
Improving Vulnerability Discovery Models

Problems with Definitions and Assumptions

Andy Ozment
∗

MIT Lincoln Laboratory & University of Cambridge
Cambridge, United Kingdom

ABSTRACT
Security researchers are applying software reliability models
to vulnerability data, in an attempt to model the vulnera-
bility discovery process. I show that most current work on
these vulnerability discovery models (VDMs) is theoretically
unsound. I propose a standard set of definitions relevant to
measuring characteristics of vulnerabilities and their discov-
ery process. I then describe the theoretical requirements of
VDMs and highlight the shortcomings of existing work, par-
ticularly the assumption that vulnerability discovery is an
independent process.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—product metrics,
security metrics; G.3 [Probability and Statistics]: [reli-
ability and life testing]

General Terms
Security, Reliability, Measurement

Keywords
security metrics, vulnerability discovery models, measuring
software security, measuring vulnerabilities

∗This work is sponsored by the I3P under Air Force Contract
FA8721-05-0002. Opinions, interpretations, conclusions and
recommendations are those of the author(s) and are not nec-
essarily endorsed by the United States Government.
This work was produced under the auspices of the Insti-

tute for Information Infrastructure Protection (I3P) research
program. The I3P is managed by Dartmouth College, and
supported under Award number 2003-TK-TX-0003 from the
U.S. Department of Homeland Security, Science and Tech-
nology Directorate. Points of view in this document are
those of the authors and do not necessarily represent the
official position of the U.S. Department of Homeland Se-
curity, the Science and Technology Directorate, the I3P, or
Dartmouth College.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
QoP’07, October 29, 2007, Alexandria, Virginia, USA.
Copyright 2007 ACM 978-1-59593-885-5/07/0011 ...$5.00.

1. INTRODUCTION
Vulnerability discovery models (VDMs) are probabilistic

methods for modeling the discovery of software vulnerabil-
ities in a system. They operate on historical system and
vulnerability data: e.g. the system’s release date, system
usage information, and the date on which a vulnerability is
discovered. The models can be used to estimate character-
istics of the vulnerability discovery process for that system.

Existing VDMs are based upon previous work on software
reliability models, a.k.a. software reliability growth models.
“A software reliability model (SRM) specifies the gen-
eral form of the dependence of the failure process on the
principal factors that affect it: fault introduction, fault re-
moval, and the operational environment” [16].

SRMs are based upon the assumption that the reliability
of a program is a function of the number of faults that it
contains. As faults are detected and removed, the system
will fail less frequently and hence be more reliable. SRMs
thus “apply statistical techniques to the observed failures
during software testing and operation to forecast the prod-
uct’s reliability” [1].

In general, recent work has assumed that SRMs can fruit-
fully be applied as VDMs directly to vulnerability data gar-
nered from public databases. Some researchers create a new
statistical model, but they still apply the VDM to the pub-
lic database vulnerability information exactly as if they were
applying an SRM to internal test failure data.

Vulnerability discovery models may prove to be a useful
tool for estimating and predicting vulnerability character-
istics in software. However, the current literature almost
universally ignores significant ambiguity and theoretical con-
cerns. Before we can effectively discuss VDMs, we require
a standardized terminology. Before we can apply VDMs,
we need to understand their theoretical foundation and to
detect the situations for which they are appropriate.

2. BASIC DEFINITIONS
The field of software engineering benefits from standard-

ized terminology: e.g. the “IEEE Standard Glossary of Soft-
ware Engineering Terminology” [13]. Unfortunately, com-
puter security lacks a similar standard and the disparity
of usage in the field is a source of confusion. One way to
remedy this shortcoming in computer security is to utilize,
whenever possible, the standard terminology of fields like
software engineering.

2.1 Software Engineering Terms
In this work, I use standard software engineering terms

when they are available; otherwise, I define my terms so
that they are consistent with these standard definitions. The
fundamental software engineering terms upon which I will
rely are failure, fault, mistake, and error.

A failure is the “inability of a system or component to
perform its required functions within specified performance
requirements” [13]. A more intuitive description used in
software reliability is that “a failure occurs when the user
perceives that the program ceases to deliver the expected
service” [16].

