
A Mizar Mode for HOL

John Harrison
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Abstract. The HOL theorem prover is implemented in the LCF man-
ner. All inference is ultimately reduced to a collection of very simple
(forward) primitive inference rules, but by programming it is possible
to build alternative means of proving theorems on top, while preserving
security. Existing HOL proofs styles are, however, very different from
those used in textbooks. Here we describe the addition of another style,
inspired by Mizar. We believe the resulting system combines the secure
extensibility and interactivity of HOL with Mizar’s readability and lack
of logical prescriptiveness. Part of our work involves adding new facili-
ties to HOL for first order automation, since this allows HOL to be more
flexible, as Mizar is, over the precise logical connection between steps.

1 HOL

The HOL theorem prover [13] is descended from Edinburgh LCF. While adding
features of its own like stress on definitional extension as a reliable means of
theory development, it remains true to the basic idea of the LCF project. This
is to reduce all reasoning to a few simple primitive (usually forward) inference
rules, but to allow a full programming language to automate higher level ‘derived
rules’, broken down into these primitives. For example, HOL includes derived
rules for linear arithmetic, tautologies and inductive definitions. Ordinary users
can simply invoke them without understanding their implementation, but be-
cause they do ultimately decompose to simple primitives, can feel confident in
their correctness. Should they need other, perhaps application-specific, proof
procedures in the course of their work, they can write them using the same
methodology.

This combination of reliability and flexibility is the outstanding feature of
LCF systems, and there is usually not a serious loss of efficiency in derived rules
[17]. Some of these derived rules may present the user with a quite different
view of theorem proving from that implemented in the logical core. Even in the
original LCF publication [14] we find the following:

The emphasis of the present project has been on discovering how to
exploit the flexibility of the metalanguage to organise and structure the
performance of proofs. The separation of the logic from its metalanguage
is a crucial feature of this; different methodologies for performing proofs
in the logic correspond to different programming styles in the meta-
language. Since our current research concerns experiments with proof



methodologies – for example, forward proof versus goal-directed proof –
it is essential that the system does not commit us to any fixed style.

To some extent, this theoretical flexibility is already a practical reality in
HOL. In addition to the basic ‘machine code’ of forward primitive rules, there
are several supported proof styles, all of which fit together smoothly:

– There are numerous more complicated forward proof rules, which can make
the business of theorem proving much more palatable than it would be using
the primitives. However, before each inference rule is applied, it’s necessary
to muster all the required hypotheses exactly, and either include their proofs
verbatim, or bind them to names and use those. It’s very hard to do proofs
in this way unless the exact structure of the proof is already planned before
starting to type.

– Backward, tactical proof was one of the most influential ideas in the LCF
project. Most large HOL proofs are done in this way, perhaps because the
required hypotheses appear naturally and determine the proof structure au-
tomatically. It also allows more convenient use of local assumptions and
choosing variables. This flexibility is further increased if the tactic mecha-
nism allows ‘metavariables’ whose instantiations can be delayed [32, 26].

– Equational reasoning is one of the most widely used parts of the HOL system,
largely thanks to an elegant and flexible implementation [25]. Depth conver-
sions and rewriting tools allow the convenient iterated instantiation and use
of equations. There are also straightforward means of handling associative
and commutative operators.

– Window inference [29] is a methodology for organizing localized proof efforts.
Users may focus on a particular subterm or subformula and transform it,
exploiting contextual information that comes from its position in the whole
formula. For example, when transforming ψ into an equivalent formula ψ′

in the expression φ ∧ ψ, we may assume φ. Grundy [15] both mechanized
window inference in HOL and generalized it to arbitrary preorder relations,
such as implication and the refinement relation on programs.

– Prasetya [27] has written a package to support two features of textbook
proofs: the use of a series of lemmas, and the use of iterated equations (we
shall have more to say about this latter issue later).

– Specialized decision procedures for various particular domains such as linear
arithmetic [6] are also available, as well as a number of derived definitional
mechanisms [23, 24].

Most of these styles suffer from being rather low-level, making explicit too
many details that are normally elided. More precisely, they are too logically
prescriptive, demanding that even the most obvious steps be mediated by the
exactly appropriate logical rule(s). This isn’t just a problem because doing it
is tedious. A beginner might well simply not be able to drive the system well
enough to get it to do the requisite steps. For example, many HOL users find
manipulation of assumptions difficult. Decision procedures, on the other hand,



are perhaps too high-level, compressing into one line substantial mathematical
detail.

Whether too high-level or too low-level, all the proof styles suffer from one
common failing: the proofs are expressed using complicated combinations of ar-
cane higher order functions in a computer programming language. Though it’s
easy to guess what many of them do, a HOL script looks nothing like a text-
book proof. Even HOL experts cannot really read a typical HOL proof without
replaying it in a session. Annotating proofs with intermediate theorems, as done
by Paul Jackson in Nuprl, certainly makes them more readable. However it also
causes them to expand substantially, and gives a rather artificial separation be-
tween the proof instructions to the machine and the parts that are intended for
human consumption.

