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Metaprogramming and effect handlers interact in unexpected, and sometimes undesirable, ways. One example

is scope extrusion: the generation of ill-scoped code. Scope extrusion can either be preemptively prevented,

via static type systems, or retroactively detected, via dynamic checks. Static type systems exist in theory, but

struggle with a range of implementation and usability problems in practice. In contrast, dynamic checks exist

in practice (e.g. in MetaOCaml), but are understudied in theory. Designers of metaprogramming languages are

thus given little guidance regarding the design and implementation of checks. We present the first formal

study of dynamic scope extrusion checks, introducing a calculus (𝜆⟨⟨op⟩⟩ ) for describing and evaluating checks.
Further, we introduce a novel dynamic check — the “Cause-for-Concern” check — which we prove correct,

characterise without reference to its implementation, and argue combines the advantages of existing dynamic

checks. Finally, we extend our framework with refined environment classifiers, which statically prevent scope

extrusion, and compare their expressivity with the dynamic checks.
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1 Introduction

Multi-stage programming languages have been used to write code generators for a wide variety

of domains, from database queries and stream processing to geometry, parsing, and differentiable

programming [Carette et al. 2011; Kiselyov et al. 2017; Rompf and Amin 2015; Wang et al. 2019;

Yallop et al. 2023]. Language constructs for code generation often come with strong guarantees. For

example, a well-typed code generator written in the MetaML language [Taha 1999] is guaranteed

never to generate ill-typed code. However, these guarantees are weakened when code generation

constructs are combined with effects [Calcagno et al. 2000; Isoda et al. 2024; Kameyama et al. 2015,

2011; Kiselyov 2014; Kiselyov et al. 2016; Parreaux 2020].

In particular, the combination of code generation constructs and effects can lead to scope extrusion:
the inadvertent generation of code with unbound variables. For example, in the MacoCaml program

Listing 1, the use of effect handlers in code generation extrudes the variable x beyond its scope:
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MacoCaml
1 try << let x = 3 in $(perform (Extrude <<x>>)) >>
2 with effect Extrude y, k → << $y + 1 >>

Listing 1. An example of scope extrusion

Line 1 installs a handler whose body << let x = 3 in $(...) >> uses code quotation to construct

code for a function application. The expression within quotation marks << >> is not evaluated
immediately, but constructs a piece of code that may be evaluated in the future. However, the

sub-expression prefixed by $ is evaluated immediately, and performs an effect Extrude, transferring

control to the most recently installed handler. Line 2 shows the handler, which binds the argument

<<x>> to y and the continuation delimited by try and perform to k. The handler discards the

continuation and uses the argument to construct the code << x + 1 >>, in which x is unbound.

In Listing 1 the extrusion is simple: <<x>> leaves the scope of its binder <<let x = 3 in ...>>
and never returns. However, handlers that invoke k might cause control to re-enter the scope:

MacoCaml
2 with effect Extrude y, k → continue k << $y + 1 >>

Listing 2. Revising the handler of Listing 1 to bring x back into scope

Here continue resumes the continuation, returning control to the point where performwas invoked,

so that the program ultimately evaluates to a well-scoped code value << let x = 3 in x + 1 >>.
Scope extrusion is a problem in practice as well as in theory. The strong guarantees attached to

multi-stage languages relieve programmers of the burden of debugging type errors in generated

code, but scope extrusion reintroduces the burden. Ofenbeck et al. [2016] report an example:

refactoring the LMS system to address performance issues used effects to perform code motion

optimizations that inadvertently led to scope extrusion errors. These errors had simple causes, but

were time-consuming to fix due to the large number of variables involved, and the difficulty of

determining which part of the code generator produced the offending code.

To avoid the need for programmers to debug generated code, multi-stage languages with effects

often provide help in identifying scope extrusion. The key question is when to check for problems.

One approach is to track potential extrusion in the type system, rejecting programs that cannot

be shown to be safe [Calcagno et al. 2000; Isoda et al. 2024; Kiselyov et al. 2016; Parreaux 2020;

Westbrook et al. 2010]. In practice, however, it is difficult to combine expressiveness that allows

virtuous interactions between effects and code generation (e.g. code motion optimizations) with

strictness that excludes all potential extrusion. Given the choice between such sophisticated type

systems and simpler but less safe systems, users tend to prefer the latter [Parreaux 2020].

The other approach is to check dynamically during code generation, allowing potentially unsafe

code generators to run, and identifying extrusion as it occurs. This more liberal approach does not

have an existing theory, but it is more common in practice, in part because it can be incorporated

into existing multi-stage languages such as MetaOCaml, Scala [Stucki et al. 2018] and Typed

Template Haskell [Xie et al. 2022] without disruption to their type systems.

There is a range of possible designs for dynamic checks. At one extreme, scope is checked lazily,

once code generation is complete. The original MetaOCaml language used lazy checking, since its

static type system, environment classifiers [Taha and Nielsen 2003], which prevented some forms

of extrusion, could not prevent every case. At the other extreme, BER MetaOCaml checks scope

eagerly each time a quotation is constructed [Kiselyov 2014, 2024a]. Neither approach is optimal.

Lazy checking is uninformative [Ofenbeck et al. 2016], producing hard-to-debug errors, inefficient,
reporting errors much later than eager checking [Kiselyov 2014], and in some systems can bind
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variables in unintended ways [Kameyama et al. 2015]. On the other hand, eager checking is incorrect
in a sense that we explicate in §4.3.1, failing to detect occurrences of free variables in certain

pathological cases (Listings 8 and 9). Further, eager checking is not continuation-aware: for example,

it incorrectly rejects the safe code generator in Listing 2 [Kiselyov 2014].

To establish a theory of dynamic checks, we introduce the 𝜆⟨⟨op⟩⟩ and 𝜆AST(op) calculi that support
multi-stage programming with effects and handlers, and show how they can be used to describe

and compare eager and lazy checking. We also describe a new check, the Cause-for-Concern (C4C)

check, implemented in MacoCaml, that combines the advantages of eager and lazy checking.

Contributions. §2 presents the eager and lazy approaches informally using a larger example, and

introduces our novel C4C check. The subsequent sections present technical contributions:

• Two novel calculi, 𝜆⟨⟨op⟩⟩ and 𝜆AST(op) , designed for the study of typed multi-stage program-

ming with effects and handlers (§3). 𝜆⟨⟨op⟩⟩ is a type safe two-stage calculus, and is the first

calculus to support effect handlers at both compile-time and run-time stages.

• A framework based on 𝜆⟨⟨op⟩⟩ and 𝜆AST(op) that facilitates formalization and evaluation of

different scope extrusion checks as a family of elaborations from 𝜆⟨⟨op⟩⟩ to 𝜆AST(op) (§4). We

use the framework to study a variety of designs: a lazy check (§4.2), the eager check (§4.3),

and our novel C4C check (§4.4).

• An extension of 𝜆⟨⟨op⟩⟩ and 𝜆AST(op) with Kiselyov et al.’s [2016] refined environment classifiers
(§5.1), with a proof of correctness via a logical relation (§5.2), and an evaluation of its

expressiveness compared to the dynamic checks (§5.3).

• Implementations of the three dynamic checks in the MacoCaml language (§6). An implemen-

tation with the C4C check is available as an artifact [Lee et al. 2025].

Finally, §7 presents related work and §8 concludes.

2 Overview

While there are many metaprogramming languages, our discussion will be grounded in Maco-

Caml [Chiang et al. 2024; Xie et al. 2023]. The MacoCaml project extends the OCaml programming

language with metaprogramming facilities for compile-time program generation: a type constructor

𝛼 expr for code of type 𝛼 , and quote << >> and splice $ forms for constructing expr values.

At a high level, elements of 𝛼 expr correspond to ASTs of type 𝛼 . Quotation converts expressions

to ASTs, and splices stop the conversion, allowing evaluation during AST creation. As an example,

the metaprogram <<$(print_int (1+2); <<1+2>>) + 0>> can be thought of as Plus((print_int

(1+2); Plus(Int(1), Int(2))), Int(0)). This conceptual model will be made precise in §3.

Listing 3 shows our running example, adapted from Kiselyov [2014], which generates code for

matrix multiplication. The parameters a, b, c are two-dimensional arrays; a.(0) accesses the array

representing first row of the matrix. Realistic implementations of matrix multiplication typically

employ various sophisticated optimizations, but this simple code will be sufficient to highlight the

interaction between code generation and effects that is the focus of this paper.

MacoCaml
1 macro iter a body = << for i = 0 to length $a - 1 do $(body <<i>>) done >>
2 macro mmul a b c =

3 iter a @@ fun i →
4 iter <<$a.(0)>> @@ fun k →
5 iter <<$b.(0)>> @@ fun j →
6 << $c.($i).($j) ← $c.($i).($j)

7 + $a.($i).($k)

8 * $b.($k).($j) >>

Listing 3. Staged code that generates the familiar matrix multiplication code
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Line 1 defines a macro (i.e. a compile-time function) that generates code for a for loop from the

code for a term of array type a and the result of calling the body function with the loop variable

i. Lines 3–9 define a second macro mmul that uses iter to construct a triply-nested loop. The @@

operator denotes function application, and is used to avoid proliferation of parentheses.

2.1 Effect Handlers in Staging

Effect handlers are a composable and customisable mechanism for simulating effects [Pretnar

2015]. As with metaprogramming, there are many variants of effect handlers, and we ground our

discussion in deep, unnamed effect handlers that permit multi-shot continuations (a calculus is

presented in §3.1). In this section, our examples use OCaml’s deep, unnamed effect handlers, which

permit only single-shot continuations [Sivaramakrishnan et al. 2021].

Given the utility of metaprogramming and effect handlers, it is wise to consider how a language

that offers both might mediate their interaction. Complete separation may be undesirable, since

effects are very useful for relaxing the stack discipline that would otherwise tightly couple the

structure of the generated and generating code. Concretely, effects allow the programmer to easily

perform let-insertion [Kameyama et al. 2011; Yallop and Kiselyov 2019] (Listing 4):

MacoCaml
1 type _ Effect.t += Genlet : int expr * int expr → int expr t

2 macro genlet x e = perform (Genlet (x, e))

3 macro handle_genlet body i = try body i

4 with effect Genlet (x, e), k →
5 if x == i then <<let y = $e in $(continue k <<y>>)>>
6 else continue k (genlet x e)

Listing 4. Effect handlers and quotes and splices combine to perform let-insertion

Lines 1–2 define a new effect constructor Genlet and a compile-time function that performs the

Genlet effect. The Genlet effect takes two arguments: the first identifies the insertion point for the

new binding, and second the expression to be bound. Lines 3–5 define a handler for Genlet that

either installs a let binding on the stack (line 5) or forwards the effect to an outer handler (line 6).

The invocation handle_genlet body i wraps the code generated by body i with a let binding for

each call to genlet i e that takes place during the execution of body.

In the mmul example (Listing 3), the expression $a.($i).($k) does not depend on j, and therefore

can be lifted out of the loop, an optimisation known as loop-invariant code motion. Effects are a
convenient way to perform these types of optimisations in staged programs while maintaining

the structure of the generating code. Without effects, the stack discipline couples the structures of

the generating and generated code, so that code motion requires updating the generator to lift the

expression $a.($i).($k) above the iter <<$b.(0)>> expression.
Listing 5 shows the example updated to use let-insertion. On Line 1, handle_genlet now installs

a Genlet handler while generating each loop, and Lines 7 and 8 now perform the genlet effect.

MacoCaml
1 macro iter a body = << for i = 0 to length $a - 1 do $(handle_genlet body <<i>>) done >>
2 macro mmul a b c =

3 iter a @@ fun i →
4 iter <<$a.(0)>> @@ fun k →
5 iter <<$b.(0)>> @@ fun j →
6 << $c.$i.$j ← $c.($i).($j)

7 + genlet k <<$a.($i).($k)>> (*instead of $a.($i).($k)*)

8 * genlet j <<$b.($k).($j)>> (*instead of $b.($k).($j)*) >>

Listing 5. Effect handlers and quotes and splices combine to perform let-insertion
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Unfortunately, it is easy to make mistakes when performing an optimisation of this kind, leading

to scope extrusion. Assume that, given how arrays are laid out in memory, and the specific design

of the cache prefetcher, it is more efficient to interchange the j and k loops:

MacoCaml
3 iter a @@ fun i →
4 iter <<$b.(0)>> @@ fun j →
5 iter <<$a.(0)>> @@ fun k → ...

Should the programmer realise this, they may perform this interchange without changing the

let-insertion code. But the use of genlet in Listing 5 assumes that the k loop is above the j loop, so

this change would result in scope extrusion.

Alternatively, the programmer may identify the wrong let insertion point:

MacoCaml
6 << $c.$i.$j ← $c.($i).($j)

7 + genlet i <<$a.($i).($k)>> (*should be k, not i*)

8 * genlet k <<$b.($k).($j)>> (*should be j, not k*) >>

This mistake also results in scope extrusion. Detecting such errors requires a scope extrusion check.

2.2 Checking for Scope Extrusion

In theory, it is possible to adopt a lazy check (§4.2), which waits until the end of the program

generation process to check that the generated program contains no free variables [Kiselyov

2014]. Lazy checking amounts to type checking generated code, an approach used in the original

MetaOCaml implementation [Taha and Nielsen 2003], LMS [Ofenbeck et al. 2016], and other systems.

The lazy approach has two drawbacks: it is inefficient, since it allows a code generator to run to

completion after an error has occurred, and it produces uninformative error messages that refer to

the generated code rather than the code generator.

Therefore, BER MetaOCaml instead adopts an eager check [Kiselyov 2014, 2024a], which we

describe formally in §4.3. By checking at various points during the code generation process, the

eager check identifies the error early and raises an informative error message [Kiselyov 2014, §5.1].

While the eager check provides better error reporting than the lazy check, it does not allow

effect handlers and metaprogramming to interact as freely as one might desire. For example, a

common use-case for effect handlers is parameterisation: by choosing different handlers for the

same effect, the same piece of code can be specialised in various contexts [Wang et al. 2019].

Parameterisation uses effect handlers in a very simple way; we use it in our example to show that

even straightforward uses of effect handlers interact poorly with the eager check.

To extend the matrix multiplication generator with parameterisation, suppose that we wish to

generate e1 + e2 * e3 by default, and generate a call to a fused multiply-add instruction __fma(e1,

e2, e3) in contexts where performance takes priority over preserving exactly the expected floating

point behaviour. Listing 6 shows one way to parameterise over these alternatives, first abstracting

the choice as an effect, FMA (lines 1-2), then modifying the body of mmul to perform the effect (lines

6–8), then defining handlers that can be used to tune the generation process (lines 10–13), and

finally installing a handler around the call to mmul (line 15). Line 15 makes use of a top-level splice,
which is used in MacoCaml to insert the code generated by a macro into a larger program.

