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Abstract. Higher-kinded polymorphism —i.e. abstraction over type con-
structors— is an essential component of many functional programming
techniques such as monads, folds, and embedded DSLs. ML-family lan-
guages typically support a form of abstraction over type constructors
using functors, but the separation between the core language and the
module language leads to awkwardness as functors proliferate.
We show how to express higher-kinded polymorphism in OCaml with-
out functors, using an abstract type app to represent type application,
and opaque brands to denote abstractable type constructors. We demon-
strate the flexibility of our approach by using it to translate a variety of
standard higher-kinded programs into functor-free OCaml code.

1 Introduction

Polymorphism abstracts types, just as functions abstract values. Higher-kinded
polymorphism takes things a step further, abstracting both types and type con-
structors, just as higher-order functions abstract both first-order values and func-
tions.

Here is a function with a higher-kinded type. The function when conditionally
executes an action:

when b m = if b then m else return ()

In Haskell, when receives the following type:

when :: ∀ (m :: ∗ → ∗). Monad m ⇒ Bool → m () → m ()

The kind ascription ∗ → ∗ makes explicit the fact that m is a higher-kinded
type variable: it abstracts type constructors such as Maybe and [ ], which can be
applied to types such as Int and () to build new types. The type of when says
that its second argument and return value are monadic computations returning
(), but the monad itself is not fixed: when can be used at any type m () where m

builds a type from a type and is an instance of the Monad class.
In contrast, in OCaml, as in other ML-family languages, all type variables

have kind ∗. In order to abstract a type constructor one must use a functor. Here
is an implementation of when in OCaml:

module When (M : Monad) = struct
let f b m = if b then m else M.return ()

end



The When functor receives the following type:

module When (M : Monad) :sig
val f : bool → unit M.t → unit M.t

end

Defining When is more work in OCaml than in Haskell. For callers of When
the difference is even more pronounced. Here is a Haskell definition of unless
using when:

unless b m = when (not b) m

Defining Unless in OCaml involves binding three modules. First, we define
a functor to abstract the monad once more, binding both the functor and its
argument. Next, we instantiate the When functor with the monad implementation
and bind the result. Finally, we can call the function:

module Unless(M : Monad) = struct
module W = When(M)
let f b m = W.f (not b) m

end

The situation is similar when we come to use our functions at a particular
monad. We must first instantiate When or Unless with a module satisfying the
Monad interface before we can use it to build computations. The following ex-
ample instantiates Unless with a module implementing the state monad, then
uses the result to build a computation that conditionally writes a value:

let module U = Unless(StateM) in
U.unless (v < 0) (StateM.put v)

Why does OCaml require us to do so much work to define such simple func-
tions? One issue is the lack of overloading: in order to use functions like when

with multiple monads we must explicitly pass around dictionaries of functions.
However, most of the syntactic heaviness comes from the lack of higher-kinded
polymorphism: functors are the only mechanism ML provides for abstracting
over type constructors. The purpose of this paper is to address this second issue,
bringing higher-kinded polymorphism into the core OCaml language, and mak-
ing it almost as convenient to define when and unless in OCaml as in Haskell.

1.1 The alias problem

At this point the reader might wonder why we do not simply adopt the Haskell
approach of adding higher-kinded polymorphism directly to the core language.
The answer lies in a fundamental difference between type constructors in Haskell
and type constructors in OCaml.

In Haskell data and newtype definitions create fresh data types. It is possible
to hide the data constructors of such types by leaving them out of the export list
of the defining module, but the association between a type name and the data
type it denotes cannot be abstracted. It is therefore straightforward for the type



checker to determine whether two type names denote the same data type: after
expanding synonyms, type names denote the same data types exactly when the
names themselves are the same.