2 The Mizar Proof Script Language

The Mizar theorem prover,1 developed by a team in the Bia lystok branch of
Warsaw University under the leadership of Andrzej Trybulec, is quite different
from HOL in almost every respect. It was designed primarily for the formalization
of mainstream mathematical proofs rather than for verification applications; it
is based on Tarski-Grothendieck set theory rather than simple type theory, and
the proof checker is built on entirely different lines. However we believe that its
proof script language provides many interesting ideas and lessons. We do not
claim it is ideal for all applications; standard HOL styles may for example be
better in many verification tasks, or where complex decision procedures are to
be used. But for its original purpose of proofs in pure mathematics, it has a lot
to recommend it — the enormous amount of mathematics that has been proof
checked in the Mizar system stands as a testament to that.

2.1 Presenting natural deduction proofs

Systems of Natural Deduction seem to provide quite a direct rendering of typ-
ical mathematical reasoning, including common idioms such as reasoning from
assumptions, performing case splits, etc. The actual format of natural deduction
proofs as usually presented is, however, rather different from that of textbook
proofs. The Mizar proof language improves things by associating deduction steps
with English constructs that can be put together into a fairly conventional math-
ematical proof. For example:

– ‘let x be α; <proof of φ[x] >’ is a proof of ∀x : α. φ[x].
– ‘assume φ; <proof of ψ >’ is a proof of φ⇒ ψ.
– ‘take a; <proof of φ[a] >’ is a proof of ∃x. φ[x].

These and other similar constructs define the ‘proof skeleton’, i.e. the overall
logical structure of the proof.
1 See the Mizar Web page: ‘http://web.cs.ualberta.ca:80/~piotr/Mizar/’.



2.2 Stepping beyond natural deduction

Though natural deduction captures many mathematical idioms, it is not ideal
for every application. For example, equality reasoning is usually done using cer-
tain obvious techniques like substitution and rewriting, rather than by explicitly
stringing together axioms for the equivalence and congruence properties of equal-
ity via natural deduction rules. And at the formula level, it is sometimes more
attractive to reason directly with logical equivalence rather than decompose it to
two implications [37].2 In fact in HOL there is already a great emphasis on the
use of equivalence: it is just equality on booleans, so all the powerful equational
proof techniques like rewriting are available to exploit it.

In fact, one often wants to make very simple logical steps that do not corre-
spond to individual natural deduction rules. Notwithstanding their theoretical
interest, natural deduction rules are not sacrosanct. For example passing from
A∨B and ¬A to B (an instance of resolution) is at least as ‘natural’ as natural
deduction ∨-elimination, let alone the sequence of ND steps needed for the above
inference. In general we might be completely uninterested in the exact series of
inferences, e.g. we might wish to pass from a = 0x to a = 0 using the theorem

∀x y. xy = 0 ≡ x = 0 ∨ y = 0

without writing out a full natural deduction derivation. All this suggests beefing
up natural deduction with the ability to make rather simple ‘obvious’ jumps,
and this is precisely what the Mizar system does. The user may write ‘φ by A1,
. . . , An’, meaning that φ is considered an obvious consequence of the theorems
A1, . . . , An (these are either preproved theorems or labelled steps in the present
deduction).

The body of a Mizar proof contains a list of steps justified with ‘by’; these
are usually just formulas, with or without labels, but sometimes skeleton con-
structs also use ‘by’ for their justification. For example ‘consider x such that
P [x]’ performs an ∃-elimination step; in subsequent steps, P [x] may be assumed.
However this requires justification for ∃x. P [x], and enough theorems must be
provided for this to be deduced. To avoid a proliferation of labels, the previous
step may be implicitly assumed by prefixing a step with ‘then’.3 Finally, cer-
tain formulas are prefixed with ‘thus’ or ‘hence’ (the latter equivalent to ‘then
thus’); these are ‘conclusions’. The set of conclusions collected in a list of steps
should always be sufficient to justify the current objective or thesis. For example,
if the thesis is φ∧ψ, then one might have two conclusion steps containing φ and
ψ; if the thesis is φ ≡ ψ, the conclusions might be φ⇒ ψ and ψ ⇒ φ. To achieve
a kind of bracketing of sets of conclusions, which could otherwise be ambiguous,

2 Moreover, when doing exploratory interactive work, it is convenient that all equa-
tional steps are reversible, so one can feel confident that a provable subgoal is not
being replaced by an unprovable one.

3 The Mizar system makes formulas introduced using certain constructs like ‘assume’
available by default without labelling; our version makes this optional, and always
allows labelling.



an individual step can be justified not using ‘by’, but rather by a whole nested
proof enclosed between ‘proof’ and ‘end’.

