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Abstract: The authors generated 316,250 entire distributions of IrisCode impostor scores, each distribution obtained by
comparing one iris against hundreds of thousands of others in a database including persons spanning 152 nationalities.
Altogether 100 billion iris comparisons were performed in this study. The purpose was to evaluate whether, in the tradition
of Doddington’s Zoo, some individuals are inherently more prone than most to generate iris false matches, while others
are inherently less prone. With the standard score normalisation disabled, a detailed inter-quantile analysis showed that
meaningful deviations from a universal impostors distribution occur only for individual distributions that are highly extreme
in both their mean and their standard deviation, and which appear to make up <1% of the population. In general, when
different persons are compared, the IrisCode produces relatively constant dissimilarity distances having an invariant narrow
distribution, thanks to the large entropy which lies at the heart of this biometric modality. The authors discuss the
implications of these findings and their caveats for various search strategies, including ‘1-to-first’ and ‘1-to-many’ iris matching.
1 Introduction

The well-known ‘birthday problem’ asks how large a group of people
must be assembled, chosen randomly, before it becomes more likely
than not that at least one pair of them have the same birthday. It is
easy to calculate that this occurs once there are at least N = 23
persons. There exists an analogous ‘biometric birthday problem’: for
a given similarity threshold yielding some specified false match rate
(FMR) for single comparisons, how many different persons must a
database contain before it becomes likelier than not that there is at
least one biometric collision? Weak biometric technologies such as
face recognition are usually tested and operated at the very
undemanding criterion of FMR= 0.001, which means that any
given pair of random persons have probability 0.999 of not being
matched to each other. Since N persons make N(N–1)/2 possible
pairings, a biometric collision becomes likelier than not when
(0.999)N(N−1)/2 < 0.5 and this occurs when there are just N = 38 or
more persons. Consider, for example, the picture gallery of readily
confusable yet unrelated persons presented as ‘doppelgänger’ pairs
in [1]. Indeed, to a human observer, the doppelgängers may even
appear more similar to each other than individuals typically
resemble themselves after changes of pose, expression, illumination
geometry, or age. This paper investigates: (i) why, in contrast, there
is a safe and fairly constant dissimilarity distance whenever different
irises are compared, a property obviously beneficial for biometric
collision avoidance; (ii) whether the relatively narrow distribution of
such scores has a universal form; (iii) the limits to the invariance of
this distribution; (iv) implications for search strategies, including
‘1-to-many’ and ‘1-to-first’; and (v) whether any evidence can be
found for iris doppelgängers.

These questions are important because an invariant impostors
distribution is, or would be, highly advantageous for any biometric
modality. It means that a given dissimilarity score threshold can be
immediately translated into a false match probability and a
confidence level, calculated as the cumulative below that score
threshold under the universal impostors probability distribution for
that modality, regardless of who generates the scores. It also
allows straightforward extrapolation from a single-comparison
False Match probability given some score, to the net error
probability if the score was observed only after searching a large
database that may be of national scale (as is now done daily in
India with enrolment underway of all 1.2 billion citizens [2] within
3 years). Thus, the number of alternative iris comparisons that are
made, before a given best match is encountered, can be taken into
account in its interpretation. Finally, if a given biometric modality
cannot assume a universal impostors distribution, then any
observed similarity score must be further qualified by whether the
subject is the type of person who has many doppelgängers, or few.
2 Methods and database

We generated 316,250 entire distributions of ‘impostor’ (i.e. different
eye) iris dissimilarity scores for detailed inter-quantile analysis and
comparison, using a large database including persons of 152
nationalities. Each of these distributions was obtained by comparing
one eye against a gallery of several hundred thousand others.
Statistics harvested from these distributions enabled us to order them
according to distributional properties and to perform inter-quantile
analyses, answering questions such as: ‘How different are the
impostors distributions whose means (or whose standard deviations,
henceforth ‘stnd-devs’) are in the uppermost 99.99th percentile when
compared with those in the lowest 0.01th percentile? In such metrics,
how different are the top 20 distributions, and the lowest 20
distributions, from the canonical impostors distribution? How large
are the effects of those differences on the FMR at a given decision
threshold?’ We address such questions both with the standard score
normalisation, and with none.