OCaml provides more flexible mechanisms for creating abstract types. An
entry type t in a signature may hide either a fresh data type definition such as
type t = T of int or as an alias such as type t = int. Abstracting types with
signatures is sometimes only temporary, since instantiating a functor can replace
abstract types in the argument signature with concrete representations. Checking
whether two type names denote the same data type is therefore a more subtle
matter in OCaml than in Haskell, since abstract types with no visible equalities
may later turn out to be equal after all.

Since OCaml cannot distinguish between data types and aliases, it must sup-
port instantiating type variables with either. This works well for type variables
of base kind, but breaks down with the addition of higher-kinded type vari-
ables. To see the difficulty, consider the unification of the following pair of type
expressions

’a ’f ∼ (int * int) list

where ’f is a higher-kinded type variable. If there are no other definitions in
scope then there is an obvious solution, unifying ’a with (int * int) and ’f

with list. Now suppose that we also have the following type aliases in scope:

type ’a plist = (’a * ’a) list

type ’a iplist = (int * int) list

With the addition of plist and iplist there is no longer a most general unifier.
Unifying ’f with either plist or iplist gives two new valid solutions, and none
of the available solutions is more general than the others.

One possible response to the loss of most general unifiers is to give up on
type inference for higher-kinded polymorphism. This is the approach taken by
OCaml’s functors, which avoid ambiguity by explicitly annotating every instan-
tiation. We will now consider an alternative approach that avoids the need to
annotate instantiations, bringing higher-kinded polymorphism directly into the
core language.

1.2 Defunctionalization

Since we cannot use higher-kinded type variables to represent OCaml type con-
structors, we are faced with the problem of abstracting over type expressions of
higher kind in a language where all type variables have base kind. At first sight
the problem might appear intractable: how can we embed an expressive object
language in a less expressive host language?

Happily, there is a well-understood variant of this problem from which we
can draw inspiration. Four decades ago John Reynolds introduced defunction-
alization, a technique for translating higher-order programs into a first-order
language [Reynolds, 1972].



The following example illustrates the defunctionalization transform. Here is
a higher-order ML program which computes a sum and increments a list of
numbers:

let rec fold : type a b. (a ∗ b → b) ∗ b ∗ a list → b =

fun (f, u, l) = match l with

| [ ] → u

| x :: xs → f (x, fold (f u, xs))

let sum l = fold ((fun (x, y) → x + y), 0, l)

let add (n, l) = fold (fun (x, l’) → x + n :: l’) [ ] l

Defunctionalizing this program involves introducing a datatype arrow with
two constructors, one for each of the two function terms; the arguments to each
constructor represent the free variables of the corresponding function term, and
the type parameters to arrow represent the argument and return types of the
function. We follow Pottier and Gauthier [2004] in defining arrow as a gener-
alised algebraic data type (GADT), which allows the instantiation of the type
parameters to vary with each constructor, and so makes it possible to preserve
the well-typedness of the source program.

type ( , ) arrow =

Fn plus : ((int ∗ int), int) arrow

| Fn plus cons : int → ((int ∗ int list), int list) arrow

The second step introduces a function, apply, that relates each constructor
of arrow to the function body.

let apply : type a b. (a, b) arrow ∗ a → b =

fun (appl, v) → match appl with

| Fn plus → let (x, y) = v in x + y

| Fn plus cons n → let (x, l’) = v in x + n :: l’

We can now replace function terms with constructors of arrow and indirect
calls with applications of apply to turn the higher-order example into a first
order program:

let rec fold : type a b. (a ∗ b, b) arrow ∗ b ∗ a list → b =

fun (f, u, l) = match l with

| [ ] → u

| x :: xs → apply (f, (x, fold (f, u, xs)))

let sum l = fold (Fn plus, 0, l)

let add (n, l) = fold (Fn plus cons n, [ ], l)

1.3 Type defunctionalization

Defunctionalization transforms a program with higher-order values into a pro-
gram where all values are first-order. Similarly, we can change a program with



higher-kinded type expressions into a program where all type expressions are of
kind ∗, the kind of types.

