatisfactory, especially compared with Haskell’s ele-
gant type classes (Hudak et al., 1992). But type classes also complicate the language.
More seriously, a program cannot be executed — even in principle — without a full type
checking. Odersky et al. (1995) discuss an alternative setup; more research is needed.

3.17 Graph algorithms
A list of pairs can also represent a directed graph. Each pair (x , y)

stands for the edge x −→ y . Thus the list

val graph1 = [("a","b"), ("a","c"), ("a","d"),
("b","e"), ("c","f"), ("d","e"),
("e","f"), ("e","g")];

represents the graph shown in Figure 3.1(a).
The function nexts finds all successors of a node a — the destinations of all

edges leading from a — in the graph:

fun nexts (a, []) = []
| nexts (a, (x,y)::pairs) =

if a=x then y :: nexts(a,pairs)
else nexts(a,pairs);

> val nexts = fn : ’’a * (’’a * ’b) list -> ’b list

This function differs from assoc by returning all values that are paired with a ,
not just the first:

3.17 Graph algorithms 103

Figure 3.1 A directed graph, and a depth-first traversal

(a) a c f e g

b

d

(b) 1 6 4 3 5

2

7

nexts("e", graph1);
> ["f", "g"] : string list

Depth-first search. Many graph algorithms work by following edges, keeping
track of nodes visited so that a node is not visited more than once. In depth-first
search, the subgraph reachable from the current node is fully explored before
other nodes are visited. The function depthf implements this search strategy,
using the argument visited to accumulate the nodes in reverse order:

fun depthf ([], graph, visited) = rev visited
| depthf (x::xs, graph, visited) =

if x mem visited then depthf (xs, graph, visited)
else depthf (nexts(x,graph) @ xs, graph, x::visited);

> val depthf = fn
> : ’’a list * (’’a * ’’a) list * ’’a list -> ’’a list

The nodes of a graph may have any equality type.
Depth-first search of graph1 starting at a visits nodes in the order shown in

Figure 3.1(b). One of the edges is never traversed. Let us check the traversal by
calling our function:

depthf (["a"], graph1, []);

104 3 Lists

Figure 3.2 A cyclic graph, and a depth-first traversal

(a) a c f e g

b

d

(b)
a c 3 2 5

1

4

> ["a", "b", "e", "f", "g", "c", "d"] : string list

Adding an edge from f to d makes the graph cyclic. If that graph is searched
starting at b, one of the edges in the cycle is ignored. Also, part of the graph is
not accessible from b at all; see Figure 3.2.

depthf (["b"], ("f","d")::graph1, []);
> ["b", "e", "f", "d", "g"] : string list

After visiting a node x that has not been visited before, depth-first search recur-
sively visits each successor of x . In the list computed by nexts(x,graph)@ xs ,
the successors of x precede the other nodes xs that are awaiting visits. This list
behaves as a stack. Breadth-first search results if the list of nodes to visit be-
haves as a queue.

Depth-first search can also be coded as follows:

fun depth ([], graph, visited) = rev visited
| depth (x::xs, graph, visited) =

depth (xs, graph,
if x mem visited then visited
else depth (nexts(x,graph), graph, x::visited));

A nested recursive call visits the successors of x , then another call visits the

3.17 Graph algorithms 105

other nodes, xs . The functions depthf and depth are equivalent, although the
proof is subtle. By omitting a call to append (@), depth is a bit faster. More
importantly, since one call is devoted to visiting x , it is easily modified to detect
cycles in graphs and perform topological sorting.

Topological sorting. Constraints on the order of events form a directed graph.
Each edge x −→ y means ‘x must happen before y .’ The graph

go

dress wash up

shower eat

wake

says everything about getting to work. Here it is as a list:

val grwork = [("wake","shower"), ("shower","dress"),
("dress","go"), ("wake", "eat"),
("eat","washup"), ("washup","go")];

Finding a linear sequence of events from such a graph is called topological sort-
ing. Sedgewick (1988) points out that depth-first search can do this if the visit to
node x is recorded after its successors have been searched. Thus x comes after
every node reachable from x : a topological sort in reverse.

This means a simple change to depth: put x on the result of the recursive
call instead of the argument. The list forms in reverse so no other reversal is
necessary.

fun topsort graph =
let fun sort ([], visited) = visited

| sort (x::xs, visited) =
sort(xs, if x mem visited then visited

else x :: sort(nexts(x,graph), visited))
val (starts,_) = ListPair.unzip graph

in
sort(starts, [])

end;
> val topsort = fn : (’’a * ’’a) list -> ’’a list

The let declaration of sort allows this function to refer to graph . It also de-

106 3 Lists

clares starts , the list of all starting nodes of edges, to ensure that every node in
the graph is reached.

