
BRacK: A Verified Compiler for Scheme via CakeML
Pascal Y. Lasnier

University of Cambridge
Cambridge, United Kingdom

pyl37@cantab.ac.uk

Jeremy Yallop
University of Cambridge

Cambridge, United Kingdom
jeremy.yallop@cl.cam.ac.uk

Magnus O. Myreen
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden
myreen@chalmers.se

Abstract
This paper describes BRacK, which is a new verified com-
piler for Scheme. BRacK compiles a substantial subset of
Scheme, including first-class continuations, recursive bind-
ings, first-class functions, mutable local variables, and lists,
to CakeML, from where programs can be compiled to ma-
chine code. Compilation from Scheme to CakeML is based
around a continuation-passing-style (CPS) transformation
that naturally arises from Scheme’s small-step semantics.
We have formally established the correctness of BRacK in
the HOL4 theorem prover.

CCS Concepts: • Software and its engineering → Soft-
ware verification; Compilers; Control structures; •Theory
of computation → Abstract machines.

Keywords: compiler verification, Scheme, CPS transform,
first-class continuations, HOL4

ACM Reference Format:
Pascal Y. Lasnier, Jeremy Yallop, and Magnus O. Myreen. 2026.
BRacK: A Verified Compiler for Scheme via CakeML. In Proceed-
ings of the 15th ACM SIGPLAN International Conference on Certified
Programs and Proofs (CPP ’26), January 12–13, 2026, Rennes, France.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3779031.
3779098

1 Introduction
Compilers play a key role in software development: almost
all code that is executed by a computer is the result of com-
pilation. To be confident that the programs we run reflect
our intentions, we must be confident in the correctness of
compilers. Unfortunately, realistic compilers typically con-
tain bugs [39], and many compiler bugs silently introduce
security problems into programs [38].
Compilers are often extensively tested by their develop-

ers, by researchers, and by users. However the space of pro-
grams is extremely large and complex, with subtle interac-
tions between language features, and even thorough testing

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
CPP ’26, Rennes, France
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2341-4/2026/01
https://doi.org/10.1145/3779031.3779098

can only explore a tiny fraction of the space. In contrast, for-
mal proof can guarantee that programs are never compiled
incorrectly [27]. In particular, a mechanised proof that com-
pilation preserves semantics provides the highest level of
assurance that compilation will not introduce bugs.

Given the clear advantages of verified compilation, it
is unfortunate that developing verified compilers is very
costly. Realistic modern compilers do not typically generate
executable code directly from the source; instead, they trans-
late between a series of intermediate languages. In a ver-
ified compiler, each of these intermediate languages must
be given a formal semantics, and each translation step must
be formally proved to preserve semantics. Developing these
proofs requires substantial resources, and there are conse-
quently very few complete verified compilers: the most no-
table ones are the C compiler CompCert [27] and the ML
compiler CakeML [24].

Reducing the Cost of Verified Compilation. Tech-
niques that reduce the cost of developing verified compilers
are likely to improve their adoption, ultimately leading to
a general increase in software quality. This article consid-
ers two techniques that make it easier to develop a verified
compiler for a high-level language:

Backend reuse Large compilers typically include
many components that are language independent,
such as lowering, middle-end and peephole op-
timisations, and instruction selection. Reusing the
language-independent portions of an existing verified
compiler can lower the cost of development.

Refunctionalisation Ager et al. [1] systematically re-
late transition semantics to higher-order functional
programs. One challenging part of developing compil-
ers for high-level languages is the treatment of control
operators such as call/cc. Refunctionalisation offers
a straightforward way to reuse the backend of a com-
piler for a higher-order language to verify compila-
tion for a language with arbitrary control operators.

We have used these techniques to build a new verified
Scheme compiler, BRacK1. The BRacK compiler is complete:
compilation is verified from the Scheme source language
down to machine code. BRacK achieves completeness at
low cost by targeting CakeML [24], relying on CakeML’s

1Brack, or barmbrack, is a traditional Irish fruitcake often baked as a part
of Halloween celebrations.

157

https://orcid.org/0009-0009-9371-3467
https://orcid.org/0009-0002-1650-6340
https://orcid.org/0000-0002-9504-4107
https://doi.org/10.1145/3779031.3779098
https://doi.org/10.1145/3779031.3779098
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3779031.3779098
https://www.acm.org/publications/policies/artifact-review-and-badging-current

CPP ’26, January 12–13, 2026, Rennes, France Pascal Y. Lasnier, Jeremy Yallop, and Magnus O. Myreen

StateScm StateScm

ExpML ExpML

Ans

step

∃

eval eval

Figure 1. BRacK semantic preservation as a commutative
diagram. Scheme states relate⇝ to ML expressions, which
have equal evaluations after a Scheme small step.

existing backend for most of compilation. The definition
of BRacK is systematically derived from the operational
semantics in the Scheme specification via refunctionali-
sation, resulting in a compiler which produces ML code
in continuation-passing style and faithfully preserves the
meaning of programs. BRacK supports a substantial subset
of Scheme that includes first-class continuations, recursive
let-bindings, first-class functions, mutable local variables,
and lists. We believe that BRacK is the first compiler with
verified support for dynamic typing and first-class continua-
tions.
Our work has been carried out in the HOL4 theorem

prover [34], and the resulting proof scripts are available as
supplementary material [25].

2 Approach
This work combines the following technical ingredients.

1. The Scheme Formal Semantics. We define the seman-
tics of BRacK as a CESK abstract machine, closely follow-
ing the formal operational small-step semantics in R6RS, the
Sixth Revised Report on Scheme (Section 3).

2. A New Compiler from Scheme to ML. BRacK com-
piles Scheme using a continuation-passing style (CPS) trans-
form, targeting ML. Following Ager et al. [1], we systemati-
cally derive a CPS transform by refunctionalising the CESK-
machine semantic definition of Scheme (Section 4).

3. The CakeML Verified Compiler. Our work builds on
the CakeML verified compiler for ML. Building on CakeML
allows us to focus on the distinctive features of Scheme,
avoiding the need to implement and verify the language-
independent compiler back-end (Section 4.1).

4. The HOL4 Theorem Prover. Since CakeML is written
in HOL4, we also implement BRacK in HOL4, making use of
the fact that HOL4 definitions are also written in ML in the
derivation of our compiler (Section 4.3).

5. A New Proof of Semantic Preservation. We establish
semantic preservation for the CPS transform by defining a
relation between Scheme small-step abstract machine states

and CPS ML expressions capturing those states, and then
showing that the BRacK implementation satisfies the rela-
tion.The semantic preservation proof shows that, for an ML
expression of a Scheme program, there exists an ML expres-
sion of that program after an abstract machine step that has
equal evaluation (Figure 1).

A key finding of our work is that the semantics-directed
compiler derivation makes the semantic preservation proof
easy to complete, and the case for first-class continuations
is surprisingly trivial to prove (Section 5).

6. The CakeML Executable Generation Tool. CakeML
provides a translation tool that generates an executable file
from HOL4 definitions [23, 29], and we use this tool to gen-
erate an executable for BRacK.
BRacK supports a substantial subset of Scheme, allowing

us to compile some interesting data-processing programs
(Section 6).

3 Scheme and First-Class Continuations
Scheme is a dynamically-typed, impure dialect of Lisp, with
support for first-class continuations using the call-with-
current-continuation, or call/cc, procedure. First-class
continuations enable interesting programming patterns not
otherwise available to functional languages, by offering di-
rect manipulation over Scheme’s control flow. For example,
first-class continuations may be used to implement back-
tracking:

(begin
(set! 𝑥 (call/cc (lambda (ec) (begin

(set! checkpoint ec)
(rand)))))

(let ((𝑦 (compute 𝑥)))
(if (pred 𝑦)

𝑦
(checkpoint (rand)))))

In this code fragment, call/cc captures the continuation
at the point of assigning some value to 𝑥 . The captured
continuation can be thought of a snapshot of the evalua-
tion context at that point, which in this case has the form
(begin (set! 𝑥 []) ...), where the square brackets denote
the hole of the evaluation context, which gets filled by a
value. Scheme exposes this continuation to the program in
the form of an escape procedure, which it passes to the ar-
gument of call/cc. Here, that escape procedure is assigned
to the variable checkpoint, which can be invoked further
along in program execution, before a random value chosen
by rand is returned to be assigned to 𝑥 .
With a checkpoint escape procedure established, it may

be invokedwith a new value to assign to 𝑥 in order to restart

158

BRacK: A Verified Compiler for Scheme via CakeML CPP ’26, January 12–13, 2026, Rennes, France

computation from the checkpoint. In this example, we sim-
ply check that a value computed from 𝑥 satisfies some pred-
icate, and restart from the checkpoint with a new value if
it does not. This backtracking pattern is even more helpful
for more complex computations based on 𝑥 , possibly with
multiple points of failure in nested expressions, where in-
voking the escape procedure is simpler than unrolling the
call stack.

As this example shows, the often imperative nature of pat-
terns using control operators such as call/cc, though pow-
erful, make programs using them behave in complex ways.
This complexity makes implementing and verifying these
operators appear challenging. However, Scheme is a rela-
tively small language, and the semantics of call/cc is ac-
tually straightforward. Much of the complexity of Scheme
programs using call/cc arises from its combination with
dynamic typing and mutable variables. This paper seeks
to show that, since the complex behaviour of control op-
erators is emergent, not intrinsic, verified compilation of
continuation-based languages like Scheme is more feasible
than it may seem at first glance.

3.1 Semantics
To mechanise a semantic preservation proof, we must first
establish a semantic definition of Scheme. BRacK’s seman-
tics are based on the formal small-step semantics of the
Sixth Revised Report on Scheme (R6RS) [35], themost recent
operational semantics for Scheme2. Since BRacK’s seman-
tics follow the formal R6RS semantics, all programs in the
supported subset have fully specified behaviour when com-
piled with BRacK. Some such programs, e.g. those involv-
ing let-binding reinitialisation using call/cc, are treated in-
consistently by industrial Scheme compilers, which follow
the underspecified informal R6RS semantics rather than the
formal semantics. We include a program demonstrating the
inconsistency in the supplementary material for this pa-
per [25].
Figure 2 shows the subset of R6RS supported by BRacK.