Unfortunately, the use of FMA in Listing 6 is not allowed by the eager check, which throws a scope

extrusion error when Line 11 or Line 13 is executed. For example, in the body of the hdl_fma_def

handler, the code template <<$x + $y * $z>> is evaluated in a scope where i, j, and k are free.

However, as x is bound to <<c.($i).($j)>>, the eager check reports scope extrusion.
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MacoCaml
1 type _ Effect.t += FMA : int expr * int expr * int expr → int expr t

2 macro fma x y z = perform (FMA (x, y, z))

3

4 macro mmul a b c =

5 ...

6 << $c.($i).($j) ← $(fma <<$c.($i).($j)>>
7 (genlet k <<$a.($i).($k)>>)
8 (genlet j <<$b.($k).($j)>>))>>
9

10 macro hdl_fma_def body = try body ()

11 with effect FMA (x, y, z), k → continue k << $x + $y * $z >>
12 macro hdl_fma_opt body = try body ()

13 with effect FMA (x, y, z), k → continue k << __fma($x, $y, $z) >>
14

15 let code = $(hdl_fma_def @@ fun () → mmul <<a>> <<b>> <<c>>)

Listing 6. Handlers for selecting a multiply-and-add instruction

To support more flexible interaction between effect handlers andmetaprogramming, we introduce

a novel continuation-aware C4C check, explained in detail in §4.4, which allows code like Listing 6

to run to completion without reporting scope extrusion.

3 Calculus

$(do𝑥 ← ⟨⟨return 0⟩⟩
in (𝜆𝑧.return 𝑧 ) (𝑥 ) )

tls(do𝑥 ← return Ret(Nat(0) )
in (𝜆𝑧.return 𝑧 ) (𝑥 ) )

Ret(Nat(0) )

𝜆⟨⟨op⟩⟩ 𝜆AST(op) 𝜆op

; →∗
Elaboration

Compile-Time

Execution

Fig. 1. 𝜆⟨⟨op⟩⟩ is first elaborated into 𝜆AST(op) , which is then executed at compile-time to obtain the AST of a
run-time 𝜆op program. tls is a marker which tracks the position of the top-level splice (§3.2)

To ground the discussion of dynamic scope extrusion checks, we introduce two novel calculi for

studying the interaction between typed multi-stage programming and effects and handlers: 𝜆⟨⟨op⟩⟩
and 𝜆AST(op) . 𝜆⟨⟨op⟩⟩ (§3.1) offers metaprogramming in the form of quotes and splices, and effect

handlers. 𝜆AST(op) offers metaprogramming in the form of AST constructors, and effect handlers.

Following Calcagno et al. [2003], 𝜆⟨⟨op⟩⟩ has no operational semantics; programs in 𝜆⟨⟨op⟩⟩ are
instead elaborated into 𝜆AST(op) (§3.3), where they may then be executed, to obtain the AST of a run-

time program that has no quotes and splices. This process is summarised in Figure 1. Elaboration

simplifies the operational semantics, and is a convenient mechanism for inserting dynamic checks

(§4). 𝜆⟨⟨op⟩⟩ and 𝜆AST(op) are both type safe (§3.4).

3.1 The Source Language: 𝜆⟨⟨op⟩⟩

𝜆⟨⟨op⟩⟩ (Figure 2) is a language which offers both metaprogramming, in the form of quotes ⟨⟨𝑒⟩⟩
and splices $𝑒 , as well as effect handlers [Pretnar 2015]. Syntactic 𝜆⟨⟨op⟩⟩ terms are divided into

values, expressions, and handlers, similar to a fine-grained call-by-value approach [Levy et al. 2003].

Ignoring quotes and splices, and adding a continuation term former, 𝜅𝑥.𝑒 that cannot be written

explicitly but may be generated during reduction, one obtains the syntax of a standard base calculus

of effects and handlers [Biernacki et al. 2017; Isoda et al. 2024; Pretnar 2015], which we refer to

as 𝜆op (and which is described in an appendix in the extended version). Briefly, return 𝑣 lifts a

value into an expression, and do 𝑥 ← 𝑒1 in 𝑒2 sequences expressions. op(𝑣) performs an effect,
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𝜆⟨⟨op⟩⟩Syntax
Values 𝑣 := 𝑥 | 𝑚 ∈ N | 𝜆𝑥.𝑒
Expressions 𝑒 := 𝑣1 𝑣2 | return 𝑣 | do 𝑥 ← 𝑒1 in 𝑒2 | op(𝑣) | handle 𝑒 with {ℎ} | continue 𝑣1 𝑣2

| ⟨ ⟨𝑒 ⟩⟩ | $𝑒
Handlers ℎ := return(𝑥 ) ↦→ 𝑒 | ℎ; op(𝑥, 𝑘 ) ↦→ 𝑒

Effect sets
Run-Time 𝜉 ::= ∅ | 𝜉 ∪ {op0

𝑖
}

Compile-Time Δ ::= ∅ | Δ ∪ {op−1𝑖 }

Typing contexts
Γ ::= · | Γ, 𝑥 : 𝑇 0 | 𝑥 : 𝑇 −1

Types
Level 0
Values 𝑆0,𝑇 0

::= N0 | (𝑆0 𝜉−→ 𝑇 0 )0

| (𝑆0 𝜉−↠ 𝑇 0 )0

Computations 𝑇 0
! 𝜉 | 𝑇 0

!Δ | 𝑇 0
!Δ; 𝜉

| (𝑆0 ! 𝜉1 =⇒ 𝑇 0
! 𝜉2 )0 !Δ

Handlers (𝑆0 ! 𝜉1 =⇒ 𝑇 0
! 𝜉2 )0

Level −1
Values 𝑆−1,𝑇 −1 ::= N−1 | (𝑆 Δ−→ 𝑇 )−1

| (𝑆 Δ−↠ 𝑇 )−1 | Code(𝑇 0
! 𝜉 )−1

Computations 𝑇 −1 !Δ

Handlers (𝑆−1 !Δ1 =⇒ 𝑇 −1 !Δ2 )−1

Fig. 2. 𝜆⟨⟨op⟩⟩ syntax and types

suspending the current computation and throwing a value 𝑣 to be caught by some handler ℎ that

was installed using handle 𝑒 with {ℎ}. Within the body of the handler, continue𝑘 𝑣 can be used

to resume the suspended program (𝑘), inserting the value 𝑣 in place of the performed effect.

Metaprogramming systems differ along several key dimensions: they can be homogeneous

(where the generating and generated languages coincide) or heterogeneous, two-stage or multi-

stage, compile-time or run-time [Lilis and Savidis 2019]. 𝜆⟨⟨op⟩⟩ offers homogeneous, two-stage,
compile-time metaprogramming. Many practical systems, like MacoCaml and MetaOCaml, are

homogeneous. Many practical use cases of MSP involve only two stages [Inoue and Taha 2012],

and scope extrusion is often studied in two stage systems [Isoda et al. 2024; Kiselyov et al. 2016].

Similarly, 𝜆⟨⟨op⟩⟩ offers deep, unnamed handlers that permit multi-shot continuations, modelling

OCaml effect handlers, though generalised to multi-shot continuations. Multi-shot continuations,

though not supported by OCaml, are useful for if/case insertion [Yallop 2017]. Other effect systems

also allow for shallow or sheep handlers, named handlers, or permit only one-shot continuations

[Yallop and community contributors 2025]: we do not study these systems.

Following Calcagno et al. [2003], 𝜆⟨⟨op⟩⟩ has no operational semantics, but is instead elaborated

into 𝜆AST(op) . 𝜆AST(op) programs may then be executed, to obtain the AST of a run-time 𝜆op program

that has no quotes and splices. This process is summarised in Figure 1. Elaboration simplifies the

operational semantics and is a convenient mechanism for inserting dynamic checks (§4).

Only expressions can be quoted (values and handlers cannot be): thus, quotes must generate run-

time computations. For example, ⟨⟨1⟩⟩ is not valid syntax, instead, onemustwrite ⟨⟨return 1⟩⟩. Sim-

ilarly, ⟨⟨return 1⟩⟩ is an expression, not a value, so one must write do 𝑎 ← ⟨⟨return 1⟩⟩ in op(𝑎)
rather than op( ⟨⟨return 1⟩⟩ ). However, we will abuse notation and write op(⟨⟨1⟩⟩) in place of

do 𝑎 ← ⟨⟨return 1⟩⟩ in op(𝑎).

3.1.1 Type System. Figure 2 summarises the 𝜆⟨⟨op⟩⟩ types. To motivate the type system, consider

the following running example 𝑒 in 𝜆⟨⟨op⟩⟩ extended with arithmetic:

𝑒 ≜ (𝜆𝑥 .get(); ⟨⟨do 𝑦 ← $𝑥 in readInt() + 𝑦⟩⟩)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 39. Publication date: January 2026.
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Table 1. Stratification of level 0 types

Run-Time

Value Computation Handler

Compile-Time Value 𝑇 0 𝑇 0
! 𝜉 (𝑆0 ! 𝜉1 =⇒ 𝑇 0

! 𝜉2)0

Computation 𝑇 0
!Δ 𝑇 0

!Δ; 𝜉 (𝑆0 ! 𝜉1 =⇒ 𝑇 0
! 𝜉2)0 !Δ

Type of syntactic
level 0 values 𝑣

Type of syntactic
level 0 expressions 𝑒

Type of syntactic
level 0 handlers ℎ

Cannot be
directly created

Here 𝑒 is (1) a compile-time function that (2) takes the AST of a run-time computation of type

N ! {print}, (3) performs a compile-time effect (get), and (4) returns the AST of a run-time compu-

tation of a different type. The program has the following type:

1Compile-time function3Compile-time effects

2 Input: AST of a run-time
computation of type N ! {print}

4 Output: AST of a run-time
computation of type N ! {print, readInt}

(Code(N0
!{print})−1 −→ Code(N0

! {print, readInt})−1)−1
{get}

The type system stratifies types into compile-time (𝑇 −1) and run-time (𝑇 0
) levels. The function 𝑒

has a compile-time type (𝑆 → 𝑇 )−1, and cannot be used as a run-time function of type (𝑆 → 𝑇 )0.
To support compile-time manipulation of run-time programs, the Code(𝑇 0

! 𝜉)−1 type makes

ASTs of level 0 computations available at level −1. Only computations, not values or handlers, can
be turned into ASTs.

Effect sets are stratified into Δ (compile-time) and 𝜉 (run-time). In our running example, suppose

𝑒 is applied at compile-time to some term 𝑒′ of the right type. The application has a compile-time

effect get, and returns an AST with two run-time effects, print and readInt.

Γ ⊢−1
s

𝑒 𝑒′ : Code(N0
! {print, readInt})−1 ! {get}

Splicing the result of application lifts the compile-time AST into a run-time type that has

unhandled effects at both compile-time and run-time.

Γ ⊢0
q
$(𝑒 𝑒′) : N0

! {get}; {print, readInt}
We track compile-time and run-time effects in separate sets. Compile-time effects are tracked

in Δ(= {get}) and run-time effects in 𝜉 (= {print, readInt}). Distinguishing compile-time and

run-time effects stratifies types (Table 1): what is a computation at run-time could have been a

value at compile-time, and vice versa.

In 𝜆⟨⟨op⟩⟩ , the use of a term typed at level 0 always results in compile-time computation (the

second row of Table 1). For example, level 0 values are elaborated into compile-time computations

(𝑇 0
!Δ) that evaluate to ASTs of run-time values (§3.3):

𝑇 0
!Δ Compile-time computation, run-time value

Inhabitants: Level 0 values 𝑣 , e.g. 𝜆𝑥.return 𝑥

𝑇 0
!Δ; 𝜉 Compile-time computation, run-time computation

Inhabitants: Level 0 expressions 𝑒 , e.g. return 1

(𝑆0 ! 𝜉1 =⇒ 𝑇 0
! 𝜉2)0 !Δ Compile-time computation, run-time handler

Inhabitants: Level 0 handlers ℎ, e.g. {return(𝑥) ↦→ return 𝑥}
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Table 2. The nine 𝜆⟨⟨op⟩⟩ typing judgements

Value (𝑣) Expression (𝑒) Handler (ℎ)

Compile (c) Γ ⊢0
c
𝑣 : 𝑇 0

!Δ Γ ⊢0
c
𝑒 : 𝑇 0

!Δ; 𝜉 Γ ⊢0
c
ℎ : (𝑆0 ! 𝜉1 =⇒ 𝑇 0

! 𝜉2)0 !Δ
Quote (q) Γ ⊢0

q
𝑣 : 𝑇 0

!Δ Γ ⊢0
q
𝑒 : 𝑇 0

!Δ; 𝜉 Γ ⊢0
q
ℎ : (𝑆0 ! 𝜉1 =⇒ 𝑇 0

! 𝜉2)0 !Δ
Splice (s) Γ ⊢−1

s
𝑣 : 𝑇 −1 Γ ⊢−1

s
𝑒 : 𝑇 −1 !Δ Γ ⊢−1

s
ℎ : (𝑆−1 !Δ1 =⇒ 𝑇 −1 !Δ2)−1

𝜆𝑥 . $(do 𝑓 ← (𝜆𝑦.⟨⟨$(𝑦) + 2⟩⟩) in do 𝑎 ← ⟨⟨1⟩⟩ in 𝑓 𝑎) + 3
c s s q s q s c

Fig. 3. A metaprogram annotated with compiler modes

Consequently, syntactic values (𝑣) at level 0 do not have value type (𝑇 0
). The relationship between

syntax and types is more complicated than in 𝜆op. In contrast, level 0 compile-time value types

(the first row in Table 1) have no inhabitants in 𝜆⟨⟨op⟩⟩ (but 𝑇
0
is used to type formal parameters of

functions at level 0, like 𝑥 in 𝜆𝑥.return 0).

As the stratification is subtle, it is best revisited after covering the typing rules (§3.1.1), core

language (§3.2), and elaboration (§3.3).

Selected 𝜆⟨⟨op⟩⟩ typing rules are collated in Figure 4. Similar to Xie et al. [2023], typing judgements

are indexed by one of three compiler modes: Compile (c), Quote (q), or Splice (s). However,

unlike Xie et al. [2023], typing judgements do not need to be indexed by a level: since 𝜆⟨⟨op⟩⟩ is a
two-level system, each compiler mode uniquely determines a level (c|q ↦→ 0, s ↦→ −1). For each
mode, there are three typing judgements: one for each syntactic category (Table 2).