A fault is an“incorrect step, process, or data definition in
a computer program” [13]. All failures are caused by faults,
but not all faults lead to a failure. Faults are also known as
‘bugs’ or ‘flaws.’

A mistake is “a human action that produces an incorrect
result” [13]. An error is “the difference between a com-
puted, observed, or measured value or condition and the
true, specified, or theoretically correct value or condition.
For example, a difference of 30 meters between a computed
result and the correct result” [13].

A nice summary of key software engineering terminology
is that the field “distinguishes between a human action (a
mistake), its manifestation (a hardware or software fault),
the result of the fault (a failure), and the amount by which
the result is incorrect (the error)” [13].

Rajeev Gopalakrishna, Eugene Spafford, & Jan Vitek as-
sert that the goal of software security is to prevent “deliber-
ate attempts to cause failure by triggering faults” [11]. Cor-
respondingly, Sarah Brocklehurst & Bev Littlewood assert
that a vulnerability is the security field’s equivalent to a
‘fault’ [8].

2.2 Software vulnerability
The vulnerability discovery process cannot be modeled

unless we know precisely what a vulnerability is. Unfortu-
nately, we lack a widely accepted definition.

Among the many proposed definitions of ‘vulnerability’,
there are:

1. “A weakness in a system that can be exploited to vi-
olate the system’s intended behavior. There may be
security, integrity, availability, and other vulnerabili-
ties” [9].

2. An “internal fault that enables an external fault to
harm the system” [7].

3. A“flaw or defect in a technology or its deployment that
produces an exploitable weakness in a system, result-
ing in behavior that has security or survivability im-
plications” [6, p. 54].

The first definition does not address whether or not similar
instances of a security fault should be considered the same
or different vulnerabilities. Its use of ‘intended behavior’ is
vague.

The second definition uses fault in a nonstandard way:
a person can be a fault. This usage seems to completely
devalue the word ‘fault.’ Furthermore the definition relies
upon the (undefined) meaning of ‘harm.’ In general, this
definition is abstract, opaque, and counterintuitive to any
reader not intimately familiar with the paper in which it
was proposed.

The third definition is one of two that William Arbaugh
et al. propose in the same work. This definition is excellent,
but too broad: it includes hardware vulnerabilities, while in
this work I am concerned only with software vulnerabilities.

The definition that I prefer and that I shall use here was
proposed by Ivan Krsul: a software vulnerability is “an
instance of [a mistake] in the specification, development, or
configuration of software such that its execution can violate
the [explicit or implicit] security policy” [15].

I have made two important changes to Krsul’s definition.
First, he originally used ‘error’ where I have written ‘a mis-
take.’ His use of ‘error’ is counter to the definition used
in software engineering, where it describes “the amount by
which the result is incorrect” [13]. I have also added ‘explicit
or implicit’ to highlight the fact that all systems have a se-
curity policy, even if the designers have not formally written
it down.

I prefer Krsul’s definition because it highlights different
areas in which a software vulnerability can originate: spec-
ification, development, or configuration. It emphasizes the
security policy rather than the security system.

Finally, it notes that a vulnerability is a single instance of
a mistake, so there is no confusion about whether or not dif-
ferent instances of the same mistake constitute different vul-
nerabilities. The literature has sometimes used vulnerability
to refer to a single instance of a mistake and other times to
refer to all instances of the same mistake. If a developer
writes code with an integer overflow and then copies that
code in another area of the system, is that one vulnerability
or two? With the definition above, it is two vulnerabilities.

According to this definition, a vulnerability that results
from a development mistake is a fault. However, vulner-
abilities that result from design or configuration mistakes
are not faults. Not all vulnerabilities are faults, and not all
faults are vulnerabilities.

Software vulnerabilities are a subset of vulnerabilities: the
term ‘vulnerability’ can encompass susceptibility to hard-
ware manipulation, social engineering, etc. However, in this
paper I will use ‘vulnerability’ as shorthand for ‘software
vulnerability.’