The database, which has been described in detail already [3], was
acquired by the United Arab Emirates (UAE) border-crossing
security system based on iris recognition, launched in 2001 and
deployed now at all 35 air, land, and sea ports of entry. Most
persons who reside and work in the UAE – more than 85% – are
not UAE nationals but foreign nationals. All who must apply for a
visa to reside in the country are compared exhaustively against a
‘negative watch-list’ of persons deemed dangerous, or who have
been expelled previously, or who have been denied entry for
various reasons including security concerns, travelling under false
documents, or work permit violations. An ‘expellee’ database of
iris patterns were encoded as IrisCodes from persons who were
expelled under an amnesty program, for the purpose of controlling
re-entry. Actual images are not available, and we cannot be certain
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Fig. 1 Canonical distribution of dissimilarity scores obtained by comparing each of 316,250 IrisCodes from a large Middle-Eastern database with 316,250
others, in several relative orientations to allow for unknown image tilt, recording only each best match. Hamming Distance is the fraction of bits that disagree
how well the operational processes avoided errors. The UAE
Minister of Interior, H. R. H. Sheikh Saif Bin Zayyed provided
this database of 632,500 IrisCodes to the University of Cambridge,
where the algorithms for iris recognition had been developed [4].

When IrisCodes from different eyes are compared, each bit pairing
has equal probability of agreeing or disagreeing, because 1s and 0s
are equiprobable and uncorrelated across such pairs (even between
genetically identical eyes [5] such as those of monozygotic twins
or one person’s right and left eyes). Thus, the fraction of bits that
disagree is on average 50%, and the distribution of such fractional
Hamming distances (HDs) in simple comparisons between
IrisCodes from different eyes always has a mean close to 0.5 and a
relatively narrow spread around this fraction, because so many bits
are compared. An example was given in Fig. 5 of [3]. However, it
is necessary always to compare IrisCodes over a range of relative
orientations because of unknown tilts of the head, the camera
(especially if handheld), and indeed some torsional rotations of the
eye around its axis. Typically, all the bits in two IrisCodes are
compared in each of seven relative rotations, which amount to
scrollings of the IrisCodes, with only the best match (the smallest
HD) being preserved as the match score. Obviously, this selection
of smallest scores creates a new ‘extreme value distribution’,
biased towards scores smaller than 0.5 (typically around 0.45) and
with asymmetric tails (negative skew). For our initial studies we
generated 316,250 complete distributions of impostor scores, each
distribution associated with one particular eye. We divided the
632,500 IrisCodes from the UAE database by alternation into two
disjoint half-lists, one constituting the ‘probes’ and the other the
‘gallery’ (we confirmed that our results were unchanged when
comparing each probe against all others in the probe list instead).
IrisCode comparisons were made at each of seven rotations, and
only the best match of the seven was recorded. The scores from
these 100,014,062,500 comparisons between different eyes
(316, 250 × 316, 250, or 100 billion for short) are all combined
together in Fig. 1. The original raw distribution centred
symmetrically on 0.5 (no skew) before the extreme value sampling
across multiple relative tilts, comparing each of these IrisCodes
with all of the others, was shown previously in Fig. 5 of [3].
3 Variation among impostors distributions

The distribution of HD scores in Fig. 1 is 99% contained within the
interval 0.4 < HD < 0.5, and so to the extent that we consider this
2

interval to be narrow, we could say that nearly all IrisCodes
computed from different eyes are roughly equidistant from each
other. This is a rather striking property, and it arises from the
randomness and equiprobability of bits in different IrisCodes. This
is also the reason why degradation in image quality does not seem
to affect the impostors distribution, unless it actually introduces
some kind of coherence that destroys the native randomness of
bits. For example, if different subjects have images acquired in the
same bright local environment that produces some shared corneal
reflections (e.g. bright windows or displays), this could introduce
some spurious similarities in different IrisCodes and thus shift the
impostors distribution leftward. In contrast, the authentics (same
eye) distribution (whose mean is usually below HD = 0.15) can be
seriously affected by optical defocus and shifted rightward; severe
defocus causes the variation among pixel values to be dominated
by post-optical sampling noise and thermal noise in the camera,
leading to random IrisCode bits. However, introducing randomness
into IrisCode bits, or increasing it, cannot degrade the impostors
distribution.