The first step is to introduce an abstract type constructor, analogous to
apply, for representing type-level application:

type (’a, ’f) app

OCaml excludes higher-kinded type expressions syntactically by requiring
that the type operator be a concrete name: ’a list is a valid type expression,
but ’a ’f is not. The app type sidesteps the restriction, much as the apply

function makes it possible to embed the application of a higher-order function in
a first-order defunctionalized program. The type expression (s, t) app represents
the application of the type expression t to the type expression s. We can now
abstract over type constructors by using a type variable for the operator term
t.

Eliminating higher-order functions associates a constructor of arrow with
each function expression from the original program. In order to eliminate higher-
kinded type expressions we associate each type expression with a distinct instan-
tiation of app. More precisely, for each type constructor t which we wish to use
in a polymorphic context we introduce an uninhabited opaque type T.t, called
the brand. Brands appear as the operator argument to app; for example, we can
represent the type expression ’a list as (’a, List.t) app, where List.t is the
brand for list. With each brand we associate injection and projection functions
for moving between the concrete type and the corresponding instantiation of
app:

module List : sig

type t

val inj : ’a list → (’a, t) app

val prj : (’a, t) app → ’a list

end

We now have the operations we need to build and call functions that abstract
over type constructors. Here is a second OCaml implementation of the when
function from the beginning of this paper:1

let when (d : #monad) b m = if b then m else d#return ()

The first parameter d is a dictionary of monad operations analogous to the
type class dictionary passed to when in a typical implementation of Haskell [Wadler
and Blott, 1989]. (We defer further discussion of dictionary representation to
Section 2.3.) Our earlier implementation received the dictionary as a functor
argument in order to accommodate abstraction over the type constructor, but
the introduction of app makes it possible to write when entirely within the core
language. This second implementation of when receives the following type:

val when : ’m #monad → bool → (unit, ’m) app → (unit, ’m) app

1 We append an underscore to variable names where they clash with OCaml keywords.



type (’a, ’f) app

module type Newtype1 = sig
type ’a s

type t

val inj : ’a s → (’a,t) app

val prj : (’a,t) app → ’a s

end

module Newtype1(T : sig type ’a t end):
Newtype1 with type ’a s = ’a T.t

Fig. 1. The higher interface

module type Newtype2 = sig
type (’a, ’b) s

type t

val inj : (’a,’b) s → (’b,(’a,t) app) app

val prj : (’b,(’a,t) app) app → (’a,’b) s

end

module Newtype2(T : sig type (’a,’b) t end):
Newtype2 with type (’a,’b) s = (’a,’b) T.t

Fig. 2. The Newtype2 functor

The improvement becomes even clearer when we implement unless without
a functor in sight:

let unless d b m = when d (not b) m

There is a similar improvement when using when and unless at particular
monads. Once again we find that we no longer need to instantiate a functor,
since the dictionary parameter is passed as a regular function argument. Here is
our earlier example that conditionally writes a value in the state monad, adapted
to our new setting:

unless state (v < 0) (state#put v)

2 The interface

We have written a tiny library called higher to support programming with app.
Figure 1 shows the interface of the higher library.2 The Newtype1 functor gen-
erates brands together with their associated injection and projection functions,
preserving the underlying concrete type under the name s for convenience. For
example, applying Newtype1 to a structure containing the concrete list type
gives the List.t brand from Section 1.3.

module List = Newtype1(struct type ’a t = ’a list end)

In fact, as the numeric suffix in the Newtype1 name suggests, higher exports
a family of functors for building brands. Figure 2 gives another instance, for
concrete types with two parameters. However, rather than introducing a second
version of app to accompany Newtype2, we use app in a curried style. One of the
benefits of higher kinded polymorphism is the ability to partially apply multi-
parameter type constructors, and the currying in Newtype2 makes this possible
in our setting.