2.3 Actors
The vulnerability discovery process necessarily includes

actors, whether they are people, groups, or companies.
A detector finds instances of vulnerabilities in software

systems. In previous work, I used the term ‘vulnerability
hunter’ instead. However, detector better encompasses the
situation in which a vulnerability is unintentionally discov-
ered. A vendor is any producer of software, regardless of
whether or not that software is sold commercially.

A vendor detector is an employee of a vendor whose
job responsibilities include searching for vulnerabilities. An
external detector searches for vulnerabilities in systems
whose vendors do not directly employ him.

In the context of vulnerabilities, public fora are the means
by which vulnerability information is widely disseminated.
Examples of public fora are: the Bugtraq mailing list, the
Full Disclosure mailing list, and US/CERT announcements.

A disclosure institution is any benign organization that
receives vulnerability reports and forwards them to the ap-
propriate vendor(s). The term includes CERT/CC and white
vulnerability markets like TippingPoint and iDefense.

The adjectives ‘benign’ and ‘malicious’ lie at the heart of

many distinctions made in the vulnerability detection pro-
cess. There is and will continue to be ambiguity in the def-
initions of these terms, because the different actors in the
vulnerability life cycle have different goals and philosophies.
Here, I use ‘benign’ to indicate an actor that follows a re-
sponsible disclosure policy: vendors are informed about
a vulnerability and given time to create a patch before the
detector makes the vulnerability public.

3. VULNERABILITY LIFE CYCLE
Vulnerabilities can be characterized according to a hypo-

thetical life cycle, in which certain events are important to
vulnerability discovery modeling.1

3.1 Events

• Injection Date: the date on which the vulnerable
code is first checked into the developer’s source code
repository. If a repository is not in use, it is the first
date on which the vulnerable code is added to the build
or compiled.

• Release Date: the date of public release for the sys-
tem that first contains the vulnerability.

• Discovery Date: the date on which the vulnerability
is first detected.

• Disclosure Date: the date on which the detector first
notifies the vendor or a disclosure institution.

• Public Date: the date on which the existence of the
vulnerability is made publicly known (e.g. via a public
fora or the release of a patch). The public date is often
the same as the patch date.

• Patch Date: the date on which the first correction for
the vulnerability is released, regardless of whether the
correction is official or correct. A workaround does not
constitute a correction: the correction must actually
remove the vulnerability from the software system.

• Scripting Date: the date on which the first auto-
mated exploit for the vulnerability is released.

The events in this life cycle can occur in many different
orders. For example, a vulnerability may be detected during
testing and fixed prior to the product’s release: in that case,
it is discovered before it is born.

In practice, not all of the above dates will be known for
each vulnerability. The date known is the earliest con-
firmed date on which someone is aware of the vulnerability’s
existence. Ideally, this is the discovery date; in practice, it
may be the disclosure date or the public date.

1Some of these events are taken from Arbaugh et al. [6], al-
though I define them differently: discovery, disclosure, publi-
cation, and scripting. Arbaugh et al. use ‘birth date’ instead
of ‘release date.’ I believe the latter is more clear, because
the former could also apply to the injection date. They
also use ‘correction date’ instead of ‘patch date.’ Again, I
find the latter term more clear, because the former could
be misinterpreted as the date on which a correction is com-
pleted internally at the vendor. Their definition of disclosure
includes acts like posting the vulnerability to the Bugtraq
mailing list: I believe that posting to fora like Bugtraq re-
sults in making the vulnerability public.

3.2 Status
A vulnerability’s status depends on which of the events in

the life cycle have occurred:

• Unknown Vulnerability: exists in the software but
has not yet been detected.

• Secret Vulnerability: has been detected, but the
detector has not informed the vendor, the public, or a
disclosure institution. If the detector is malicious, she
may be exploiting the vulnerability.

• Disclosed Vulnerability: has been discovered, and
the detector has disclosed it to the vendor or a disclo-
sure institution.

• Public Vulnerability: has been detected and made
public through either a patch, a public forum, or the
media.

• Scripted Vulnerability: one for which automated
exploits exist.

