
Generic Partially-Static Data (Extended Abstract)
David Kaloper-Meršinjak Jeremy Yallop

University of Cambridge, UK
dk505@cl.cam.ac.uk jeremy.yallop@cl.cam.ac.uk

Abstract
We describe a generic approach to defining partially-static data

and corresponding operations.

Categories and Subject Descriptors D.1.1 [Programming tech-
niques]: Applicative (Functional) Programming

Keywords staging, partial evaluation, generic programming

1. Static vs Dynamic
A central feature of multi-stage programming is the distinction

between static and dynamic expressions, i.e. between those expres-
sions which can be evaluated in the current stage of a program, and
those that can be evaluated only in a future stage. This distinction
underlies the performance improvements that are the primary goal
of multi-stage programming: by performing as much work as possi-
ble in the current stage, the residual code that is executed in future
stages can be made more efficient.

Whether a particular expression is static or dynamic depends
on its free variables: an expression depending only on static data
is static, while an expression with dynamic dependencies must
be treated as dynamic. Effective multi-stage programming often
involves restructuring programs (for example, by CPS conversion),
to increase the number of expressions that can be classified as static.

An alternative, less invasive approach to moving computation
into the static phase is to focus on data rather than on expressions.
Once more, with a naive classification of values into static and
dynamic, a single dynamic datum can infect a much larger value.
However, the notion of partially-static data supports a finer-grained
view. As the name suggests, partially-static data allows the com-
ponents of a value to be classified individually; for example, a list
might have a static prefix and a dynamic tail, a tree might have static
structure and dynamic labels, or a complex number might have a
static imaginary part and a dynamic real part.

Let us look at an example. Here is a standard unstaged definition
of parameterised lists, together with an append function ++ 1:
type α list = [] | (::) of α * α list
(* val (++) : α. α list → α list → α list *)
let rec (++) l r = match l with

[] → r
| h :: t → h :: (t ++ r)

And here is a variant of ++ that treats the second list as dynamic:

1 We use the multi-stage language BER MetaOCaml (Kiselyov 2014),
extended with modular implicits (White et al. 2015) for overloaded functions.

module type PS = sig
type t
type ps
val dyn : ps → t code
val sta : t → ps
val cd : t code → ps

end

ps

dyn

��
t

<< - >>
//

sta

EE

t code

cd

VV

Figure 1: partially-static data
module Fix(S: sig type (_,_) t end) = struct

type α t = [‘R of (α,α t) S.t]
end
module Fixps(S: sig type (_,_) t end) = struct

type (α,β) ps = [‘Sta of (α,(α,β) ps) S.t
| ‘Dyn of β Fix(S).t code]

end

Figure 2: Fixpoints and partially-static fixpoints

(* val (++) : α list → α list code → α list code *)
let rec (++) l r = match l with

[] → r
| h :: t → .< h :: .~(t ++ r) >.

The code type represents quoted expressions, which may be ex-
ecuted at some future stage. The brackets .< e >. build a quoted
expression of type t code from an expression of type t. Antiquota-
tion, written .~e, splices a code value e into a quoted expression.

Finally, here is a definition of partially-static lists, with possibly-
dynamic tails, with a corresponding definition of ++ :

type α listps =
[] | (::) of α * α listps | Dyn of α list code

(* let rec dyn : α listps → α list code *)
let rec dyn = function

[] → .< [] >.
| h :: t → .< h :: .~(dyn t) >.
| Dyn l → l

(* val (++) : α listps → α listps → α listps *)
let rec (++) l r → match l with

[] → r
| h :: t → h :: (t ++ r)
| Dyn l → .< .~l ++ .~(dyn r) >.

This last ++ operation analyses the prefix of the first list until a
dynamic tail l is encountered, at which point it constructs a piece of
code that prepends l to the second list r. The function dyn converts
r to a dynamic value that can be spliced into the generated code.

The notion of partially-static data applies to a wide variety of
data types. The PS interface (Figure 1) relates a type t to its partially-
static counterpart ps by means of several operations. The interface
supports moving values forward in time, with an operation sta that
builds a partially-static value from a static value, and an operation
dyn that converts a partially-static value into a fully dynamic value.
Partially-static also encompasses dynamic; the operation cd builds a
partially-static value from a dynamic value.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

TyDe’16, September 18, 2016, Nara, Japan
ACM. 978-1-4503-4435-7/16/09...
http://dx.doi.org/10.1145/2976022.2976028

39

2. Partially-Static Data, Generically
The construction of listps from list is an instance of a more

general transformation on types (Sheard and Diatchki). From a
definition for a type t, we can obtain a partially-static counterpart
tps by replacing each recursive occurrence of t in the definition, and
adding an additional top-level constructor Dyn of t code.

In fact, we can express this transformation as a fixpoint operation
on type functions — or rather, on type definitions written in an
open-recursive style. For example, here is a definition of listr, an
open-recursive version of list which uses a second parameter ρ

where α list would usually appear in the definition:
type (α,ρ) listr = [] | (::) of α * ρ

Applying a fixpoint operator, Fix (Figure 2) to listr builds a
closed recursive definition, isomorphic to list2:
module L = Fix(struct type (α,ρ) t = (α,ρ) listr end)

Similarly, an application of a second fixpoint operator, Fixps (also
Figure 2), gives us a partially-static version of lists:
module Lps = Fixps(struct type (α,ρ) t = (α,ρ) listr end)

3. Generic Operations on Partially-Static Data
Besides abstractions for constructing partially-static types it is

useful to construct generic operations over data of those types.