So how do we get to work?

topsort grwork;
> ["wake", "eat", "washup", "shower", "dress", "go"]
> : string list

Reversing the list of edges gives a different answer for the graph:

topsort(rev grwork);
> ["wake", "shower", "dress", "eat", "washup", "go"]
> : string list

Cycle detection. Now consider a further constraint: we must go before we eat.
The resulting graph contains a cycle and admits no solution. The function call
runs forever:

topsort(("go","eat")::grwork);

Looping is not acceptable; the function should somehow report that no solution
exists. Cycles can be detected by maintaining a list of all nodes being searched.
This list of nodes, called path , traces the edges from the start of the search.

fun pathsort graph =
let fun sort ([], path, visited) = visited

| sort (x::xs, path, visited) =
if x mem path then hd[] (*abort!!*)
else sort(xs, path,

if x mem visited then visited else
x :: sort(nexts(x,graph),x::path,visited))

val (starts,_) = ListPair.unzip graph
in sort(starts, [], []) end;

> val pathsort = fn : (’’a * ’’a) list -> ’’a list

It works on our original graph. Given a cycle it causes an error:

pathsort graph1;
> ["a", "d", "c", "b", "e", "g", "f"] : string list
pathsort(("go","eat")::grwork);
> Exception: Match

An error message is better than looping, but pathsort aborts by making an er-
roneous function call (namely hd[]), an ugly trick. The next chapter explains
how to declare an exception for such errors.

Exceptions are not the only way to report cycles. The following function
returns two results: a list of visits, as before, and a list of nodes found in cycles.
Maintaining two results, let us declare a function to add a visit:

3.17 Graph algorithms 107

fun newvisit (x, (visited,cys)) = (x::visited, cys);
> val newvisit = fn : ’a * (’a list * ’b) -> ’a list * ’b

With the help of this function, topological sorting is easily expressed:

fun cyclesort graph =
let fun sort ([], path, (visited,cys)) = (visited, cys)

| sort (x::xs, path, (visited,cys)) =
sort(xs, path,

if x mem path then (visited, x::cys)
else if x mem visited then (visited, cys)
else newvisit(x, sort(nexts(x,graph),

x::path, (visited,cys))))
val (starts,_) = ListPair.unzip graph

in sort(starts, [], ([],[])) end;
> val cyclesort = fn
> : (’’a *’’a) list -> ’’a list * ’’a list

If there is a cycle, then cyclesort says where it is:

cyclesort (("go","eat")::grwork);
> (["wake", "shower", "dress", "go", "eat", "washup"],
> ["go"]) : string list * string list

And if not, then cyclesort sorts the graph:

cyclesort(rev graph1);
> (["a", "b", "c", "d", "e", "f", "g"], [])
> : string list * string list

These polymorphic graph functions are too slow for large graphs because of the
list searches. Restricting the nodes to integers, more efficient functions can be
written using the functional arrays of the next chapter.

Exercise 3.36 Modify pathsort to return [] if the graph has a cycle and the
singleton list [visited] otherwise.

Exercise 3.37 Let (visited , cys) be the result of cyclesort . If the graph con-
tains many cycles, will cys contain a node belonging to each? What can be said
about visited if the graph contains cycles?

Sorting: A case study
Sorting is one of the most studied topics in the theory of computing.

Several sorting algorithms are widely known. To sort n items, insertion sort
takes order n2 time; merge sort takes order n log n time; quick sort takes or-
der n log n on average, n2 in the worst case.

108 3 Lists

These algorithms usually sort an array. Apart from heap sort, where the array
encodes a binary tree, they are easily coded as functions on lists. Their time
complexity remains unchanged: not that a list sort will win a race against an
array sort! A complexity estimate such as ‘order n2 time’ means the execution
time is proportional to n2. The list sort will have a higher constant of propor-
tionality.

This section compares several sorting functions, giving the time taken to sort
a list of 10,000 random numbers. These timings are informal but illustrate the
practical performance of each algorithm.

The Pascal version of quick sort by Sedgewick (1988) can sort the numbers in
110 msec. This roughly equals the best time for functional sorting. Pascal beats
ML if checking is disabled, but we give up the clarity and simplicity of functional
programming (never mind safety). The overheads of lists would matter less for
sorting, say, a bibliography, where the cost of comparisons would dominate.