4. VULNERABILITYDISCOVERYMODELS
Although SRMs have been in use for almost three decades,

the security field has only begun to apply these models to
vulnerability data in the past few years. As a result, this
subfield lacks a standard terminology. Omar Alhazmi &
Yashwant Malaiya proposed the application of SRMs to vul-
nerabilities as ‘vulnerability discovery models’ (VDMs) [2]. I
previously proposed the term ‘software security growth mod-
els,’ acknowledging the relationship between this technique
and the term ‘software reliability growth model’ (a synonym
for SRMs) [19].

Both proposed names have shortcomings. The term ‘vul-
nerability discovery model’ hides the fact that these models
have so far only been applied to vulnerability reporting data,
rather than discovery data. The term ‘software security
growth model’ ignores the fact that the rate of vulnerability
reporting may increase, and thus software security may not
always grow. It also suffers from the need to define ‘soft-
ware security.’ An alternative, but less precise, approach is
used by Gopalakrishna et al.: they consider the ‘vulnera-
bility likelihood’ of a system, but their term encompasses a
broader range of probabilistic methods than VDMs [11].

The term ‘vulnerability discovery model’ appears to have
the most widespread traction in the literature, and I will use
it here. However, it does not yet appear to have been for-
mally defined, so I propose a definition based upon Lyu’s def-
inition of SRMs [16]. A vulnerability discovery model
(VDM) specifies the general form of the dependence of the
vulnerability discovery process on the principal factors that
affect it: e.g. vulnerability introduction, vulnerability re-
moval, detector effort, and the operational environment.

Among the outputs of VDMs are two particularly useful
estimates. First, the estimate of the total number of vulner-
abilities. Second, the mean time to next vulnerability
(MTTNV): the mean time until another vulnerability is
detected in the software system [10]. The MTTNV is anal-
ogous to the software engineering term ‘mean time between
failures.’2

2Gopalakrishna & Spafford state that a breach or an intru-
sion can be considered the security field’s equivalent to the

4.1 The benefits of using VDMs
VDMs may provide useful quantitative insight to supple-

ment the current approaches to assessing software security.
In particular, VDMs can be used for both prediction and
comparison. Some of the possible uses of VDMs are:

1. Helping vendors and users to allocate and schedule
their resources.

2. Estimating the time to achieve an assurance goal.

3. Quantifying the impact of design and implementation
methodologies.

4. Comparing similar software systems.
The estimated total number of vulnerabilities and the

MTTNV can be used by vendors to allocate and schedule
developer resources. The estimate of the total number of
vulnerabilities can provide insight into the total resources
and time necessary for the maintenance of a system. The
MTTNV enables vendors to schedule developer time for the
creation of patches, quality-assurance time for the testing of
those patches, and possibly a regular schedule for their re-
lease (e.g. Microsoft releases security patches on the second
Tuesday of every month).

The MTTNV is also useful to users: system administra-
tors can use it to estimate how frequently they will have to
test and apply security patches for a particular system.

Finally, vendors can use VDMs to estimate the time nec-
essary to achieve an assurance goal. For example, this goal
might be in terms of the number of remaining undetected
vulnerabilities or in terms of a desired MTTNV. Vendors
can thus create a release schedule based upon the expected
date on which this goal will be achieved.

Both vendors and customers want to quantify and com-
pare software security. Vendors are interested in comparing
similar projects to see whether their internal development
processes are improving and to predict whether the projects
will have similar behavior in the field. Customers may want
to identify which of two software systems has fewer remain-
ing vulnerabilities or a lower rate of vulnerability detection.

In previous work, I proposed the use of VDMs as a means
for customers to compare the security of two different sys-
tems [19]. This proposal was premature. While it is wor-
thy of investigation, we need a great deal more experience
with VDMs before we can be confident in their efficacy
for cross-project comparison—much less comparison across
both vendors and projects. In particular, the assumptions
upon which VDMs rely may prevent effective comparisons
of this sort. These assumptions are discussed in Section 6,
but first I consider the literature on VDMs.