Modes are useful for elaboration. c identifies code that is ambient and inert (no surrounding

quotes or splices). s identifies code that manipulates ASTs at compile-time (last surrounding

annotation is a splice). q identifies code whose ASTs are manipulated at compile time (last

surrounding annotation is a quote). Accordingly, top-level splices transition from c to s. Quotes

transition from s to q. Splices ($𝑒) transition from q to s. Figure 3 annotates a metaprogram (that

evaluates to the AST of 𝜆𝑥 .1 + 2 + 3) with modes.

The typing judgements for c and q are identical in almost all cases. To avoid repetition, we

introduce the notation Γ ⊢c |q 𝑒 : 𝑇 to stand for the two judgements Γ ⊢c 𝑒 : 𝑇 and Γ ⊢q 𝑒 : 𝑇 . The

mode of the conclusion will match the modes of the assumption, unless otherwise stated.

The 𝜆⟨⟨op⟩⟩ typing rules are mostly standard for a calculus with effect handlers . In c and q,

compile-time effects Δ are threaded through typing judgements, and only level 0 variables in the

context can be accessed. In s, only level −1 variables can be accessed. As the levels of types can,

in most cases, be inferred: for readability, they too are mostly omitted. The three key rules are

s-Quote, q-Splice, and c-Splice, which switch between modes and levels.

A closed 𝜆⟨⟨op⟩⟩ expression is well-typed if, in c-mode, it can be typed with empty compile-time

and run-time effect sets: all effects are provably handled, both at compile-time and run-time.

Definition 3.1 (Well-Typed Closed Expression). A closed expression 𝑒 is well-typed if · ⊢c 𝑒 :
𝑇 0

! ∅; ∅

3.2 The Core Language: 𝜆AST(op)

𝜆AST(op) (Figure 5) is a language which offers AST constructors and effect handlers. Syntax is divided

into normal forms, terms, and handlers. The syntax of 𝜆AST(op) combines a standard calculus of

effect handlers (𝜆op) with machinery for AST construction, and primitives for scope extrusion

checking.
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𝜆⟨⟨op⟩⟩Selected Typing Rules
Level annotations on types mostly omitted

Γ ⊢
c|q 𝑣 : 𝑇 0

!Δ

(c|q-Nat)

Γ ⊢
c|q 𝑚 : N !Δ

(c|q-Var)
Γ (𝑥 ) =𝑇 0

Γ ⊢
c|q 𝑥 : 𝑇 0

!Δ

Γ ⊢
c|q 𝑒 : 𝑇 0

!Δ; 𝜉

(c|q-App)
Γ ⊢

c|q 𝑣1 : (𝑆 𝜉−→ 𝑇 ) !Δ Γ ⊢
c|q 𝑣2 : 𝑆 !Δ

Γ ⊢
c|q 𝑣1𝑣2 : 𝑇 !Δ; 𝜉

(c|q-Splice)
Γ ⊢s 𝑒 : Code(𝑇 0

! 𝜉 )−1 !Δ
Γ ⊢

c|q $𝑒 : 𝑇 0
!Δ; 𝜉

Γ ⊢s 𝑣 : 𝑇 −1

(s-Nat)

Γ ⊢s 𝑚 : N

(s-Var)

Γ (𝑥 ) =𝑇 −1

Γ ⊢s 𝑥 : 𝑇 −1

Γ ⊢s 𝑒 : 𝑇 −1 !Δ

(s-App)

Γ ⊢s 𝑣1 : 𝑆 Δ−→ 𝑇 Γ ⊢s 𝑣2 : 𝑆
Γ ⊢s 𝑣1𝑣2 : 𝑇 !Δ

(s-Quote)

Γ ⊢q 𝑒 : 𝑇 0
!Δ; 𝜉

Γ ⊢s ⟨⟨𝑒 ⟩⟩ : Code(𝑇 0
! 𝜉 )−1 !Δ

Fig. 4. Selected typing rules for 𝜆⟨⟨op⟩⟩ .

𝜆AST(op) ’s machinery for AST construction comprises AST nodes for each 𝜆op term former that

can be written by the user (e.g. Var for variables, Hop for _;op(_, _) ↦→ _), as well as type-annotated
formal parameters (𝛼𝑅 , where 𝑅 is some run-time value pre-type (Figure 5), henceforth simply

“type”). Formal parameters represent binding sites, e.g. 𝑥 in 𝜆𝑥 .return 0. Separating ASTs and

formal parameters mirrors the approach by Calcagno et al. [2003], though they use untyped formal

parameters. Additionally, 𝜆AST(op) adds mkvar𝑅, a primitive for generating fresh formal parameters

of type 𝑅, 𝛼𝑅 , where separate calls to mkvar return distinct formal parameters [Taha 1999].

𝜆AST(op) ’s machinery for scope extrusion checking comprises:

• err, an error state for indicating the presence of scope extrusion,

• check and checkM, guarded returns that either report scope extrusion or return normally,

• dlet, a primitive for tracking which variables are well-scoped and which have extruded their

scope, and

• tls, a marker representing an occurrence of a top-level splice in the source program: at this

point, remaining stack frames either introduce a new top-level splice, or construct an AST in

an entirely straightforward way, with standard (and thus safe) control flow.

Notice that, while the calculus provides the machinery for scope extrusion checking, it does not

demand that one use it, or use it properly. Scope extrusion checking is not a language feature, but

an algorithm one builds on top of the calculus.

3.2.1 Operational Semantics. The operational semantics of 𝜆AST(op) is defined over configurations

⟨𝑡 ;𝐸;𝑈 ;𝑀 ; 𝐼 ⟩. At a high level, 𝑡 are terms and 𝐸 are evaluation contexts, defined as a stack of

evaluation frames, à la Felleisen et al. [1988]. 𝑈 acts as a source of fresh names. 𝑀 is a set of

muted variables, i.e. those that do not trigger a scope extrusion error, even if they have extruded

their scope. 𝐼 indicates the point at which variables in 𝑀 should be unmuted, by setting 𝑀 to ∅.
Collectively,𝑀 and 𝐼 determine whether to perform the check immediately (𝑀 = ∅), or defer it to a
later point (marked by 𝐼 ). Deferring checking in the presence of a continuation that could later be

used to recover from scope extrusion is used by the C4C check, making it “continuation-aware”.

The semantics for the lazy and eager checks can be more simply given as 3-tuple transition systems,

which are straightforward projections of the 5-tuple system used to compare the three checks.

The operational semantics is mostly as expected for a calculus with effect handlers. Interesting

rules are collated in Figure 5, and full rules in an appendix in the extended version.
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𝜆AST(op)Syntax
Formal Params 𝛼𝑅

Normal Forms 𝑛 ::= 𝑥 | 𝑚 ∈ N | 𝜆𝑥.𝑡 | 𝜅𝑥.𝑡 | Nat(𝑚) | 𝛼𝑅 | Var(𝛼𝑅 ) | Lam(𝑛1, 𝑛2 ) | App(𝑛1, 𝑛2 )
| Continue(𝑛1, 𝑛2 ) | Ret(𝑛) | Do(𝑛1, 𝑛2, 𝑛3 ) | Op(𝑛) | Hwith(𝑛1, 𝑛2 )
| Hret(𝑛1, 𝑛2 ) (𝑛1, 𝑛2 ) | Hop(𝑛1, 𝑛2, 𝑛3, 𝑛4 )

Terms 𝑡 := 𝑛1 𝑛2 | return 𝑛 | do 𝑥 ← 𝑡1 in 𝑡2 | op(𝑡 ) | handle 𝑛 with {ℎ} | continue𝑛1 𝑛2

| check𝑛 | checkM 𝑛 | mkvar𝑅 | dlet(𝑛, 𝑡 ) | tls(𝑡 ) | err
Handlers ℎ := return(𝑥 ) ↦→ 𝑡 | op(𝑥, 𝑘 ) ↦→ 𝑡

Typing contexts
Γ ::= · | Γ, 𝑥 : 𝑇

Types
Run-time Pre-types
Effects set 𝜉 ::= ∅ | 𝜉 ∪ {op𝑖 }
Value type𝑄,𝑅 ::= N | 𝑄 𝜉−→ 𝑅

| 𝑄 𝜉−↠ 𝑅

Computation type 𝑅 ! 𝜉

Handler type 𝑄 ! 𝜉1 =⇒ 𝑅 ! 𝜉2

Types
Effects set Δ ::= ∅ | Δ ∪ {op𝑖 }
Value type 𝑆,𝑇 ::= N | 𝑆 Δ−→ 𝑇 | 𝑆 Δ−↠ 𝑇

| FParam(𝑅) | AST(𝑅)
| AST(𝑅 ! 𝜉 ) | AST(𝑄 ! 𝜉1 =⇒ 𝑅 ! 𝜉2 )

Computation type 𝑇 !Δ
Handler type 𝑆 !Δ =⇒ 𝑇 !Δ2

Operational Semantics
Selected Rules

Auxiliary Definitions

Evaluation Frame 𝐹 ::= do 𝑥 ← [−] in 𝑡2 | handle [−] with {ℎ} | dlet(𝛼𝑅 , [−]) | tls( [−])
Evaluation Context 𝐸 ::= [−] | 𝐸 [𝐹 ]

Domain of Handler dom(ℎ) ≜ dom(return(𝑥 ) ↦→ 𝑡 ) = ∅,
dom(ℎ; op(𝑥, 𝑘 ) ↦→ 𝑡 ) = dom(ℎ) ∪ {op}

Handled Effects handled(𝐸 ) ≜ handled( [−]) = ∅,
handled(𝐸 [do 𝑥 ← [−] in 𝑡2 ] ) = handled(𝐸 ),
handled(𝐸 [handle [−] with {ℎ} ] ) = handled(𝐸 ) ∪ dom(ℎ),
handled(𝐸 [dlet(𝛼𝑅 , [−]) ] ) = handled(𝐸 ),
handled(𝐸 [tls( [−]) ] ) = handled(𝐸 )

Reduction Rules
Mechanisms related to muting and unmuting are highlighted

(Ast-Gen)
⟨mkvar𝑅;𝐸;𝑈 ;𝑀 ; 𝐼 ⟩ → ⟨return 𝛼𝑅 ;𝐸;𝑈 ∪ {𝛼 };𝑀 ; 𝐼 ⟩
where 𝛼 = next(𝑈 ), next(𝑈 ) ∉ 𝑈 , next deterministic

(Sec-Chs)
⟨check𝑛;𝐸;𝑈 ;𝑀 ; 𝐼 ⟩ → ⟨return 𝑛;𝐸;𝑈 ;𝑀 ; 𝐼 ⟩
if FV0 (𝑛) ⊆ 𝜋Var (𝐸 )
(Sec-Chf)
⟨check𝑛;𝐸;𝑈 ;𝑀 ; 𝐼 ⟩ → ⟨err;𝐸;𝑈 ;𝑀 ; 𝐼 ⟩
if FV0 (𝑛) ⊈ 𝜋Var (𝐸 )

(Sec-Tls)
⟨tls(return 𝑛) ;𝐸;𝑈 ;𝑀 ; 𝐼 ⟩ → ⟨return 𝑛;𝐸;𝑈 ; ∅;⊤⟩

(Sec-Cms)
⟨checkM 𝑛;𝐸;𝑈 ;𝑀 ; 𝐼 ⟩ → ⟨return 𝑛;𝐸;𝑈 ;𝑀 ; 𝐼 ⟩
if FV0 (𝑛) \𝑀 ⊆ 𝜋Var (𝐸 )
(Sec-Cmf)
⟨checkM 𝑛;𝐸;𝑈 ;𝑀 ; 𝐼 ⟩ → ⟨err;𝐸;𝑈 ;𝑀 ; 𝐼 ⟩
if FV0 (𝑛) \𝑀 ⊈ 𝜋Var (𝐸 )

(Sec-Dlt)
⟨dlet(𝛼𝑅 , return 𝑛) ;𝐸;𝑈 ;𝑀 ; 𝐼 ⟩ → ⟨return 𝑛;𝐸;𝑈 ;𝑀 ′ ; 𝐼 ′ ⟩
if len(𝐸 ) > 𝐼 then𝑀 ′ =𝑀, 𝐼 ′ = 𝐼 , else𝑀 ′ = ∅, 𝐼 ′ = ⊤
(Eff-Op)
⟨op(𝑣) ;𝐸1 [handle 𝐸2 with {ℎ} ];𝑈 ;𝑀 ; 𝐼 ⟩ → ⟨𝑐 [𝑣/𝑥, cont/𝑘 ];𝐸1;𝑈 ;𝑀 ∪ 𝜋Var (𝐸2 ) ; 𝐼 ′ ⟩
where cont = 𝜅𝑥. handle 𝐸2 [return 𝑥 ] with {ℎ} and op(𝑥, 𝑘 ) ↦→ 𝑐 ∈ ℎ and op ∉ handled(𝐸2 ) and 𝐼 ′ = min(len(𝐸1 ), 𝐼 )

Fig. 5. 𝜆AST(op) : syntax, types, and operational semantics.
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𝜆AST(op)Typing Rules
Selected Rules

(FParam)

Γ ⊢ 𝛼𝑅 : FParam(𝑅)

(Var-AST)

Γ ⊢ 𝑛 : FParam(𝑅)
Γ ⊢ Var(𝑛) : AST(𝑅)

(Mkvar)

Γ ⊢ mkvar𝑅 : FParam(𝑅) !Δ

(Err)

Γ ⊢ err : 𝑇 !Δ

(Lambda-AST)

Γ ⊢ 𝑛1 : FParam(𝑄 )
Γ ⊢ 𝑛2 : AST(𝑅 ! 𝜉 )

Γ ⊢ Lam(𝑛1, 𝑛2 ) : AST(𝑄 𝜉−→ 𝑅)

(Tls)

Γ ⊢ 𝑡 : 𝑇 !Δ

Γ ⊢ tls(𝑡 ) : 𝑇 !Δ

(DLet)

Γ ⊢ 𝑛 : FParam(𝑅)
Γ ⊢ 𝑡 : 𝑇 !Δ

Γ ⊢ dlet(𝑛, 𝑡 ) : 𝑇 !Δ

(Check)

Γ ⊢ 𝑛 : 𝑇

𝑇 of AST type

Γ ⊢ check𝑛 : 𝑇 !Δ

Fig. 6. Selected 𝜆AST(op) typing rules

In the Ast-Gen rule, 𝑈 ensures freshness by recording previously generated names. To ensure

determinacy of the semantics, fresh names are chosen by some (unspecified) deterministic process.