How timings were measured. Timings were conducted on a Sun SuperSPARC
Model 61 computer running Standard ML of New Jersey, version 108. The

measurements were made using standard library facilities (structure Timer), and in-
clude garbage collection time. Thanks to improvements in hardware and software, ML
programs run 20–40 times faster than they did in the first edition of this book.

The Pascal program was compiled using the Pascal 3.0 compiler. With array sub-
script checking disabled, the run-time drops to 75 msec. With full optimization the
program runs in just 34 msec, but afterwards prints a warning that it ‘may have pro-
duced nonstandard floating-point results.’ What risks are worth taking in our quest for
speed?

3.18 Random numbers
First, we must produce 10,000 random numbers. Park and Miller (1988),

complaining that good random number generators are hard to find, recommend
the following.

local val a = 16807.0 and m = 2147483647.0
in fun nextrand seed =

let val t = a*seed
in t - m * real(floor(t/m)) end

end;
> val nextrand = fn : real -> real

Calling nextrand with any seed between 1 and m − 1 yields another number in
this range, performing the integer calculation

(a × seed) mod m.

3.19 Insertion sort 109

Real arithmetic is used to avoid integer overflow. The function works provided
mantissæ are accurate to 46 bits. When trying this on your machine, check that
the random numbers are exact integers.

Calling randlist(n,seed,[]) generates a random list of length n starting
from seed . Because the list accumulates in tail , its order is reversed:

fun randlist (n,seed,tail) =
if n=0 then (seed,tail)
else randlist(n-1, nextrand seed, seed::tail);

> val randlist = fn
> : int * real * real list -> real * real list

The list of 10,000 random numbers is called rs . Here are the first 15.

val (seed,rs) = randlist(10000, 1.0, []);
> val seed = 1043618065.0 : real
> val rs =
> [1484786315.0, 925166085.0, 1614852353.0, 721631166.0,
> 173942219.0, 1229443779.0, 789328014.0, 570809709.0,
> 1760109362.0, 270600523.0, 2108528931.0, 16480421.0,
> 519782231.0, 162430624.0, 372212905.0,...] : real list

3.19 Insertion sort
Insertion sort works by inserting the items, one at a time, into a sorted

list. It is slow but simple. Here is the insertion function:

fun ins (x, []): real list = [x]
| ins (x, y::ys) =

if x<=y then x::y::ys (*it belongs here*)
else y::ins(x,ys);

> val ins = fn : real * real list -> real list

The type constraint real list resolves overloading of the comparison operator.
All the sorting functions have a type constraint.

We insert some numbers into [6.0], which is trivially sorted:

ins(4.0, [6.0]);
> [4.0, 6.0] : real list
ins(8.0,it);
> [4.0, 6.0, 8.0] : real list
ins(5.0,it);
> [4.0, 5.0, 6.0, 8.0] : real list

Insertion sort calls ins on every element of the input:

fun insort [] = []
| insort (x::xs) = ins(x, insort xs);

> val insort = fn : real list -> real list

110 3 Lists

These functions require deep recursion. But this inefficiency is insignificant.
Insertion, functional or imperative, does a lot of copying. The execution time
of the sort is order n2. For our 10,000 integers it takes over 32 seconds, nearly
300 times slower than quick sort. Insertion sort can be considered only for short
lists or those that are nearly sorted. The algorithm is worth noting because it
is simple and because better sorting algorithms (merge sort and heap sort) are
refinements of it.

3.20 Quick sort
Quick sort, invented by C. A. R. Hoare, was among the first efficient

sorting algorithms. It works by divide and conquer:

• Choose some value a , called the pivot, from the input.
• Partition the remaining items into two parts: the items less than or equal

to a , and the items greater than a .
• Sort each part recursively, then put the smaller part before the greater.

Quick sort is ideal for arrays — the partition step is extremely fast, moving
few items. For lists, it copies all the items; partition is a good example of an
iterative function that builds two results.

fun quick [] = []
| quick [x] = [x]
| quick (a::bs) = (*the head "a" is the pivot*)

let fun partition (left,right,[]): real list =
(quick left) @ (a :: quick right)

| partition (left,right, x::xs) =
if x<=a then partition (x::left, right, xs)

else partition (left, x::right, xs)
in partition([],[],bs) end;

> val quick = fn : real list -> real list

This function sorts our 10,000 numbers in about 160 msec:

quick rs;
> [1.0, 8383.0, 13456.0, 16807.0, 84083.0, 86383.0,
> 198011.0, 198864.0, 456291.0, 466696.0, 524209.0,
> 591308.0, 838913.0, 866720.0, ...] : real list

The append (@) can be eliminated by accumulating the sorted result in a second
argument. This version of quick sort, which is left as an exercise, takes only
about 110 msec.