5. VDM LITERATURE
The existing literature on VDMs can be divided according

to the four research groups most active in this area. I will
introduce the literature here; in later sections, I will note
the shortcomings in this literature.

reliability field’s ‘failure’ [10]. That assertion is logical from
the standpoint of a system’s user: the system has failed to
provide the expected service. However, I am more interested
in the standpoint of the developer. From that perspective,
a better analogy compares a failure to a vulnerability de-
tection event, defined below in Section 6.3. The developer
considers a failure to be the event that enables him to find
and correct a vulnerability—and intrusions may not result
in the detection of a new vulnerability.

5.1 Rescorla
Eric Rescorla was unable to fit a linear model or an ex-

ponential Goel-Okumoto SRM to NVD3 vulnerability data
on three operating systems: WinNT4, Solaris 2.5.1, and
FreeBSD 4.0. He was able to fit both models to data for
RedHat 6.2 data. However, he does not test either model’s
predictive accuracy against the Redhat 6.2 data, so neither
can be considered proven [22].

5.2 Purdue University
Gopalakrishna & Spafford consider NVD data on vulnera-

bilities in IIS, BIND, Lpd, Sendmail, and RPC. They chose
these five software systems because they have a focused pur-
pose (unlike operating systems), have been deployed at least
two years, are widely deployed, and have significant numbers
of serious vulnerabilities. They do not apply specific models
to the data: rather, they discuss the theoretical and practical
requirements for doing so [10]. Gopalakrishna et al. later as-
sess these requirements for a number of different approaches
to measuring vulnerabilities and vulnerability discovery [11].

5.3 Colorado State University
Alhazmi & Malaiya propose two models specifically for

vulnerability discovery: an S-shaped, time-based logistic model
of vulnerability discovery (AML) and an effort-based VDM,
which approximates effort with the number of users of a sys-
tem (AME) [3]. They compare the goodness-of-fit of a num-
ber of different models to NVD vulnerability data on Win95,
WinXP, and RedHat 6.2. They find that their AML model
provides the best overall fit [2]. However, goodness-of-fit is
only a prerequisite for testing models: predictive accuracy is
the most important criterion. The authors do test the pre-
dictive accuracy of their AML model on Win2000, WinXP,
and RedHat 7.1 NVD data; they are satisfied with the result,
particularly when the model is constrained with vulnerabil-
ity density information obtained from previous versions of
the software being examined (the constrained model is called
AML-C) [5].

Sung-Whan Woo, Alhazmi, & Malaiya test the goodness-
of-fit of the AML and AME models against NVD vulnerabil-
ity data on Apache and IIS; they also categorize the vulner-
abilities by type and apply the models to each category of
vulnerability [24]. In a later work, Alhazmi & Malaiya test
the predictive accuracy of the AML, AML-C and a linear
model against NVD Apache and IIS data [4] Finally, Woo et
al. assesses the goodness-of-fit of the AML model on NVD
vulnerability data, overall and categorized by type, from IE
and Firefox [23].

5.4 MIT Lincoln Laboratory
In prior work, I create and analyze a data set of individ-

ually examined vulnerabilities for the OpenBSD operating
system [18, 19]. I test the fit and predictive accuracy of more
than a dozen SRMs against the data. Stuart E. Schechter
and I assess the complete data set and conclude that the
rate of vulnerability discovery in OpenBSD is declining—
for vulnerabilities introduced prior to a cutoff date [21].

3The National Vulnerability Database (NVD) contains in-
formation on all vulnerabilities with Common Vulnerabili-
ties and Exposures (CVE) identifiers. The NVD was for-
merly known as ICAT.

6. VDM ASSUMPTIONS
Because VDMs are probabilistic tools, their usage is based

on assumptions about the data to which they are applied.
These assumptions are often the same as those made by
SRMs, so researchers have assumed that they are also sat-
isfied for VDMs. Unfortunately, most of the existing work
has failed to satisfy all of the necessary assumptions. As
a result, the validity of this work is uncertain. VDMs face
particular challenges in satisfying four assumptions: time,
operational environment, independence, and static code.