The check primitive acts like a guarded return. For some arbitrary normal form 𝑛 of AST

type, either all the free variables of 𝑛 are properly scoped, so check𝑛 reduces to return 𝑛 (Sec-

Chs), or some free variables of 𝑛 are not properly scoped, so check𝑛 reduces to err (Sec-Chf).

Following Kiselyov [2024a], dlets declare that variables are properly scoped, by placing a frame of

the form dlet(𝛼𝑅, [−]) on the evaluation context 𝐸. The notation 𝜋Var (𝐸) filters out the variables
declared in this manner from 𝐸. For example, 𝜋Var (dlet(𝛼𝑅, do 𝑥 ← [−] in 𝑡)) = {Var(𝛼𝑅)}. Given
a term 𝐸 [𝑡], Var(𝛼𝑅) in 𝑡 is “declared safe” in 𝐸 if Var(𝛼𝑅) ∈ 𝜋Var (𝐸) (Definition 3.2).

Definition 3.2 (Declared Safe). Given a term 𝐸 [𝑡], Var(𝛼𝑅) in 𝑡 is declared safe in 𝐸 if
Var(𝛼𝑅) ∈ 𝜋Var (𝐸)

Given a normal form 𝑛 in some evaluation context 𝐸, where 𝑛 is an AST, 𝑛 is properly scoped

in 𝐸 (that is, check𝑛 succeeds) if and only if the free Vars of 𝑛, written FV0 (𝑛), have all been

declared safe in 𝐸, i.e. FV0 (𝑛) ⊆ 𝜋Var (𝐸). As 𝜆AST(op) is an elaboration target for 𝜆⟨⟨op⟩⟩ , it is up to

the elaboration to use dlet and check appropriately.

The checkM construct is a variant of check. As §4.4 explains, checkM additionally ignores some

muted variables, treating them as properly scoped (checkM 𝑛 succeeds if FV0 (𝑛) \𝑀 ⊆ 𝜋Var (𝐸)).
Sec-Tls, Sec-Dlt, and Eff-Op mute or unmute variables. §4.4 explains muting and unmuting.

Ignoring muting and unmuting, Sec-Tls and Sec-Dlt silently remove a tls( [−]) and dlet(𝛼𝑅, [−])
frame respectively, and Eff-Op gives handlers the expected, standard behaviour.

3.2.2 Type System. 𝜆AST(op) types are mostly standard. The key additions are an FParam type for

formal parameters and an AST type for abstract syntax trees (Figure 5).

The 𝜆AST(op) typing rules (Figure 6) are extremely straightforward. Under the typing rules, a

well-typed AST can be ill-scoped; for example, · ⊢ Var(𝛼𝑅) : AST(𝑅) is a valid typing judgement.

Scope extrusion checks are effectively invisible to the type system. The only complex case is err,
which can be assigned any type in any context, similarly to abort [Scherer 2017].

A closed 𝜆AST(op) term is well-typed if it can be typed with an empty effects set.

Definition 3.3 (Well-Typed Closed Term). A closed term 𝑡 is well-typed if · ⊢ 𝑡 : 𝑇 ! ∅

3.3 Elaboration from 𝜆⟨⟨op⟩⟩ to 𝜆AST(op)

This section describes an elaboration (⟦−⟧) from 𝜆⟨⟨op⟩⟩ to 𝜆AST(op) . This elaboration is simple: it

does not insert any dynamic scope extrusion checks. Other elaborations in §4, which do insert

checks, extend this elaboration.
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𝜆⟨⟨op⟩⟩Type Elaboration
Selected Rules
⟦𝑇 0⟧ = AST(erase(𝑇 0 ) )
⟦𝑇 0

! 𝜉⟧ = AST(erase(𝑇 0
! 𝜉 ) )

⟦𝑇 0
!Δ⟧ = AST(erase(𝑇 0 ) ) ! ⟦Δ⟧

⟦𝑇 0
!Δ; 𝜉⟧ = AST(erase(𝑇 0

! 𝜉 ) ) ! ⟦Δ⟧

⟦N−1⟧ = N
⟦(𝑆−1 Δ−→ 𝑇 −1 )−1⟧ = ⟦𝑆−1⟧ ⟦Δ⟧−→ ⟦𝑇 −1⟧
⟦(𝑆−1 Δ−↠ 𝑇 −1 )−1⟧ = ⟦𝑆−1⟧ ⟦Δ⟧−↠ ⟦𝑇 −1⟧
⟦Code(𝑇 0

! 𝜉 )−1⟧ = AST(erase(𝑇 0
! 𝜉 ) )

Context Entry Elaboration
⟦·⟧ = · ⟦Γ, 𝑥 : 𝑇 0⟧ = ⟦Γ⟧, 𝑥 : FParam(erase(𝑇 0 ) ) ⟦Γ, 𝑥 : 𝑇 −1⟧ = ⟦Γ⟧, 𝑥 : ⟦𝑇 −1⟧

Term Elaboration
Selected Rules (AST)

⟦𝑥⟧
c|q = return Var(𝑥 )

⟦𝜆𝑥 : 𝑇 0 . 𝑒⟧
c|q = do 𝑥 ← mkvar erase(𝑇 0 ) in

do body← ⟦𝑒⟧
c|q in return Lam(𝑥, body)

⟦𝑥⟧s = 𝑥

⟦𝜆𝑥 : 𝑇 0 . 𝑒⟧s = 𝜆𝑥.⟦𝑒⟧s

Selected Rules (Quote/Splice)

⟦$𝑒⟧q = ⟦𝑒⟧s ⟦$𝑒⟧c = tls(⟦𝑒⟧s ) ⟦⟨⟨𝑒 ⟩⟩⟧s = ⟦𝑒⟧q

Fig. 7. Selected elaboration rules from 𝜆⟨⟨op⟩⟩ to 𝜆AST(op) .

The elaboration is defined on typing judgements: 𝜆⟨⟨op⟩⟩ judgements elaborate to 𝜆AST(op) judge-
ments. This decomposes into four elaborations: on effect sets, types, contexts, and terms.

3.3.1 Elaborating Effect Sets and Types. Elaboration of effect sets is the identity. To define the

elaboration of types (Figure 7), it is convenient to refer to a helper function, erase. Given a level 0 type,
erase erases all the level annotations (and elaborates effect sets), e.g. erase((𝑆0 𝜉−→ 𝑇 0)0) = 𝑆 ⟦𝜉⟧−→ 𝑇 .

In a nutshell, level 0 types elaborate into AST types, and level −1 types elaborate into themselves

(sans level annotations), except for Code types, which elaborate into AST types.

3.3.2 Elaborating Contexts. Elaboration of contexts is subtle (Figure 7). Level 0 types in the context

elaborate into FParam, rather than AST types. Elaboration of contexts thus requires a separate

elaboration for context entries, and cannot rely naïvely on the elaboration on types. To see why

level 0 types elaborate into FParam types, notice that the only cases where the context Γ is extended

with a level 0 variable occur in c or q. These modes build ASTs, and thus 𝑥 must be an FParam.

3.3.3 Elaborating Terms. Elaboration of terms (Figure 7) assumes that all formal parameters have

been annotated with their types, for example 𝜆𝑥 : N0. 𝑒 . The elaboration for terms is moderated by

themode: c, q, or s. At a high level, in c and q-mode, one builds ASTs. To ensure formal parameters

are appropriately renamed, the elaboration must use mkvar.
Elaboration does not differ significantly between c and q-modes, except in the rule for splice,

where tls is inserted in c-mode, but not in q-mode. The c and q-modes become important when

building scope extrusion checks. Elaboration in s-mode is effectively the identity.

3.3.4 Elaborating Typing Judgements. Elaboration of typing judgements can now be defined com-

positionally. For example, the typing judgement for lambdas in c-mode is elaborated by applying

the elaboration component-wise:

⟦Γ, 𝑥 : 𝑆⟧ ⊢ ⟦𝑒⟧c : ⟦𝑇 !Δ; 𝜉⟧
⟦Γ⟧ ⊢ ⟦𝜆𝑥.𝑒⟧c : ⟦(𝑆 𝜉−→ 𝑇 ) !Δ⟧
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Letting𝑄 = erase(𝑆), 𝑅 = erase(𝑇 ), and ⟦𝑒⟧c = 𝑡 , and applying the elaboration functions defined

above, we obtain Typing Derivation 1, which, assuming that the premise is a valid typing derivation,

corresponds to a valid 𝜆AST(op) typing derivation.

⟦Γ⟧, 𝑥 : FParam(𝑄) ⊢ 𝑡 : AST(𝑅 ! 𝜉) !Δ
⟦Γ⟧ ⊢ do 𝑥 ← mkvar erase(𝑇 0) in do body← 𝑡 in return Lam(𝑥, body) : AST(𝑄 𝜉−→ 𝑅) !Δ

Typing Derivation 1. The elaborated derivation of Γ ⊢c 𝜆𝑥 .𝑒 : 𝑆 𝜉−→ 𝑇

3.4 Metatheory

Well-typed 𝜆⟨⟨op⟩⟩ programs elaborate into well-typed 𝜆AST(op) programs:

Theorem 3.1 (Elaboration Preservation). If Γ ⊢★ 𝑒 : 𝜏 then ⟦Γ⟧ ⊢ ⟦𝑒⟧★ : ⟦𝜏⟧, where
★ = c | q | s and 𝜏 is a level 0 or level −1 value, computation, or handler type.

The proof is by induction on the typing rules, e.g. Typing Derivation 1 in §3.3.4.

Additionally, the core language 𝜆AST(op) has progress and preservation properties.

Theorem 3.2 (Progress). If · ⊢ 𝐸 [𝑡] : 𝑇 !Δ then for all𝑈 ,𝑀, 𝐼 either
(1) 𝑡 is of the form return 𝑛 and 𝐸 = [−],
(2) 𝑡 is of the form op(𝑣) for some op ∈ Δ, and op ∉ handled(𝐸)
(3) 𝑡 is of the form err
(4) ∃ 𝑡 ′, 𝐸′,𝑈 ′, 𝑀 ′, 𝐼 ′ such that ⟨𝑡 ;𝐸;𝑈 ;𝑀 ; 𝐼 ⟩ → ⟨𝑡 ′;𝐸′;𝑈 ′;𝑀 ′; 𝐼 ′⟩

Note the third clause, which may be used by the calculus to report scope extrusion.

The proof of progress is by induction over the typing derivation. Most cases are standard, and

have been shown by Bauer and Pretnar [2014]. The proof need only consider the typing rules for

AST construction and scope extrusion checking, all of which are straightforward.

Theorem 3.3 (Reduction Preservation). If · ⊢ 𝐸 [𝑡] : 𝑇 !Δ and ⟨𝑡 ;𝐸;𝑈 ;𝑀 ; 𝐼 ⟩ → ⟨𝑡 ′;𝐸′;𝑈 ′;𝑀 ′; 𝐼 ′⟩
then · ⊢ 𝐸′ [𝑡 ′] : 𝑇 !Δ

The proof is by induction over the operational semantics. Once again, one need only consider

the rules for AST construction and scope extrusion checking, which are simple.

As a corollary, we obtain a notion of type safety.

Corollary 3.4 (Type Safety). If · ⊢c 𝑒 : 𝑇 0
! ∅; ∅ then either

(1) ⟨⟦𝑒⟧c; [−]; ∅; ∅;⊤⟩ →𝜔 ,
(2) ⟨⟦𝑒⟧c; [−]; ∅; ∅;⊤⟩ →∗ ⟨err;𝐸;𝑈 ;𝑀 ; 𝐼 ⟩ for some 𝐸,𝑈 ,𝑀 , 𝐼 , or
(3) ⟨⟦𝑒⟧c; [−]; ∅; ∅;⊤⟩ →∗ ⟨return 𝑛; [−];𝑈 ;𝑀 ; 𝐼 ⟩ for some𝑈 ,𝑀 , 𝐼

where the initial configuration comprises an elaborated term, the empty evaluation context, an empty
set indicating that no variables have been previously generated, another empty set indicating no
variables have been muted, and ⊤, indicating that there is (currently) no plan to unmute variables.

Importantly, this notion of type safety is weak. A semantics which always reports a scope extru-

sion error (err) would be type safe under this definition, as would a semantics which never reports

scope extrusion. Due to the potential presence of scope extrusion, the third case of Corollary 3.4

cannot additionally claim that the normal form 𝑛 represents a well-typed 𝜆op program.

Finally, underneath a top-level splice, quotation and splice are duals.

Theorem 3.4 (Quote-Splice Duality). Under a top-level splice, quotation and splice are duals:
$⟨⟨𝑒⟩⟩ =q 𝑒 ⟨⟨$𝑒⟩⟩ =s 𝑒
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do 𝑥 ← mkvarN in

dlet ( 𝑥, do body
1
←

check ( tls(do 𝑦 ← mkvarN in

do body
2
←

(do 𝑎 ← return Var(𝑥 ) in

do 𝑏 ← return Var(𝑦) in

return Plus(𝑎,𝑏 ) ) in

return Lam(𝑦, body
2
) ) ) in

return Lam(𝑥, body
1
) )

(a) Lazy

do 𝑥 ← mkvarN in

dlet (𝑥, do body
1
←

check (tls(do 𝑦 ← mkvarN in

check ( dlet (𝑦,do body
2
←

(do 𝑎 ← check Var(𝑥 ) in

do 𝑏 ← check Var(𝑦) in

check Plus(𝑎,𝑏 ) ) in

return Lam(𝑦, body
2
) ) ) ) ) in

return Lam(𝑥, body
1
) )

(b) Eager

do 𝑥 ← mkvarN in

dlet (𝑥, do body
1
←

checkM (tls(do 𝑦 ← mkvarN in

checkM ( dlet (𝑦, do body
2
←

(do 𝑎 ← check𝑀 Var(𝑥 ) in

do 𝑏 ← check𝑀 Var(𝑦) in

checkM Plus(𝑎,𝑏 ) ) in

return Lam(𝑦, body
2
) ) ) ) ) in

return Lam(𝑥, body
1
) )

(c) C4C

Fig. 8. Elaboration of 𝜆𝑥 : N. $⟨⟨𝜆𝑦 : N. 𝑥 + 𝑦⟩⟩ under different checks

where=★means “elaborates to contextually equivalent 𝜆AST(op) programs in★mode”. Parameterising

by the mode is necessary, since it affects the result of elaboration. It is possible to prove something

stronger: they elaborate to the same syntactic 𝜆AST(op) program (contextual equivalence follows

from reflexivity). The proof of Theorem 3.4 is by inspection of the definition of elaboration, where:

⟦$⟨⟨𝑒⟩⟩⟧q = 𝑡 ⇐⇒ ⟦𝑒⟧q = 𝑡 ⟦⟨⟨$𝑒⟩⟩⟧s = 𝑡 ⇐⇒ ⟦𝑒⟧s = 𝑡

4 Dynamic Scope Extrusion Checks

This section uses 𝜆⟨⟨op⟩⟩ to formulate precise definitions of scope extrusion (including existing

approaches [Isoda et al. 2024; Kiselyov 2014]), and properties of scope extrusion checks.