Besides continuations, the subset supports booleans, inte-
gers, and lists, allowing BRacK to support interesting data-
processing programs. In future, we plan to support ad-
ditional features from R6RS including exception handling
and other control operators (apply, call-with-values,
dynamic-wind), where exception handlers and dynamic-
wind in particular a require finer granularity of represen-
tation of continuations than is necessary for call/cc.

Data is primarily inserted into programs through self-
quoting values (sqv): integers, booleans, or the empty list
null. Primitive procedures (pproc) consist of arithmetic
procedures on integers (aproc), data equivalence (eqv?),
2The most recent Scheme revision R7RS uses formal denotational seman-
tics, which is harder to extract a small subset from. Both specifications are
equivalent for the subset of Scheme supported by BRacK.

𝑥 ∈ Variable
𝑓 ∶∶= (𝑥 𝑥 ...) ∣ (𝑥 𝑥 ... ⋅ 𝑥) ∣ 𝑥
𝑛 ∈ ℤ
sqv ∶∶= 𝑛 ∣ #t ∣ #f ∣ null
aproc ∶∶= + ∣ − ∣ ∗
pproc ∶∶= aproc ∣ call/cc ∣ cons ∣ car ∣ cdr

∣ eqv? ∣ null? ∣ pair?

𝑒 ∶∶= 𝑥 ∣ sqv ∣ pproc ∣ (if 𝑒 𝑒 𝑒) ∣ (𝑒 𝑒 ...)
∣ (begin 𝑒 𝑒 ...) ∣ (lambda 𝑓 𝑒) ∣ (set! 𝑥 𝑒)
∣ (letrec ((𝑥 𝑒) (𝑥 𝑒) ...) 𝑒)
∣ (letrec* ((𝑥 𝑒) (𝑥 𝑒) ...) 𝑒)

Figure 2. Expression grammar.

𝓁 ∈ 𝕃
𝜌 ∶ Variable ⇀ 𝕃

proc ∶∶= pproc ∣ (proc 𝑓 {𝜌} 𝑒) ∣ (throw 𝐸)
𝑣 ∶∶= sqv ∣ proc ∣ (pp 𝓁) ∣ unspecified

𝐸 ∶∶= [] ∣ {𝜌} (if 𝐸 𝑒 𝑒) ∣ {𝜌} (v ... 𝐸 𝑒 ...)
∣ {𝜌} (begin 𝐸 𝑒 𝑒 ...) ∣ {𝜌} (set! 𝑥 𝐸)
∣ {𝜌} (letrec ((𝑥 𝑣) ... (𝑥 𝐸) (𝑥 𝑒) ...) 𝑒)

sv ∈ StoreVal
sv ∶∶= 𝑣 ∣ (cons 𝑣 𝑣) ∣ bh
𝜎 ∶ 𝕃 ⇀ StoreVal

𝑠 ∈ String
𝑐 ∶∶= {𝜌} 𝑒 ∣ 𝑣 ∣ (raise 𝑠)

Figure 3. Evaluation grammar.

list/pair operations (cons, car, cdr, null?, pair?), and
call/cc. Expressions 𝑒 consist of these atomic terms, vari-
ables 𝑥 , if-expressions, procedure application (as a list of ex-
pressions), expression sequencing (begin), variable assign-
ment (set!), lambda expressions, and recursive let-bindings
(letrec/letrec*). Lambda expression parameters take the
form of formals 𝑓 , which capture some or all of the passed
arguments as a list.

Internally, BRacK’s semantics are defined as a
CESK abstract machine (Control, Environment, Store,
(K)ontinuation) [14]. Figure 3 gives the grammar of
machine states.

Evaluation contexts 𝐸 directly correspond to continua-
tions as a nested sequence of stack frames, with attached en-
vironments (denoted by a prefixed {𝜌}), corresponding to dif-
ferent partially evaluated expressions. The evaluating term

159

CPP ’26, January 12–13, 2026, Rennes, France Pascal Y. Lasnier, Jeremy Yallop, and Magnus O. Myreen

𝑐 lies in the hole [] of an evaluation context 𝐸 and corre-
sponds to the control string of the CESK machine. This eval-
uating term may be an expression 𝑒, value 𝑣 , or exception
(raise 𝑠). The expression has an environment 𝜌 attached to
it, denoted by {𝜌} 𝑒. The environment 𝜌 is a partial function
from variables to store locations 𝕃.
Values 𝑣 are irreducible terms that may fill the hole of

an evaluation context. Values may be either the atomic
sqv or pproc terms from the expression grammar, lambda
expressions as closures (proc) with a captured environ-
ment, continuations captured by call/cc as escape proce-
dures (throw), or immutable pair pointers (pp) to store lo-
cations 𝓁. The special unspecified value is the result of a
set! expression, which has an unspecified value in R6RS.
The locations in the range of an environment 𝜌 are

mapped to store entries by another partial function 𝜎 rep-
resenting the store. Store entries are either values 𝑣 or black
holes bh used for letrec initialisation.
A CESK machine state consists of a combination of these

components:
⟨𝜎 , 𝐸[𝑐]⟩

and small steps in the operational semantics are defined by
transitions between these states.

3.1.1 Correspondence with R6RS. In contrast with the
CESK machine semantics of BRacK, the semantics specified
by R6RS is more like a CS machine (control, store) reduction
semantics under Felleisen & Friedman’s formulation, with
substitution rules rather than an environment 𝜌, and com-
bined control strings with contexts. This section recapitu-
lates the well-understood equivalence between these defini-
tions [15].

First, there is a natural correspondence between envi-
ronment and substitution semantics [14, 15]. Substitutions
propagate to all sub-expressions, e.g. when evaluating the
conditional expression 𝑒 in {𝑥1 ↦ bp1...} (if 𝑒 𝑒1 𝑒2), the
substitution implicitly applies to the conditional expression
{𝑥1 ↦ bp1...} 𝑒.
To satisfy this propagation condition in a CESK machine,

an environment must be attached to every stack frame in a
continuation corresponding to levels of expression nesting,
and environments are propagated from expressions to their
sub-expressions. For example, here are the abstract machine
steps for an if-expression, with the environment explicitly
propagated:
⟨𝜎 , 𝐸[{𝜌} (if 𝑒 𝑒1 𝑒2)]⟩ ⟶ ⟨𝜎, 𝐸[{𝜌} (if [{𝜌} 𝑒] 𝑒1 𝑒2)]⟩
⟨𝜎 , 𝐸[{𝜌} (if [#f] 𝑒1 𝑒2)]⟩ ⟶ ⟨𝜎, 𝐸[{𝜌} 𝑒2]⟩
⟨𝜎 , 𝐸[{𝜌} (if [𝑣] 𝑒1 𝑒2)]⟩ ⟶ ⟨𝜎, 𝐸[{𝜌} 𝑒1]⟩ 𝑣 ≠ #f
The explicit attachment of environments to terms in the

CESK machine is also seen in the BRacK rule for lambda,
which captures the environment 𝜌:

⟨𝜎 , 𝐸[{𝜌} (lambda 𝑓 𝑒)]⟩ ⟶ ⟨𝜎, 𝐸[(proc 𝑓 {𝜌} 𝑒)]⟩

R6RS does not explicitly capture the environment when
evaluating lambda, but does so implicitly, because substi-
tutions propagate to all sub-expressions, including values.
Since these substitutions only affect lambdas, not other val-
ues, BRacK represents an environment attached to a lambda
as a proc value, rather than attaching environments to ev-
ery value.

Also, BRacK always allocates arguments passed to
lambda expressions in the store, omitting the R6RS rule that
directly maps immutable variables to values. Consequently,
while R6RS substitutions substitute variables for store loca-
tions or immutable values, BRacK environments exclusively
map variables to store locations.
Finally, the explicit decomposition step for an if-

expression above specifies how the evaluation context is ex-
tended with a conditional stack frame. Such steps are not
present in the R6RS semantics and are implicit from the
form of evaluation contexts, effectively combining the con-
trol string and evaluation context in the abstract machine
state [15]. The two forms of abstract machine are equiva-
lent by the notion of unique decomposition of the evaluation
contexts [37].

BRacK’s semantics otherwise follows the R6RS formal se-
mantics, with left-to-right evaluation order.

3.2 CPS Transform
Continuation-passing style (CPS) is a program representa-
tion in which functions do not return values, but instead
pass values to continuations by tail-call. All functions must
consequently take a continuation as an argument and even-
tually call into a continuation with some value. BRacK per-
forms a CPS transform during compilation, turning expres-
sions into CPS.
Plotkin’s seminal work on the CPS transform uses it as

a means to unify call-by-name and call-by-value seman-
tics [32]. One important aspect of CPS in this context is that
it makes order of evaluation explicit, hence offers a means
to simulate call-by-value lambda calculus in call-by-name
calculus using continuations.
The more relevant simulation property for Scheme, how-

ever, is that continuations can simulate control operators in
a calculus without them [17]. Here is a (slightly simplified)
CPS transform of a simple example program using call/cc:

(+ (call/cc (lambda (𝑎) (+ (𝑎 1) 2))) 3)

(𝜆𝑓 𝑘.𝑓 (𝜆𝑥 𝑘′.𝑘 𝑥) 𝑘) (𝜆𝑎 𝑘.(𝜆𝑘.𝑎 𝑘 1) (𝜆𝑥.𝑘 (𝑥+2))) (𝜆𝑥.𝑥+3)
In CPS, continuations are represented as functions

(e.g. (+ [] 3) is represented by 𝜆𝑥.𝑥 + 3), and the behaviour
of call/cc is made explicit by its manipulation of these con-
tinuations captured into arguments 𝑘. call/cc passes its ar-
gument an escape procedure (𝜆𝑥 𝑘′.𝑘 𝑥) which captures the
current continuation, and escapes the existing continuation
when called (in this case, corresponding to (+ (+ [] 2) 3)) by

160

BRacK: A Verified Compiler for Scheme via CakeML CPP ’26, January 12–13, 2026, Rennes, France

discarding it and applying its captured continuation instead.
In this example, the final result is (+ [1] 3) = 4.

CPS transforms are one of several approaches to compil-
ing continuation-based language features, others largely be-
ing forms of runtime stack manipulation techniques [3, 21].
These alternatives are often preferred to CPS because unop-
timised CPS code can be slow [13].
However, the CPS transform has a distinct advantage for

verified compilation: its naturality in representing continu-
ations for implementing control operators. To show this, we
elaborate on a deep connection between small-step seman-
tics and CPS which lends itself to compilation to a lambda-
calculus-like language (ML) and to semantic preservation
proof using simulation.