Now we wish to decompose the combined distribution of 100
billion impostor scores from Fig. 1 into many sub-distributions, in
order to learn whether any systematic variation may be concealed
within its form. In particular, we wish to study whether individual
subjects tend to have distinctive impostor match score
distributions, as has been asserted generally for biometric
technologies [6, 7]. We shall study this question in various ways
in this paper. Initially, we use the standard [3] IrisCode matching
algorithm that is used in all public deployments of iris recognition,
and which incorporates an automatic score normalisation process.
For this initial study we generated 316,250 entire impostor
distributions using the two half-lists as described in the previous
section, with each distribution being associated with one
individual eye as the probe. The means of the HD scores for each
of these distributions are accumulated in the blue histogram of
Fig. 2, revealing an extremely narrow distribution: about
three-quarters of all the mean scores fall between 0.452 and 0.457
HD. Likewise, the stnd-devs of each of those distributions of
scores are accumulated in the red histogram in this figure. Once
again this statistic has a remarkably narrow distribution, with
about three-quarters of the stnd-devs falling between 0.020 and
0.023 HD. It appears that for iris recognition based on the
IrisCode, there is very little variation in the impostors distributions
for individuals. Rather, these statistics for individual distributions
suggest that the histogram in Fig. 1 is quite a universal impostors
IET Biom., pp. 1–11
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Fig. 2 Distributions of the means (blue) and of the stnd-devs (red) of 316,250 impostor distributions, each being generated by comparing one eye to 316,250
others. There is very little variation in either statistic among all of these distributions
distribution, and we do not yet see evidence for a ‘Doddington’s
Zoo’ [6] proliferation of types of non-match distributions
analogous to Doddington’s famous metaphorical wolves and lambs.
4 No wolves, no lambs?

We wish to test this impression of universality to its extremes, by
examining the most extreme individual distributions whose scores
are described in Figs. 1 and 2. Inevitably, across any distribution
of distributions, some will be better and some will be worse. We
ordered the 316,250 individual impostor distributions in order of
their FMRs at a threshold of HD = 0.35, which is higher than
operational deployments (i.e. it leads to worse FMRs), but it
allows a meaningful sequencing of the distributions, given the
rarity of false matches at lower thresholds even in a database of
this size. Clearly, those individual distributions having the lowest
mean HD and largest stnd-devs will produce the worst FMRs. The
20 worst distributions with the highest FMR are plotted (colour
coded) in Fig. 3, referenced against the canonical (black)
distribution of 100 billion impostor comparisons from Fig. 1. In
terms of Doddington’s Zoo, although the shift from the norm is
slight, these may represent ‘lambs’ (persons, or more precisely
eyes, relatively vulnerable to impersonation). Equivalently, given
the symmetry of matching, they may represent ‘wolves’ (relatively
successful at impersonation and who prey upon lambs). For the
present purposes we cannot distinguish between wolves and lambs
because either would appear as a tendency for false matches. In
later sections, we will produce detailed inter-quantile analyses of
such cases, but meanwhile their extremity should be noted: these
are the worst 1/16,000th of the entire distribution of 316,250
distributions.
5 Entropod uniquorns

We have also extracted the 20 best distributions among the 316,250
individual impostor distributions, having the lowest FMRs at
threshold HD = 0.35 because their means are highest and their
stnd-devs are smallest. These are plotted (colour coded) in Fig. 4,
referenced against the canonical (black) distribution of 100 billion
impostor comparisons from Fig. 1. Again the shift from the norm
is slight, but sufficient to produce zero false matches among their
IET Biom., pp. 1–11
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316,250 comparisons at HD = 0.35 and at HD = 0.36, and nearly
zero even at the very liberal HD = 0.37 threshold.

Yager and Dunstone [7] added four new beasts to Doddington’s Zoo,
all defined in terms of shifts in both the impostors and genuine
distributions: ‘doves’ (both distributions move further apart); ‘worms’
(both distributions move towards each other); ‘chameleons’ (both
distributions move towards greater similarities, whether persons are
compared with themselves or with others); and ‘phantoms’ (both
distributions move towards greater dissimilarities, whether with selves
or with others, as phantoms are relatively protean). As the UAE
database does not include multiple IrisCodes from individual eyes,
we cannot generate distributions of genuine (same eye) scores, and
thus we cannot apply to Fig. 4 any of the named beasts from Yager
and Dunstone’s menagerie with full zoological conformance. In the
entertaining tradition begun by Doddington, a new term is needed to
describe Fig. 4. As high entropy in a biometric pattern is the origin
of its uniqueness, and IrisCodes with higher entropy generate
impostor distributions with smaller stnd-devs and means shifted
upwards towards 0.5, these two concepts (entropy and uniqueness)
should be included in the taxonomy. The coloured distributions of
Fig. 4 have migrated toward greater dissimilarity from others on legs
of high entropy, and so we propose to name this addition to the
menagerie formally as ‘entropod uniquorns’.