The thesis is tracked automatically by the system as the proof script is
processed, starting from the initial goal. For example, if the current thesis is
∀x : A. P [x], then after processing a step ‘let x be A’ the thesis becomes P [x].
For one or two constructs, knowledge of the thesis is necessary; it cannot be
constructed from the proof. For example ‘take m’ followed by a proof of m ≤ m
could be a proof of ∃x. x ≤ m or of ∃x. x ≤ x, among others. Apart from
providing the system with additional information in such cases, the thesis is a
useful sanity check, since the skeleton structure should correspond to the thesis.4

Moreover, it allows one to use the special word ‘thesis’ rather than repeatedly
quote the formula; this is convenient since if several case splits are performed,
there will typically be many conclusions ‘thus thesis’. The system attempts to
modify the thesis intelligently given a conclusion step. For example if the thesis
is φ ≡ ψ and a conclusion step proves φ ⇒ ψ, then the thesis becomes ψ ⇒ φ.
Mizar allows a nested proof within ‘now . . . end’, which unlike the nested proofs
within ‘proof . . . end’, does not make the thesis known at the outset. In our
HOL implementation we disallow this, since it does not fit very tidily with our
reduction to tactics. It could easily be implemented, but would require the entire
nested proof to be processed separately.

A few other mathematical idioms are admitted, in particular the kind of iter-
ated equality reasoning whose usefulness we have already noted; our HOL version
can handle other binary relations like numeric inequalities too, à la Grundy. In
the HOL version, using three dots as the left-hand argument of a binary operator
is a shorthand for the previous left-hand argument that was given explicitly, and
there is also an implicit ‘then’ to link the previous step. So for example one may
write:

a = b by Th1,Th2;

... = c by Th3;

... = d by Th4,Th5,Th6;

which serves as a proof of a = d. The reader familiar with the typical calcula-
tional style of proof [12] will see that the use of iterated equality in the Mizar
language is almost identical to that, each step in the transitivity chain being
justified by a hint, albeit of a rather uniform kind.

In summary, Mizar scripts admit a division into the ‘proof skeleton’, which
uses the special keywords to set out the basic structure of the proof, and the
individual steps within the proof, mostly using ‘by’ and its relatives. There is
thus an attractive combination of a clearly structured natural deduction proof
together with flexibility over the individual inferences. Apart from simply mak-
ing things easier, this might also appeal to the many mathematicians who are
uninterested in, or actively dislike, logic and foundations.5

4 This is decidable and in Mizar is checked by a separate pass.
5 Probably its emphasis on practical usability rather than foundational questions is

partly responsible for the amount of real mathematics done in Mizar.



2.3 Stepping beyond Mizar

We have found it useful to add a few other features to the language beyond those
included in Mizar itself (conversely of course, we have left out some features of
the Mizar language such as its special type coercing functions that don’t have a
natural HOL counterpart). These new features do not by any means exhaust the
possibilities; on the contrary a careful study of existing mathematical textbooks
and papers, concentrating more on their form than their content, might reveal
many other useful additions.

First, we allow the idiom (when trying to prove X, say): ‘suffices to show
X ′’, usually accompanied by a justification using ‘by’. This construct allows
backward proof. Sometimes the steps are quite trivial, corresponding to typical
mathematical steps like ‘by [induction] we need only prove P [0] and ∀n. P [n] ⇒
P [n + 1]’, or ‘by [symmetry in m and n] we may assume that m ≤ n’; but
they could be more substantial. Mathematics books often contain an admixture
of backward proof, and some suggest that the proportion could profitably be
increased.

Second, we allow the use of arbitrary HOL rules in justifications. As well
as just a list of theorems, the ‘by’ command takes an optional identifier for a
HOL inference rule. There is a standard default rule, of which more below, but
users may use their own in special situations. By contrast Mizar has no facilities
for extension with abbreviations for complicated proof idioms (e.g. repeated
rewrites), not even a simple macro language as in PVS. So we can see that the
traffic of ideas is not all in one direction: here we use HOL to address a weakness
of Mizar.

3 Mizar Proofs in HOL

Our initial experiments involved taking a complete Mizar-style proof script and
translating it to HOL primitive inferences. However in this way the Mizar proof
style becomes decoupled from the others in HOL, whereas one of the attractions
of the existing system is that say, forward and backward proof can be intermixed
freely. In addition, we believe that another advantage HOL has over Mizar is that
its style of interaction is less batch-oriented. In Mizar, the typical style of user
interaction is an edit-compile cycle rather like the use of a programming language
compiler, possibly processing a fairly large file each time, whereas with HOL one
can try out proof steps, see their effect, and either press on or back up and try
something else.

3.1 Mizar tactics

Therefore we now attempt to integrate Mizar-style proofs with HOL tactic
proofs. If we think of the ‘state’ of a Mizar proof, that is, the current thesis and
the list of facts derived and labelled so far, as the conclusion and hypotheses
of a HOL goal, then there is a close relationship between most Mizar skeleton



constructs and certain HOL tactics. Roughly speaking, the relationship is as
follows:6

Mizar construct HOL tactic (Reversed) ND rule
assume DISCH TAC ⇒ intro
let X GEN TAC ∀ intro
take EXISTS TAC ∃ intro
consider X CHOOSE TAC ∃ elim
given DISCH THEN o X CHOOSE TAC ⇒ intro and ∃ elim
suffices to show MATCH MP TAC ⇒ elim
set ABBREV TAC abbreviation