4 Compiler Implementation
BRacK takes advantage of an intrinsic property relating op-
erational small-step semantics (by which Scheme is spec-
ified) and CPS, which is that small-step semantics are
a defunctionalisation of CPS, a notion first explored by
Reynolds [33]. Particularly, there is a well-established trans-
form [1, 4, 5, 7] between small-step abstract machines,
which are commonly used to define continuation semantics,
and higher-order CPS definitional interpreters, which are
similar to functional big-step semantics but are defined in
CPS and hence pass around a continuation representing the
rest of evaluation.

We note that a CPS definitional interpreter may be rewrit-
ten, with some changes, into a compositional denotational
transform from Scheme programs to HOL4 CPS programs.
However, because HOL4 terms correspond to pure ML, we
may instead embed the result of the transform into ML and
construct an AST, resulting in a compiler. We then make ad-
ditional optimisations, including direct compilation of mu-
table Scheme variables into ML ref variables.

Hence, the CPS transform performed by BRacK is derived
directly from the Scheme semantics, and requires little addi-
tional consideration. This construction becomes especially
useful once we consider non-linear continuations such as
those involving exceptions and call/cc, which are other-
wise challenging to correctly implement in a compiler be-
cause of their non-linearity. The fact that the compiler is de-
rived from the semantics immediately benefits the semantic
preservation proof, because the proof largely becomes a rec-
onciliation of the continuation definitions and the abstract
machine definitions they directly correspond to.

4.1 CakeML
BRacK is built upon the existing verified ML compiler
CakeML [24], and uses ML as a compilation target. Com-
piling to ML allows us to focus on semantic preservation

𝑥 ∈ Variable
𝑛 ∈ ℤ
𝐶 ∈ Constructor
𝑃 ∶∶= 𝑥 ∣ 𝑛 ∣ 𝐶 𝑃 ... ∣ _

𝑒 ∶∶= 𝑥 ∣ 𝑛 ∣ 𝑒 + 𝑒 ∣ 𝑒 − 𝑒 ∣ 𝑒 ∗ 𝑒 ∣ 𝐶 𝑒 ... ∣ 𝜆𝑥. 𝑒 ∣ 𝑒 𝑒
∣ let 𝑥 = 𝑒 in 𝑒 ∣ letrec 𝑥 𝑥 = 𝑒, ... in 𝑒
∣ 𝑒; 𝑒 ∣ case 𝑒 of | 𝑃 ⇒ 𝑒 | ...
∣ ref 𝑒 ∣ !𝑒 ∣ 𝑒 ∶= 𝑒

𝓁 ∈ 𝕃
𝜌 ∶ Variable ⇀ Value
𝜎 ∶ 𝕃 ⇀ Value

𝑣 ∈ Value
𝑣 ∶∶= 𝑛 ∣ 𝐶 𝑣 ... ∣ 𝓁 ∣ Λ𝑥. {𝜌} 𝑒 ∣ fix𝑥 𝜌 ⟨⟨𝑥, 𝑥, 𝑒⟩, ...⟩

Figure 4. ML AST and evaluation grammar.

proofs for high-level transformations close to the source se-
mantics, without the burden of proving semantic preserva-
tion tomachine code, which has already been established for
CakeML. This approach has previously been used for Pure-
Cake [22], a compiler for a Haskell-like language.
Targeting ML for compilation means that BRacK must

use CakeML’s existing ML semantics to state the Scheme-
to-ML semantic preservation theorem. CakeML uses a func-
tional big-step semantics [30], where the evaluation of
ML expressions is processed through a recursively-defined
evalML function. This functional definition provides a no-
tion of equality between expression evaluations, regardless
of whether they terminate or diverge, and so may be used to
equate simulated Scheme programs that may not terminate.

Figure 4 gives a grammar for the subset of ML used by
BRacK, including variables 𝑥 , integers 𝑛, arithmetic oper-
ations, constructors 𝐶 with zero or more term arguments,
lambda abstraction, unary application, non-recursive and
recursive let-bindings, sequencing with ’; ’, case match
expressions, and mutable references. Programs evaluate
with a store 𝜎 and environment 𝜌 using the function
evalML(𝜎 , 𝜌, 𝑒), which, if the program terminates, returns a
store and value ⟨𝜎 , 𝑣⟩. Values include integers, constructors
with zero or more value arguments, references to store lo-
cations 𝓁, and closures Λ and recursive closures fix𝑥 , both
of which capture an environment 𝜌. Recursive closures may
contain multiple mutually recursive functions defined by a
letrec expression, and the subscript attached to fix selects
one of them.

CakeML’s evaluation largely follows Standard ML, but
with right-to-left evaluation order.

161

CPP ’26, January 12–13, 2026, Rennes, France Pascal Y. Lasnier, Jeremy Yallop, and Magnus O. Myreen

4.1.1 HOL4. Definitions for HOL4 terms are written in a
purely functional variant of ML, and so the compiler imple-
mentations for CakeML, BRacK, etc. are ML programs in
HOL4 definitions. The CakeML framework includes a trans-
lation tool that produces compiler executables from these
pure ML implementation definitions [29].
A property of HOL4 that is especially relevant to the

present work is the fact that the pure ML used in HOL4
terms, as a defining language for the Scheme semantics,
is strictly a subset of the target language of compilation:
CakeML. This property enables the derivation of a compiler
to CakeML directly from aHOL4 definition for a definitional
interpreter, as explained in Section 4.3.

4.2 Refunctionalisation
One way to succinctly model the behaviour of control oper-
ators in continuation-based languages such as Scheme is to
use a CEK machine-based small-step semantics [15]. For ex-
ample, the core reduction rules that capture the behaviour
of call/cc in Scheme (without dynamic-wind, which intro-
duces entry and exit procedures to continuations) are cun-
ningly simple compared to the emergent program complex-
ity they introduce:

𝐸[(call/cc 𝑣)] ⟶ 𝐸[(𝑣 [(throw 𝐸)])]
𝐸[((throw 𝐸′) 𝑣)] ⟶ 𝐸′[𝑣]

Felleisen et al. have shown that CPS can similarly capture
control operator behaviours with a simple CPS transform
to lambda calculus [17]. The similarity of representation be-
tween reduction semantics and CPS is not a coincidence;
Danvy has thoroughly documented the nature of evaluation
context-based reduction semantics as a defunctionalisation3
of CPS interpretation [4, 5], building upon Reynolds’ semi-
nal work on definitional interpreters [33].
In one particularly relevant instance of this relationship,

Ager et al. demonstrate that a CEK machine may be refunc-
tionalised into a CPS interpreter, based on the reduction
steps corresponding to particular continuations defined by
the abstract machine [1]. Ager et al.’s refunctionalisation
technique may be similarly applied to the CESK-machine
semantic definition of Scheme in BRacK, with some key dif-
ferences from the original technique. To demonstrate, we
define the small steps for evaluating an assignment expres-
sion in Scheme:

stepeval (𝜎 , 𝐸, {𝜌} (set! 𝑥 𝑒)) =
⟨𝜎, 𝐸[{𝜌} (set! 𝑥 [])], {𝜌} 𝑒⟩

stepcont (𝜎 , 𝐸[{𝜌} (set! 𝑥 [])], 𝑣) =
⟨𝜎{𝜌(𝑥) ↦ 𝑣}, 𝐸,unspecified⟩

3Defunctionalisation is a transformation from higher-order programs to
first-order programs [7], where “a first-class function is introduced with a
constructor […] and it is eliminated with a case-expression dispatching over
the corresponding constructors”.

The notation 𝑓 {𝑥 ↦ 𝑦} denotes an update of the par-
tial function 𝑓 to map 𝑥 to 𝑦 . For visual consistency, we
denote small steps using a function step which operates
on a store, evaluation context, and control string as a pa-
rameters. From this point onwards, we also colour Scheme
syntax and runtime constructs in blue, to distinguish them
from HOL4 meta-language terms in black. We also divide
the cases for the reduction function step into those which
decompose an expression into a stack frame and an inner ex-
pression (stepeval), and those which continue with a value in
an evaluation context (stepcont), though they are both part
of the definition for step.
In Ager et al.’s technique, the evaluation context 𝐸 of a

CEK machine is refunctionalised as a closure 𝑘 that serves
as a continuation. In our adaption, continuations must take
an additional argument representing the store. The purpose
of this change is to track the state of mutable variables in
Scheme; it reflects the presence of the store in a continu-
ing state ⟨𝜎 , 𝐸, 𝑣⟩ in the small-step semantics. For example,
here is the refunctionalisation of the semantic definition for
assignment above, which produces one case in a CPS defini-
tional interpreter evalCPS:

evalCPS (set! 𝑥 𝑒) 𝜎 𝜌 𝑘 =
evalCPS 𝑒 𝜎 𝜌 (𝜆𝜎 ′ 𝑣 . 𝑘 (𝜎 ′{𝜌(𝑥) ↦ 𝑣}) unspecified)

In general, in the application of Ager et al.’s technique
to a small-step semantics defined as a CESK machine, the
cases in the resulting definitional interpreter evalCPS are
based on the decomposition steps stepeval. The translation
of a step step that produces another expression state of the
form ⟨𝜎 , 𝐸, {𝜌} 𝑒⟩ is a nested call to evalCPS with the corre-
sponding arguments.
Importantly, when an evaluation context is extended by

a decomposition step stepeval, the nested evaluator call is
passed an extended refunctionalised continuation.The body
of this continuation matches the body of the continuation
step stepcont case for the correspond evaluation context.