As a validity check that the division into probe and gallery lists
was immaterial, we generated a second impostors distribution for
each IrisCode underlying Figs. 3 and 4. This second distribution
compared each individual IrisCode not to the gallery but to all the
other probes. For each such IrisCode we compared the two
distributions and examined the change in mean and variance.
These differences were not significant for either group in Figs. 3
and 4. The average paired difference in means was 7 × 10−7

for the entropod uniquorns and −8 × 10−6 for the wolves/lambs
(with df = 19, differences of roughly 3 × 10−5 would be required
for significance at α = 0.05 in a t-test). The average percentage
change in variance was −0.13% for the entropod uniquorns and
+0.016% for the wolves/lambs (percentage changes of −53% or
+73% would be required for significance by χ2-test).
6 Need to test with score normalisation disabled

Yager and Dunstone [7] wrote that generally, biometric users tend to
have individual impostor match score distributions. Fig. 2 seems to
3



Fig. 3 Extreme cases of 20 distributions among the 316,250 whose relatively low means and large stnd-devs produce an elevated FMR, analogous to
Doddington’s wolves and lambs
contradict this for the vast majority of the 316,250 distributions of iris
impostor score distributions for individuals; but at the far extremes of
this distribution of distributions, some supporting examples were
found (Figs. 3 and 4). Now, we must re-examine this question with
a detailed inter-quantile analysis and with any potentially
confounding effects of score normalisation eliminated. IrisCodes
always disregard (mask out) those bits obtained from the 2D Gabor
wavelet projections whose coefficients have amplitudes in the
lowest 25% quartile (this longstanding aspect of the IrisCode
algorithm has come to be known in some of the more recent
literature as ‘fragile bit masking’). In addition, any IrisCode bits
deemed to have been affected by eyelid or eyelash occlusion, or
specular reflections from the cornea or from eyeglasses, are also
masked out. When two IrisCodes are compared (in any relative
Fig. 4 Extreme cases of 20 distributions among the 316,250 whose relatively hig
FMR at the thresholds 0.35 and 0.36 HD. They join Doddington’s Zoo as novel c

4

orientation), both sets of masking bits are AND’ed with each other
and with the XOR of the data bits, to compute HD for only the
mutually unmasked bits. A consequence of these masking
operations is that varying numbers of bits are actually compared,
and this variation if ignored would affect the HD score distributions.
If large numbers of bits from unrelated IrisCodes are compared, we
would expect their HD score to approach 0.5, for the same reason
that tossing a fair coin many times in a run is unlikely to produce
large deviations from a 50/50 outcome. Likewise, if only relatively
few bits survive these mutual masking operations, a spuriously low
HD score could arise just by chance, for the same reason that
tossing a fair coin few times can readily yield all one outcome.

Therefore, the standard publicly deployed algorithm for iris
recognition utilises score normalisation to compensate for variation
h means and small stnd-devs produce an especially benign FMR, indeed zero
reatures: ‘entropod uniquorns’

IET Biom., pp. 1–11
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Fig. 5 Among 100 billion pairings between probe and gallery IrisCodes in the UAE database, 4 billion fell into a narrow window of 906≤ n≤ 916 bits mutually
unmasked for comparison. This resulting impostor distribution of HD scores is almost indistinguishable from the full set in Fig 1, but by seeking individual
differences within only this isomerous subset of pairings we can rule out any potential contaminating effects of score normalisation
in the number of bits actually compared between any two IrisCodes.
Raw fractional HD scores between unrelated IrisCodes based on n bit
comparisons tend to be distributed with their stnd-dev from 0.5
inversely proportional to

��
n

√
(before selecting the lowest after

several rotated comparisons), and typically about n = 911 bits are
mutually unmasked for comparison. Therefore, deviations from
HD = 0.5 when n bits were compared are rescaled by

�������
n/911

√
whether n > 911 or n < 911 to generate a normalised score, thus
enabling commensurability of match scores regardless of n. In
effect, if n < 911 bits were compared then a higher match quality
is required, but if n > 911 then the match standard becomes more
forgiving, while still allowing all such matches to be comparable
Fig. 6 Distributions of means (blue) and of stnd-devs (red) of HD scores betwe
mutually unmasked for comparison, and for having at least 5000 such encounters
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with each other. For the present investigation, however, this
normalising mechanism might either conceal individual differences
in impostor score distributions, or indeed it might even be the
source of those extreme cases revealed in Figs. 3 and 4. Therefore,
we must disable the score normalisation, and examine the question
again for just those IrisCode pairings in which comparable
numbers of bits n were mutually unmasked and compared.