For our purposes, it is desirable to extend HOL’s tactic mechanism with the
ability to label assumptions using chosen names. In this way we can associate
assumptions in the goal with the appropriate Mizar labels. Such an extension is,
we feel, desirable in any case. Manipulation of assumptions is a perennial problem
in HOL, since both numbering and explicit term quotation can be sensitive to
quite small changes in the proof, necessitating more sophisticated techniques [5].
The change to the HOL sources took only half an hour, mostly just inserting
‘snd’ or ‘map snd’ in various tactics. The types of goals and tactics change, but
these are normally wrapped in aliases anyway when used at a higher level, so
there seems little danger of proofs being broken by the change. Given this slight
enhancement of the tactic mechanism, we are now quite close to an interpretation
of Mizar steps as tactics. Note that the head of the assumption list is considered
the ‘previous step’ in the Mizar sense, and is selected for ‘then’ linkage. Unless
it is labelled, the next step deletes it from the assumption list, so that just as
with Mizar, the previous result only exists ephemerally.

We actually define special ‘Mizar tactics’ which are very similar to their HOL
analogs in the above table. For example, ‘MIZAR ASSUME TAC’ is just like HOL’s
‘DISCH TAC’ except that it checks that the term being discharged is the same
as the one given as an argument, and attaches any specified label to that new
assumption. If we were attempting to emulate Mizar’s ability to process proofs
without an explicit thesis, then it would be necessary to make these tactics work
even in the event of a mismatch with the thesis; all that matters is that the
subsequent proof reconstruction works as intended.

In order to reduce the load of user type annotation, all the Mizar tactics
accept preterms rather than terms.7 The Mizar tactics then typecheck them in
the context of variable typings in the current goal. However if there are variables
in the goal with the same name but different types, these are excluded, since
an arbitrary choice could leave the user stymied. In that case, some annotation
may be needed.

6 ABBREV TAC is not part of the HOL standard tactic collection, but is much used
by the present author; it can be found for example in the code for the reals library.

7 Readers unfamiliar with HOL preterms can think of them as untyped syntax trees
that become terms only after typechecking.



We define special constants that are expanded during Mizar’s preterm to term
translation. These are ‘thesis’ of type ‘:bool’, which is expanded to the current
thesis, and ‘...’, of polymorphic type, which is expanded to the left hand of the
previous step. We provide one that Mizar itself does not: ‘antecedant’ refers to
the antecedant of the current goal. We quite like the idea of adding others, such
as the first and second conjunct of a conjunction, and plan to experiment with
this.

3.2 Case splitting constructs

It is necessary to deal with the constructs that can split a goal into several
subgoals, namely nested subproofs and ‘per cases’. Nested proofs are dealt
with simply by using HOL’s standard ‘SUBGOAL THEN’ tactic, which sets up two
subgoals: the lemma itself, and the original goal with the lemma as an extra
assumption. However Mizar’s case-splitting construct requires more care. Like
‘DISJ CASES TAC’, HOL’s case-splitting tactic, it performs a natural deduction
∨-elimination step. It is used as follows:

per cases by <justification>
suppose X1
...
...
hence thesis

...

suppose Xn
...
...
hence thesis

end

The justification is supposed to be able to prove X1 ∨ . . . ∨ Xn. Now, as
compared with HOL’s case-splitting construct, the above does not make ex-
plicit at the start how many subgoals will be generated, nor what the eventual
disjunctive theorem to justify is. Therefore a direct translation into HOL’s cor-
responding constructs would require processing of the complete construct, and
as we’ve already said, we are keen to allow expansion of every stage of the proof
interactively. Accordingly we proceed as follows.8

The ‘per cases’ is translated into a HOL tactic that simply yields the same
subgoal, but with a justification phase which, on receiving a theorem with an
additional assumption, tries to prove and so discharge it using the stated justifi-
cation. Then each ‘suppose X’ causes a split into two subgoals, one with assump-
tion ‘X’, one identical to the original. The assumption is that the second subgoal
8 Note that some of the tactics mentioned below are ‘invalid’ in the LCF sense, i.e.

they may not be able to reconstruct the goal from the subgoals.



will in fact produce a theorem with some additional assumption; the justification
stage of this tactic performs a HOL ‘DISJ CASES’ step, i.e. ∨-elimination. Finally,
the ‘end’ construct simply proves the goal under an assumption of falsity; this
is trivially disposed of by the eventual disjunction justification.

The above scheme works rather well, and allows a direct step-by-step explo-
ration of the Mizar proof using HOL’s subgoal package. Note that because of the
way ‘per cases’ is dealt with, a string of Mizar tactics has itself no structure,
and needs to be applied repeatedly to the head of a current list of goals. Inter-
actively, this is done by the goal stack anyway. However to compose a sequence
of Mizar tactics, one must not use ‘THEN’, which applies its second argument
tactic to all subgoals. Nevertheless it is easy to define a variant of ‘THEN’ that
will package up a sequence of Mizar tactics into a single tactic.