4.1 Properties of Dynamic Scope Extrusion Checks

Since checks are defined as term elaborations, we use ⟦−⟧Check to indicate an arbitrary check. We

refer to the term elaboration in §3.3 as naïve elaboration.

Given a definition of scope extrusion as a predicate Φ on configurations, a check is correct if,
whenever the naïve elaboration of a well-typed 𝜆⟨⟨op⟩⟩ expression 𝑒 reduces to a configuration

exhibiting scope extrusion (Φ(⟨𝑡 ;𝐸;𝑈 ;𝑀 ; 𝐼 ⟩)), the elaboration of 𝑒 with the check reduces to err.
The permissiveness of a scope extrusion check refers to the set of well-typed 𝜆⟨⟨op⟩⟩ expressions
whose elaborations do not reduce to err, even if they exhibit scope extrusion.

Definition 4.1 (Correctness of a Dynamic Scope Extrusion Check). Given a predicate on
configurations Φ, a dynamic scope extrusion check ⟦−⟧Check is correct with respect to Φ if for all
closed, well-typed 𝜆⟨⟨op⟩⟩ expressions 𝑒 , ⟨⟦𝑒⟧; [−]; ∅; ∅;⊤⟩ →∗ ⟨𝑡 ;𝐸;𝑈 ;𝑀 ; 𝐼 ⟩ ∧Φ(⟨𝑡 ;𝐸;𝑈 ;𝑀 ; 𝐼 ⟩) =⇒
⟨⟦𝑒⟧Check; [−]; ∅; ∅;⊤⟩ →∗ ⟨err;𝐸′;𝑈 ′;𝑀 ′; 𝐼 ′⟩ for some 𝐸′,𝑈 ′, 𝑀 ′, 𝐼 ′.

Definition 4.2 (Permissiveness of a Dynamic Scope Extrusion Check). Let WellTyped be
the set of closed, well-typed 𝜆⟨⟨op⟩⟩ expressions. The permissiveness of a dynamic scope extrusion
check is defined as {𝑒 ∈ WellTyped | ⟨⟦𝑒⟧Check; [−]; ∅; ∅;⊤⟩ ̸→∗ ⟨err;𝐸;𝑈 ;𝑀 ; 𝐼 ⟩}

4.2 Lazy Check

A 𝜆AST(op) configuration exhibits lazy scope extrusion if it is the result of compile-time execution

and is improperly scoped. This formalises the definition by Kiselyov [2014].
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Definition 4.3 (Lazy Scope Extrusion). A 𝜆AST(op) configuration of the form ⟨𝑡 ;𝐸;𝑈 ;𝑀 ; 𝐼 ⟩
exhibits lazy scope extrusion if 𝑡 = return 𝑛 for some 𝑛 of AST type, 𝐸 = 𝐸′ [tls( [−])] for some
𝐸′, and FV0 (𝑛) ⊈ 𝜋Var (𝐸).

The lazy check, ⟦−⟧Lazy, augments the naïve elaboration in twoways (Figure 8a). First, checks are

performed after top-level splices: (⟦$𝑒⟧Lazy
c

≜ check (tls(⟦𝑒⟧Lazy
s
))). Second, dlets are inserted

to ensure variables bound outside top-level splices (in c-mode) are declared safe (Definition 3.2) in

the context surrounding the top-level splice. Elaboration of formal parameters in c-mode (but not

q-mode) should insert dlets:

⟦𝜆𝑥 : 𝑇 0 . 𝑒⟧Lazy
c

= do 𝑥 ← mkvar erase(𝑇 0 ) in dlet(𝑥, do body← ⟦𝑒⟧Lazy
c

in return Lam(𝑥, body) )

Due to the simplicity of the algorithm, verifying the correctness (with respect to lazy scope

extrusion) and permissiveness of the check is trivial: the lazy check detects scope extrusion if, and

only if, naïve elaboration would exhibit lazy scope extrusion after reduction.

Theorem 4.1 (Correctness and Permissiveness of the Lazy Check). For all closed, well-typed
𝜆⟨⟨op⟩⟩ programs 𝑒 ,⟨⟦𝑒⟧Lazy; [−]; ∅; ∅;⊤⟩ →∗ ⟨err;𝐸;𝑈 ;𝑀 ; 𝐼 ⟩ ⇐⇒ For some 𝐸′,𝑈 ′, 𝑀 ′, 𝐼 ′,
⟨⟦𝑒⟧; [−]; ∅; ∅;⊤⟩ →∗ ⟨return 𝑛;𝐸′;𝑈 ′;𝑀 ′; 𝐼 ′⟩, and ⟨return 𝑛;𝐸′;𝑈 ′;𝑀 ′; 𝐼 ′⟩ exhibits lazy scope
extrusion

The lazy check thus characterises the set of 𝜆⟨⟨op⟩⟩ programs that it is safe to permit. This set is

used to define the expressiveness of a check, where the lazy check is maximally expressive:

Definition 4.4 (Expressiveness of a Dynamic Scope Extrusion Check). Define the set Safe ≜
{𝑒 ∈ WellTyped | ⟨⟦𝑒⟧Lazy; [−]; ∅; ∅;⊤⟩ ̸→∗ ⟨err;𝐸;𝑈 ;𝑀 ; 𝐼 ⟩}. Then the expressiveness of a
dynamic scope extrusion check is defined as {𝑒 ∈ Safe | ⟨⟦𝑒⟧Check; [−]; ∅; ∅;⊤⟩ ̸→∗ ⟨err;𝐸;𝑈 ;𝑀 ; 𝐼 ⟩}
Given a scope extrusion check, every rejected program that would be permitted by the lazy

check is considered a false positive:

Definition 4.5 (False Positives of a Dynamic Scope Extrusion Check). The false posi-
tives of a dynamic scope extrusion check are defined as {𝑒 ∈ Safe | ⟨⟦𝑒⟧Check; [−]; ∅; ∅;⊤⟩ →∗
⟨err;𝐸;𝑈 ;𝑀 ; 𝐼 ⟩}
However, due again to its simplicity, the lazy check is considered unsuitable for practical use.

Ofenbeck et al. [2016], who use the lazy check, report the following:

Bugs in our implementation . . .would manifest in errors such as:
forward reference extends over definition of value x1620

[error] val x1343 = x1232(x1123, x1124, x1180, x1181,

x1223, x1224, x1223, x1229, x1216, x1120, x1122, x1121)

. . . [A] large piece of code is processed before we hit this error . . . The root cause of bugs such as this
one often proved to be very simple but heavily obfuscated in the code it manifested in.

The lazy check is uninformative: since it waits until the end of evaluation, errors refer to the

generated code rather than the generating program [Kiselyov 2014]. This obfuscation makes

debugging difficult for all programs. In addition, the lazy check has to wait for the end of evaluation

before reporting errors. This creates an inefficiency in debugging large staged programs, like the

ones generated by Ofenbeck et al.. Additionally, Kameyama et al. [2015, §4.1] note that in some

systems, the lazy check can result in unintendedly bound variables.

4.3 Eager Check

A configuration exhibits eager scope extrusion if it returns an improperly scoped AST at any

point in the execution. Definition 4.6 thus generalises Definition 4.3.
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Definition 4.6 (Eager Scope Extrusion). A 𝜆AST(op) configuration of the form ⟨𝑡 ;𝐸;𝑈 ;𝑀 ; 𝐼 ⟩
exhibits eager scope extrusion if 𝑡 = return 𝑛 for some 𝑛 of AST type, and FV0 (𝑛) ⊈ 𝜋Var (𝐸)

It is possible to define an eager check by extending the lazy check (Figure 8b). In addition to the

top-level splice check, and the c-mode dlets, the eager check adds checks for ASTs constructed
in q-mode, for example:

⟦𝑣1𝑣2⟧Eagerq
= do 𝑓 ← ⟦𝑣1⟧Eagerq

in do 𝑎 ← ⟦𝑣2⟧Eagerq
in check App(𝑓 , 𝑎)

Notice how return App(𝑓 , 𝑎) is replaced by check App(𝑓 , 𝑎). Consequently, to prevent false posi-

tives, variables bound in q-mode must generate dlets:

⟦𝜆𝑥 : 𝑇 0 . 𝑒⟧Eager
q

= do 𝑥 ← mkvar erase(𝑇 0 ) in check (dlet(𝑥, do body← ⟦𝑒⟧Eager
q

in return Lam(𝑥, body) ) )

Intuitively, the eager check performs a check whenever an AST is built. Hence, assume that

evaluation reduces to a configuration that exhibits eager scope extrusion. Let the offending AST

be 𝑛. The error is detected and reported when, in some evaluation context 𝐸, 𝑛 is used to build a

bigger AST 𝑛′, and not all free variables in 𝑛′ are declared safe in 𝐸 (Listing 7). Kiselyov [2014]

observes that the overhead of checking on AST construction is negligible.

𝜆⟨⟨op⟩⟩
$(do𝑧 ← (handle ⟨⟨ 𝜆𝑥. $( op(⟨⟨𝑥 ⟩⟩) ) ⟩⟩

with {return(𝑢 ) ↦→ ⟨⟨0⟩⟩; op(𝑦, 𝑘 ) ↦→ return 𝑦})
in ⟨⟨$𝑧 + 1⟩⟩)

Listing 7. Extrusion is reported when 𝑧 is used ⟨⟨$𝑧 + 1⟩⟩ in a context where Var(𝑥N) is not declared safe

The eager check models the BER MetaOCaml check described by Kiselyov [2024b]. The model

can be verified by executing the BER MetaOCaml N153 translations of Listings 7 to 10 in the

accompanying artifact [Lee et al. 2025].

4.3.1 Correctness of the Eager Check. The eager check is not correct with respect to eager scope

extrusion. Evaluation may result in eager scope extrusion that is never detected. For example, the

offending AST could be discarded (Listing 8).

𝜆⟨⟨op⟩⟩
$(handle ⟨⟨ 𝜆𝑥. $( op(⟨⟨𝑥 ⟩⟩) ) ⟩⟩
with {return(𝑢 ) ↦→ ⟨⟨0⟩⟩; op(𝑦, 𝑘 ) ↦→ do 𝑤 ← return 𝑦 in ⟨⟨0⟩⟩} )

Listing 8. The eager check does not report eager scope extrusion when the offending AST is discarded.

A notable property of the eager check is that it allows a program to recover from scope extrusion

by resuming a continuation. In Listing 9, the program restores the captured evaluation context,

which declares Var(𝑥N) safe. Only then is Var(𝑥N) used to build an AST, so the checks pass.

𝜆⟨⟨op⟩⟩
$(handle ⟨⟨ 𝜆𝑥. return $( op(⟨⟨𝑥 ⟩⟩) ) ⟩⟩
with {return(𝑢 ) ↦→ return 𝑢; op(𝑦, 𝑘 ) ↦→ do 𝑢 ← return 𝑦 in continue𝑘 𝑢})

Listing 9. The eager check does not report cases where the offending AST is used only in safe ways.

The incorrectness of the eager check (i.e. that it does not report all eager scope extrusion) arises

naturally from the definitions. Kiselyov [2014] defines eager scope extrusion as the occurrence of a

free variable at any point in the evaluation. The eager check, in contrast, is only invoked when the

free variable is used, e.g. executed or used to construct larger pieces of code. The incorrectness

of the eager check, however, can be desirable. Since Listings 8 and 9 are in Safe, permissiveness

makes the eager check more expressive.
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handle
do𝑥N ← mkvarN in
check(dlet(𝑥N, do body← (do 𝑎 ← Var(𝑥N ) in op(𝑎) ) in return Lam(𝑥N, body) )

with
{return(𝑢 ) ↦→ return 𝑢;

op(𝑦, 𝑘 ) ↦→ do 𝑤 ← check Plus(𝑦, Nat(0) ) in continue𝑘 𝑤}

Fig. 9. The result of elaborating Listing 10 using the eager check

4.3.2 Expressiveness of the Eager Check. In the presence of first-class continuations, the eager

check is not maximally expressive. It reports false positives, such as Listing 10.

𝜆⟨⟨op⟩⟩
$(handle ⟨⟨ 𝜆𝑥. $( op(⟨⟨𝑥 ⟩⟩) ) ⟩⟩
with {return(𝑢 ) ↦→ return 𝑢; op(𝑦, 𝑘 ) ↦→ do 𝑢 ← ⟨⟨$𝑦 + 0⟩⟩ in continue𝑘 𝑢})

Listing 10. A false positive: a safe program that fails the eager check.

In Listing 10, the offending AST (Var(𝑥N)) is used in a context where Var(𝑥N) is not declared
safe, and thus the eager check reports an error. However, if evaluation had been allowed to proceed,

the evaluation context binding Var(𝑥N) and declaring it safe would have been restored, and all

variables would have been properly scoped.

Comparing Listing 9, which passes the eager check, with Listing 10, which fails the check, shows

that the check is unpredictable: it is difficult to characterise its expressiveness without referring

to the operational semantics. Unfortunately, ⟨⟨$𝑒⟩⟩ ≠s ⟨⟨$𝑒 + 0⟩⟩. More generally, for program

fragments 𝑃 and 𝑃 ′, 𝑃 [𝑒] =s 𝑃
′ [𝑒] ≠⇒ ⟨⟨𝑃 [$⟨⟨𝑒⟩⟩]⟩⟩ =s ⟨⟨𝑃 ′ [$⟨⟨𝑒⟩⟩]⟩⟩.

The unpredictability arises from the design of the eager check. Kiselyov [2014, Footnote 10]

notes that the eager check can report false positives in the presence of first class continuations, but

has not observed such cases in practice. We say that the eager check is not continuation-aware.

4.4 Cause-for-Concern (C4C) Check

If the lazy check is too impractical, and the eager check too unpredictable, might it be possible to

find a “goldilocks” solution? Such a check should allow the program in Listing 10, and be permissive

in a predictable way. A configuration exhibits inevitable scope extrusion when it must cause
lazy scope extrusion.