Fortunately, the vast number of pairings possible between
unrelated IrisCodes in the UAE database is so large that we can
restrict consideration to only those comparisons in which a narrow
window of 911 ± 5 bits were mutually unmasked, and for these
cases we can disable score normalisation. To generate all results
en unmated IrisCodes selected both for the narrow window of 911 ± 5 bits
with other eyes in the gallery to generate meaningful distributions of scores
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Fig. 7 Inter-quantile sequence of impostors distributions ordered by mean HD scores. Almost no separation is apparent between the 2.5th percentile and the
97.5th percentile distributions
presented in the rest of this paper, we again compared one half of the
UAE database against the other, but we ignored any comparisons for
which the requirement that 906≤ n≤ 916 bits be mutually unmasked
was not satisfied. Among the 100 billion IrisCode comparisons
generated and described in Figs. 1 and 2, about 4% (3.994 billion)
passed through this window. That distribution of impostor score
comparisons (with score normalisation disabled), which we may
term isomerous comparisons because of the nearly equal numbers
of bits compared when generating all the scores, is shown in Fig. 5.
It appears almost indistinguishable from the full distribution
incorporating score normalisation that was plotted in Fig. 1.
However, since we now wish to study the distribution of
distributions of such unnormalised impostor scores each generated
by an individual probe, to search (as before) for individual
differences, we must further select only such distributions in which
a sufficient number of encounters occurred with other eyes in the
gallery (>5000) to allow meaningful distributions to be generated
and analysed. Applying this second filter to the 316,250 probe
IrisCodes, 250,279 of them still survived. Those quarter-million
individual distributions of isomerous scores had the distribution of
means shown in blue in Fig. 6.
7 Homoscedasticity

The distribution of mean HD scores in Fig. 6 is almost
indistinguishable from the distribution of mean HD scores in
Fig. 2 for the 316,250 distributions computed with score
normalisation. Both distributions of means are extremely narrow,
supporting the thesis of a nearly universal form for the IrisCode
impostors distribution. Similarly, the distribution of stnd-devs for
the 250,000 isomerous distributions shown in red in Fig. 6 is very
narrow, and almost indistinguishable from the score normalised
stnd-devs in Fig. 2. Magnified versions of the histograms shown in
Figs. 2 and 6 are available online at [8], along with QQplots
against normal and χ2 distributions. Means are generally well fit
by a normal distribution and variances by a χ2 distribution. In the
absence of the images underlying the distributions, which were not
stored upon enrolment in this database, it may remain unclear
whether the observations at the tails of these distributions are
statistical anomalies. Future work on other databases which do
include the original images will seek to determine whether image
6

properties or iris properties produce the impostor distributions
having the extremes of means and of stnd-devs.

Both in Fig. 2 and in Fig. 6, we see evidence of approximate
homoscedasticity: a set of distributions, or a sequence of random
variables, having the same variance is homoscedastic. If IrisCodes
produced impostor match score distributions whose stnd-devs
differed significantly among individuals, as Yager and Dunstone
[7] suggested was generally true across biometric modalities, then
Figs. 2 and 6 would not be such narrow spikes, and the score
distributions would be heteroscedastic. To examine the
universality, and particularly the homoscedasticity, of the
impostors distribution in greater detail, we must now apply
inter-quantile analyses to these 250,000 isomerous distributions.
As discussed earlier, understanding the universality of the
impostors distribution is important for optimal search strategies
and for interpreting match scores.
8 Detailed inter-quantile analyses without score
normalisation

We ordered the 250,000 isomerous distributions of impostor scores
first in order of their mean HD scores. This ordering allowed us
not only to extract the ones having minimum and maximum
means, but also to examine the separation between distributions at
a series of quantiles between 2.5% and 97.5%. For plotting
purposes we selected distributions within 2.5% of the target mean
quantile and as close as possible to the median stnd-dev. For most
mean quantile bands, we were able to select an individual
distribution within 2.5% of the stnd-dev median, although this was
not possible at the extremes of the range (mean quantiles of 0%,
2.5%, and 100%). Twenty-three such distributions spanning the
full range of means quantiles are plotted in Fig. 7, as well as the
canonical distribution from Fig. 5 (black). Tests confirmed that,
once again, the form of these distributions did not depend on the
partitioning of the database into probe and gallery sets. Paired
comparison significance tests demonstrated this for both the kinds
of quantile series presented in Figs. 7–10.