3.3 Parsing

Writing proofs directly using the Mizar tactics is not a big improvement on
the readability of standard HOL tactics, even though the structures into which
they are organized may be more natural. Instead of that we have a special
parser for Mizar texts. Within this, we still use the HOL notation for terms,
rather than Mizar’s more readable but more verbose alternative. This could be
changed if desired. There are actually one or two syntactic ambiguities arising
from lumping arbitrary HOL terms together with Mizar keywords. For example
‘let’ could either introduce a Mizar step, or be the start of a HOL term; likewise
‘L:A’ could either be a labelled term ‘A’ or a term ‘L’ with type ‘A’ These could
be cleared up without difficulty if they become troublesome.

In fact, we usually install as the default quotation parser a function that
parses Mizar steps and reduces them to a tactic. The only problem with this is
that we want to be able to refer not only to labels in the existing derivation, but
also to pre-proved theorems. These theorems are all bound to ML identifiers, so
to use them inside quotations, it is necessary to use antiquotation, i.e. precede
each name by a carat. Since Slind’s system for antiquotation [31] is polymorphic,
this presents no problems in principle. However since our experiments are being
conducted in a version of HOL without antiquotation,9 we have adopted the
temporary solution of pushing all required external lemmas onto the assumption
list with appropriate labels. Similarly, we use a global list binding inference rules
to names, which allows various inference rules to be used in the same quotation.

4 Proof support

We have dealt with parsing the proof, but have only discussed the processing of
the skeleton constructs into HOL inferences. It remains to translate the individ-
ual ‘obvious’ proof steps in the same way. Since we allow essentially arbitrary

9 This version of HOL is implemented in CAML Light. See [19] for the starting point
of this work.



ML code in a ‘by’ statement, any HOL rules can be used. However the existing
HOL rules are not really capable of emulating Mizar’s recognition of logically
obvious steps. To maximize the benefits, something of similar scope is required.
Mizar incorporates an automatic theorem prover for first order logic which, while
not very powerful, has evolved over time to become extremely quick at checking
‘obvious’ inferences. For Mizar, speed is essential, since as we have already said,
the system is normally used in batch mode. For us, high speed is less important,
and is unlikely to be achievable anyway. So we can afford to err on the side of
making the checker more powerful. We don’t attempt to emulate Mizar’s own
prover, but start from scratch using fairly standard techniques for automated
theorem proving. We provide two alternative provers, one based on tableaux,
the other on model elimination. Before giving more details, we will make some
general comments and look at how formulas are normalized for input to the
provers.

Only first order logic?

Mizar’s logic is almost first order, but it supports free second order variables,
making axiom schemas much more civilized to deal with. (This logic is often
facetiously referred to as 1.01th-order logic.) The automated theorem prover
that ‘by’ invokes is only for first order reasoning. When one wants to instantiate
a second order variable, e.g. in induction or set comprehension schemes, a sepa-
rate command ‘from’ is invoked, together with an explicit instantiation for that
variable.

In HOL, although higher order features are constantly used, many of the
proofs are ‘essentially first order’. We reduce higher order to first order logic
in a well-known mechanical way: introduce a single binary function symbol a
to represent ‘application’, and translate HOL’s f x into a(f, x), etc.10 Then
it is often the case that when a theorem is provable in higher order logic, the
corresponding first order assertion is also provable.

Proofs that cannot be done in the first order reduction are those that re-
quire the instantiation of higher order variables, i.e. the invention of lambda-
abstractions. For example, when trying to prove ∀n. n+ 0 = n by induction, the
induction theorem needs to be specialized to the relation λn.n+0 = n, or equiv-
alently, to the set {n | n+ 0 = n}. There are techniques, mostly based on higher
order unification [20], for finding higher order instantiations automatically — for
example the TPS system [1] works in this way. Alternatively, it’s possible to write
down the combinator axioms in first order logic, so that in principle, lambda-
abstractions (in combinator form) can be discovered using standard first-order

10 Constants (necessarily nullary) and variables can translated directly into first order
logic constants and variables, and the logical connectives (at least when used in
the standard way, using no higher order tricks) can be directly translated. Actually
we optimize the above somewhat by using function and predicate symbols directly
provided they are always used consistently in a first order way. This is in fact usually
the case.



proof search.11 This was first proposed by Robinson [28], but his system appears
to us unsound: since it does not respect types, the Russell paradox could appar-
ently be derived quite easily by applying a fixpoint combinator to the negation
operation. Dowek [11] gives a precise treatment, discussing how the type system
can be used too.

We elected to accept the fact that certain higher order proofs cannot be found
automatically (after all, other HOL rules can be used in ‘by’ if necessary). Note
however that if the appropriate term is already bound to some function, then just
throwing in the definition is enough; the lambda-term is then expressible in a
first order way. Effectively this function works like the appropriate combinatory
expression. For example, given the theorems:

∀x. x ∈ Ins(s, y) ≡ x ∈ s ∨ x = y

and

∀x. x ∈ Del(s, y) ≡ x ∈ s ∧ x 6= y

as well as the defining property of the empty set, then our first order provers are
quite capable of deducing the right instantiations to prove:

∀s. s = ∅ ∨ ∃x, t. s = Del(t, x) ∧ x 6∈ t

Moreover there is no difficulty with using lambda-abstractions; we transform
each term P [λx. t[x]] into ∀f. (∀x. f(x) = t[x]) ⇒ P [f ] automatically.