Lastly, returning a value state of the form ⟨𝜎 , 𝐸, 𝑣⟩ from
step corresponds to applying the refunctionalised continu-
ation to the value. This situation arises, for example, with
expressions that immediately return values, such as lambda
expressions:

stepeval (𝜎 , 𝐸, {𝜌} (lambda 𝑓 𝑒)) = ⟨𝜎, 𝐸, (proc 𝑓 {𝜌} 𝑒)⟩
evalCPS (lambda 𝑓 𝑒) 𝜎 𝜌 𝑘 = 𝑘 𝜎 (proc 𝑓 {𝜌} 𝑒)

Other logic within the semantics is preserved in refunc-
tionalisation, such as the arity checking of applications im-
posed by Scheme’s dynamic typing. Here are some cases of
the semantic definition of application, showing evaluation
of the function expression, evaluation of an argument, and
application of a proc value to evaluated arguments:

162

BRacK: A Verified Compiler for Scheme via CakeML CPP ’26, January 12–13, 2026, Rennes, France

stepeval (𝜎 , 𝐸, {𝜌} (𝑒 𝑒1 ...)) =
⟨𝜎 , 𝐸[{𝜌} ([] 𝑒1 ...)], {𝜌} 𝑒⟩

stepcont (𝜎 , 𝐸[{𝜌} (... [] 𝑒𝑖 ...)], 𝑣) =
⟨𝜎 , 𝐸[{𝜌} (... 𝑣 [] ...)], {𝜌} 𝑒𝑖⟩

stepcont (𝜎 , 𝐸[{𝜌} (𝑣 𝑣1 ... 𝑣𝑁−1 [])], 𝑣𝑁) = case 𝑣 of

| (proc 𝑓 {𝜌′} 𝑒) ⇒ param 𝑓 𝑒 𝜎 𝜌′ 𝐸 [𝑣1, ..., 𝑣𝑁]
...

The arity checking and variable binding for a proc value are
handled by an auxiliary function param:

param (𝑥 ⋅ 𝑓) 𝑒 𝜎 𝜌 𝐸 vs = case vs of

| [] ⇒ ⟨𝜎, 𝐸, (raise “Arity mismatch”)⟩
| 𝑣∷vs′ ⇒ let 𝓁 = fresh_loc 𝜎

in param 𝑓 𝑒 𝜎{𝓁 ↦ 𝑣} 𝜌{𝑥 ↦ 𝓁} 𝐸 vs′

param () 𝑒 𝜎 𝜌 𝐸 vs = case vs of

| [] ⇒ ⟨𝜎, 𝐸, {𝜌} 𝑒⟩
| _ ⇒ ⟨𝜎, 𝐸, (raise “Arity mismatch”)⟩

param 𝑥 𝑒 𝜎 𝜌 𝐸 vs = let

⟨𝜎 ′, 𝓁⟩ = alloc_list 𝜎 vs; 𝜌′ = 𝜌{𝑥 ↦ (pp 𝓁)}
in ⟨𝜎 ′, 𝐸, {𝜌′} 𝑒⟩

The auxiliary alloc_list function allocates a linked list of
fresh cons cells (pairs) containing the values vs and returns
its location 𝓁 along with an updated store 𝜎 ′, with 𝜎 ⊑ 𝜎 ′.
When refunctionalising the application expression case,

we also refunctionalise param to be mutually recursively
defined with the evaluator. The logic of the semantic defi-
nition is preserved, and it is only its return values which
are substituted:

paramCPS (𝑥 ⋅ 𝑓) 𝑒 𝜎 𝜌 𝑘 vs = case vs of

| [] ⇒ (raise ‶Arity mismatch″)
| 𝑣∷vs′ ⇒ let 𝓁 = fresh_loc 𝜎

in paramCPS 𝑓 𝑒 𝜎{𝓁 ↦ 𝑣} 𝜌{𝑥 ↦ 𝓁} 𝑘 vs′

paramCPS () 𝑒 𝜎 𝜌 𝑘 vs = case vs of

| [] ⇒ evalCPS 𝑒 𝜎 𝜌 𝑘
| _ ⇒ (raise ‶Arity mismatch″)

paramCPS 𝑥 𝑒 𝜎 𝜌 𝑘 vs = let ⟨𝜎 ′, 𝓁⟩ = alloc_list 𝜎 vs

in evalCPS 𝑒 𝜎 ′ 𝜌{𝑥 ↦ (pp 𝓁)} 𝑘
BRacK does not yet support exception handling, so the

definitional interpreter immediately terminates on a raised
exception. Auxiliary functions which do not take an evalu-
ation context such as alloc_list remain unchanged.

With these changes, the application expression case for
the evaluator becomes:

evalCPS (𝑒 𝑒1 ...) 𝜎 𝜌 𝑘 =
evalCPS 𝑒 𝜎 𝜌 (𝜆𝜎 ′ 𝑣 .
evalCPS 𝑒1 𝜎 ′ 𝜌 (𝜆𝜎″ 𝑣1.
... case 𝑣 of

| (proc 𝑓 {𝜌′} 𝑒) ⇒ paramCPS 𝑓 𝑒 𝜎 ′𝑁 ′ 𝜌′ 𝑘 [𝑣1, ...]
...))

4.3 HOL4 Term Definitions to ML AST
We may pull the store, environment, and continuation pa-
rameters of the evaluator out into lambda abstractions to
arrive at a denotation for Scheme expressions of the form
evalCPS 𝑒 = 𝜆𝜎 𝜌 𝑘. At this point we use the property that
HOL4 term definitions embed into a pure subset of ML, and
so transform the denotation of a Scheme expression into a
generated ML AST (denoted in pink). In particular, continu-
ations 𝑘 and their internal logic are constructed as ML AST
lambda abstractions 𝜆𝜎 𝑡. ..., and continuation applications
as applications 𝑘 𝜎 𝑡 . The store and environment are blue to
reflect their direct ML representations as Scheme runtime
constructs. For example, the CPS transform for assignment
becomes:

compileCPS (set! 𝑥 𝑒) = 𝜆𝜎 𝜌 𝑘.
(compileCPS 𝑒) 𝜎 𝜌 (𝜆𝜎 ′ 𝑡 . 𝑘 (𝜎 ′{𝜌(𝑥) ↦ 𝑡}) unspecified)

where recursive calls to compileCPS compose to construct a
full ML AST from an arbitrary Scheme program.
Some extra care is needed to ensure that compileCPS is

properly defined in this transition to the ML AST. For the
CPS transform for a Scheme application expression, naively
swapping HOL4 terms to ML AST leaves an inner Scheme
expression which cannot be transformed in the case of ap-
plying a lambda expression:

compileCPS (𝑒 𝑒1 ...) = 𝜆𝜎 𝜌 𝑘. (compileCPS 𝑒) 𝜎 𝜌 (𝜆𝜎 ′ 𝑡 .
... case 𝑡 of

| Proc 𝜌′ 𝑓 𝑒 ⇒ (cparamCPS 𝑓 𝑒) 𝜎 ′𝑁 ′ 𝜌′ 𝑘 [...]
...)

In this example, cparamCPS cannot expand over the
lambda expression body 𝑒 because it exists as an ML value
at runtime which was introduced verbatim by the lambda
compile case. The solution is to define a special CPS trans-
form for lambda expressions and move the cparamCPS ex-
pansion there instead:

compileCPS (lambda 𝑓 𝑒) = 𝜆𝜎 𝜌 𝑘.
𝑘 𝜎 (Proc 𝜌 (cparamCPS 𝑓 𝑒))

163

CPP ’26, January 12–13, 2026, Rennes, France Pascal Y. Lasnier, Jeremy Yallop, and Magnus O. Myreen

The resulting application CPS transformmay then use the
transformed lambda expression body:

case 𝑡 of
| Proc 𝜌′ proc ⇒ proc 𝜎 ′𝑁 ′ 𝜌′ 𝑘 [...]

...

To derive cparamCPS, terms are converted to ML AST as
with the evaluator, but importantly there is no equivalent
derivation of an ML-generating alloc_list. The definition of
alloc_list cannot be expanded at compile time, as it is recur-
sively defined over an argument list whose length is arbi-
trary at runtime. Therefore, the definition of alloc_list itself
must be introduced into the compiled ML program, and we
assert that it is accessible through the variable alloc_list in
the runtime environment of the program, which the code
generated by cparamCPS will call. Other auxiliary semantic
functions such as those handling arithmetic are similarly in-
troduced into the compiled ML, constituting a Scheme run-
time.

4.4 Shared Lexical Structure and Store Semantics
The compiler we derived in Section 4.3 directly simulates
the Scheme store and environment, just as it does with the
continuations. It is possible, however, to simplify the com-
piler by inspecting the similarities between Scheme andML,
allowing the store and environment to be compiled directly
rather than passed around. More precisely, since Scheme is
lexically scoped in the same way as ML, we may substitute
the Scheme environment 𝜌 with ML variables. Also, since
we are no longer confined to the pure subset of ML, the
Scheme store 𝜎 may be replaced by usage of the ML ref
syntax to take advantage of the equivalent mutable store se-
mantics of Scheme and ML.

With these notions in mind, we eliminate the Scheme
store 𝜎 and environment 𝜌 from our constructed ML AST
expressions, and make appropriate use of mutable ML ref
variables, e.g. in our new definition for cparamCPS:

cparam′
CPS (𝑥 ⋅ 𝑓) 𝑒 = 𝜆𝑘 ts. case ts of

| [] ⇒ Ex "Arity mismatch"
| 𝑡∷ts′ ⇒ let 𝑥 = ref 𝑡 in (cparam′

CPS 𝑓 𝑒) 𝑘 ts′

and compileCPS simplifies:

compile′CPS (𝑒 𝑒1 ...) = 𝜆𝑘. (compile′CPS 𝑒) (𝜆𝑡. ...)
Wecolour the Scheme variable 𝑥 blue evenwhen it is used

in the ML AST, to indicate that Scheme variable names are
tagged to avoid clashing with ML variables such as 𝑘 and
𝑡 that are introduced by the transform. In practice, BRacK
prepends Scheme variables with "var" and asserts that no
introduced variable names start with "var".

This resultant CPS transform is equivalent to Plotkin’s
original transform [32]; indeed, applying this refunctional-
isation technique similarly to the call-by-value lambda cal-
culus results in its CPS transform derived by Plotkin.

4.5 Redundant Redexes and Proof Simplification
The CPS transform we have developed so far, based on
compile and its auxiliary transforms such as cparam, pro-
duces redexes which could be eliminated during com-
pilation. For example, when a CPS expression such as
(compile′CPS 𝑒) is applied to a continuation variable 𝑘, the
result is a reducible application (𝜆𝑘. ...) 𝑘 . We can eliminate
these redexes by factoring the continuation variable back
into the CPS transform expanded at compile time, provided
continuations are always captured in a variable which may
be let-bound, leading to the final transform:

⟦(set! 𝑥 𝑒)⟧𝑘 = let 𝑘′ = 𝜆𝑡. 𝑥 ∶= 𝑡; 𝑘 Unspecified in ⟦𝑒⟧𝑘′

where ⟦⋅⟧𝑘 is the CPS transform of a Scheme program with
its current continuation bound to the ML variable 𝑘. This
definition propagates the continuation variable statically
rather than passing it dynamically, eliminating redexes in
expressions where the continuation is not modified.