2 The higher library is available on opam: opam install higher



The remainder of this section shows how various examples from the literature
can be implemented using higher.

2.1 Example: higher-kinded folds

Higher-kinded polymorphism was introduced to Haskell to support constructor
classes such as Monad [Jones, 1995, Hudak et al., 2007]. However, not all uses
of higher kinds involve constructor classes. Traversals of non-regular datatypes
(whose definitions contain non-trivial instantiations of the definiendum) typi-
cally involve higher-kinded polymorphism. Here is an example: the type perfect
describes perfectly balanced trees, with 2n elements:

type ’a perfect = Zero of ’a | Succ of (’a ∗ ’a) perfect

A fold over a perfect value is parameterised by two functions, zero, applied
at each occurrence of Zero, and succ, applied at each occurrence of Succ. In
diagram form the fold has the following simple shape:

Succ (Succ . . . (Succ (Zero v)). . .)
↓ ↓ ↓ ↓

succ (succ . . . (succ (zero v)). . .)

What distinguishes this fold from a similar function defined on a regular
datatype is that each occurrence of Succ is used at a different type. If the outer-
most constructor builds an int perfect value then the next constructor builds
an (int ∗ int) perfect, the next an ((int ∗ int) ∗ (int ∗ int)) perfect, and
so on. For maximum generality, therefore, we must allow the types of zero and
succ to vary in the same way.3 In Haskell we might define foldp as follows:

foldp :: (∀a. a → f a) → (∀a. f (a, a) → f a) → Perfect a → f a

foldp zero succ (Zero l) = zero l

foldp zero succ (Succ p) = succ (foldp zero succ p)

Here is a corresponding definition in OCaml, using a record type with poly-
morphic fields for the higher-rank types (nested quantification) and using app

to introduce higher-kinded polymorphism:

type ’f perfect folder = {
zero: ’a. ’a → (’a, ’f) app;
succ: ’a. (’a ∗ ’a, ’f) app → (’a, ’f) app;
}

let rec foldp : ’f ’a. ’f perfect folder → ’a perfect → (’a, ’f) app =
fun { zero; succ } → function
| Zero l → zero l

| Succ p → succ (foldp { zero; succ } p)

3 Hinze [2000] shows how to take generalization of folds over nested types significantly
further than the implementation we present here.



type (’a, ’b) eq

val refl : unit → (’a, ’a) eq

module Subst (F : sig type ’a f end):
sig
val subst : (’a, ’b) eq →
’a F.f → ’b F.f

end

Fig. 3. Leibniz equality without higher

module Eq : Newtype2
type (’a, ’b) eq = (’b, (’a, Eq.t) app) app

val refl : unit → (’a, ’a) eq

val subst : (’a, ’b) eq →
(’a, ’f) app → (’b, ’f) app

Fig. 4. Leibniz equality with higher

The foldp function has a number of useful properties. A simple one, imme-
diately apparent from the diagram, is that foldp Zero Succ is the identity. In
order to instantiate the result type we need a suitable instance of app, which we
can obtain using Newtype1.

module Perfect = Newtype1(struct type ’a t = ’a perfect end)

Passing Zero and Succ requires a little massaging with inj and prj.

let idp p = Perfect.(prj (foldp { zero = (fun l → inj (Zero l));
succ = (fun b → inj (Succ (prj b)))} p))

It is easy to verify that idp implements the identity function.

2.2 Example: Leibniz equality

Our second example involves higher-kinded polymorphism in the definition of a
datatype. As part of a library for dynamic typing, Baars and Swierstra [2002]
introduce the following definition of type equality:

newtype Equal a b = Equal (∀ (f :: ∗ → ∗). f a → f b)

The variable f abstracts over one-hole type contexts — type expressions
which build a type from a type. The types encode Leibniz’s law that a and b

can be considered equal if they are interchangeable in any context f. A value of
type Equal a b serves both as proof that a and b are equal and as a coercion
between contexts instantiated with a and b. Ignoring ⊥ values, there is a single
inhabitant of Equal, the value Equal id of type Equal a a, which serves as a
proof of equality between any type a and itself.