6.1 Time and effort
The accuracy of both SRMs and VDMs reflects the accu-

racy of the data to which they are applied. For example,
software engineers usually prefer execution time to calen-
dar time for use with SRMs. However, obtaining accurate
chronological data for VDMs is made difficult by the na-
ture of the detection process: many detectors are external
(not employed by the vendor). As a result, it is difficult to
accurately quantify the effort expended by detectors, their
number, and their knowledge.

SRM best practices state that calendar time should be
normalized for the number of individuals testing the software
system [16]. For example, Jack and Jill work together to
find a vulnerability in one week of searching. If calendar
time is normalized for the number of individuals, then this
vulnerability was detected after two weeks of work. Two
detectors working for one week is equivalent to one detector
working for two weeks.

Reality may be even more complicated: Jack, a novice
detector, and Jill, a highly skilled detector, worked varying
hours, part time, to discovery a vulnerability.

The effort expended to discover a vulnerability is com-
posed of the number of detectors, their skill, and the num-
ber of hours they worked. Ideally, vulnerability databases
would include effort information with which to normalize
the chronological information.

Unfortunately, I am aware of no vulnerability database
that includes such accurate information about the effort ex-
pended to find each vulnerability. Alhazmi & Malaiya pro-
pose an effort-based model and argue that system usage fig-
ures should be used as a proxy for effort [3]. However, there
is no evidence that usage data is a suitable proxy for the
effort expended by detectors. The fraction of users who are
looking for vulnerabilities is not necessarily a fixed propor-
tion of the total user population. Furthermore, vulnerability
detectors may choose to examine software that is popular in
their community or currently prominent in the media, so the
ratio of detectors to users may differ between programs and
also across time.

This problem is unlikely to be solved. Vulnerabilities are
often reported by external detectors, so gathering detailed
and accurate information on the effort they expend is proba-
bly not possible. The best that VDMs can therefore achieve
is to model the discovery process given the vulnerability de-
tection environment that existed during the time modeled.
If that environment changes, then we cannot rely upon the
model.

6.2 Operational environment
In order to effectively represent post-release reliability,

SRMs require that the environment from which the data are
obtained (usually the testing environment) must be equiva-

lent to the environment in which the software will be utilized
after deployment. The operational profile: is “the set of
run types that the program can execute along with the prob-
abilities with which they will occur” [17].

However, many vulnerabilities rely upon the adversary in-
tentionally inputting abnormal data—data outside the bounds
of a normal operational profile. This characteristic of vul-
nerabilities highlights one of the shortcomings of operational
profiles noted by Barbara Kitchenham & Steve Linkman:
faults may be most prevalent in infrequent operations. First,
because developers have often thought less about infrequent
operations than frequent operations. A rare transition state
may not be as well understood as the regular operating state.
Second, because operational profiles are self-obsolescent in
terms of testing efficacy. If you invest a lot of testing effort
in the most frequently used operations, most of the faults in
those operations will be found. The majority of the faults
that remain are likely to be in the least used—and thus least
tested—portions of the code [14].

As a result, VDMs applied to pre-release test data may
not be indicative of post-release vulnerability discovery. The
operational profile used in pre-release testing may not an-
ticipate the testing approaches used by external detectors.

6.3 Independence
Sometimes the detector community discovers an entirely

new class of vulnerabilities, e.g. integer overflows. This dis-
covery may lead to chronologically local spikes in the num-
ber of vulnerabilities found, and it is conceptually equivalent
to an expansion of the operational profile. It also violates
an additional assumption that underlies all of the existing
stochastic VDMs: that vulnerability discoveries occur inde-
pendently.

If vulnerability data is dependent, it may also be because
developers may repeat the same mistake in different places
in the source code. For example, a developer may always
perform a copy of size LENGTH into a buffer when that
buffer is actually one byte smaller than LENGTH. Detec-
tors are thus often rewarded for looking for other or similar
instances of the same type of vulnerability. Gopalakrishna
& Spafford apply a run test to determine independence on
data for vulnerabilities in IIS, BIND, Lpd, Sendmail, and
RPC. They found mixed results: for each different prod-
uct, vulnerability discovery for some types of vulnerabilities
is dependent; in others it is independent [10]. This finding
indicates that any modeling effort should first test to see
whether the vulnerability data is independent. If it is not,
then VDMs are not an appropriate tool.