The auxiliary transform cparamCPS and others like it sim-
ilarly include the continuation variable as part of the trans-
form, and also factor out the argument list variable:

𝒫 ⟦(𝑥 ⋅ 𝑓), 𝑒⟧𝑘,ts = case ts of

| [] ⇒ Ex "Arity mismatch"
| 𝑡∷ts′ ⇒ let 𝑥 = ref 𝑡 in 𝒫 ⟦𝑓 , 𝑒⟧𝑘,ts′

The arguments 𝑘 and ts must now be bound by a lambda
abstraction in the CPS transform for a Scheme lambda ex-
pression, which captures the environment at the point of
evaluation consistent with Scheme’s lexical scoping:

⟦(lambda 𝑓 𝑒)⟧𝑘 = 𝑘 (Proc (𝜆𝑘 ts. 𝒫 ⟦𝑓 , 𝑒⟧𝑘,ts))

Factoring out the continuation variable also makes prov-
ing semantic verification easier, because it becomes possible
to relate arbitrary Scheme CESK machine states to CPS ex-
pressions in ML where the current continuation is always
bound to some variable 𝑘, which we show in Section 5.

A complete Scheme program 𝑝 compiles to the CPS trans-
form of 𝑝 with the identity continuation bound to its con-
tinuation variable let 𝑘 = 𝜆𝑡. 𝑡 in ⟦𝑝⟧𝑘 .

4.6 First-Class Continuations
Deriving the compiler from the refunctionalised small-step
semantics captures the behaviour of first-class continua-
tions with call/cc without much additional work. Here are

164

BRacK: A Verified Compiler for Scheme via CakeML CPP ’26, January 12–13, 2026, Rennes, France

the semantic specifications of call/cc and of escape proce-
dures throw, which appear as cases of the application con-
tinuation case match introduced in Section 4.2:

stepcont (𝜎 , 𝐸[{𝜌} (𝑣 𝑣1 ... 𝑣𝑁−1 [])], 𝑣𝑁) = case 𝑣 of

| (proc 𝜌′ 𝑓 𝑒) ⇒ param 𝑓 𝑒 𝜎 𝜌′ 𝐸 [𝑣1, ..., 𝑣𝑁]
| call/cc ⇒ case [𝑣1, ..., 𝑣𝑁] of

| [] ⇒ ⟨𝜎, 𝐸, (raise “Arity mismatch”)⟩
| 𝑣∷vs′ ⇒ case vs′ of

| [] ⇒ ⟨𝜎, 𝐸[{∅} (𝑣 [])], (throw 𝐸)⟩
| _ ⇒ ⟨𝜎, 𝐸, (raise “Arity mismatch”)⟩

| (throw 𝐸′) ⇒ case [𝑣1, ..., 𝑣𝑁] of
| [] ⇒ ⟨𝜎, 𝐸, (raise “Arity mismatch”)⟩
| 𝑣∷vs′ ⇒ case vs′ of

| [] ⇒ ⟨𝜎, 𝐸′, 𝑣⟩
| _ ⇒ ⟨𝜎, 𝐸, (raise “Arity mismatch”)⟩

...
This semantic definition is refunctionalised and embed-

ded into ML, just like the rest of the semantics. The CESK
machine states returned by these cases of stepcont corre-
spond to values, so they transform into applications of con-
tinuations inML: throw simply applies its captured continu-
ation to its argument, and call/cc constructs a new partially
evaluated application continuation with its argument as the
new function to be applied. This nested application contin-
uation requires that we factor out the logic for application
into a recursive function, defined as follows:

letrec apply 𝑘 = 𝜆𝑡 ts. case 𝑡 of
| Proc proc ⇒ proc 𝑘 ts

| CallCC ⇒ case ts of

| [] ⇒ Ex "Arity mismatch"
| 𝑡∷ts′ ⇒ case ts′ of

| [] ⇒ let 𝑘′ = 𝜆𝑡1. apply 𝑘 𝑡 [𝑡1]
in 𝑘′ (Throw 𝑘)

| _ ⇒ Ex "Arity mismatch"
| Throw 𝑘′ ⇒ case ts of

| [] ⇒ Ex "Arity mismatch"
| 𝑡∷ts′ ⇒ case ts′ of

| [] ⇒ 𝑘′ 𝑡
| _ ⇒ Ex "Arity mismatch"

...
The CPS transform for an application expression be-

comes:

⟦(𝑒 𝑒1 ...)⟧𝑘 = let 𝑘′ = 𝜆𝑡. let 𝑘″ = 𝜆𝑡1. ... apply 𝑘 𝑡 [𝑡1, ...]
... in ⟦𝑒1⟧𝑘″ in ⟦𝑒⟧𝑘′
Because call/cc, like other Scheme features, is imple-

mented into BRacK using Ager et al.’s refunctionalisation

technique and embedding into ML, its semantic preserva-
tion proof is not difficult.
Felleisen et al. previously have informally described a sim-

ilar semantics-directed compiler derivationmethod for a cal-
culus with control operators [16, 18]. We have generalised
their approach, using Danvy and Ager et al.’s formal notion
of refunctionalisation, and added an additional step of em-
bedding the denotational form of the resulting interpreter
into ML. This embedding step is possible because the defin-
ing language of the interpreter is a subset of the target lan-
guage of our compiler.

5 Semantic Preservation as Simulation
Verifying the construction of BRacK described in Sec-
tion 4 involves establishing a semantic preservation prop-
erty which states that evaluating the generated ML code
simulates the language defined by its CESK machine. This
simulation proof technique is derivative of Plotkin’s work
on the call-by-value lambda calculus CPS transform [32].

We first derive a definition for the CPS relation, which
we denote ⇝, between Scheme CESK machine states and
ML expressions with corresponding store and environment
configuration.The CPS relation mirrors the compiler deriva-
tion from the CESK machine to ML AST in Section 4, with
machine states corresponding either to the CPS transform
of an expression ⟦𝑒⟧𝑘 or to the application 𝑘 𝑒 of a contin-
uation 𝑘 𝑒 to some expression 𝑒 that trivially evaluates to a
value:

𝜎 ⇝ 𝜎 𝜌 ⇝ 𝜌 𝐸 ⇝ 𝜌(𝑘)
⟨𝜎 , 𝐸, {𝜌} 𝑒⟩⇝ ⟨𝜎 , 𝜌, ⟦𝑒⟧𝑘⟩

𝜎 ⇝ 𝜎
𝐸 ⇝ 𝜌(𝑘)

𝑣 ⇝ 𝑣
∀ 𝜎 ′ . evalML (𝜎 ′, 𝜌, 𝑒) = ⟨𝜎 ′, 𝑣⟩

⟨𝜎 , 𝐸, 𝑣⟩⇝ ⟨𝜎 , 𝜌, 𝑘 𝑒⟩
The relation on stores dictates a direct correspondence

between Scheme mutable variable store entries and ML mu-
table refs, and the relation on environments matches the
Scheme andML lexical scoping. We also require that the ML
environment 𝜌 has bindings to Scheme runtime functions
like apply and alloc_list, and incorporate this requirement
into the environment relation.
The relations between values and between continuations

are derived directly from the compiler derivation based on
refunctionalisation and ML AST construction in Section 4.
An evaluation context 𝐸 is inductively related to an ML con-
tinuation closure 𝜌(𝑘) by rules for different stack frames,
e.g. the assignment stack frame:

𝐸 ⇝ 𝜌(𝑘) 𝜌 ⇝ 𝜌
𝐸[{𝜌} (set! 𝑥 [])]⇝ Λ𝑡. {𝜌} (𝑥 ∶= 𝑡; 𝑘 Unspecified)

Using the CPS relation, we prove semantic preservation
from Scheme to ML by showing that ML expressions related
to Scheme states before and after a Scheme small step have

165

CPP ’26, January 12–13, 2026, Rennes, France Pascal Y. Lasnier, Jeremy Yallop, and Magnus O. Myreen

the same big-step ML evaluation (Figure 1). Formally, this
property is stated as follows:

Theorem 5.1 (Step preservation).
⊢ ∀ 𝜎 𝐸 𝑐 𝜎 ′ 𝐸′ 𝑐′ 𝜎 𝜌 𝑒 .

step (𝜎 , 𝐸, 𝑐) = ⟨𝜎 ′, 𝐸′, 𝑐′⟩ ∧
⟨𝜎, 𝐸, 𝑐⟩⇝ ⟨𝜎 , 𝜌, 𝑒⟩ ∧ 𝜎 ⊨ ⟨𝐸, 𝑐⟩
⟹
∃𝜎 ′ 𝜌′ 𝑒′ .

evalML(𝜎 , 𝜌, 𝑒) = evalML(𝜎 ′, 𝜌′, 𝑒′) ∧
⟨𝜎 ′, 𝐸′, 𝑐′⟩⇝ ⟨𝜎 ′, 𝜌′, 𝑒′⟩

Assuming equivalence of environment and store seman-
tics, the simulation evaluates equivalently to evalCPS. By
the correctness of refunctionalisation, the simulation is then
valid with respect to the CESK machine specification.

The functional big-step definition of the ML evalua-
tor [30] allows us to use equality between the evaluations of
ML programs without having to consider their final values,
or even whether they terminate, because we may symbol-
ically evaluate evalML in the proof to partially reduce the
program.

We define a validity relation ⊨ on Scheme state repre-
senting the condition that (1) all expressions in the control
string, evaluation context, and closure bodies are statically
scoped, and (2) all store locations in all environments and
pair pointers are valid, i.e. correspond to real entries in the
store.This condition is required to ensure that the reduction
of Scheme programs, including their simulation in ML, can-
not get stuck.

The key verification component for BRacK is a proof of
Theorem 5.1. Using a lemma that states that Scheme states
in a CESK machine maintain validity, we applyTheorem 5.1
for multiple steps to arrive at a statement of equivalent eval-
uation:

Corollary 5.2 (Equivalent evaluation).
⊢ ∀𝑝 𝜎 𝑣 𝜎 𝜌 𝑝 .