Definition 4.7 (Inevitable Scope Extrusion). A 𝜆AST(op) configuration of the form 𝑡 ;𝐸;𝑈 ;𝑀 ; 𝐼

exhibits inevitable scope extrusion if ⟨𝑡 ;𝐸;𝑈 ;𝑀 ; 𝐼 ⟩ →∗ ⟨𝑡 ′;𝐸′;𝑈 ′;𝑀 ′; 𝐼 ′⟩ and ⟨𝑡 ′;𝐸′;𝑈 ′;𝑀 ′; 𝐼 ′⟩
exhibits lazy scope extrusion.

This section describes a Cause-for-Concern (C4C) check that approximates inevitable scope

extrusion, though with false positives. Elaboration for the C4C check is a slight variation of

elaboration for the eager check, with checkM replacing check (Figure 8c). For example,

⟦𝜆𝑥 : 𝑇 0 . 𝑒⟧BE
q

= do 𝑥 ← mkvar erase(𝑇 0 ) in checkM (dlet(𝑥, do body← ⟦𝑒⟧BE
q

in return Lam(𝑥, body) ) )

To understand the C4C check, consider Figure 9, where Listing 10 is elaborated using the eager

check into 𝜆AST(op) and simplified for readability (e.g. check 𝑡 rather than do 𝑥 ← 𝑡 in check𝑥).
The failing check is

:::::::::
underlined.

The check fails because when op is performed, the variable Var(𝑥N) is no longer declared safe

in the new evaluation context. Since 𝑦 is bound to Var(𝑥N), checking Plus(𝑦, Nat(0)) reports an
error. The problem is that the continuation 𝑘 can be used to bind Var(𝑥N). It is not clear, when the
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checkM (dlet(𝑧N, do 𝑏 ←
(do 𝑓 ← body
in do 𝑎 ← return Nat(1)
in checkM App(𝑓 , 𝑎) )

in return Lam(𝑧N, 𝑏 ) ) )

(a) Initial term

checkM (dlet(𝑧N, do 𝑏 ←
(do 𝑓 ← [ return Lam(𝑥N, Plus(Var(𝑥N ), Nat(0) ) ) ]

in do 𝑎 ← return Nat(1)
in checkM App(𝑓 , 𝑎) )

in return Lam(𝑧N, 𝑏 ) ) )

(b) Reduced term

Fig. 10. (a) A 𝜆AST(op) program that generates the AST of 𝜆𝑧. (𝜆𝑥 . 𝑥 + 0) (1). (b) The result of reducing the
program in (a) to the point where variables may be unmuted.

Plus AST is constructed and checked, that eager scope extrusion must lead to lazy scope extrusion.

To make the check more expressive, therefore, it may be useful to temporarily allow Var(𝑥N) to
extrude its scope, delaying error detection until one must have lazy scope extrusion.

The checkM primitive checks for scope extrusion, but allows a set of muted variables 𝑀 to

temporarily extrude their scope. In our example, we may mute Var(𝑥N), by adding it to 𝑀 . The

𝜆AST(op) operational semantics (Figure 5) automates this process, strategically muting and unmuting

variables at key points:

• When effects are performed, the variables which are no longer declared safe in the new

evaluation context (like Var(𝑥N)) are added to the set of muted variables (Eff-Op).

• Variables are unmuted when there are no bound continuations, and thus no way to resume

a continuation 𝑘 that could bind Var(𝑥N). This point is identified by tracking the maximal

length 𝐼 of the stack 𝐸 that was never captured by the handling of an effect.

Intuitively, 𝐼 is a stack mark (or continuation mark), which tracks the point where effects and

exceptions are indistinguishable. The C4C check acts like the lazy check before this point, and like

the eager check after it. Stack marks are used in the eager check implementation [Kiselyov 2014,

Appendix B], and in the semantics and implementation of languages with continuations [Flatt

and Dybvig 2020; Kiselyov 2012]. However, since the eager check is not continuation-aware, stack

marks play only a limited role.

As an example, the program in Figure 10a builds the AST of 𝜆𝑧. (𝜆𝑥 . 𝑥 + 0) (1). Let body be the
program in Figure 9. The surrounding context around body is identified by 𝐼 : it is never captured

by the handling of any effect, and thus must have no references to the captured continuation 𝑘 .

If the stack was never captured by the handling of an effect (for example, no operations were

performed), then 𝐼 is set to ⊤, ∀𝑛 ∈ N,⊤ ≥ 𝑛. Performing an effect can thus decrease 𝐼 , but never
increase it. This is the side condition on Eff-Op.

During reduction, when the length of the stack is less than, or equals to, 𝐼 , there must not be any

remaining references to any continuations 𝑘 , and thus 𝐼 may be reset to ⊤, and all muted variables

may be unmuted. The program in Figure 10a eventually reduces to the term in Figure 10b. [ − ]

separates the evaluation context (outside) and the term (inside). At this point, the length of the

stack is less than or equal to 𝐼 . It is safe to unmute all muted variables. When there are no muted

variables, checkM and check have the same behaviour.

However, altering the semantics in such a manner means that any transition could unmute

variables. To keep the semantics standard, and to more closely model the implementation of the

check, we associate the act of unmuting with dlet and tls. A transition from dlet conditionally

unmutes variables (Sec-Dlt, Figure 5). In Figure 10b, the transition from dlet(𝑧N, return 𝑛)
unmutes variables. Hence, Var(𝑥N) is still muted when the App constructor is checked, but unmuted

when the outer Lam constructor is checked.
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Additionally, a transition from tls unconditionally unmutes variables, since the evaluation

context beyond tls must be inert, and thus can never be captured by a handler (Sec-Tls).

As a checkM can never fail where a check succeeds, the C4C check is at least as permissive as

the eager check.

4.4.1 Correctness of the C4C check. The C4C check is correct with respect to inevitable scope

extrusion. The proof is simple: either one of the non-top-level splice checkMs reports an error, or

none do. The latter case degenerates to the lazy check, where the top-level splice checkM must

report an error.

Theorem 4.2 (Correctness of the C4C Check). Given a closed, well-typed 𝜆⟨⟨op⟩⟩ expression
𝑒 , if ⟨⟦𝑒⟧; [−]; ∅; ∅;⊤⟩ exhibits inevitable scope extrusion then there exists 𝐸, 𝑈 , 𝑀 , 𝐼 such that
⟨⟦𝑒⟧BE; [−]; ∅; ∅;⊤⟩ →∗ ⟨err;𝐸;𝑈 ;𝑀 ; 𝐼 ⟩
4.4.2 Expressiveness of the C4C Check. The C4C check is not maximally expressive. In particular,

it does not allow the program in Listing 11.

𝜆⟨⟨op⟩⟩
$(⟨⟨𝜆𝑥.$(handle ⟨⟨𝜆𝑦.$(op(⟨⟨𝑦⟩⟩) ; return 𝑦) ⟩⟩

with {return(𝑢 ) ↦→ return ⟨⟨0⟩⟩; op(𝑧, 𝑘 ) ↦→ return 𝑧}) ⟩⟩;
⟨⟨1⟩⟩)

Listing 11. The C4C check reports false positives.

Listing 11 attempts to build the AST 𝜆𝑥.return 𝑦, where 𝑦 has extruded its scope, but then

throws it away, returning the AST of 1. Critically, the constructor of the outer lambda, 𝜆𝑥 .[−], is
never captured by any effect. Hence, Listing 11 eventually reduces to a configuration:

⟨dlet(𝑥N, return Lam(𝑥N, Var(𝑦N)));𝐸 [check[−]];𝑈 ; {Var(𝑦N)}; 𝐼 ⟩
where len(𝐸 [checkM [−]]) ≤ 𝐼 . The subsequent transition unmutes Var(𝑦N), and the surrounding

checkM fails, as Var(𝑦N) is free, unmuted, and not declared safe in 𝐸.

A Cause-for-Concern property characterises the expressiveness of the C4C check
1
. The property

is defined informally as follows: assume the check reports an error, and let the offending AST be

𝑛. Now re-wind to the point of the failing check, and consider an alternative execution where all

the checkMs are erased (turned into returns). In this counter-factual execution, all ASTs 𝑛′ that
are constructed from 𝑛 have at least one variable that is not declared safe in its evaluation context.

Consequently, in Listing 11, the only way to safely use 𝜆𝑥 .return 𝑦 is to throw it away.

Theorem 4.3 (Cause-for-Concern Property). Assuming a closed, well-typed 𝜆⟨⟨op⟩⟩ expression 𝑒 ,
if∃ 𝐸,𝑈 ,𝑀 , 𝐼 such that ⟨⟦𝑒⟧BE; [−]; ∅; ∅;⊤⟩ →∗ ⟨checkM 𝑛;𝐸;𝑈 ;𝑀 ; 𝐼 ⟩, and ⟨checkM 𝑛;𝐸;𝑈 ;𝑀 ; 𝐼 ⟩ →
⟨err;𝐸;𝑈 ;𝑀 ; 𝐼 ⟩, then, assuming ⟨return 𝑛; erase-checks(𝐸);𝑈 ;𝑀 ; 𝐼 ⟩ →∗ ⟨return 𝑛′;𝐸′;𝑈 ′;𝑀 ′; 𝐼 ′⟩,
and 𝑛 a subtree of 𝑛′, it must be that FV0 (𝑛′) ⊈ 𝜋Var (𝐸′).
The proof of Theorem 4.3 is by contradiction. Informally, if FV0 (𝑛′) ⊆ 𝜋Var (𝐸′), then all the

variables in 𝑛 must be declared safe. This implies that when the initial checkM 𝑛 failed, there was a

continuation on the stack which can declare the variables in 𝑛 safe. But then𝑀 cannot be empty,

so the check would not have failed.

The expressiveness of the eager check cannot be characterised by the Cause-for-Concern property,

with Listing 10 being a counter-example. Hence, the C4C check is more expressive, and more

predictably expressive, than the eager check.

Like the eager check, the expressiveness of the C4C check can be empirically verified by executing

MacoCaml translations of Listings 7 to 11 in the accompanying artifact [Lee et al. 2025].

1
and gives it its name, which, unlike the lazy and eager check, describes its user-facing behaviour, not its operation
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Table 3. Correctness comparison

Listings

8 9 10 11 12

Lazy (§4.2) Y Y Y Y Y

Eager (§4.3) N N Y Y Y

C4C (§4.4) Y Y Y Y Y

Ref. Env. Classifiers (§5) Y Y Y Y Y

Table 4. Expressiveness comparison

Listings

8 9 10 11 12

Lazy (§4.2) Y Y Y Y Y

Eager (§4.3) Y Y N N Y

C4C (§4.4) Y Y Y N Y

Ref. Env. Classifiers (§5) N N N N Y

4.5 Evaluation of 𝜆⟨⟨op⟩⟩

We have demonstrated that 𝜆⟨⟨op⟩⟩ is an appropriate language for encoding and evaluating scope

extrusion checks. Tables 3 and 4 summarize the correctness and expressiveness of the checks (with

refined environment classifiers and Listing 12 discussed in the next section). The accompanying

artifact [Lee et al. 2025] provides translations of Listings 7 to 11 in both BER MetaOCaml N153 and

MacoCaml. The first three rows of Tables 3 and 4 can be verified empirically by executing these

translations. Unifying these checks under 𝜆⟨⟨op⟩⟩ facilitated comparative evaluation with reference

to the same set of programs. Moreover, formalising scope extrusion in 𝜆⟨⟨op⟩⟩ aided development of

the novel C4C check, which finds a sweet spot between the eager and lazy checks.

It is worth re-iterating that the focus of 𝜆⟨⟨op⟩⟩ is on scope extrusion. There are additional

interesting questions related to bindings in generated code that this paper does not consider. In

particular, 𝜆⟨⟨op⟩⟩ does not prevent shadowing: it is possible in 𝜆⟨⟨op⟩⟩ to generate programs with

multiple binders that use the same formal parameter. For example, using multi-shot continuations,

it is possible in 𝜆⟨⟨op⟩⟩ to generate the code Lam(𝑥, Lam(𝑥, body)), since the binder Lam(𝑥,−) can
be captured in a continuation that is re-instated in a nested manner. None of the three dynamic

checks is able to detect every instance of scope shadowing. Restricting 𝜆⟨⟨op⟩⟩ to permit only one-

shot continuations, as in systems like MetaOCaml and MacoCaml, would prevent shadowing, but in

practice multi-shot continuations are useful in multi-staged programming, e.g. for case-insertion

[Yallop 2017, §4.4], and do not compromise type safety.

5 Extension: Refined Environment Classifiers

This section presents 𝜆⟨⟨op⟩⟩
𝛾
, an extension to 𝜆⟨⟨op⟩⟩ with refined environment classifiers [Kiselyov

et al. 2016] to statically prevent scope extrusion, following Isoda et al. [2024]. §4 illustrates the

use of 𝜆⟨⟨op⟩⟩ to compare dynamic scope extrusion checks, and 𝜆⟨⟨op⟩⟩
𝛾
shows how to extend the

framework to describe and evaluate static prevention techniques, too.

5.1 The Calculus

Figure 12 presents the types and selected typing rules of 𝜆⟨⟨op⟩⟩
𝛾
. The calculus shares its syntax

with 𝜆⟨⟨op⟩⟩ , extending it with a simplified
2
version of Isoda et al.’s type system.

Intuitively, a classifier represents a scope that permits a set of free variables. An AST is considered

well-scoped at a given scope if it is well-typed and all its free variables are permitted by the scope.

𝛾⊥

𝛾𝛼

Lam

𝛼 extrude(Var(𝛼 ) ); return (Var(𝛼 ) )

handle with {. . .,extrude(𝑦, 𝑘 ) ↦→ . . .}

Fig. 11. Refined environment classifiers

As an example, consider Figure 11, where there

are two classifiers: 𝛾𝛼 is the scope that permits

only Var(𝛼), and 𝛾⊥ the scope that permits no

variables (the “top-level”). To capture the nesting

of scopes, classifiers are related by a partial order

𝛾 ⊑ 𝛾 ′, with 𝛾 the outer scope, and 𝛾 ′ the inner
scope; in this case, we have 𝛾⊥ ⊑ 𝛾𝛼 .
2
Isoda et al.’s typing rules for handlers and continuations are polymorphic over the classifier, to allow for let-insertion.
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Classifiers prevent scope extrusion by checking that created ASTs are well-scoped, and moreover,

that manipulating ASTs preserves well-scopedness. Specifically, they prevent variables being lifted

into scopes where they are not permitted. In Figure 11, the extrude effect attempts to lift Var(𝛼)
to a handler in the 𝛾⊥ scope (where Var(𝛼) is not permitted). Figure 11 cannot be typed, regardless

of the body of the handler.