Yallop and Kiselyov [2010] show how first-class modules make it possible to
define an OCaml type eq equivalent to Equal. A minimised version of eq and its
core operations is given in Figure 3. There are two operations: refl introduces
the sole inhabitant, a proof of reflexive equality, and subst turns an equality
proof into a coercion within any context f.



class virtual [’m] monad : object
method virtual return : ’a. ’a → (’a, ’m) app

method virtual bind : ’a ’b. (’a, ’m) app → (’a → (’b, ’m) app) → (’b, ’m) app

end

Fig. 5. The monad interface in OCaml

type (’a, ’f) free = Return of ’a | Wrap of ((’a, ’f) free, ’f) app

module Free = Newtype2(struct type (’a, ’f) t = (’a, ’f) free end)

Fig. 6. The free monad data type in OCaml

Figure 4 gives a second definition of eq and its operations using higher. As
with unless, using the functor version of Figure 3 is significantly heavier than
the higher version of Figure 4. Here is a definition of the transitive property of
equality using the implementation of Figure 3:

let trans : type a b c. (a, b) eq → (b, c) eq → (a, c) eq =
fun ab bc →
let module S = Subst(struct type ’a tc = (a, ’a) eq end) in
S.subst bc ab

And here is a definition using higher :

let trans ab bc = subst bc ab

Both implementations receive the same type:

val trans: (’a, ’b) eq → (’b, ’c) eq → (’a, ’c) eq

The contrast between the implementations of refl and subst is similarly
striking. The interested reader can find the full implementations in the extended
version of this paper.

2.3 Example: the codensity transform

Much of the appeal of higher-kinded polymorphism arises from the ability to de-
fine overloaded functions involving higher-kinded types. Constructor classes [Jones,
1995] turn monads (and other approaches to describing computation such as ar-
rows [Hughes, 2000] and applicative functors [Mcbride and Paterson, 2008]) from
design patterns into named program entities. The Monad interface requires ab-
straction over type constructors, and hence higher kinds, but defining it brings
a slew of benefits: it becomes possible to build polymorphic functions and nota-
tion which work for any monad, and to construct a hierarchy of related interfaces
such as Functor and MonadPlus.

OCaml does not currently support overloading, making many programs which
find convenient expression in Haskell cumbersome to write. However, the loss of
elegance does not arise from a loss of expressive power: although type classes are



let monad free (functor free : ’f #functor ) = object
inherit [(’f, Free.t) app] monad
method return v = Free.inj (Return v)
method bind =
let rec bind m k = match m with
| Return a → k a

| Wrap t → Wrap (functor free#fmap (fun m → bind m k) t) in
fun m k → Free.inj (bind (Free.prj m) (fun a → Free.prj (k a)))

end

Fig. 7. The free monad instance in OCaml

unavailable we can achieve similar results by programming directly in the target
language of the translation which eliminates type classes in favour of dictionary
passing [Wadler and Blott, 1989]. We might reasonably view these explicit dic-
tionaries as temporary scaffolding that will vanish once the plans to introduce
overloading to OCaml come to fruition [Chambart and Henry, 2012].

We now turn to an example of a Haskell program that makes heavy use
of higher-kinded overloading. The codensity transform [Voigtländer, 2008] takes
advantage of higher-kinded polymorphism to systematically substitute more effi-
cient implementations of computations involving free monads, leading to asymp-
totic performance improvements. We will focus here on the constructs necessary
to support the codensity transform rather than on the computational content of
the transform itself, which is described in Voigtländer’s paper. The code in this
section is not complete (the definitions of abs, C, and functor are missing), but
we give a complete translation of the code from Voigtländer [2008, Sections 3
and 4] in the extended version of this paper.