(∃𝑁 . step𝑁 (∅, [], {∅} 𝑝) = ⟨𝜎, [], 𝑣⟩) ∧
⟨∅, [], {∅} 𝑝⟩⇝ ⟨𝜎 , 𝜌, 𝑝⟩ ∧ ∅ ⊨ ⟨[], {∅} 𝑝⟩
⟹
∃𝜎 ′ 𝑣 . evalML(𝜎 , 𝜌, 𝑝) = ⟨𝜎 ′, 𝑣⟩ ∧ 𝜎 ⇝ 𝜎 ′ ∧ 𝑣 ⇝ 𝑣

Theorem 5.1 also allows us to prove that diverging
Scheme programs will also diverge as compiled ML pro-
grams, by taking advantage of the construction of the func-
tional big-step semantics used by CakeML, which tracks ML
reductions using a clock [30]. We establish a lexicographic
ordering on the clock value and the size of the Scheme
program, which strictly decreases with each Scheme step,
hence we can prove by a well-founded measure that di-
verging Scheme programs always exhaust the ML evaluator

clock, for all clock values. We omit the clock in our notation
for clarity.
The final property established for BRacK states that the

compiler-generated ML code let 𝑘 = 𝜆𝑡. 𝑡 in ⟦𝑝⟧𝑘 for
a valid Scheme program 𝑝 evaluates to an ML expression
corresponding by the CPS relation to the Scheme state
⟨∅, [], {∅} 𝑝⟩. Taken together, this theorem, the preservation
of divergence, and Corollary 5.2 establish semantic preser-
vation: a valid Scheme program shares the same observable
trace of execution as the ML program that it compiles to, for
both terminating and diverging executions.
We have composed the BRacK semantic preservation

proof with the CakeML backend correctness proof, estab-
lishing an end-to-end semantic preservation proof from
Scheme to machine code, making BRacK a complete verified
compiler.

5.1 Proof
Our most significant, and perhaps surprising result is that,
due to the semantics-derived CPS transform, proof of se-
mantic preservation of Scheme first-class continuations is
trivial. The proof for the relevant case of Theorem 5.1
amounts to a proof of correctness of refunctionalisation and
embedding into ML, where we must simply reconcile the
logic from the semantic definition of call/cc with its equiv-
alent logic in ML:

Case (call/cc).

⊢ 𝐸 ⇝ 𝜌(𝑘) ∧ 𝑣1 ⇝ 𝑣1 ∧ ... ∧
𝜌(ts) = [𝑣1, ...] ∧ 𝜎 ⇝ 𝜎 ∧ 𝜌 ⇝ 𝜌 ∧
𝑒 = case ts of

| [] ⇒ Ex "Arity mismatch"
| 𝑡∷ts′ ⇒ case ts′ of

| [] ⇒ let 𝑘′ = 𝜆𝑡1. apply 𝑘 𝑡 [𝑡1]
in 𝑘′ (Throw 𝑘)

| _ ⇒ Ex "Arity mismatch"
⟹
∃ 𝑒′ . evalML (𝜎 , 𝜌, 𝑒) = evalML (𝜎 , 𝜌, 𝑒′) ∧

⎛
⎜⎜⎜⎜
⎝

case [𝑣1, ...] of
| [] ⇒ ⟨𝜎, 𝐸, (raise “Arity mismatch”)⟩
| 𝑣∷vs′ ⇒ case vs′ of

| [] ⇒ ⟨𝜎, 𝐸[{∅} (𝑣 [])], (throw 𝐸)⟩
| _ ⇒ ⟨𝜎, 𝐸, (raise “Arity mismatch”)⟩

⎞
⎟⎟⎟⎟
⎠

⇝ ⟨𝜎 , 𝜌, 𝑒′⟩
The arity checks evaluate equivalently, either raising ter-

minating exceptions or constructing the application contin-
uation.
The interesting parts of the proof lie in the points of di-

vergence from the pure compiler derivation method. First,

166

BRacK: A Verified Compiler for Scheme via CakeML CPP ’26, January 12–13, 2026, Rennes, France

we must prove that the Scheme and ML stores and environ-
ments remain synchronised:

Lemma 5.3 (Store synchronisation).

⊢ 𝜎 ⇝ 𝜎 ∧ 𝑣 ⇝ 𝜌(𝑡) ∧ fresh_loc 𝜎 = 𝓁
⟹
∃𝜎 ′ . evalML (𝜎 , 𝜌, ref 𝑡) = ⟨𝜎 ′, 𝓁⟩ ∧ 𝜎{𝓁 ↦ 𝑣}⇝ 𝜎 ′

The synchronised store simply depends on the ML ref
construct allocating to the store with the fresh_loc defini-
tion used by the Scheme semantics. With this lemma, the
combined store and environment relation follows:

Lemma 5.4 (Store and environment synchronisation).

⊢ 𝜎 ⇝ 𝜎 ∧ 𝜌 ⇝ 𝜌 ∧ 𝑣 ⇝ 𝜌(𝑡) ∧ fresh_loc 𝜎 = 𝓁
⟹
∃𝜎 ′ 𝜌′ .
evalML (𝜎 , 𝜌, let 𝑥 = ref 𝑡 in 𝑒) = evalML (𝜎 ′, 𝜌′, 𝑒) ∧
𝜎{𝓁 ↦ 𝑣}⇝ 𝜎 ′ ∧ 𝜌{𝑥 ↦ 𝓁}⇝ 𝜌′

It is also trivial to prove that continuation and value bind-
ings to the ML store do not affect the environment relation,
because the compiler tags Scheme variables to prevent name
collisions, denoted again in blue:

Lemma 5.5 (Environment monotonicity with respect to
Scheme variables).

⊢ 𝑘 ∉ Variable ∧ 𝜌 ⇝ 𝜌 ⟹ 𝜌 ⇝ 𝜌{𝑘 ↦ cont} ∧
𝑡 ∉ Variable ∧ 𝜌 ⇝ 𝜌 ⟹ 𝜌 ⇝ 𝜌{𝑡 ↦ val}

Proof of the Theorem 5.1 case for correct procedure
application compilation then amounts to reconciling the
param function in HOL4with the evaluation of its expanded
𝒫 ⟦⋅, ⋅⟧𝑘,ts transform in ML:

Case (Procedure application).

⊢ 𝐸 ⇝ 𝜌(𝑘) ∧ 𝑣1 ⇝ 𝑣1 ∧ ... ∧
𝜌(ts) = [𝑣1, ...] ∧ 𝜎 ⇝ 𝜎 ∧ 𝜌 ⇝ 𝜌
⟹
∃𝜎 ′ 𝜌′ 𝑒′ .

evalML (𝜎 , 𝜌, 𝒫 ⟦𝑓 , 𝑒⟧𝑘,ts) = evalML (𝜎 ′, 𝜌′, 𝑒′) ∧
param 𝑓 𝑒 𝜎 𝜌 𝐸 [𝑣1, ...]⇝ ⟨𝜎 ′, 𝜌′, 𝑒′⟩

Proof. By induction over 𝑓 . □

Another interesting point of the proof is where runtime
functions must be introduced into the ML program for se-
mantic functions which are recursively defined over a run-
time argument list, such as alloc_list. Such functions are di-
rect embeddings of their HOL4 term definitions, so seman-
tic preservation proof follows, as with the other cases, of the
functions evaluating equivalently:

Lemma 5.6 (alloc_list semantic preservation).

⊢ 𝑣1 ⇝ 𝑣1 ∧ ... ∧ 𝜌(ts) = [𝑣1, ...] ∧ 𝜎 ⇝ 𝜎 ∧
alloc_list 𝜎 [𝑣1, ...] = ⟨𝜎 ′, 𝓁⟩
⟹
∃𝜎 ′ .

evalML (𝜎 , 𝜌, alloc_list ts) = ⟨𝜎 ′, PairP 𝓁⟩ ∧
𝜎 ′ ⇝ 𝜎 ′

Proof. By induction over the argument list. The HOL4 func-
tion alloc_list is assumed to use fresh_loc, hence using the
same store allocation strategy as ML. Like the param proof,
this proof depends on Lemma 5.3. □

5.2 Difficulty of Dynamic Typing
Dealing with Scheme’s dynamic typing in our development
was not technically difficult, but it involved a significant
amount of work. A value passed to a continuation may be
of any type, and so each continuation in the proof involves
a great many cases.This large number of cases increases the
amount of rewriting that HOL4 performs, slowing down de-
velopment.

5.3 Room for Optimisation
The CPS transform used in BRacK follows Plotkin’s defini-
tion, and so it includes many administrative redexes, i.e. ab-
stractions that are artifacts of the translation. One example
may be seen in the transform for call/cc, where the appli-
cation continuation is introduced in a let-binding before im-
mediately being applied to a value:

let 𝑘′ = 𝜆𝑡1. apply 𝑘 𝑡 [𝑡1] in 𝑘′ (Throw 𝑘)

It would be more efficient to directly use the Throw value
in the body of the continuation without allocating a clo-
sure, but that optimisation would result in CPS expression
reductions which no longer fit the CPS relation we have
constructed for the proof. Other similar changes, such as
directly using literal values in continuation bodies, add com-
plexity to the transform and also do not fit our current CPS
relation.
BRacK’s CPS transform uses the semantics-directed

derivation described in this paper, with the goal of mak-
ing verification of its control features as simple as possible.
Using a Plotkin-style transform also avoids 𝛼-equivalence
issues which other CPS correctness mechanisations have
encountered when implementing Danvy & Nielsen’s opti-
mised transform [28, 31]. However, we believe that it may
be possible to adjust the semantics-directed compiler deriva-
tion in a way that enables the verification of an optimised
transform whilst avoiding 𝛼-equivalence [26], and we hope
to implement the optimised version in BRacK in the future.

167

CPP ’26, January 12–13, 2026, Rennes, France Pascal Y. Lasnier, Jeremy Yallop, and Magnus O. Myreen

6 Example Programs
The subset of Scheme supported by BRacK is sufficient to
compile interesting data-processing programs. The source
code for the following programs is available in the supple-
mentary material for this paper [25].