We see in Fig. 7 that there is almost no separation among any of
the distributions between the 2.5th percentile and the 97.5th
percentile, and that they are nearly indistinguishable in closely
hugging the canonical form; but at the very extremes a gap does
IET Biom., pp. 1–11
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Fig. 8 Inter-quantile sequence of impostors distributions ordered by their stnd-devs. Almost no separation is apparent between the 2.5th percentile and the
97.5th percentile distributions
appear before the 0th percentile (blue, minimum) and before the
100th percentile (red, maximum) outlier distributions. Data
tabulated within Fig. 7 gives further properties for each of the
plotted distributions: its actual mean percentile (for comparison to
the target quantile); its actual stnd-dev percentile (again for
comparison to the target 50% quantile); and the number of HD
scores within each isomerous distribution, which we maximised in
selecting from each quantile band.

We also ordered the 250,000 isomerous distributions of impostor
scores by stnd-dev, and we selected for plotting those distributions
falling within specified quantile bands on stnd-dev, with mean
scores as close as possible to their median (ideally ±2.5%)
and otherwise maximising the number of scores available.
Fig. 9 Greatly magnified inter-quantile sequence of impostors distributions ord
percentile quantiles

IET Biom., pp. 1–11
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Twenty-three distributions representing various percentile quantiles
in this ordering are plotted in Fig. 8, as well as the canonical
distribution from Fig. 5 (black). Again in Fig. 8 we see almost no
separation among the distributions nor from the canonical form
except for the extreme 0th percentile (blue) and the 100th percentile
(red) distributions. It is noteworthy that these two outliers have the
property that the distribution with largest stnd-dev (solid red) has the
lowest mean, and the distribution with the smallest stnd-dev (solid
blue) has the highest mean. A similar relationship was observed in
Fig. 7, and we shall study this property later in more detail.

We now probe those outermost quantile regions beyond the 97.5th
percentile and below the 2.5th percentile, for both the means and
stnd-devs of the 250,000 isomerous impostor distributions. Highly
ered by mean HD scores, for the distributions within the outermost 2.5th
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Fig. 10 Greatly magnified inter-quantile sequence of impostors distributions ordered by their stnd-devs, for the distributions within the outermost 2.5th
percentile quantiles
magnified plots of the distributions representing those extreme
quantiles are presented in Figs. 9 and 10, respectively. The rarity
of such departures from the canonical impostors distribution is
very striking: it is only at these extremes that departures from the
canonical impostors distribution are visible. It is also noteworthy
that beyond the outer 2.5% quantiles at both extremes, both for
means and for stnd-devs, it was generally impossible to find a
distribution in which the other parameter was near its median.
Rather, an inverse relationship developed between the quantiles of
the two parameters. This effect is evident numerically in the actual
mean and stnd-dev quantiles listed in these figures, but we can
document the relationship more fully by explicitly analysing the
dependence between these two parameters.
Fig. 11 Colour-coded level map of joint quantile counts of means and stnd-devs
dependency

8

For this analysis, each of the 250,000 impostor distributions were
assigned to one cell of a (100 × 100) grid defined jointly by the 1%
quantiles determined separately for the means and the stnd-devs. By
construction, the sum of the number of distributions assigned to cells
in each row, and in each column, of the grid is constant (at 1% or
2500). Further, if the means and stnd-devs are independent, a fixed
number of distributions (0.01% of the 250,000) would be expected
to be assigned to each cell. If one were to depict such a grid with
cell counts coded by colour, and if means and stnd-devs were
independent, the expected image would be a uniform field of only
one colour. However, to the extent that the two parameters were
dependent, the image produced would be more structured and
multi-coloured. Such a depiction of the present data is shown in
of all 250,000 distributions of impostors scores, revealing a hidden inverse

IET Biom., pp. 1–11
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Fig. 11. It reveals a striking inverse relationship between the means
and stnd-devs of these distributions, as does a standard calculation of
their correlation (r = –0.86, p < 2.2 × 10−16).