Figure 5 shows the monad interface in OCaml. We represent a type class by
an OCaml virtual class —i.e., a class with methods left unimplemented. The
type class variable m of type ∗ → ∗ becomes a type parameter, which is used in
the definition of monad as an argument to our type application operator app.

Figure 6 defines the free monad type [Voigtländer, 2008, Section 3]. The use
of app in the definition of free reflects the fact that the type parameter ’f has
higher kind; without higher we would have to define the free within a functor.

Figure 7 gives the free monad instance over a functor using the free type. We
represent type class instances in OCaml as values of object type. Instantiating
and inheriting the monad class provides type checking for return and bind.
Constraints in the instance definition in the Haskell code become arguments to
the function; our definition says that (’f, Free.t) app is an instance of monad if
’f is an instance of functor.

Figure 8 defines the freelike interface. In Voigtländer’s presentation FreeLike

is a multi-parameter type class with two superclasses. In our setting the param-
eters become type parameters of the virtual class and the superclasses become
class arguments which must be supplied at instantiation time. We bind the class
arguments to methods so that we can easily retrieve them later.



class virtual [’f, ’m] freelike (pf : ’f functor ) (mm : ’m monad) = object
method pf : ’f functor = pf method mm : ’m monad = mm

method virtual wrap : ’a. ((’a, ’m) app, ’f) app → (’a, ’m) app

end

Fig. 8. The freelike interface in OCaml

type (’a, ’f) freelike poly = {
fl: ’m ’d. ((’f, ’m) #freelike as ’d) → (’a, ’m) app

}

let improve (d : #functor ) { fl } =
Free.prj (abs (monad free d) (C.prj (fl (freelike c d (freelike free d)))))

Fig. 9. The improve function in OCaml

improve :: Functor f ⇒ (∀m. FreeLike f m → m a) → Free f a

improve m = abs m

Fig. 10. The improve function in Haskell

Figure 9 shows the improve function, the entry point to the codensity trans-
form. In Haskell improve has a concise definition (Figure 10) due to the amount
of work done by the type class machinery; in OCaml we must perform the work
of building and passing dictionaries ourselves. As in a previous example (Sec-
tion 2.1) we use a record with a polymorphic field to introduce the necessary
higher-rank polymorphism.

The extended version of this paper gives a complete implementation of the
codensity transform, and a translation of Voigtländer’s example which applies it
to an echo computation.

2.4 Example: kind polymorphism

Standard Haskell’s kind system is “simply typed”: the two kind formers are the
base kind ∗ and the kind arrow→, and unknown types are defaulted to ∗. Recent
work adds kind polymorphism, increasing the number of programs that can be
expressed [Yorgey et al., 2012]. In contrast higher lacks a kind system altogether:
the brands that represent type constructors are simply uninhabited members of
the base kind ∗.

The obvious disadvantage to the lack of a kind system is that the type
checker is no help in preventing the formation of ill-kinded expressions, such
as (List.t, List.t) app. However, this drawback is not so serious as might first
appear, since it does not introduce any means of forming ill-typed values, and
so cannot lead to runtime errors. In fact, the absence of well-kindedness checks



class virtual [’f] category = object
method virtual ident : ’a. (’a, (’a, ’f) app) app

method virtual compose : ’a ’b ’c.
(’b, (’a, ’f) app) app → (’c, (’b, ’f) app) app → (’c, (’a, ’f) app) app

end

Fig. 11. The category interface.

module Fun = Newtype2(struct type (’a, ’b) t = ’b → ’a end)
let category fun = object
inherit [Fun.t] category
method ident = Fun.inj id

method compose f g = Fun.inj (fun x → Fun.prj g (Fun.prj f x))
end

Fig. 12. A category instance for →.

type (’n, ’m) ip = { ip: ’a. (’a, ’m) app → (’a, ’n) app }
module Ip = Newtype2(struct type (’n, ’m) t = (’n, ’m) ip end)
let category ip = object
inherit [Ip.t] category
method ident = Ip.inj { ip = id }
method compose f g = Ip.inj {ip = fun x → (Ip.prj g).ip ((Ip.prj f).ip x) }

end

Fig. 13. A category instance for index-preserving functions.

can be used to advantage: it allows us to write programs which require the kind
polymorphism extension in Haskell.