Another flaw in our system is that we do not preserve type information when
translating to first order logic, which may lead to expansion of the search space
with type-incorrect unifications, or could even result in proofs that fail when
translated back to HOL inferences. In practice, however, this works surprisingly
well in the domains we have tried. Much of the reasoning involves one or two
types, which are implicitly encoded anyway in most formulas (note that we treat
different instances of polymorphic constants, such as equality, as distinct). Pro-
viding better higher order and type-correct automation is an interesting research
project. In any case, superior theorem-proving tools developed later may easily
be hooked into our Mizar system.

Rather than work directly on the HOL term representation, our provers first
translate into their own internal representation of first order logic, which is used
during proof search. When a proof is found, it’s then translated back into HOL.
Systems like Isabelle which feature unification of metavariables in the tactic
mechanism, can implement these rules very easily and directly. By contrast our
approach looks a bit artificial. However it keeps the proof search fast, and this is
the speed-critical part of the automated provers. The eventual proof is usually
short and can be translated into HOL very quickly. Such an approach has already
been used to implement provers rather similar to ours in HOL [21]. We elected

11 This idea also lies behind the popularity in the first order ATP community of the
finite NBG axiomatization of set theory [7] — in exactly the same way a finite set
of building blocks replaces an infinite comprehension schema.



to start from scratch rather than use their work, to make it easier for us to
experiment with different ideas for proof automation, e.g. the incorporation of
equality.

Preprocessing

When the system needs to prove that φ follows from assumptions ψ1, . . . , ψn, it
begins, as does Mizar and as do most automated theorem provers, by forming
the conjunction ¬φ ∧ ψ1 ∧ . . . ∧ ψn and attempting to refute it. The first stage
is to convert it to negation normal form (i.e. a form where negations are applied
only to atoms) and Skolemize it. Skolemization is done by a one-way process,
specializing universal variables and introducing ε-terms for existential variables
[4]. For example if the initial formula ψ is ∀x y. ∃z. φ[x, z], then we proceed
through ψ ` ∃z. φ[x, z] to ψ ` φ[x, εz. φ[x, z]], introduce the local assignment
f = λx. εz. φ[x, z] (it can easily be eliminated after refutation), and so get
ψ, f = λx. εz. φ[x, z] ` φ[x, f(x)]. The preprocessing phase attempts to split
formulas up into separate units as much as possible — in order to refute φ∨ψ, the
disjuncts can be refuted separately. Conjunction is distributed over disjunction
in an attempt to maximize this splitting (though this is disabled after a limit is
reached, otherwise large tautologies lead to an exponential number of subtasks).
Moreover, the expansion of bi-implications as either

(p ≡ q) → (p ∧ q) ∨ (¬p ∧ ¬q)
¬(p ≡ q) → (p ∧ ¬q) ∨ (¬p ∧ q)

or

(p ≡ q) → (p ∨ ¬q) ∧ (¬p ∨ q)
¬(p ≡ q) → (p ∨ q) ∧ (¬p ∨ ¬q)

is chosen to maximize splittability, and thereafter (i.e. after passing a universal
quantifier) is chosen to keep the conjunctive normal form short, since one of our
provers below uses CNF. (We do not use sophisticated ‘definitional’ techniques
[9], which can give refutation equivalent CNF by introducing variables for all
subexpressions, conjoining their definitions and forming the CNF of that.)

Splitting is most useful for proving equivalences: they are decomposed into
two implications for the main prover to handle. In some contrived examples the
improvement can be dramatic. For example, ‘Andrews’ Challenge’:

((∃x. ∀y. Px ≡ Py) ≡ ((∃x. Qx) ≡ (∀y. Qy)))
≡ ((∃x. ∀y. Qx ≡ Qy) ≡ ((∃x. Px) ≡ (∀y. Py)))

gets split into 32 independent subgoals, each of which is fairly easy. The problem
as a whole, however, is a real challenge for CNF-based systems like the model
elimination prover we describe below. On the other hand, our tableaux prover
does this kind of splitting as part of the proof process anyway, so the gains from
splitting are marginal.



A tableaux prover

Our first automatic prover is a simple tableaux prover, which is essentially a
copy of leanTAP [4]. It is extremely simple, but quite fast for moderately simple
tasks. The idea of tableau provers is simply to perform backward search for a
cut-free sequent proof, discovering variable instantiations by (first order) uni-
fication with Prolog-like backtracking. Beyond the limitations on search space
already imposed by the underlying sequent calculus, the formulas are processed
in a strictly round-robin manner. This means that universal assumptions can
be instantiated n times, but only after all others have been tried at least n− 1
times. The Mizar notion of an ‘obvious’ inference [30], is that universal formulas
are only instantiated once. So what we do is quite similar, but we just have
a bias against re-using formulas, rather than a strict prohibition. Just as with
Mizar, one can force multiple use of an assumption by listing it several times in
the ‘by’ statement. Though from one point of view an artificial hack, this has
some resemblance to a mathematical proof where one says for example ‘using
transitivity twice we get. . . ’. Indeed, the equality-free part of Mizar is not un-
like a tableau prover: it reduces the problem to disjunctive normal form (like
the splitting of a tableau into separate branches) and then successively instanti-
ates universal formulas until a refutation can be reached by unification with the
negation of another formula [36].