Fibonacci Numbers. BRacK can compile arithmetic al-
gorithms over integers, including calculating the Fibonacci
numbers. We have implemented several variants of the Fi-
bonacci number calculation, including the classic (but inef-
ficient) recursive implementation and a tail-recursive imple-
mentation with an accumulator, both of which we take from
the Larceny Scheme benchmark suite.

We also include an imperative-style Fibonacci implemen-
tation which calculates the Fibonacci numbers using muta-
ble variable accumulators, and which has no recursive calls,
instead using call/cc to jump back to the start of the algo-
rithm. As shown in the following, the jump case makes a
call to the escape continuation held in 𝑗, which jumps to the
letrec* initialisation, and reinstates the same escape proce-
dure 𝑗 to be used again:

(lambda (𝑛)
(letrec* ((𝑎 0) (𝑏 1) (𝑐 0) (𝑗 (call/cc (lambda (𝑐𝑐) 𝑐𝑐))))
(if (eqv? 𝑛 0) 𝑎

(begin
(set! 𝑐 𝑎) (set! 𝑎 (+ 𝑎 𝑏)) (set! 𝑏 𝑐)
(set! 𝑛 (− 𝑛 1))
(𝑗 𝑗)))))

List Operations. In Scheme, lists are built from pairs
(cons cells). BRacK can support higher-order list opera-
tions such as map and fold, which are implemented using
Scheme’s basic pair operations. In turn, these operations can
be used to implement more complex list operations such as
the list concatenation function cat.

Non-determinism. One application of first-class contin-
uations is non-determinism. Non-deterministic programs
can be emulated by deterministic programs using backtrack-
ing [19, Chap. 22]. BRacK can compile an implementation of
the choose and fail operators to enable non-deterministic
patterns, where possible solutions to some algorithm may
be passed to choose and a resultant correct solution arrived
at if the algorithm does not fail, for example choosing
matching numbers from lists:

(let ((𝑥 (choose ’(2 4 6 8)))
(𝑦 (choose ’(3 6 9 12))))

(if (eqv? 𝑥 𝑦) 𝑥 (fail)))
For clarity, we write the code using let, but our BRacK im-
plementation uses letrec.

7 Related Work
Compilation via CakeML. The approach of targeting

CakeML has been used previously in the PureCake com-
piler for a lazy Haskell-like language PuReLang [22], which
supports lazy evaluation via translation into delay and
force primitives. We see targeting CakeML as a promis-
ing approach to verified compilation for other high-level
languages, lowering development cost by avoiding the du-
plicated effort involved in verifying language-independent
portions of the back-ends of compilers.

Mechanised Proofs of CPS correctness. An early proof
of the correctness of the CPS transform is given by
Plotkin [32], who introduced the transform to simulate
the call-by-value lambda calculus with the call-by-name
lambda calculus. Plotkin’s simulation proof and its vari-
ants have been mechanised many times, e.g. by Minamide
& Okuma [28], Tian [36], Dargaye & Leroy [10], and
Paraskevopoulou & Grover [31]. BRacK proves simulation
similarly to these works, and the CPS transform BRacK em-
ploys, which is derived from Plotkin’s, makes it possible
to use strict equality of reduced CPS terms over evalML
in the semantic preservation proof. The earlier mechani-
sations also prove correctness of Danvy & Nielsen’s op-
timised CPS transform which generates fewer administra-
tive redexes [9]; simulation using this particular transform
results in reductions of CPS terms which are not neces-
sarily equal over evalML, and so require an additional no-
tion of equivalence. However, an alternative formulation of
Danvy & Nielsen’s optimised transform using evaluation
contexts [26] could be used to prove simulation in BRacK
without needing an equivalence lemma.

Verified Compilation for Scheme. Verified compilation
for Scheme and similar languages has been previously devel-
oped for small, demonstrative systems. Guttman et al. hand-
wrote a verified compiler from VLISP Scheme to a virtual
machine byte code, proving semantic preservation of the de-
notational semantics between both languages [20]. Chlipala
built a verified compiler in Coq for a small impure functional
programming language to an idealised assembly language,
using a CPS transform as part of the compilation [2]. Dold
et al. [11, 12] describe a particularly impressive work, a ver-
ified bootstrap compiler from ComLisp, a small subset of
Common Lisp, to the Transputer architecture. None of these
compilers support first-class continuations, and we believe
BRacK is the first verified compiler for Scheme to do so.

8 Conclusion
We have described BRacK, a new verified compiler for a
subset of Scheme featuring call/cc, and the first fully ver-
ified compiler to support dynamic typing and first-class
continuations. BRacK is written in 4,000 non-whitespace

168

BRacK: A Verified Compiler for Scheme via CakeML CPP ’26, January 12–13, 2026, Rennes, France

lines of HOL4 proof scripts. Our semantics-directed com-
piler derivation technique produces a CPS transform from
the small-step operational semantics of an abstract ma-
chine, and facilitates the proof of semantic preservation for
continuation-based languages compiled to ML. Applying
this construction technique to Scheme produces the CPS
transform used in BRacK.

As a consequence of our use of the CPS transform, first-
class continuations were the simplest aspect of BRacK both
to implement and to verify, despite the emergent com-
plexity of program behaviours that first-class continuations
introduce. Surprisingly, dynamic typing (including arity
checking), an apparently simpler language feature, was com-
paratively harder to implement and verify. Dynamically-
typed Scheme values are represented at runtime using an
ML sum-type which must be pattern matched at every point
where a value is dynamically type-checked, and dealing
with these frequent case splits makes the HOL4 proofs cum-
bersome.

In common with ML, Scheme also features static scop-
ing and mutability. The fact that both languages share these
features allows BRacK to directly compile mutable Scheme
variables to ML ref variables, rather than passing around
a store and environment along with the continuation at
runtime. Sharing the store and environment semantics be-
tween Scheme and ML simplifies implementation of the
compiler, but this simplification is traded for complexity
in the semantic preservation proof, which must reconcile
the Scheme and ML stores and environments. This complex-
ity made the preservation of lambda expression and recur-
sive let-binding semantics the hardest part of the semantic
preservation proof.

The simplicity of the call/cc implementation in BRacK is
a testament to how naturally the continuation-passing style
captures the behaviour of continuation-based control opera-
tors, and demonstrates that the semantics-directed compiler
derivation technique that we used for BRacK is a viable ap-
proach to the verification of compilation of language fea-
tures based on continuations.

Future Work. BRacK is currently based on a Plotkin-
style CPS transform, which introduces many administrative
redexes. There exist mechanised proofs [10, 26, 28, 36] for
optimised CPS transforms [6, 8, 9] which eliminate these
administrative redexes, and we believe it is possible to im-
plement such an optimised CPS transform in a verified com-
piler like BRacK. Using these techniques, the CPS transform
might serve as a basis for efficiently supporting other con-
trol operators and language features such as effect handlers
in verified compilers.

Data-Availability Statement
The artifact of the supplementary material for this paper
can be found at [25], and up-to-date source code is available

online at https://github.com/CakeML/cakeml/tree/master/
compiler/scheme.

Acknowledgements
We thank the anonymous reviewers for helpful comments.
The third author was partially funded by Swedish Research
Council grant 2021-05165.

References
[1] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard.

2003. A functional correspondence between evaluators and abstract
machines. In Proceedings of the 5th ACM SIGPLAN International Con-
ference on Principles and Practice of Declaritive Programming (Upp-
sala, Sweden) (PPDP ’03). Association for ComputingMachinery, New
York, NY, USA, 8–19. doi:10.1145/888251.888254

[2] Adam Chlipala. 2010. A verified compiler for an impure functional
language. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (Madrid, Spain)
(POPL ’10). Association for Computing Machinery, New York, NY,
USA, 93–106. doi:10.1145/1706299.1706312

[3] WilliamD. Clinger, Anne H. Hartheimer, and Eric M. Ost. 1999. Imple-
mentation Strategies for First-Class Continuations. Higher Order Sym-
bol. Comput. 12, 1 (April 1999), 7–45. doi:10.1023/A:1010016816429

[4] Olivier Danvy. 2004. On Evaluation Contexts, Continuations, and the
Rest of Computation. (02 2004).

[5] Olivier Danvy. 2008. Defunctionalized interpreters for programming
languages. In Proceedings of the 13th ACM SIGPLAN International Con-
ference on Functional Programming (Victoria, BC, Canada) (ICFP ’08).
Association for Computing Machinery, New York, NY, USA, 131–142.
doi:10.1145/1411204.1411206

[6] Oliver Danvy and Andrzex Filinski. 1992. Representing Control: a
Study of the CPS Transformation. Mathematical Structures in Com-
puter Science 2, 4 (1992), 361–391. doi:10.1017/S0960129500001535

[7] Olivier Danvy and Lasse R. Nielsen. 2001. Defunctionalization at
work. In Proceedings of the 3rd ACM SIGPLAN International Confer-
ence on Principles and Practice of Declarative Programming (Florence,
Italy) (PPDP ’01). Association for Computing Machinery, New York,
NY, USA, 162–174. doi:10.1145/773184.773202

[8] Olivier Danvy and Lasse R. Nielsen. 2001. A Higher-Order Colon
Translation. In Proceedings of the 5th International Symposium on Func-
tional and Logic Programming (FLOPS ’01). Springer-Verlag, Berlin,
Heidelberg, 78–91.

[9] Olivier Danvy and Lasse R. Nielsen. 2003. A first-order one-pass CPS
transformation. Theoretical Computer Science 308, 1 (2003), 239–257.
doi:10.1016/S0304-3975(02)00733-8

[10] Zaynah Dargaye and Xavier Leroy. 2007. Mechanized verification of
CPS transformations. In Proceedings of the 14th International Confer-
ence on Logic for Programming, Artificial Intelligence and Reasoning
(Yerevan, Armenia) (LPAR’07). Springer-Verlag, Berlin, Heidelberg,
211–225.

[11] Axel Dold, Friedrich Wilhelm von Henke, Vincent Vialard, and Wolf-
gang Goerigk. 2005. A mechanically verified compiling specification
for a realistic compiler. (2005).

[12] Axel Dold and Vincent Vialard. 2001. A Mechanically Verified Com-
piling Specification for a Lisp Compiler. In FST TCS 2001: Foundations
of Software Technology andTheoretical Computer Science, Ramesh Har-
iharan, V. Vinay, and Madhavan Mukund (Eds.). Springer Berlin Hei-
delberg, Berlin, Heidelberg, 144–155.