Figure 11 defines a class category parameterised by a variable ’f. In the
analogous type class definition standard Haskell would give the variable cor-
responding to ’f the kind ∗ → ∗ → ∗; the polymorphic kinds extension gives
it ∀κ. κ → κ → ∗, allowing the arguments to be type expressions of any kind.
Since there is no kind checking in higher, we can also instantiate the arguments
of ’f with expressions of any kind. Figure 12 gives an instance definition for →,
whose arguments have kind ∗; Figure 13 adds a second instance for the category
of index-preserving functions, leaving the kinds of the indexes unspecified.

The extended version of this paper continues the example, showing how
higher supports higher-kinded non-regularity.

3 Implementations of higher

Up to this point we have remained entirely within the OCaml language. Both
the interfaces and the examples are written using the current release of OCaml
(4.01). However, running the code requires an implementation of the higher
interface, which requires a small extension to pure OCaml. We now consider
two implementations of higher, the first based on an unsafe cast and the second
based on an extension to the OCaml language.



type family Apply f p :: *
newtype App f b = Inj { prj :: Apply f b }

data List

type instance Apply List a = [a]

Fig. 14. Implementing higher with type families

type (’p, ’f) app

module Newtype1 (T : sig type ’a t end) = struct
type ’a s = ’a T.t
type t

let inj : ’a s → (’a, t) app = Obj.magic
let prj : (’a, t) app → ’a s = Obj.magic

end

Fig. 15. Implementing higher with an unchecked cast

Let us return to the analogy of Section 1.3. The central point in an imple-
mentation of higher is a means of translating between values of the app family
of types and values of the corresponding concrete types, much as defunctional-
ization involves translating between higher-order function applications and uses
of the apply function. However, defunctionalization is a whole program trans-
formation: a single apply function handles every translated higher-order call.
Since we do not wish to require that every type used with higher is known in
advance, we need an implementation that makes it possible to extend app with
new inhabitants as needed.

We note in passing that Haskell’s type families [Schrijvers et al., 2008], which
define extensible type-level functions, provide exactly the functionality we need.
Figure 14 gives an implementation, with a type family Apply parameterised
by a brand and a type and a type definition App with injection and projection
functions Inj and Prj. The type instance declaration adds a case to Apply that
matches the abstract type List and produces the representation type [a].

3.1 First implementation: unchecked cast

The first implementation is shown in Figure 15. Each instantiation of the Newtype1
constructor generates a fresh type t to use as the brand. The inj and prj func-
tions which coerce between the concrete type ’a s and the corresponding de-
functionalized type (’a, t) app are implemented using the unchecked coercion
function Obj.magic.

Although we are using an unchecked coercion within the implementation of
Newtype1 the module system ensures that type safety is preserved. Each module
to which Newtype1 is applied generates a fresh brand t. Since the only way to



type (’p, ’f) app = . .

module Newtype1 (T : sig type ’a t end) () = struct
type ’a s = ’a T.t
type t

type ( , ) app += App : ’a s → (’a, t) app

let inj v = App v

let prj (App v) = v

end

Fig. 16. Implementing higher using open types

create a value of type (’a, t) app is to apply inj to a value of the corresponding
type ’a s, it is always safe to apply prj to convert the value back to type ’a s.