The main extension over leanTAP is a simple system for equality handling,
which is necessary for many mathematical proofs. (Mizar includes its own equality-
handling techniques.) Simply throwing in equality axioms is too inefficient given
such undirected usage of assumptions. But dealing with equality in tableau
provers is a hot research topic, especially since the key question of simulta-
neous rigid E-unification has recently been proved undecidable [10]. We chose a
rather ad hoc method which nevertheless works quite well in practice. When a
literal P (s1, . . . , sn) is processed given a complementary literal ¬P (t1, . . . , tn),
we do not merely attempt to unify each (si, ti) pair, but take each inequation
si 6= ti and add it to the tableau branch, resulting in n new branches. And
each time an inequation is the currently processed formula and there are at least
some equations on the relevant branch, the equality-handling rules kick in. These
simply search for a proof in equational logic, but cut down on redundancy by
imposing strict canonicality requirements on the proof, e.g. that transitivity is
applied after all congruence rules and is always chained right-associated, and
that symmetry is only applied to axioms or assumptions.

A model elimination prover

As a more heavyweight and powerful alternative to the tableaux prover, we also
developed a model elimination (MESON) prover, based on the Prolog Technol-
ogy Theorem Prover [33]. Such systems work by reducing to clausal form and
then further to a set of pseudo-Horn clauses that can be used for Prolog-style
backward search. The default search mode is one of our own invention — see [18]
for more details and a comparison with other techniques. The MESON prover is



slower than tableaux for simple problems, because of the greater overhead of pre-
processing into clauses. But on bigger examples, it usually outperforms tableaux.
In particular it has a measure of goal-direction, which makes it practical in prob-
lems where large numbers of assumptions (even hundreds) are involved. These
would almost certainly fail using tableaux, at least based on such a simple-
minded round robin instantiation strategy. In this prover we deal with equality
simply by throwing in all the equality axioms; though not dazzlingly efficient, it
turns out to be satisfactory in most cases because of MESON’s goal-direction.
It is not necessary to include congruence axioms for Skolem functions [22].12

Because it is more powerful, we usually use MESON, together with the equal-
ity axioms, as the default prover. It seems quite a good choice for filling in obvious
steps, the criticism being if anything that it is too powerful. (Actually, Tarver
[35] also discusses using MESON in a supporting capacity within an interactive
prover.) To avoid long delays where a theorem isn’t actually provable (e.g. be-
cause the user has not supplied all the required assumptions), we place quite
a strict limit on the number of inferences performed internally during search.
However this isn’t nearly as quick as the Mizar prover at detecting impossible
goals.

5 Examples

We will now give a couple of examples of proofs in our Mizar format. Both of
these just take a few seconds to process. The first is a rather cute predicate
calculus fact due to  Loś. In fact, MESON is capable of proving this completely
automatically, so a 1-step Mizar proof ‘thus thesis’ is sufficient. However the
proof search takes rather a long time, and in any case it’s more illuminating to
see the reasoning involved. The thesis to be established is:

(∀x y z. P (x, y) ∧ P (y, z) ⇒ P (x, z))∧
(∀x y z. Q(x, y) ∧Q(y, z) ⇒ Q(x, z))∧
(∀x y. Q(x, y) ⇒ Q(y, x))∧
(∀x y. P (x, y) ∨Q(x, y))
⇒ (∀x y. P (x, y)) ∨ (∀x y. Q(x, y))

And the Mizar proof, verbatim, is as follows. Note that no type annotations
are needed, as they are all derivable from the initial thesis (which gives all the
first order variables type ‘A’). The default quotation parser ‘X’ is set to generate
Mizar tactics from the script; hence to set up the goal we locally reassert its
usual definition. To emphasize the high level of interactivity, and the complete
integration with the tactic mechanism, we show how the proofs can actually
be entered in a HOL session, single-stepped through using the standard tactic
expansion function ‘e’.

let X = parse_term in

12 Thanks to Geoff Sutcliffe for pointing out this piece of ATP folklore.



g ‘(!x y z. P x y /\ P y z ==> P x z) /\

(!x y z. Q x y /\ Q y z ==> Q x z) /\

(!x y. Q x y ==> Q y x) /\

(!(x:A) y. P x y \/ Q x y)