Syntax. We annotate level −1 Code types with a classifier 𝛾 . For level 0 types, classifiers are

associated in the typing contexts and in the typing judgement. We define extended 𝜆⟨⟨op⟩⟩
𝛾
types, a

notion useful for defining the logical relation in §5.2.

Definition 5.1 (Extended 𝜆⟨⟨op⟩⟩
𝛾
type). An extended source type is either:

(1) A level −1 type, e.g. (Code(N0
! ∅)𝛾 )−1;

(2) A level 0 type annotated with a classifier, e.g. N0 (𝛾); or
(3) A level 0 formal parameter type, which is a level 0 value type (e.g. N0) annotated with a classifier

𝛾 , and an underline, to indicate that it is elaborated into an FParam type, N0 (𝛾).

The typing context Γ maps terms to their types, and tracks their environment classifiers for

level 0 types. Additionally, it tracks classifiers 𝛾 and their partial ordering 𝛾 ⊑ 𝛾 ′. A level −1 type
𝑇 −1 is well-formed under a context Γ, written Γ ⊢ 𝑇 −1, if all its classifiers are in Γ. A context is

well-formed if it contains the least classifier 𝛾⊥, and if all its types are well-formed. We will assume

all contexts are well-formed.

Typing. Most typing rules are straightforwardly adapted, with key rules listed in Figure 12. The

c|q-Var rule says that a variable with classifier 𝛾 is well-typed under the classifier 𝛾 . Of particular

interest is the c|q-Lambda rule. As classifiers formalise the notion of scope, this rule introduces a

new scope, represented as a fresh classifier 𝛾 ′ ∉ Γ and associates the variable 𝑥 with 𝛾 ′. Moreover,

since 𝛾 ′ is created within the scope of 𝛾 , we have 𝛾 ⊑ 𝛾 ′.
The c|q-Sub-Expr and s-Sub rules formalise the nesting of scopes: to show a term is well-scoped

in some nested scope 𝛾 , it suffices to show that it is well-scoped in any of its parents 𝛾 ′, with 𝛾 ′ ⊑ 𝛾 .
Following Isoda et al. [2024], operations (s-Op), continuations (s-Continue), and handlers (s-

Handle) are restricted to Code types, while it can easily generalise to non-Code types. These rules

work in concert to prevent scope extrusion. Specifically, the handle construct operates on Code
types, and acts at a scope 𝛾 . As a result, handlers cannot change the scopes in which the result of

computation is permitted, e.g. changing the type from Code(N)𝛾 to a different classifier Code(N)𝛾 ′ .
Notably, each handler clause (and thus handled effect) inherits this scope 𝛾 . As a result, the values

passed to handled effects, should they be code types, must be tagged with a classifier that may be

substituted for 𝛾 . Since binders introduce new classifiers 𝛾 ′, where 𝛾 ′ cannot be substituted for 𝛾

(since 𝛾 ′ @ 𝛾 ), examples that result in scope extrusion do not type check.

Lastly, we note that since contexts must contain the least classifier 𝛾⊥, an expression 𝑒 is a closed,

well-typed expression if 𝛾⊥ ⊢𝛾⊥c 𝑒 : 𝑇 0
! ∅; ∅.

Elaboration. Like 𝜆⟨⟨op⟩⟩ , 𝜆⟨⟨op⟩⟩𝛾 does not have an operational semantics, but is elaborated into

𝜆AST(op)
𝛾
terms, where formal parameters are annotated with classifiers (e.g. 𝛼

𝛾

𝑅
). Classifiers show

up only in the formal parameters, and are invisible to the types. Since elaboration does not require

any dynamic scope extrusion checking machinery, 𝜆AST(op)
𝛾
does not have check, checkM, dlet,

tls, and err. Consequently, 𝜆AST(op)
𝛾
configurations are of the form ⟨𝑡 ;𝐸;𝑈 ⟩.

Elaboration is similar to §3.3, except that elaboration of types erases classifiers, elaboration

of context entries erases proof-theoretic terms, and elaboration of terms assumes binders have

been annotated with an extended source type, and does not erase classifiers. Finally, elaboration of

top-level splice does not insert tls.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 39. Publication date: January 2026.



Handling Scope Checks 39:23

𝜆⟨⟨op⟩⟩
𝛾

Typing contexts
Γ ::= · | Γ, (𝑥 : 𝑇 0 )𝛾 | Γ, 𝑥 : 𝑇 −1 | Γ, 𝛾 | Γ, 𝛾 ⊑ 𝛾 ′

Types

Level −1 Values 𝑇 −1 ::= . . . | (Code(𝑇 0
! 𝜉 ) 𝛾 )

−1

Typing Rules
Selected Rules

(c|q-Var)
(𝑥 : 𝑇 0 )𝛾 ∈ Γ

Γ ⊢𝛾
c|q 𝑥 : 𝑇 0

!Δ

(c|q-Lambda)
Γ, 𝛾 ′, 𝛾 ⊑ 𝛾 ′, (𝑥 : 𝑆 )𝛾 ′ ⊢𝛾

′
c|q 𝑒 : 𝑇 !Δ; 𝜉 𝛾 ∈ Γ 𝛾 ′ ∉ Γ

Γ ⊢𝛾
c|q 𝜆𝑥.𝑒 : (𝑆 𝜉−→ 𝑇 ) !Δ

(s-Op)

Γ ⊢s 𝑣 : 𝑆 op ∈ Δ
op : 𝑆 → Code(𝑇 ! 𝜉 )𝛾 ∈ Σ

Γ ⊢s op(𝑣) : Code(𝑇 ! 𝜉 )𝛾 !Δ

(s-Continue)

Γ ⊢s 𝑣1 : Code(𝑆 ! 𝜉1 )𝛾 Δ−↠ Code(𝑇 ! 𝜉2 )𝛾
′

Γ ⊢s 𝑣2 : Code(𝑆 ! 𝜉1 )𝛾

Γ ⊢s continue 𝑣1 𝑣2 : Code(𝑇 ! 𝜉2 )𝛾
′
!Δ

(s-Handle)

Γ ⊢s 𝑒 : Code(𝑆 ! 𝜉1 )𝛾 !Δ
Γ ⊢s ℎ : (Code(𝑆 ! 𝜉1 )𝛾 ) !Δ1 =⇒ (Code(𝑇 ! 𝜉2 )𝛾 ) !Δ2

∀op ∈ Δ1 \ Δ2 . op ∈ dom(ℎ)
Γ ⊢s handle 𝑒 with {ℎ} : Code(𝑇 ! 𝜉2 )𝛾 !Δ2

(c|q-Splice)

Γ ⊢s 𝑒 : Code(𝑇 ! 𝜉 )𝛾 !Δ

Γ ⊢𝛾
c|q $𝑒 : 𝑇 !Δ; 𝜉

(s-Quote)

Γ ⊢𝛾
q
𝑒 : 𝑇 !Δ; 𝜉

Γ ⊢s ⟨⟨𝑒 ⟩⟩ : Code(𝑇 ! 𝜉 )𝛾 !Δ

(c|q-Sub-Expr)
Γ ⊨ 𝛾 ′ ⊑ 𝛾

Γ ⊢𝛾
′

c|q $𝑒 : 𝑇 !Δ; 𝜉

Γ ⊢𝛾
c|q 𝑒 : 𝑇 !Δ; 𝜉

(s-Sub)

Γ ⊨ 𝛾 ′ ⊑ 𝛾

Γ ⊢s 𝑒 : Code(𝑇 ! 𝜉 )𝛾 ′ !Δ
Γ ⊢s 𝑒 : Code(𝑇 ! 𝜉 )𝛾 !Δ

Fig. 12. 𝜆⟨⟨op⟩⟩𝛾 : types and selected typing rules.

Weakening. We prove a weakening lemma, which is useful for our later proof of correctness.

As types are stratified into two levels, and into value, computation, and handler types, there are

various sub-lemmas. As an example, we present weakening for level 0 computations:

Lemma 5.2 (Weakening for Level 0 Computations). If Γ ⊢𝛾c |q 𝑒 : 𝑇 0
!Δ then

(1) Γ, (𝑥 : 𝑆0)𝛾 ′ ⊢𝛾c |q 𝑒 : 𝑇 0
!Δ, for arbitrary 𝛾 ′ ∈ Γ, 𝑥 ∉ Γ;

(2) Γ, (𝑥 : 𝑆−1) ⊢𝛾c |q 𝑒 : 𝑇 0
!Δ, where Γ ⊢ 𝑆−1, 𝑥 ∉ Γ;

(3) Γ, 𝛾 ′ ⊢𝛾c |q 𝑒 : 𝑇 0
!Δ, for arbitrary 𝛾 ′ ∉ Γ

(4) Γ, 𝛾 ′ ⊑ 𝛾 ′′ ⊢𝛾c |q 𝑒 : 𝑇 0
!Δ, for arbitrary 𝛾 ′, 𝛾 ′′ ∈ Γ

5.2 Correctness of Refined Environment Classifiers

In this section, we prove the correctness of refined environment classifiers: every well-typed 𝜆⟨⟨op⟩⟩
𝛾

term produces a well-scoped AST on termination. However, with an elaboration-based semantics,

directly reasoning about 𝜆⟨⟨op⟩⟩
𝛾
is challenging. As a result, we employ Tait-style logical relations

[Tait 1967] to demonstrate that typing guarantees are preserved by elaboration [Benton and Hur

2009], thereby establishing correctness of refined environment classifiers.

Figure 13 presents the logical relation, Scoped, defined on core language (𝜆AST(op)
𝛾
) terms. The

relation is indexed by a context of proof-theoretic terms Θ and an extended 𝜆⟨⟨op⟩⟩
𝛾
type (Def-

inition 5.1). Given a context Γ, 𝜋𝛾 (Γ) projects out only the proof theoretic terms. For example,

given Γ = 𝛾⊥, 𝛾1, 𝛾⊥ ⊑ 𝛾1, (𝑥 : N0)𝛾1 , 𝛾2, 𝛾1 ⊑ 𝛾2, 𝑦 : (Code(N0
! ∅)𝛾2 )−1, the proof theoretic part of

the context is 𝜋𝛾 (Γ) = 𝛾⊥, 𝛾1, 𝛾⊥ ⊑ 𝛾1, 𝛾2, 𝛾1 ⊑ 𝛾2, which is an instance of Θ.
The two key definitions are the relation on the 𝑇 0 (𝛾) value type (ScopedΘ,𝑇 0 (𝛾 ) ), and the re-

lation on terms (ScopedΘ,𝜏 !Δ). For a normal form 𝑛 to be in ScopedΘ,𝑇 0 (𝛾 ) , 𝑛 must be of type
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𝜆⟨⟨op⟩⟩
𝛾

The ScopedΘ,𝑇 Logical Relation

Context of Proof Theoretic Terms

Θ := 𝛾⊥ | Θ, 𝛾 | Θ, 𝛾 ′ ⊑ 𝛾

Normal Forms
In the following, let 𝜏 be shorthand for any of𝑇 0 (𝛾 ) ,𝑇 0

! 𝜉 (𝛾 ) , (𝑆0 ! 𝜉1 =⇒ 𝑇 0
! 𝜉2 )0 (𝛾 ) , or (Code(𝑇 0

! 𝜉 )𝛾 )−1

𝑛 ∈ ScopedΘ,N−1 ≜ 𝑛 ∈ N
𝑛 ∈ ScopedΘ,𝜏 ≜ · ⊢ 𝑛 ∈ ⟦𝜏⟧ and Θ ⊢ FV0 (𝑛) ⊆ permitted(𝛾 )
𝑛 ∈ ScopedΘ,𝑇 0 (𝛾 ) ≜ Var(𝑛) ∈ ScopedΘ,𝑇 0 (𝛾 )

𝑛 ∈ ScopedΘ,(𝑆−1 Δ−→𝑇 −1 )−1 ≜ ∀𝑛′ ∈ ScopedΘ,𝑆−1 , 𝑛 𝑛′ ∈ ScopedΘ,𝑇 −1 !Δ
𝑛 ∈ ScopedΘ,(𝑆−1 Δ−↠𝑇 −1 )−1 ≜ ∀𝑛′ ∈ ScopedΘ,𝑆−1 , continue𝑛𝑛′ ∈ ScopedΘ,𝑇 −1 !Δ

Handlers

ℎ ∈ ScopedΘ,(𝑆−1 !Δ
1
=⇒𝑇 −1 !Δ

2
)−1 ≜ if ℎ = return(𝑥 ) ↦→ 𝑡ret

∀𝑛′ ∈ ScopedΘ,𝑆−1 , 𝑡ret [𝑛′/𝑥 ] ∈ ScopedΘ,𝑇 −1 !Δ
2

else ℎ = ℎ′; op(𝑥, 𝑘 ) ↦→ 𝑡op, op : 𝐴−1 → 𝐵−1

ℎ′ ∈ ScopedΘ,(𝑆−1 !Δ
1
=⇒𝑇 −1 !Δ

2
)−1 and

∀𝑛 ∈ ScopedΘ,𝐴−1 , 𝑛′ ∈ ScopedΘ,𝐵−1 Δ2−↠𝑇 −1 , 𝑡op [𝑛/𝑥,𝑛′/𝑘 ] ∈ ScopedΘ,𝑇 −1 !Δ
2

Terms
In the following, let 𝜏 !Δ be shorthand for any of𝑇 0

!Δ(𝛾 ) ,𝑇 0
!Δ; 𝜉 (𝛾 ) , (𝑆0 ! 𝜉1 =⇒ 𝑇 0

! 𝜉2 )0 !Δ(𝛾 ) , or𝑇 −1 !Δ
Given a compile-time computation type 𝜏 !Δ, let 𝜏 refer to the corresponding value type. e.g. if 𝜏 !Δ =𝑇 0

!Δ; 𝜉 (𝛾 ) , then 𝜏 =𝑇 0
! 𝜉 (𝛾 )

ScopedΘ,𝜏 !Δ ≜ The smallest property on terms 𝑡 such that either:

(1) For arbitrary 𝑈 consistent with 𝑡 , exists 𝑈 ′ such that ⟨𝑡 ; [−];𝑈 ⟩ →∗ ⟨return 𝑛; [−];𝑈 ′ ⟩, such that 𝑈 ′

consistent with 𝑛, and 𝑛 ∈ ScopedΘ,𝜏
(2) For arbitrary𝑈 consistent with 𝑡 , exists𝑈 ′ such that ⟨𝑡 ; [−];𝑈 ⟩ →∗ ⟨op(𝑛) ;𝐸;𝑈 ′ ⟩ where op ∉ handled(𝐸 ) ,

𝑈 ′ consistent with 𝐸 [op(𝑛) ], and
(a) op : 𝐴−1 → 𝐵−1,
(b) 𝑛 ∈ ScopedΘ,𝐴−1 , and
(c) for all 𝑛′ ∈ ScopedΘ,𝐵−1 , 𝐸 [𝑛′ ] ∈ ScopedΘ,𝜏 !Δ

Where, in this context, consistent with 𝑡 means that for all Var(𝛼𝛾

𝑅
) or 𝛼𝛾

𝑅
∈ 𝑡 , 𝛼 ∈ 𝑈 . This side condition ensures

that we use mkvar correctly.