Like its procedural counterpart, quick takes order n log n time in the average
case. If the input is already in increasing or decreasing order, then quick sort
takes order n2 time.

3.21 Merge sort 111

Exercise 3.38 Express quick sort such that quicker(xs, sorted) accumulates
the result in sorted , with no use of append.

Exercise 3.39 Write a function find such that find(xs, i) returns the i th small-
est item in the list xs . This is called selection. Hoare’s algorithm for selection
is related to quick sort, and is much faster than sorting the list and returning the
i th element.

Exercise 3.40 Generalize find above to findrange(xs, i , j), returning the list
of the i th to j th smallest items in the list xs .

3.21 Merge sort
Several algorithms work by merging sorted lists. The merging function

repeatedly takes the smaller of the heads of two lists:

fun merge([],ys) = ys : real list
| merge(xs,[]) = xs
| merge(x::xs, y::ys) =

if x<=y then x::merge(xs, y::ys)
else y::merge(x::xs, ys);

> val merge = fn : real list * real list -> real list

When sorting 10,000 items, the recursion in merge may be too deep for some
ML systems. The fault lies with those ML systems, not with merge. As with take
and append , the dominant cost is that of constructing the resulting list. An it-
erative merging function, although avoiding the deep recursion, would probably
have to perform costly list reversals.

Merge sort can be top-down or bottom-up. Either way, merging is efficient
only if the two lists have similar lengths. If a list has only one element, merging
degenerates to insertion.

Top-down merge sort. In the top-down approach, the input list is divided into
two roughly equal parts using take and drop. These are sorted recursively and
the results merged.

fun tmergesort [] = []
| tmergesort [x] = [x]
| tmergesort xs =

let val k = length xs div 2
in merge (tmergesort (List.take(xs,k)),

tmergesort (List.drop(xs,k)))
end;

> val tmergesort = fn : real list -> real list

112 3 Lists

Unlike quick sort, the worst case execution time is order n log n . But it is slower
on average, taking about 290 msec to sort the 10,000 numbers. Its calls to
length , take and drop scan the input list repeatedly. Here is one way to elimi-
nate them:

fun tmergesort ′ xs =
let fun sort (0, xs) = ([], xs)

| sort (1, x::xs) = ([x], xs)
| sort (n, xs) =

let val (l1, xs1) = sort ((n+1) div 2, xs)
val (l2, xs2) = sort (n div 2, xs1)

in (merge (l1,l2), xs2)
end

val (l, _) = sort (length xs, xs)
in l end;

Calling sort(n,xs) sorts the first n elements of xs and returns the remaining
elements. One might expect this to be slow, since it builds so many pairs. But
it needs only 200 msec to sort the random numbers. It is still slower than quick
sort, but can be recommended as a simple and acceptably fast method.

Bottom-up merge sort. The basic bottom-up approach divides the input into lists
of length 1. Adjacent pairs of lists are then merged, obtaining sorted lists of
length 2, then 4, then 8 and so on. Finally one sorted list remains. This approach
is easy to code but wasteful. Why should the 10,000 numbers be copied into a
list of 10,000 singleton lists?

O’Keefe (1982) describes a beautiful way to merge the lists of various lengths
simultaneously, never storing these lists in full.

A B C D E F G H I J K

The underlining shows how adjacent lists are merged. First A with B , then C
with D , and now AB and CD have equal length and can be merged. O’Keefe
accumulates the merges at all levels in one list. Rather than comparing the sizes
of lists, he lets the count k of members determine how to add the next member.
If k is even then there are two members of equal size s to merge. The resulting
list is treated as member k/2 of size 2s , which may cause further merging.

fun mergepairs([l], k) = [l]
| mergepairs(l1::l2::ls, k) =

if k mod 2 = 1 then l1::l2::ls
else mergepairs(merge(l1,l2)::ls, k div 2);

> val mergepairs = fn
> : real list list * int -> real list list

3.21 Merge sort 113

If k = 0 then mergepairs merges the entire list of lists into one list. Calling
sorting(xs,[[]],0) sorts the list xs . It takes 270 msec to sort the 10,000
numbers.

fun sorting([], ls, k) = hd(mergepairs(ls,0))
| sorting(x::xs, ls, k) =

sorting(xs, mergepairs([x]::ls, k+1), k+1);
> val sorting = fn
> : real list * real list list * int -> real list

A smooth sort has a linear execution time (order n) if its input is nearly sorted,
degenerating to n log n in the worst case. O’Keefe presents a ‘smooth applica-
tive merge sort’ that exploits order in the input. Rather than dividing it into
singleton lists, he divides the input into increasing runs. If the number of runs is
independent of n (and so ‘nearly sorted’) then the execution time is linear.