Generic Folds. Gibbons (2007) shows how to obtain a variety
of generic operations over a data type — maps, folds, unfolds,
and more — from a bi-functor over the open-recursive version of
the type. For example, here is a generic fold parameterised by an
implicit bifunctor S of type MAP2 (Figure 3) for a type S.t.
(*val fold: {S: MAP2 } → ((α,β) S.t→β) →α Fix(S).t → β*)
let rec fold {S: MAP2 } f (‘R x) = f (S.map id (fold f) x)

Given a function f that builds a β from a value of the open-recursive
type S.t, fold builds a β from the closed type Fix(S).t.

Here is an instance of MAP2 for listr:
implicit module ListF = struct
type (α,ρ) t = (α,ρ) listr
let map f g = function [] → [] | h :: t → f h :: g t

end

and a new definition of ++ built from the generic fold:
(* val (++): α L.t →α L.t → α L.t *)
let (++) l r = fold (function ‘Nil → r | c → ‘R c) l

Generic Folds for Partially-Static Data. Figure 3 also introduces
an extended bifunctor interface, MAP2 ps, that adds an multi-stage
mapps operation. Using MAP2 ps we can build a generic fold over
partially-static data, parameterised by a bifunctor S and two PS
instances:
(* val foldps : {S: MAP2 } → {A: PS} → {B:PS} →
((A.ps,B.ps) S.t → B.ps) → ((A.t,B.t) S.t → B.t) code
→ (A.ps,A.t) Fixps(S).ps → B.ps *)
let rec foldps {S: MAP2 } {A:PS} {B:PS} now later =

function ‘Sta v → now (S.map id (foldps now later) v)
| ‘Dyn c → B.cd .< fold .~later .~c >.

Given functions now and later that build partially-static and dy-
namic values (of types B.ps and B.ps code) from values of the open
partially-static and dynamic values (of types (A.ps,B.ps) S.t and
(A.t,B.t) S.t code), foldps builds a partially-static value of type
B.ps from the closed partially-static type (A.ps,A.t) Fixps(S).ps.
As the implementation shows, the now function is used on static data,
and the later function is passed to the fold function defined above
to handle the dynamic case.

2 Some technical notes: we define Fix as a functor to make use of higher-
kinded polymorphism, and we use structural variants (distinguished by a
backtick on constructors) to sidestep problems with type generativity.

module type MAP2 = sig
type (α,β) t
val map : (α → γ) → (β → δ) → (α,β) t → (γ,δ) t

end
module type MAP2 ps = sig
include MAP2
val mapps : (α → γ code) → (β → δ code) →

(α,β) t → (γ,δ) t code
end

Figure 3: Bifunctors, with and without staging
implicit module Fixps {S: MAP2 ps} {P:PS} = struct

type t = P.t Fix(S).t
type ps = (P.ps,P.t) Fixps(S).ps
let rec sta (‘R x) = ‘Sta (S.map P.sta sta x)
let rec dyn = function

‘Sta x → .< ‘R .~(S.mapps P.dyn dyn x) >.
| ‘Dyn c → c

let cd c = ‘Dyn c
end

Figure 4: PS instance for fixpoints

The foldps function relies on a PS instance for Fixps(S). Figure 4
defines a suitable instance, built from the MAP2 ps instance and a PS
instance for the parameter type.

Finally, here is an instance of MAP2 ps for listr:
implicit module ListFps = struct
include ListF
let mapps f g = function [] → .< [] >.

| h :: t → .< .~(f h) :: .~(g t) >.
end

and a new definition of ++ built from the generic foldps:
(*val (++): {A:PS} → ((A.ps,A.t) Lps.t as β) →β → β *)
let (++) {A:PS} l r =

foldps (function [] → r | c → ‘Sta c)
(.< function [] → .~(dyn r) | c → ‘R c >.) l

4. Ongoing Work
We have seen how to derive the partially-static form of a type,

along with generic operations over partially-static data, like foldps.
The MAP2 ps instances used by these generic operations are not
arduous to define, but we are investigating ways to generalize them
to avoid the need to explicitly support staging. Requiring that MAP be
a traversable functor (Gibbons and Oliveira 2009) seems promising,
but a naive approach requires cross-stage persistence and introduces
administrative terms into generated code.

We are also interested in defining partially-static versions of
types without requiring open recursion.

Finally, we plan to complete the generic programming toolbox
with support for other operations, apply it to larger examples, and
release our MetaOCaml code as a reusable library.

Acknowledgements
This work was supported by Microsoft Research through its PhD

Scholarship Programme.

References
J. Gibbons. Datatype-Generic Programming, pages 1–71. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2007.
J. Gibbons and B. c. d. s. Oliveira. The essence of the iterator pattern. J.

Funct. Program., 19(3-4):377–402, July 2009.
O. Kiselyov. The design and implementation of BER MetaOCaml. In

Functional and Logic Programming, LNCS. Springer, 2014.
T. Sheard and I. S. Diatchki. Staging algebraic datatypes. Unpub-

lished manuscript. http://web.cecs.pdx.edu/~sheard/papers/
stagedData.ps.

L. White, F. Bour, and J. Yallop. Modular implicits. ACM Workshop on ML
2014 post-proceedings, September 2015.

40

http://web.cecs.pdx.edu/~sheard/papers/stagedData.ps
http://web.cecs.pdx.edu/~sheard/papers/stagedData.ps

	Static vs Dynamic
	Partially-Static Data, Generically
	Generic Operations on Partially-Static Data
	Ongoing Work