It may instead be possible to apply VDMs to detection
events: an independent act of detection that may result
in the discovery of multiple instances of dependent vulner-
abilities. The previous paragraph describes a hypothetical
program in which a copy of size LENGTH is always and er-
roneously performed. In this example, each time this copy
is performed in the source code it constitutes a vulnerabil-
ity, but the discovery of these multiple vulnerabilities can
be lumped into a single detection event.

The VDM literature has inadequately considered this prob-
lem. Rescorla [22] states his assumption of independence,
while Ozment & Schechter [18, 19, 21] try to construct a
data set of detection events. Although those works acknowl-
edge the problem of independence, they do not test for it.
In more recent work, I have tested my data set and found

that vulnerability discovery events of some types of vulner-
abilities are dependent [20]. The Colorado State University
literature does not consider that the NVD data points they
use may not be independent.

This problem is not limited to the VDM literature. Kate-
rina Gos̆eva-Popstojanova & Kishore Trivedi note that many
SRMs are applied to fault data that may not be indepen-
dent, and they argue that models are needed that do not
rely upon this assumption [12].

6.4 Static code
Most SRMs and VDMs assume a static code base. How-

ever, software rarely remains static for long: patches are
applied to fix faults, remediate vulnerabilities, and add fea-
tures. If the data to which the VDM is applied doesn’t con-
tain adequate release or patch information, then the model
can be confounded by changes to the code base.

For example, Woo et al. initially lump together the vul-
nerabilities released in IIS 4 & 5 into one data set and vul-
nerabilities released in Apache 1 & 2 into another [24]. This
work thus fails to consider whether vulnerabilities are being
introduced into the software even as they are being removed.
In a later work, some of the same authors divide those data
sets by version, into IIS 4, IIS 5, Apache 1, and Apache 2
[4]. Again, however, this granularity is insufficient. IIS has
had patches and service patches added to it. ‘Dot’ revisions
to Apache, such as from 2.0 to 2.1, are equivalent to inte-
ger revisions to IIS: they introduce significant new features
and changes. Both of these works thus apply VDMs to a
changing code base.

The remainder of the literature is mixed with respect to
this assumption. Rescorla considers operating systems by
version but ignores patches and service patches [22]. Most
of the other work from Colorado State University does the
same [2, 3, 5]. However, my previous work does take the
changing code base of modern systems into consideration:
I examine each vulnerability in the data set to ascertain
exactly when it was introduced [18, 19, 21].

7. CONCLUSION
VDMs hold promise for providing useful information to

vendors, users, and customers. However, this research is
unlikely to provide robust results unless the shortcomings
described above are remedied.

Future work with VDMs should test the data to ascertain
whether or not it is dependent: existing VDMs and SRMs
are inappropriate for dependent data. Furthermore, most
VDMs cannot reliably be applied to data that mixes vul-
nerabilities from different releases: only vulnerabilities from
a specific release of a program should analyzed with these
models. Such work should also indicate the accuracy of the
dates used and whether or not any adjustments were made
for the effort/attention of detectors.

Most importantly, researchers should clearly state the as-
sumptions upon which their models rely and define the terms
that they use.

8. ACKNOWLEDGMENTS
I am indebted to Shari Lawrence Pfleeger for many useful

discussions on the definitions in this work. My thanks as
well to Robert Cunningham, for his feedback and advice.

9. REFERENCES
[1] AIAA/ANSI. Recommended Practice: Software Reliability.

ANSI, 1993. R-013-1992.
[2] O. H. Alhazmi and Y. K. Malaiya. Modeling the vulnerability

discovery process. In Proceedings of the 16th IEEE
International Symposium on Software Reliability Engineering
(ISSRE’05), pages 129–138, Washington, DC, USA, 2005.
IEEE Computer Society.

[3] O. H. Alhazmi and Y. K. Malaiya. Quantitative vulnerability
assessment of systems software. In Proceedings of the IEEE
Reliability and Maintainability Symposium (RAMS’05),
pages 615–620, Alexandria, VA, USA, 2005.