The function nextrun returns the next increasing run from a list, paired with
the list of unread items. (An imperative program would delete items as they
were processed.) The run grows in reverse order, hence the call to rev .

fun nextrun(run, []) = (rev run, []: real list)
| nextrun(run, x::xs) =

if x < hd run then (rev run, x::xs)
else nextrun(x::run, xs);

> val nextrun = fn
> : real list * real list -> real list * real list

Runs are repeatedly taken and merged.

fun samsorting([], ls, k) = hd(mergepairs(ls,0))
| samsorting(x::xs, ls, k) =

let val (run, tail) = nextrun([x], xs)
in samsorting(tail, mergepairs(run::ls,k+1), k+1)
end;

> val samsorting = fn
> : real list * real list list * int -> real list

The main sorting function is

fun samsort xs = samsorting(xs, [[]], 0);
> val samsort = fn : real list -> real list

The algorithm is both elegant and efficient. Even for our random data, with its
short runs, the execution time is 250 msec.

Historical notes. Sorting with lists is similar to sorting on tape. Random ac-
cess is inefficient; data must be scanned in order, either forward or reverse.

The fascinating but largely obsolete literature on tape sorting may contain useful ideas.

114 3 Lists

The technique used in mergepairs bears a strong resemblance to the oscillating sort
developed during the 1960s (Knuth, 1973, §5.4.5).

Merge sorting is seldom done using arrays because it cannot be done in-place: it re-
quires two arrays. Even so, its use was proposed as early as 1945; the idea of exploiting
runs in the input is also quite old (Knuth, 1973, §5.2.4).

Exercise 3.41 Use the following function to code a new version of top-down
merge sort, and measure its speed. Explain your findings, taking account of
garbage collection time if you can measure it.

fun alts ([],xs,ys) = (xs,ys)
| alts ([x],xs,ys) = (x::xs, ys)
| alts (x::y::l, xs, ys) = alts(l, x::xs, y::ys);

Exercise 3.42 This is the same as the previous exercise, except that you should
base the new sorting function on the following:

fun takedrop ([], n, xs) = (xs, [])
| takedrop (x::l, n, xs) =

if n>0 then takedrop(l, n-1, x::xs)
else (xs, x::l);

Exercise 3.43 Why call sorting(xs,[[]],0) and not sorting(xs,[],0)?

Exercise 3.44 Write a version of samsort that uses both increasing and de-
creasing runs.

Polynomial arithmetic
Computers were invented to perform numerical arithmetic. They excel

at portraying data graphically. But sometimes nothing conveys more informa-
tion than a symbolic formula. A graph of E = mc2 is simply a straight line!

Computer algebra is concerned with automating symbolic mathematics, as
used by scientists and engineers. Systems such as MACSYMA and REDUCE can
do stupendous tasks involving differentiation, integration, power series expan-
sions, etc. The most basic symbolic operations perform polynomial arithmetic.
Even this is hard to do efficiently. We shall restrict ourselves to the simplest
case of all, univariate polynomials. These are polynomials in one variable,
say x ; they can be added and multiplied straightforwardly:

(x + 1)+ (x 2
− 2) = x 2

+ x − 1

(x + 1)× (x 2
− 2) = x 3

+ x 2
− 2x − 2

3.22 Representing abstract data 115

In developing a package for arithmetic on univariate polynomials, we touch
upon the general problem of data representation. We implement addition and
multiplication, using sorting ideas from the previous section. We arrive at an-
other structure matching signature ARITH of Section 2.22. Finally we consider
how to find greatest common divisors, a challenge even in the univariate case.

Our code will be fast enough to compute (x 3
+ 1)1000 in under two seconds.

This demonstrates what can be accomplished with such simple tools as lists.