Impostors distributions with higher means tend to have smaller
stnd-devs (both of which reduce FMR), and those distributions
with lower means tend to have larger stnd-devs (both of which
increase FMR). We also see at the poles in Fig. 11 two
concentrations of distributions that are maximally and inversely
extreme on each dimension. These two polar concentrations are
prototypical entropod uniquorns, at one extreme, while at the other
they are analogous to Doddington’s wolves or lambs. Thus,
although our primary observation is that impostors distributions
associated with different individual probes tend to be much the
same, with means and stnd-devs confined to a narrow range as
shown in Fig. 6, we note in Fig. 11 a striking inverse relationship
within that narrow range. We speculate that this reflects variation
in the entropy of different iris patterns, because as noted in
Section 5, such variation would produce these observed joint
effects. It is remarkable that this occurs even when the number of
bits compared for each HD score is confined to such a narrow
window of 911 ± 5 mutually unmasked bits, so variation in data
length cannot explain this apparent variation in entropy.

To characterise further the differences between the canonical and
the individual impostors distributions examined, we performed
one-sample t- and χ2-tests on the differences between the mean
and variance of each distribution and the appropriate population
means and variances given in Figs. 2 and 6 for score-normalised
and non-normalised cases. Generally, we can reject the null
hypothesis (of no difference) when the mean or stnd-dev departed
from its median by a ventile or a decile. For the experimental
variable, this occurred when we intentionally selected distributions
to fall within a non-central quantile band. For any
non-experimental variable, it occurred when we were not able to
find a distribution that was both extreme on the experimental
variable and central on the non-experimental variable (and we
therefore sacrificed centrality on the non-experimental variable).
Very small differences sufficed for significance. To achieve
significance at α = 0.05, means needed to change by only about
0.00006 and 0.0002 for score-normalised (with larger N ) and
non-normalised distributions, respectively. Variances needed to
change by only 0.4% and 1.6%, respectively.

These are essentially tests of whether the selected distributions
could be random samples from the two populations of impostors
distributions described. The significance of these tests is therefore
not a surprise, since we intentionally selected distributions to
represent different quantile positions or extremes from the
population, and it may function more as a validity check on our
methodology. These findings of significance also arise as a
consequence of the fact that with very large numbers of
observations, even very small differences can be statistically
significant, although not necessarily meaningful. In view of this,
we focus instead on the meaningfulness of the differences observed.
9 Implications for search strategies: 1-to-1,
1-to-first, 1-to-many

We turn now to the significance of these observations for matching
strategies. As mentioned in the Introduction, the interpretation of a
given match score is greatly simplified if it can be assumed, at
least to a very good approximation, that there exists a universal
and known distribution for impostors scores. We shall first
consider several operational modes and decision strategies when
the assumption is made that there is an essentially universal form
of impostors distribution.
9.1 1-to-1 verification

The simplest case is 1-to-1 verification, although iris recognition is
rarely deployed in such an undemanding mode. Assuming there is
a known universal probability distribution f1(x) for the
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dissimilarity scores x that impostors generate (in the present case x
is the smallest fractional HD obtained after comparing two
IrisCodes in the requisite number of rotations for tilt, so f1(x) is as
exemplified by the data plotted in Figs. 1 and 5), then the
probability F1(x) of making a false match in single verification
trials when the decision rule is to accept any score of x or less, is
the cumulative under the probability density distribution up to x:

F1(x) =
∫x
0
f1(x)dx (1)

or equivalently

f1(x) =
d

dx
F1(x) . (2)
9.2 1-to-first, or 1-to-many, identification

Iris recognition is almost always deployed in identification mode,
meaning that an observed score is accepted as a match only if it
passes some rather demanding threshold x after an exhaustive
search through a database of N persons; or alternatively a match is
declared the first time the score threshold test is passed and then
the search is stopped. Both in the 1-to-first and in the exhaustive
search strategy, let N be the total number of impostor scores
computed. Then the probability of not making a false match on
any of those N opportunities is [1− F1(x)]

N, where F1(x) is as
defined in (1), and so the net false match probability FN(x) is

FN (x) = 1− [1− F1(x)]
N (3)

which can be approximated as FN(x)≃NF1(x) where F1(x) is very
small: F1(x)≪ 1 provided that [NF1(x)]

2 also remains small
(binomial theorem). In other words, 1-to-first or 1-to-many
identification on N is roughly N times more prone to false matches
than mere 1-to-1 verification which poses only a single
opportunity of error. Fortunately, the IrisCode has been confirmed
by NIST [9] in tests involving 1.2 trillion iris comparisons to have
such minuscule false match probability that it easily tolerates this
N-fold increase in the required resilience when searching a
database of N persons. For example, at an HD score threshold of
x = 0.28, allowing 28% of bits to disagree, NIST reported [9] a
false match probability of F1(x) = 1 in 40 billion.