Fig. 13. The definition of the Scoped logical relation

AST(erase(𝑇 0)), and the free variables of 𝑛 need to be permitted within the scope represented by 𝛾 .

Permissibility assumes some known partial order on classifiers, e.g. 𝛾 ′ ⊑ 𝛾 , which is carried by the

index Θ. ScopedΘ,𝜏 !Δ is defined as a least fixed point, following similar definitions by Plotkin and

Xie [2025] and Kuchta [2023], giving rise to the principle of Scoped-Induction:

Induction Principle 5.3 (Scoped-Induction). For a property Φ on closed terms of type ⟦𝜏 !Δ⟧,
(1) if ⟨𝑡 ; [−];𝑈 ⟩ →∗ ⟨return 𝑛; [−];𝑈 ′⟩ implies Φ(𝑡), and
(2) if ⟨𝑡 ; [−];𝑈 ⟩ →∗ ⟨op(𝑛);𝐸;𝑈 ′⟩ where op ∉ handled(𝐸), op : 𝐴−1 → 𝐵−1, 𝑛 ∈ ScopedΘ,𝐴−1 ,

and for arbitrary 𝑛′ ∈ ScopedΘ,𝐵−1 , Φ(𝐸 [𝑛′]) implies Φ(𝑡),
then for all 𝑡 ∈ ScopedΘ,𝜏 !Δ, Φ(𝑡)

The proof additionally relies on a closure lemma [Kuchta 2023] and a notion of closed substitution

𝜌 ⊨ Γ. Care must be taken with substitution of level 0 variables, since these should be in the logical

relation for FParams rather than ASTs (clause 2 in Definition 5.5).
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Lemma 5.4 (Closure under Anti-Reduction). Assume ⟨𝑡 ;𝐸;𝑈 ⟩ →∗ ⟨𝑡 ′;𝐸′;𝑈 ′⟩. Then 𝐸′ [𝑡 ′] ∈
ScopedΘ,𝜏 !Δ =⇒ 𝐸 [𝑡] ∈ ScopedΘ,𝜏 !Δ

Definition 5.5 (Closed Substitution). Given a context Γ, and assuming Θ = 𝜋𝛾 (Γ), the set of
closed substitutions 𝜌 ⊨ Γ are defined inductively as follows:

(1) () ⊨ 𝛾⊥
(2) If 𝜌 ⊨ Γ, then for arbitrary 𝛾 ∈ Γ, 𝑛 ∈ ScopedΘ,𝑇 0 (𝛾 ) , (𝜌, 𝑛/𝑥) ⊨ Γ, (𝑥 : 𝑇 0)𝛾

(3) If 𝜌 ⊨ Γ, Γ ⊢ 𝑇 −1, and 𝑛 ∈ ScopedΘ,𝑇 −1 , then (𝜌, 𝑛/𝑥) ⊨ Γ, (𝑥 : 𝑇 −1)
(4) If 𝜌 ⊨ Γ then 𝜌 ⊨ Γ, 𝛾 , for arbitrary 𝛾 ∉ Γ
(5) If 𝜌 ⊨ Γ then 𝜌 ⊨ Γ, 𝛾 ⊑ 𝛾 ′, for arbitrary 𝛾,𝛾 ′ ∈ Γ

Finally, we introduce a Θ-truncation lemma, which allows us to discard proof theoretic terms (𝛾 ,

𝛾 ⊑ 𝛾 ′) should they not be necessary for the proof.

Lemma 5.6 (Θ-truncation). Assume an AST 𝑛. If Var(𝛼𝛾
′

𝑆
) does not occur in FVs0 (𝑛), and Var(𝛼𝛾

′

𝑆
)

is the only variable tagged with classifier 𝛾 ′, then 𝑛 ∈ Scoped(Θ,𝛾 ′,𝛾⊑𝛾 ′ ),𝜏 implies 𝑛 ∈ ScopedΘ,𝜏

Stratification of types and mode-indexing decomposes the fundamental lemma into many sub-

lemmas; here we present one such sub-lemma:

Lemma 5.7 (Fundamental Lemma [c, 𝑇 0
!Δ; 𝜉] of the Scoped Logical Relation). If Γ ⊢𝛾c 𝑒 :

𝑇 0
!Δ; 𝜉 then for Θ = 𝜋𝛾 (Γ), and for all 𝜌 such that 𝜌 ⊨ Γ,⟦𝑒⟧c (𝜌) ∈ ScopedΘ,𝑇 0

!Δ;𝜉 (𝛾 )

Proof of Lemma 5.7 is by induction on the 𝜆⟨⟨op⟩⟩
𝛾
typing rules. In the c-Lambda case, it suffices to

show that for 𝜌 ⊨ Γ, do 𝑥 ← mkvar erase(𝑆0 (𝛾 ′)) in do body← ⟦𝑒⟧c (𝜌) in return Lam(𝑥, body)
is in ScopedΘ,(𝑆0 𝜉−→𝑇 0 )0 !Δ(𝛾 ) . This reduces to do body← ⟦𝑒⟧c (𝜌, 𝛼𝛾

′

𝑆
/𝑥) in return Lam(𝛼𝛾

′

𝑆
, body).

By anti-reduction (Lemma 5.4) it suffices to show that this term is in the logical relation. By

weakening (Lemma 5.2), and the induction hypothesis (IH), ⟦𝑒⟧c (𝜌, 𝛼𝛾
′

𝑆
/𝑥) ∈ ScopedΘ′,𝑇 0

!Δ;𝜉 (𝛾 ′ ) ,
where Θ′ = Θ, 𝛾 ′, 𝛾 ⊑ 𝛾 ′. It suffices to show that

∀𝑡 ∈ ScopedΘ′,𝑇 0
!Δ;𝜉 (𝛾 ′ ) , do body← 𝑡 in return Lam(𝛼𝛾

′

𝑆
, body) in ScopedΘ,(𝑆0 𝜉−→𝑇 0 )0 !Δ(𝛾 )

Applying Scoped-Induction,

(1) 𝑡 ∈ ScopedΘ′,𝑇 0
!Δ;𝜉 (𝛾 ′ ) reduces to some return 𝑛

do body ← return 𝑛 in return Lam(𝛼𝛾
′

𝑆
, body) reduces to return Lam(𝛼𝛾

′

𝑆
, 𝑛), where

Var(𝛼𝛾
′

𝑆
) is bound. By IH, 𝑛 ∈ ScopedΘ′,𝑇 0

! 𝜉 (𝛾 ′ ) . Thus, all the free variables in 𝑛 are permitted

by 𝛾 ′. By the typing rules, only 𝛼 is annotated with classifier 𝛾 ′. Hence, using Lemma 5.6,

under Θ, the free variables of Lam(𝛼𝛾
′

𝑆
, 𝑛) are permitted by 𝛾 . The conclusion thus follows

from anti-reduction.

(2) 𝑡 ∈ ScopedΘ′,𝑇 0
!Δ;𝜉 (𝛾 ′ ) reduces to 𝐸 [op(𝑛)], op(𝑛) unhandled

As do body← [−] in return Lam(𝛼𝛾
′

𝑆
, body) introduces no handlers, the conclusion follows

immediately from the Scoped-Induction hypothesis and anti-reduction.

Using the logical relation, and a type safety result identical to Bauer and Pretnar’s [2008] Corollary

4.2, we prove the correctness of refined environment classifiers:

Theorem 5.1 (Correctness of Refined Environment Classifiers). If 𝛾⊥ ⊢𝛾⊥c 𝑒 : 𝑇 0
! ∅; ∅, and

⟦𝑒⟧c = 𝑡 , then for some𝑈 , ⟨𝑡 ; [−]; ∅⟩ →∗ ⟨return 𝑛; [−];𝑈 ⟩, and FV0 (𝑛) = ∅
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5.3 Expressiveness of Refined Environment Classifiers

𝜆⟨⟨op⟩⟩
𝛾
prevents scope extrusion by looking only at the argument to the effect, not at the handler.

In a well-typed 𝜆⟨⟨op⟩⟩
𝛾
program, the only variables that may be passed to an effect op are those

that are in scope when the handler for op is defined, for example, the variable 𝑧 in Listing 12:

𝜆⟨⟨op⟩⟩
𝛾

𝜆𝑧.$(handle ⟨⟨ 𝜆𝑥. return $( op(⟨⟨𝑧⟩⟩) ) ⟩⟩
with {return(𝑢 ) ↦→ return 𝑢; op(𝑦, 𝑘 ) ↦→ continue𝑘 ( ) } )

Listing 12. Refined environment classifiers allow variables to be passed to an effect, so long as the variable
can never cause a scope extrusion error (e.g. 𝑧 may be passed, since it is bound outside the handler definition).

Table 4 summarizes the expressiveness of refined environment classifiers on our set of programs;

as shown, refined environment classifiers are less expressive than all the dynamic checks.

6 Implementation

We have implemented the various dynamic checks in the MacoCaml compiler, and made an

implementation with the C4C check available as an artifact [Lee et al. 2025]. MacoCaml implements

quotation via elaboration in a similar manner to the elaboration of §3.3, albeit targeting a lower-level

intermediate language Lambda rather than ASTs. We have extended the elaboration with extrusion

checking similarly to the extended elaborations of Sections 4.2 to 4.4.

The MacoCaml implementation closely follows the description in §4. The implementation realises

check, dlet, and err as a mode of use of effects and handlers:

(1) check𝑛 is implemented by performing a FreeVar effect, passing it the free variables of 𝑛.

checkM 𝑛 is similar, except that it additionally relies on a Mute effect that is performed within

the handlers of effects besides FreeVar to implement the Eff-Op rule (Figure 5).

(2) dlet(𝛼𝑅, 𝑡) is implemented as a handler of the FreeVar effect: it subtracts Var(𝛼𝑅) from the

set of free variables, and either:

(a) resumes the continuation, if the set of free variables is now empty (i.e. if all free variables

are declared safe), or

(b) performs another FreeVar effect, to check that the remaining free variables are declared

safe. If the check returns successfully, the continuation is resumed.

(3) err is implemented as an unhandled FreeVar effect.

7 Related Work

Using mutation and control effects for code generation, particularly for let-insertion, has a long

history [Lawall and Danvy 1994; Sumii and Kobayashi 2001]; Kameyama et al. [2011, §8] and

Kameyama et al. [2015, §5.3] give a thorough overview. The danger of generating code with

unbound variables has also become apparent. There are two lines of work dealing with the problem:

prevention and detection. Most of the prevention research focuses on designing an appropriate type

system, such as closed types [Calcagno et al. 2000] or environment classifiers [Taha and Nielsen

2003] (although the latter prevents scope extrusion arising from eval rather than from effects).

The majority of type systems aimed at preventing scope extrusion are considerably more complex

[Isoda et al. 2024; Kameyama et al. 2015; Kiselyov et al. 2016; Parreaux 2020], and are essentially

variations of Nanevski et al.’s [2008] Contextual Modal Type Theory.

Besides types, one may also guarantee the absence of scope extrusion by restricting the scope

of mutation (so-called weak separability [Westbrook et al. 2010]) or by restricting the scope of

control effects by placing an effect handler under every future-stage binder [Kameyama et al. 2011].

Continuation-passing or monadic transformations [Swadi et al. 2006] amount to the same.
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Most of the prevention techniques limit, often severely, the expressiveness of the language.

Kameyama et al. [2015] proposed a set of benchmarks to evaluate expressiveness of program

generation systems; at that time only Kameyama et al. [2015] passed all the benchmarks.

Whereas prevention techniques statically reject potentially unsafe code-generating programs

when compiling the code generator, detection techniques operate when executing the code generator,
alerting the metaprogrammer when a code fragment with a scope-extruded variable has been

generated. Since generated code must eventually be compiled, the simplest detection technique is

to do nothing during code generation, instead relying on the compiler of the generated code to

report extrusion. This approach is what §2 calls the lazy check; as we stressed, it suffers from severe

usability problems in practice. Kiselyov [2014] took efforts to implement the eager check, detecting
scope extrusion as soon as it occurs, before the complete code is generated, with informative error

messages. However, the design and implementation were not formalised. Hence, it was difficult to

evaluate the check (or even to tell if it detects errors at the earliest possible point).

Very few of the prevention approaches have been implemented in systems that are used in practice

(or, at least, that are used for realistic, larger-scale examples): examples include Mint [Westbrook

et al. 2010], Contextual Squid [Parreaux 2020] and StagedHaskell [Kameyama et al. 2015]. Mint is

very restrictive, outright prohibiting let-insertion and assert-insertion beyond binders. The other,

type-based approaches, permit optimisations such as let-insertion and loop interchange, but they

are very complex. Contextual Squid, implemented on top of Scala-2 macros, required access to

Scala compiler internals which is no longer available in Scala-3. StagedHaskell relied on tricky

Haskell type class programming, where type annotations are often required, and where the types

can become quite complex and the error messages incomprehensible. The complexity of the types

was unfortunately necessary: §4.1 of Kameyama et al.’s work showed subtle and serious problems

that could arise with unintendedly bound variables in a version of their system with simpler types.

Parreaux [2020] reports that some users found dealing with contextual types to be too much of a

burden. Kiselyov [2014] gives more discussion of practical aspects of the scope extrusion check.

Many practical metaprogramming systems such as Template Haskell [Sheard and Jones 2002]

rely on generation-time detection of scope extrusion, in particular the lazy check, i.e. offshoring

all the detection to the compiler that compiles the generated code. The notable exception is (BER)

MetaOCaml [Kiselyov 2014, 2024b], where eager scope extrusion detection is the principal feature.

8 Conclusions

We have presented the first formal framework for comparing scope extrusion checks, based on

the calculus 𝜆⟨⟨op⟩⟩ and its elaboration into the 𝜆AST(op) core language. Using the framework, we

have modelled the two main approaches to checking scope extrusion, lazy and eager checking, and

developed a new check which combines the best properties of both, and which interacts well with

effects and handlers. We have incorporated the new check into the MacoCaml implementation.

Our framework also extends to modelling the refined environment classifier system for preventing

scope extrusion, and we expect that it could be similarly extended to model other static systems.
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