[13] Kavon Farvardin and John Reppy. 2020. From folklore to fact: compar-
ing implementations of stacks and continuations. In Proceedings of the
41st ACM SIGPLAN Conference on Programming Language Design and
Implementation (London, UK) (PLDI 2020). Association for Computing

169

https://github.com/CakeML/cakeml/tree/master/compiler/scheme
https://github.com/CakeML/cakeml/tree/master/compiler/scheme
https://doi.org/10.1145/888251.888254
https://doi.org/10.1145/1706299.1706312
https://doi.org/10.1023/A:1010016816429
https://doi.org/10.1145/1411204.1411206
https://doi.org/10.1017/S0960129500001535
https://doi.org/10.1145/773184.773202
https://doi.org/10.1016/S0304-3975(02)00733-8

CPP ’26, January 12–13, 2026, Rennes, France Pascal Y. Lasnier, Jeremy Yallop, and Magnus O. Myreen

Machinery, New York, NY, USA, 75–90. doi:10.1145/3385412.3385994
[14] Mattias Felleisen and D. P. Friedman. 1987. A calculus for assignments

in higher-order languages. In Proceedings of the 14th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (Mu-
nich, West Germany) (POPL ’87). Association for Computing Machin-
ery, New York, NY, USA, 314. doi:10.1145/41625.41654

[15] Matthias Felleisen and Daniel P. Friedman. 1987. Control opera-
tors, the SECD-machine, and the λ-calculus. In Formal Description
of Programming Concepts. https://api.semanticscholar.org/CorpusID:
57760323

[16] Matthias Felleisen, Daniel P. Friedman, Eugene Kohlbecker, and Bruce
Duba. 1987. A syntactic theory of sequential control. Theoretical Com-
puter Science 52, 3 (1987), 205–237. doi:10.1016/0304-3975(87)90109-5

[17] Matthias Felleisen, Daniel P Friedman, Eugene E Kohlbecker, and
Bruce F Duba. 1986. Reasoning with continuations. In LICS, Vol. 86.
131–141.

[18] Matthias Felleisen and Robert Hieb. 1992. The revised report on the
syntactic theories of sequential control and state. Theoretical Com-
puter Science 103, 2 (1992), 235–271. doi:10.1016/0304-3975(92)90014-
7

[19] P. Graham. 1994. On Lisp: Advanced Techniques for Common Lisp.
Prentice Hall.

[20] Joshua Guttman, John Ramsdell, and Vipin Swarup. 1995. The VLISP
verified Scheme system. Lisp and Symbolic Computation 8 (03 1995),
33–110. doi:10.1007/BF01128407

[21] R. Hieb, R. Kent Dybvig, and Carl Bruggeman. 1990. Representing
control in the presence of first-class continuations. In Proceedings of
the ACM SIGPLAN 1990 Conference on Programming Language De-
sign and Implementation (White Plains, New York, USA) (PLDI ’90).
Association for Computing Machinery, New York, NY, USA, 66–77.
doi:10.1145/93542.93554

[22] Hrutvik Kanabar, Samuel Vivien, Oskar Abrahamsson, Magnus O.
Myreen, Michael Norrish, Johannes Åman Pohjola, and Riccardo
Zanetti. 2023. PureCake: A Verified Compiler for a Lazy Functional
Language. Proc. ACM Program. Lang. 7, PLDI, Article 145 (June 2023),
25 pages. doi:10.1145/3591259

[23] Ramana Kumar, Eric Mullen, Zachary Tatlock, and Magnus O.
Myreen. 2018. Software Verification with ITPs Should Use Binary
Code Extraction to Reduce the TCB. In Interactive Theorem Proving,
JeremyAvigad andAssiaMahboubi (Eds.). Springer International Pub-
lishing, Cham, 362–369.

[24] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott
Owens. 2014. CakeML: a verified implementation of ML. In Proceed-
ings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (San Diego, California, USA) (POPL ’14). As-
sociation for Computing Machinery, New York, NY, USA, 179–191.
doi:10.1145/2535838.2535841

[25] Pascal Y. Lasnier, Jeremy Yallop, andMagnus O.Myreen. 2025. CPP ’26
Artifact – BRacK: A Verified Compiler for Scheme via CakeML. doi:10.
1145/3747413

[26] Pascal Y. Lasnier, Jeremy Yallop, andMagnus O. Myreen. 2026. A One-
Pass CPS Transform with Simulation on the Nose. In Proceedings of
the 28th International Symposium on Practical Aspects of Declarative
Languages (Rennes, France) (PADL ’26). Springer Nature Switzerland,
Cham.

[27] Xavier Leroy. 2009. Formal verification of a realistic compiler. Com-
mun. ACM 52, 7 (July 2009), 107–115. doi:10.1145/1538788.1538814

[28] YasuhikoMinamide and Koji Okuma. 2003. Verifying CPS transforma-
tions in Isabelle/HOL. In Proceedings of the 2003 ACM SIGPLANWork-
shop on Mechanized Reasoning about Languages with Variable Binding
(Uppsala, Sweden) (MERLIN ’03). Association for Computing Machin-
ery, New York, NY, USA, 1–8. doi:10.1145/976571.976576

[29] Magnus O. Myreen and Scott Owens. 2014. Proof-producing Trans-
lation of Higher-order logic into Pure and Stateful ML. Journal of
Functional Programming (JFP) 24, 2-3 (May 2014), 284–315. doi:10.
1017/S0956796813000282

[30] ScottOwens, Magnus O.Myreen, Ramana Kumar, and Yong KiamTan.
2016. Functional Big-Step Semantics. In Proceedings of the 25th Euro-
pean Symposium on Programming Languages and Systems - Volume
9632. Springer-Verlag, Berlin, Heidelberg, 589–615. doi:10.1007/978-
3-662-49498-1_23

[31] Zoe Paraskevopoulou and Anvay Grover. 2021. Compiling with con-
tinuations, correctly. Proc. ACM Program. Lang. 5, OOPSLA, Article
114 (Oct. 2021), 29 pages. doi:10.1145/3485491

[32] G.D. Plotkin. 1975. Call-by-name, call-by-value and the λ-calculus.
Theoretical Computer Science 1, 2 (1975), 125–159. doi:10.1016/0304-
3975(75)90017-1

[33] John C. Reynolds. 1972. Definitional interpreters for higher-order pro-
gramming languages. In Proceedings of the ACM Annual Conference -
Volume 2 (Boston, Massachusetts, USA) (ACM ’72). Association for
Computing Machinery, New York, NY, USA, 717–740. doi:10.1145/
800194.805852

[34] Konrad Slind and Michael Norrish. 2008. A Brief Overview of HOL4.
In Proceedings of the 21st International Conference on Theorem Prov-
ing in Higher Order Logics (Montreal, P.Q., Canada) (TPHOLs ’08).
Springer-Verlag, Berlin, Heidelberg, 28–32. doi:10.1007/978-3-540-
71067-7_6

[35] Michael Sperber, R. Kent Dybvig, Matthew Flatt, Anton van Straaten,
Robby Findler, and Jacob Matthews. 2009. Revised6 Report on the
Algorithmic Language Scheme. Journal of Functional Programming
19, S1 (2009), 1–301. doi:10.1017/S0956796809990074

[36] Ye Henry Tian. 2006. Mechanically verifying correctness of CPS com-
pilation. In Proceedings of the Twelfth Computing:The AustralasianThe-
ory Symposium - Volume 51 (Hobart, Australia) (CATS ’06). Australian
Computer Society, Inc., AUS, 41–51.

[37] Yong Xiao, Amr Sabry, and Zena M. Ariola. 2001. From Syntactic
Theories to Interpreters: Automating the Proof of Unique Decom-
position. Higher Order Symbol. Comput. 14, 4 (Dec. 2001), 387–409.
doi:10.1023/A:1014408032446

[38] Jianhao Xu, Kangjie Lu, Zhengjie Du, Zhu Ding, Linke Li, Qiushi
Wu, Mathias Payer, and Bing Mao. 2023. Silent Bugs Matter:
A Study of Compiler-Introduced Security Bugs. In 32nd USENIX
Security Symposium, USENIX Security 2023, Anaheim, CA, USA,
August 9-11, 2023, Joseph A. Calandrino and Carmela Troncoso
(Eds.). USENIX Association, 3655–3672. https://www.usenix.org/
conference/usenixsecurity23/presentation/xu-jianhao

[39] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding
and understanding bugs in C compilers. In Programming Language
Design and Implementation (PLDI), Mary W. Hall and David A. Padua
(Eds.). ACM, 283–294. doi:10.1145/1993498.1993532

Received 2025-09-13; accepted 2025-11-13

170

https://doi.org/10.1145/3385412.3385994
https://doi.org/10.1145/41625.41654
https://api.semanticscholar.org/CorpusID:57760323
https://api.semanticscholar.org/CorpusID:57760323
https://doi.org/10.1016/0304-3975(87)90109-5
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1007/BF01128407
https://doi.org/10.1145/93542.93554
https://doi.org/10.1145/3591259
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/3747413
https://doi.org/10.1145/3747413
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/976571.976576
https://doi.org/10.1017/S0956796813000282
https://doi.org/10.1017/S0956796813000282
https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.1145/3485491
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1145/800194.805852
https://doi.org/10.1145/800194.805852
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1017/S0956796809990074
https://doi.org/10.1023/A:1014408032446
https://www.usenix.org/conference/usenixsecurity23/presentation/xu-jianhao
https://www.usenix.org/conference/usenixsecurity23/presentation/xu-jianhao
https://doi.org/10.1145/1993498.1993532

	Abstract
	1 Introduction
	2 Approach
	3 Scheme and First-Class Continuations
	3.1 Semantics
	3.2 CPS Transform

	4 Compiler Implementation
	4.1 CakeML
	4.2 Refunctionalisation
	4.3 HOL4 Term Definitions to ML AST
	4.4 Shared Lexical Structure and Store Semantics
	4.5 Redundant Redexes and Proof Simplification
	4.6 First-Class Continuations

	5 Semantic Preservation as Simulation
	5.1 Proof
	5.2 Difficulty of Dynamic Typing
	5.3 Room for Optimisation

	6 Example Programs
	7 Related Work
	8 Conclusion
	References