3.22 Representing abstract data
In Section 3.15 above we considered operations such as union and

subset for finite sets. ML does not provide finite sets as a data structure; in-
stead, we represent them by lists without repetitions. It is worth examining what
this really involves. Although finite sets may seem trivial, they exhibit most of
the issues involved in data representation.

A collection of abstract objects, here finite sets, is represented using a set of
concrete objects, here certain lists. Every abstract object can be represented by
at least one concrete object. There may be more than one: recall that {3, 4}
can be represented by [3, 4] or [4, 3]. Some concrete objects, such as [3, 3],
represent no abstract object at all.

Operations on the abstract data are defined in terms of the representations. For
example, the ML function union implements the abstract function ∪ provided
union(l , l ′) represents A∪A′ for all lists l and l ′ that represent the sets A and A′,
respectively. The ML predicate subs (which is an infix operator) implements the
abstract relation ⊆ provided l subs l ′ equals true whenever A ⊆ A′ holds,
for all l and l ′ that represent the sets A and A′. The equality relation is treated
similarly; we do not expect equal sets to have equal representations.

These issues come up every time we use a computer, which ultimately rep-
resents all data in terms of zeros and ones. Some deeper issues can only be
mentioned here. For example, the computer represents real numbers by floating
point numbers, but most real numbers cannot be represented, and real arithmetic
is implemented only approximately.

3.23 Representing polynomials
Now let us consider how to represent univariate polynomials of the form

anxn
+ · · · + a0x 0.

Since we only allow one variable, its name does not have to be stored. The
coefficients an , . . . , a0 in an abstract polynomial might be real numbers. But
real arithmetic on a computer is approximate. We ought to represent coefficients

116 3 Lists

by rational numbers, pairs of integers with no common factor.4 But this would
be a digression, and it really requires arbitrary-precision integers, which some
ML systems lack. Therefore, strictly as an expedient, let us represent coefficients
by the ML type real .

We could represent polynomials by the list of their coefficients, [an , . . . , a0].
To see that this is unacceptable, consider the polynomial x 100

+ 1, and then
consider squaring it! In a typical polynomial, most of the coefficients are zero.
We need a sparse representation, in contrast to the dense representation that we
used earlier for matrices.

Let us represent a polynomial by a list of pairs of the form (k , ak) for every k
such that ak is non-zero. The pairs should appear in decreasing order in k ; this
will help us collect terms having the same exponent. For example, [(2,1.0),
(0,˜2.0)] represents x 2

− 2.
Our representation is better behaved than that of finite sets because every

abstract polynomial has a unique representation. Two polynomials are equal
just if their underlying lists are equal. But not every list of (integer, real) pairs
represents a polynomial.

We ought to declare polynomials as an abstract type, hiding the underlying
lists. For now, let us package the polynomial operations into a structure, follow-
ing signature ARITH .

structure Poly =
struct
type t = (int*real) list;
val zero = [];
fun sum ...
fun diff ...
fun prod ...
fun quo ...
end;

Here t is the type that represents polynomials, and zero is the empty list, which
represents the zero polynomial. The other components are described below.

3.24 Polynomial addition and multiplication
Computing the sum of two polynomials is like merging the correspond-

ing lists; consider (x 3
−x)+ (2x 2

+1) = x 3
+2x 2

−x +1. But like terms must
be combined, and zero terms cancelled; consider (x 4

−x+3)+(x−5) = x 4
−2.

The ML definition follows the method we should use on paper:

4 See Exercise 2.25 on page 63.

3.24 Polynomial addition and multiplication 117

fun sum ([], us) = us : t
| sum (ts, []) = ts
| sum ((m,a)::ts, (n,b)::us) =

if m>n then (m,a) :: sum (ts, (n,b)::us)
else if n>m then (n,b) :: sum (us, (m,a)::ts)
else (* m=n *)

if a+b=0.0 then sum (ts, us)
else (m, a+b) :: sum (ts, us);

The product of two polynomials is computed using the distributive law. Terms
of one polynomial are multiplied against the other polynomial, and the results
added:

(x 2
+ 2x − 3)× (2x − 1) = x 2(2x − 1)+ 2x (2x − 1)− 3(2x − 1)

= (2x 3
− x 2)+ (4x 2

− 2x)+ (−6x + 3)

= 2x 3
+ 3x 2

− 8x + 3

To implement this method, we first need a function to multiply a term by a
polynomial:

fun termprod ((m,a), []) = [] : t
| termprod ((m,a), (n,b)::ts) =

(m+n, a*b) :: termprod ((m,a), ts);

The naı̈ve multiplication algorithm closely follows the example above:

fun nprod ([], us) = []
| nprod ((m,a)::ts, us) = sum (termprod ((m,a), us),

nprod (ts, us));

Faster multiplication. Experiments show that nprod is too slow for large poly-
nomials. It requires over two seconds and numerous garbage collections to com-
pute the square of (x 3

+1)400. (Such large computations are typical of computer
algebra.) The reason is that sum merges lists of greatly differing length. If
ts and us have 100 terms each, then termprod((m,a), us) has only 100
terms, while nprod(ts,us) could have as many as 10,000 terms. Their sum
will have at most 10,100 terms, a growth of only 1%.