For completeness, the probability density distribution fN(x)
associated with the cumulative false match probability FN(x) after
a 1-to-first or a 1-to-many search involving N impostors is

fN (x) =
d

dx
FN (x) = N [1− F1(x)]

N−1 f1(x). (4)

Out on the left tail of the density where f1(x) and therefore F1(x) are
very small, we note the approximation that fN(x)≃Nf1(x) as a
reflection of the N-fold greater resilience needed when making N
impostor comparisons in an identification search.
9.3 Biometric ‘birthday problem’

We return now to the biometric ‘birthday problem’ with which this
paper opened. A biometric technology operating at threshold x with a
FMR of F1(x) becomes more likely than not to produce at least one
biometric collision among a group of N persons when

[1− F1(x)]
N (N−1)/2 , 0.5 (5)

and it is easily shown that if F1(x) is small, this condition is satisfied
once N .

�������������
1.386/F1(x)

√
.
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9.4 If a universal form of impostors distribution cannot
be assumed

The above analyses all rely on the existence of a universal impostors
distribution f1(x), and more particularly on its cumulative F1(x). The
analyses that now follow support the validity of this assumption for
all individual distributions except those at the extremes of the
quantile spectra. In those outer regions, to avoid an unwanted
impact on FMR, it may be advisable to incorporate a
subject-specific f1(x) and F1(x) above for the various operational
search and decision strategies.
10 Conclusions: the universal and the particular

We have seen that individual distributions remain quite faithful to the
canonical distribution and only depart from it when they are extreme
in mean and stnd-dev. This comparison can be refined in an
Fig. 12 Elevations and reductions of FMR at HD= 0.37 relative to the canonical F
Important elevations of FMR occur only when both mean and stnd-dev are highly e
intervals. Triangles indicate medians for subpopulations further restricted to rema

10
informative way by determining the extent to which the canonical
impostors distribution might over- or underestimate individual
FMRs over the range of quantiles considered earlier.

For the canonical distribution and for each of the 250,000
individual distributions, we calculated FMRs at a threshold of
HD = 0.37 (chosen so high to ensure that false matches do
actually occur despite having only about 104 scores in each
individual distribution). We then calculated the ratio of each
individual FMR to the canonical FMR (which was 0.000759 at
HD = 0.37).

Fig. 12 summarises this elevation or reduction factor for each of
the quantile bands used previously in Figs. 7–10. The coloured
bars indicate the median FMR elevation or reduction factor (red or
green) for all of the individual distributions within that band, and
the whiskers show the inter-quartile interval (first and third
quartiles). The plotted triangles also show the median for that
subset of distributions within each quantile band that fall within
2.5% of the median on the other quantile variable.
MR for subpopulations of individual distributions along the quantile spectra.
xtreme. Bars and whiskers indicate subpopulation medians and inter-quartile
in central on the other quantile variable. Ordinate is logarithmic
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From this figure, we can see that the canonical FMR at HD = 0.37
would substantially underestimate individual FMR only very rarely.
Furthermore, we can use Fig. 12 to calculate the expected frequency
of underestimates by different magnitudes. We can see: that an
underestimate by more than a factor of 10 would almost never
occur (in fact it occurs for 0.0036% of the 250,000 individual
distributions); that it would occur by more than a factor of 5 for
only the most extreme quantiles of the mean and stnd-dev series
(actual frequency 0.57%); by more than a factor of 3 in only the
most extreme 2.5–5% (actual frequency 4%); and by more than a
factor of 2 for the most extreme 10–15% (actual frequency 12%).
We can also see that the canonical distribution would
underestimate FMR, to any extent whatsoever, for only about 35%
of the individual distributions (actual frequency 36%).

Thus, from Fig. 12 we can conclude that for the vast majority of
individual distributions, the canonical distribution would not
underestimate FMR, and that where it did, the magnitude of the
underestimate would be operationally insignificant for all but a
very rare population of possible ‘wolves/lambs’ (the most extreme
red bars plotted in Fig. 12). For persons fortunate enough to be
‘entropod uniquorns’ (the most extreme green bars plotted in
Fig. 12), their reduced actual FMR is simply a bonus and of no
concern. We conclude that apart from those rare exceptions, whose
rarity we have calibrated here, the IrisCode generates a remarkably
invariant impostors distribution. The large entropy which lies at
the heart of this biometric technology [5] confers on it the key
advantage of having a safe and relatively constant dissimilarity
IET Biom., pp. 1–11
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distance when different persons are compared, and thereby the
absence of doppelgängers.
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