[4] O. H. Alhazmi and Y. K. Malaiya. Measuring and enhancing
prediction capabilities of vulnerability discovery models for
Apache and IIS HTTP servers. In Proceedings of the 17th

International Symposium on Software Reliability Engineering
(ISSRE’06), pages 343–352, Washington, DC, USA, 2006.
IEEE Computer Society.

[5] O. H. Alhazmi and Y. K. Malaiya. Prediction capabilities of
vulnerability discovery models. In Proceedings of the IEEE
Reliability and Maintainability Symposium (RAMS ’06),
pages 86–91, Jan. 2006.

[6] W. A. Arbaugh, W. L. Fithen, and J. McHugh. Windows of
vulnerability: A case study analysis. IEEE Computer,
33(12):52–59, Dec. 2000.

[7] A. Aviz̆ienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic
concepts and taxonomy of dependable and secure computing.
IEEE Transactions On Dependable And Secure Computing,
1(1):11–33, Jan-Mar 2004.

[8] S. Brocklehurst, B. Littlewood, T. Olovsson, and E. Jonsson.
On measurement of operational security. Technical Report 160,
Predictably Dependable Computing Systems, Apr. 1994.

[9] Computer Science and Telecommunications Board. Computers
at Risk: Safe Computing In the Information Age. National
Academy Press, Washington, DC, 2001.

[10] R. Gopalakrishna and E. H. Spafford. A trend analysis of
vulnerabilities. Technical Report 2005-05, CERIAS, Purdue
University, May 2005.

[11] R. Gopalakrishna, E. H. Spafford, and J. Vitek. Vulnerability
likelihood: A probabilistic approach to software assurance.
Technical Report 2005-06, CERIAS, Purdue University, 2005.
2005-06.

[12] K. Gošva-Popstonjanova and K. S. Trivedi. Failure correlation
in software reliability models. Technical Report 00/04, Center
for Advanced Computing and Communication (CACC), 2000.

[13] IEEE. IEEE standard glossary of software engineering
terminology, Sept. 1990.

[14] B. Kitchenham and S. Linkman. Validation, verification, and
testing: Diversity rules. IEEE Software, 15(4):46–49, 1998.

[15] I. V. Krsul. Software Vulnerability Analysis. PhD thesis,
Purdue University, May 1998.

[16] M. R. Lyu. Introduction. In M. R. Lyu, editor, Handbook of
Software Reliability Engineering, chapter 1, pages 3–22.
McGraw-Hill, 1996.

[17] J. D. Musa, A. Iannino, and K. Okumoto. Software Reliability:
Measurement, Prediction, Application. McGraw-Hill Book
Company, New York, 1987.

[18] A. Ozment. The likelihood of vulnerability rediscovery and the
social utility of vulnerability hunting. In Workshop on the
Economics of Information Security (WEIS), June 2005.
Cambridge, MA, USA.

[19] A. Ozment. Software security growth modeling: Examining
vulnerabilities with reliability growth models. In D. Gollmann,
F. Massacci, and A. Yautsiukhin, editors, Quality Of
Protection: Security Measurements and Metrics, Milan, Italy,
2006. Springer.

[20] A. Ozment. Vulnerability Discovery & Software Security.
PhD thesis, University of Cambridge, 2007.

[21] A. Ozment and S. E. Schechter. Milk or wine: Does software
security improve with age? In Proceedings of the 15th Usenix
Security Symposium, pages 93–104, 2006.

[22] E. Rescorla. Is finding security holes a good idea? IEEE
Security & Privacy, 3(1):14–19, Jan-Feb 2005.

[23] S.-W. Woo, O. H. Alhazmi, and Y. K. Malaiya. An analysis of
the vulnerability discovery process in web browsers, Nov. 2006.

[24] S.-W. Woo, O. H. Alhazmi, and Y. K. Malaiya. Assessing
vulnerabilities in Apache and IIS HTTP servers. In IEEE
International Symposium on Dependable, Autonomic and
Secure Computing, pages 103–110, Sept. 2006.