Merge sort inspires a faster algorithm. Divide one of the polynomials into
equal halves, compute two products recursively, and add them. We form as
many sums as before, but they are balanced: we compute (p1 + p2)+ (p3 + p4)

instead of p1+ (p2+ (p3+p4)). On average the summands are smaller, and each
addition doubles the size of the result.

118 3 Lists

fun prod ([], us) = []
| prod ([(m,a)], us) = termprod ((m,a), us)
| prod (ts, us) =

let val k = length ts div 2
in sum (prod (List.take(ts,k), us),

prod (List.drop(ts,k), us))
end;

This is three times as fast as nprod for computing the square of (x 3
+1)400. The

speedup appears to increase with larger polynomials.

Running some examples. Although we have not fully defined the structure Poly
yet, suppose we have done so — including a function show , to display polyno-
mials as strings. We compute the sum and product of x + 1 and x 2

− 2, which
were shown at the start of this section:

val p1 = [(1,1.0),(0,1.0)]
and p2 = [(2,1.0),(0,˜2.0)];

Poly.show (Poly.sum (p1, p2));
> "xˆ2 + x - 1.0" : string
Poly.show (Poly.prod (p1, p2));
> "xˆ3 + xˆ2 - 2.0x - 2.0" : string

Structure Poly also provides exponentiation. The function power is defined as
in Section 2.14. For a larger example, let us compute (x − 1)10:

val xminus1 = [(1,1.0), (0,˜1.0)];

Poly.show (Poly.power (xminus1, 10));
> "xˆ10 - 10.0xˆ9 + 45.0xˆ8 - 120.0xˆ7 + 210.0xˆ6
> - 252.0xˆ5+ 210.0xˆ4 - 120.0xˆ3 + 45.0xˆ2
> - 10.0x + 1.0" : string

Here are the first few terms of (x 2
− 2)150:

Poly.show (Poly.power (p2, 150));
> "xˆ300 - 300.0xˆ298 + 44700.0xˆ296
> - 4410400.0xˆ294 + 324164400.0xˆ292..." : string

Exercise 3.45 Code diff , a function that computes the difference between two
polynomials. Using termprod it can be coded in one line, but not efficiently.

Exercise 3.46 Code show , the function that produces the output shown in the
text. (Functions Real.toString and Int.toString convert numbers to strings.)

Exercise 3.47 Give a convincing argument that sum and prod respect the rep-
resentation of polynomials.

3.25 The greatest common divisor 119

Exercise 3.48 What does it mean to say that sum correctly computes the sum
of two polynomials? How might you prove it?

3.25 The greatest common divisor
Many applications involve rational functions: fractions over polyno-

mials. Efficiency demands that a fraction’s numerator and denominator should
have no common factor. Therefore, we need a function to compute the greatest
common divisor (GCD) of two polynomials. This requires functions to compute
polynomial quotients and remainders.

Polynomial division. The algorithm for polynomial division resembles ordinary
long division. It is actually easier, for it requires no guessing. Each step removes
the leading term of the dividend by dividing the leading term of the divisor into
it. Each such step yields a term of the quotient. Let us divide 2x 2

+ x − 3 by
x − 1:

2x + 3
x − 1)2x 2 + x − 3

2x 2
− 2x

3x − 3
3x − 3

0

Here the remainder is zero. In the general case, the remainder is a polynomial
whose leading exponent (called its degree) is less than that of the divisor. Let us
divide x 3

+ 2x 2
− 3x + 1 by x 2

+ x − 2, obtaining a remainder of −2x + 3:

x + 1
x 2
+ x − 2)x 3 + 2x 2 − 3x + 1

x 3
+ x 2

− 2x
x 2
− x + 1

x 2
+ x − 2
−2x + 3

If the divisor’s leading coefficient is not unity then fractions will probably ap-
pear. This can make the computation much slower, but it does not complicate the
basic algorithm. The function quorem directly implements the method sketched
above, returning the pair (quotient, remainder). The quotient forms in reverse.