==> (!x y. P x y) \/ (!x y. Q x y)‘;;

e ‘assume L: antecedant‘;;

e ‘Ptrans: !x y z. P x y /\ P y z ==> P x z by L‘;;

e ‘Qtrans: !x y z. Q x y /\ Q y z ==> Q x z by L‘;;

e ‘Qsym: !x y. Q x y ==> Q y x by L‘;;

e ‘PorQ: !x y. P x y \/ Q x y by L‘;;

e ‘per cases‘;;

e ‘ suppose !x y. P x y‘;;

e ‘ hence thesis‘;;

e ‘ suppose ?x y. ~P x y‘;;

e ‘ then consider a,b such that L1: ~P a b‘;;

e ‘ then L2: Q a b by PorQ‘;;

e ‘ per cases‘;;

e ‘ suppose !x. Q a x‘;;

e ‘ hence thesis by Qtrans,Qsym‘;;

e ‘ suppose ?x. ~Q a x‘;;

e ‘ then consider c such that L3: ~Q a c‘;;

e ‘ then L4: P a c by PorQ‘;;

e ‘ per cases by PorQ‘;;

e ‘ suppose P c b‘;;

e ‘ then P a b by Ptrans,L4‘;;

e ‘ hence thesis by L1‘;;

e ‘ suppose Q c b‘;;

e ‘ then Q a c by Qtrans,Qsym,L2‘;;

e ‘ hence thesis by L3‘;;

e ‘ end‘;;

e ‘ end‘;;

e ‘end‘;;

Our second example is the fact that a group where the group operation is
idempotent must in fact be Abelian.

(∀x. xx = 1)∧
(∀x y z. x(yz) = (xy)z)∧
(∀x. 1x = x)∧
(∀x. x1 = x)
⇒ ∀a b. ab = ba

In the HOL version we use the symbol ‘#’ for the group operation, after
declaring it infix. This time we show the steps all folded together in a single
quotation.



let X = parse_term in

g ‘(!x:A. x # x = i) /\

(!x y z. x # (y # z) = (x # y) # z) /\

(!x. i # x = x) /\

(!x. x # i = x)

==> !a b. a # b = b # a‘;;

e ‘assume L: antecedant;

Idemp: !x. x # x = i by L;

Assoc: !x y z. x # (y # z) = (x # y) # z by L;

Ident: !x. i # x = x by L;

Ident’: !x. x # i = x by L;

let a,b be A;

(a # b) # (b # a) = a # (b # b) # a by Assoc;

... = a # i # a by Idemp;

... = a # a by Ident;

... = i by Idemp;

then (a # b) = (a # b) # (a # b) # (b # a) by Ident’;

... = ((a # b) # (a # b)) # (b # a) by Assoc;

... = i # (b # a) by Idemp;

hence thesis by Ident‘;;

Conclusions

We have shown how another proof style can be added to the HOL system.
The resulting system can be argued to combine the best features of HOL’s and
Mizar’s theorem-proving technology. As the examples show, one can produce
quite readable proof scripts and have HOL manage the internal decomposition
to primitive inferences automatically. In fact, our work fully bears out the remark
that ‘transforming proofs that are capable of being validated with MIZAR’s basic
checker into formal natural deduction proofs would be straightforward’ [36]. This
is another indication of the flexibility and potential of the LCF approach.

We address two weaknesses of HOL: the unreadability of its tactic scripts,
and its logical prescriptiveness. At the same time we provide a version of Mizar’s
proof language which is more interactive and allows secure extensibility. For one
computer theorem prover to take ideas from others is in the spirit of the QED
project [2], though we do not link actual systems as that project envisages.
Experimentation with various proof styles, and experience with other systems
generally, would be valuable. Probably there is no unique best style for all ap-
plication areas, which makes it all the more attractive to allow the intermixing
of different styles as we do here.

As well as the initial ease of construction and readability, an important con-
sideration for formal proofs is their maintainability and modifiability [8]. It is
interesting to enquire whether Mizar proofs are likely to be better in this respect.
Since they are more readable and less sensitive to the precise choreographing of
logical steps, they seem better; on the other hand they involve more extensive



quotation of terms, and so could break more easily if these terms change. How-
ever by being explicit rather than implicit, they may be easier to change simply
by a semi-automatic editing process.

Future work should probably focus on more powerful automation, integrating
the type system and higher order instantiations in a more elegant way. For
example, we could implement some of Andrews’s techniques as HOL derived
rules. It would also be worth experimenting with additions to the proof language.
Another interesting idea is automatic proof presentation. For example, some
readers might find the ‘obvious’ steps to be unobvious, but it would be possible
to record the proof that the machine finds, and incorporate it into the proof
script. Perhaps the processed script could be organized into a hypertext format
to allow different readers to browse it at different levels of detail [16]. This
could be integrated with more general work on producing a readable summary
of machine proofs.

Finally, the theorems that get shipped to the automated prover might provide
an interesting set of test cases for automated theorem proving. They have the
merit of being realistic problems that arise in real proofs, whereas, for example,
Andrews’s challenge and its ilk are specifically developed with a view to providing
problems for current technology. If they are too easy, then one could arrange for
intermediate steps in the Mizar proof to be automatically excised until the proofs
reach some given level of difficulty.
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