3.2 Second implementation: open types

We can avoid the use of an unchecked cast altogether with a small extension
to the OCaml language. Löh and Hinze [2006] propose extending Haskell with
open data types, which lift the restriction that all the constructors of a data type
must be given in a single declaration. The proposal is a good fit for OCaml,
which already supports a single extensible type for exceptions, and there is an
implementation available.4.

Figure 16 shows an implementation of higher using open data types. The
ellipsis in the first line declares that app is an open data type; each instantia-
tion of the Newtype1 functor extends app with a fresh GADT constructor, App
which instantiates app with the brand t and which carries a single value of the
representation type ’a s. The inj and prj functions inject and project using
App; although the pattern in prj is technically inexhaustive, the fact that the
functor generates a fresh t for each application guarantees a match in practice.

The empty parentheses in the functor definition force the functor to be gener-
ative rather than applicative5 [Leroy, 1995], so that each application of Newtype1
generates a fresh type t, even if Newtype1 is being applied to the same argument.

This generative marker is a small deviation from the interface of Figure 1,
but essential to ensure that only a single data constructor App is generated for
each brand t. Without the generative marker, multiple applications of Newtype1
to the same argument would generate modules with compatible brands but in-
compatible data constructors, leading to runtime pattern-matching failures in
prj.

4 Opam users can install the extended OCaml compiler with the command
opam switch 4.01.0+open-types.

5 Explicitly generative functors are a new feature of OCaml, scheduled for the next
release: http://caml.inria.fr/mantis/view.php?id=5905.



4 Related work

We have shown how type defunctionalization can be used to write programs that
abstract over OCaml type constructors without leaving the core language. In a
language with features that support case analysis on types, type defunctional-
ization becomes a yet more powerful tool. Kiselyov et al. [2004] use type defunc-
tionalization together with functional dependencies to support fold operations on
heterogeneous lists. Similarly, Jeltsch [2010] implements type defunctionalization
using type synonym families to support folds over extensible records.

Kiselyov and Shan [2007] introduce lightweight static capabilities, applying
phantom types and generativity to mark values as safe for use with an efficient
trusted kernel, much as we use generativity in Section 3.1 to ensure the safety
of an unchecked cast. Kiselyov and Shan’s work is significantly more ambitious
than ours; whereas we are interested in expressing programs with higher-kinded
polymorphism in ML, they show how to statically ensure properties such as array
lengths that were previously thought to require a dependently-typed language.
The “brand” terminology is borrowed from Kiselyov and Shan, but their brands
are structured type expressions, and significantly more elaborate than the simple
atomic names which we use to denote type constructors.

Jones [1995] shows that standard first-order unification suffices for inferring
types involving higher-kinded variables so long as the language of constructor
expressions has no non-trivial equalities. This insight underlies our use of brands
to embed type constructor polymorphism in OCaml.

Swamy et al. [2011] share our aim of reducing the overhead of monadic pro-
gramming in ML, but take a different approach based on an elaboration of
implicitly-monadic ML programs into a language with explicit monad opera-
tions. Whereas the present work aims to embed higher-kinded programs into
OCaml without changing the language, their proposal calls for significant new
support at the language level.

5 Limitations and future work

The NewtypeN family The interface presented in Section 2 consists of a type
constructor app and a family of functors Newtype1, Newtype2, . . . for extending
app with new inhabitants. We would ideally like to replace the Newtype family
with arity-generic operations, but it is unclear whether it is possible to do so in
OCaml. For the moment the family of functors seems adequate in practice.

Variance and subtyping Our focus so far has been on expressing higher-kinded
programs from Haskell. However, we also plan to explore the interaction of
higher-kinded polymorphism with features specific to OCaml. For example, we
can obtain a representation of proofs of subtyping by changing the definition of
Leibniz equality (Section 2.2) to quantify over positive contexts: a type a is a
subtype of b if it can be coerced to b in a positive context (or if b can be coerced
to a in a negative context.) We look forward to exploring the implications of
having first-class witnesses of the subtyping relation.
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