120 3 Lists

fun quorem (ts, (n,b)::us) =
let fun dividing ([], qs) = (rev qs, [])

| dividing ((m,a)::ts, qs) =
if m<n then (rev qs, (m,a)::ts)
else dividing (sum (ts, termprod ((m-n, ˜a/b), us)),

(m-n, a/b) :: qs)
in dividing (ts, []) end;

Dividing x 2
−2 by x −1 yields a quotient of x +1 and a remainder of−1, since

(x − 1) × (x + 1) = x 2
− 1. Assume that Poly includes quorem , and also a

function showpair for displaying a pair of polynomials:

Poly.quorem (p2, xminus1);
> ([(1, 1.0), (0, 1.0)], [(0, ˜1.0)])
> : (int * real) list * (int * real) list
Poly.showpair it;
> "x + 1.0, - 1.0" : string

Let us run the second example of division shown above.

Poly.showpair
(Poly.quorem ([(3,1.0),(2,2.0),(1,˜3.0),(0,1.0)],

[(2,1.0),(1,1.0),(0,˜2.0)]));
> "x + 1.0, - 2.0x + 3.0" : string

We can trivially define the quotient function quo in terms of quorem . Includ-
ing the diff function of Exercise 3.45 gives structure Poly all the components
it needs to match signature ARITH. Our collection of arithmetic structures now
includes the complex numbers, binary numerals, matrices and polynomials! But
note, again, that there are important differences among these structures; for each
there are additional components that would not make sense for the others. Al-
though Poly can match signature ARITH when we need it to, normally we take
full advantage of its other components.

Euclid’s Algorithm for polynomials. We can now compute GCDs using Euclid’s
Algorithm. Recall that #2 extracts the second component of a pair, here the
remainder after polynomial division.

fun gcd ([], us) = us
| gcd (ts, us) = gcd (#2(quorem (us,ts)), ts);

Assuming that Poly contains gcd as a component, we can try it out on some
examples. The GCD of x 8

− 1 and x 3
− 1 is x − 1:

Poly.show (Poly.gcd ([(8,1.0),(0,˜1.0)],
[(3,1.0),(0,˜1.0)]));

> "x - 1.0" : string

3.25 The greatest common divisor 121

The GCD of x 2
+ 2x + 1 and x 2

− 1 is . . . −2x − 2?

Poly.show (Poly.gcd ([(2,1.0),(1,2.0),(0,1.0)],
[(2,1.0), (0,˜1.0)]));

> " - 2.0x - 2.0" : string

The GCD ought to be x + 1. This particular difficulty can be solved by dividing
through by the leading coefficient, but there are other problems. We must use
rational arithmetic: see the warning below. Then computing the GCD often
requires operating on enormous integers, even if the initial polynomials have
only single-digit coefficients. Many further refinements, typically using modular
arithmetic, are essential.

Beware rounding errors. The use of floating point arithmetic (type real) is es-
pecially bad in gcd , because its first line tests for a remainder of zero. Round-

ing errors during division could give the remainder a small but non-zero coefficient;
a common divisor would be missed. For other applications, polynomial arithmetic is
fairly well-behaved, because the effects of rounding errors are predictable. (I am grate-
ful to James Davenport for these observations.)

Further reading. Davenport et al. (1993) is an excellent introduction to com-
puter algebra. Chapter 2 covers data representation. We learn, for example,

that multivariate polynomials can be represented as univariate polynomials whose coef-
ficients are themselves univariate polynomials in some other variable. Thus y2

+ xy is
a univariate polynomial in y whose coefficients are 1 and the polynomial x ; we could
exchange the rôles of x and y . Chapter 4 covers the horrendous complications involved
in computing GCDs efficiently.

Summary of main points
• Lists are constructed from the empty list (nil or []), using :: (‘cons’) to

attach elements to the front.
• Important library functions include length , take , drop, the infix opera-

tor @ (concatenation) and rev (reverse).
• A recursive function, by accumulating its results in an extra argument,

may avoid inefficient list concatenation.
• Equality polymorphism allows functions to perform equality testing on

their arguments. Examples include mem , which tests membership in a
list, and assoc, which searches in a list of pairs.
• The usual sorting algorithms can be implemented using lists, with sur-

prising efficiency.
• Lists can represent binary numerals, matrices, graphs, polynomials, etc.,

allowing operations to be expressed concisely.

