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Abstract

Acceleration of Post-Quantum Cryptography on OpenTitan Big
Number Accelerator using Instruction Set Extensions

The impending threat of quantum computing is advancing alongside the proliferation of
the internet of things (IoT). In an era of ubiquitous computing and evolving security risks,
post-quantum cryptography is emerging as a critical safeguard that may soon become
indispensable. The release of the first open-source silicon chip by OpenTitan in February
2024 marks a major breakthrough in secure and trustworthy hardware [26]. Security
is a fundamental aspect of the OpenTitan project and the platform is equipped with
a custom cryptographic co-processor, the OpenTitan Big Number Accelerator (OTBN).
Ideally suited for integration into IoT devices, a challenge still remains in the optimisation
of OTBN for post-quantum cryptography. We present 8 new instructions for acceleration
of the Kyber number theoretic transform and inverse number theoretic transform on
OTBN and integrate them into optimised implementations. We demonstrate a significant
performance improvement factor of 21.1x over the baseline implementation on OTBN for
the number theoretic transform and a performance improvement factor of 24.3x for its
inverse. Through hardware/software co-design, our approach fully leverages the potential
for parallelism, maximally exploits the existing capabilities of OTBN and proposes some

moderate hardware modifications to the platform.
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Chapter 1

Introduction

As post-quantum cryptography (PQC) progresses towards mainstream adoption, classi-
cal processors remain unoptimised for PQC algorithms. Through hardware/software co-
design, we demonstrate the acceleration potential of classical cryptographic co-processors,
such as the OpenTitan Big Number Accelerator (OTBN), for PQC. At present, public
key cryptography (PKC) algorithms such as Rivest-Shamir-Adleman (RSA) [39] and El-
liptic Curve Cryptography (ECC) [28] are used to ensure the confidentiality and integrity
of online communications. Execution of these algorithms can be expensive on resource-
constrained devices. Therefore, many are equipped with specialized cryptographic co-
processors which are optimised for their most expensive operations. In February 2024,
the first open-source silicon chip was released by lowRISC and the OpenTitan coalition
[26], marking a significant development in secure and transparent hardware. Based on
the EarlGrey discrete root of trust (RoT), it incorporates OTBN, a cryptographic co-
processor, designed for use in IoT devices. Security-critical functionality offered by the

chip includes secure boot, safeguarding of cryptographic keys and secure communication.

The advent of quantum computing poses an impending threat to the public-key cryp-
tosystems which are integral to the security of communications between [oT devices. The
hard mathematical problems on which algorithms such as RSA and ECC rely include
factorization of large integers and the discrete logarithm problem. These tasks are com-
putationally infeasible for classical computers, but can be solved in polynomial time by
quantum adversaries, as proven by Shor [43]. To mitigate this threat, PQC solutions are
being developed. This form of cryptography can be implemented on classical hardware
but is capable of withstanding quantum attacks. The National Institute for Standards
and Technology (NIST) is conducting a standardization process for PQC, currently in its
fourth round [12]. Although the standardisation process is still underway, various algo-
rithmic commonalities between candidates are already emerging. Therefore, it is possible

to optimise for costly operations which are likely to become prevalent in the future.

Lattice-based cryptography is emerging as a promising approach to PQC, encompassing



three of the four algorithms already selected for standardisation: Kyber [35], a key encap-
sulation mechanism and digital signature algorithms Dilithium [14] and Falcon [18]. How-
ever, implementation of these algorithms poses practical challenges as their core operations
incur significant overhead on existing platforms. Modern cryptographic co-processors such
as OTBN are optimised for RSA and ECC, providing large integer arithmetic capabilities.
However, lattice-based PQC algorithms do not involve such operations and therefore do
not benefit from these capabilities. OTBN is not yet specialised for PQC. Our project
brief was to accelerate PQC on OTBN through hardware/software co-design. We pro-
pose realistic instruction set extensions for OTBN. We leverage our new instructions in
optimised implementations and significantly enhance performance of PQC functions. We
exploit OTBN’s wide data path to maximise vectorisation. In addition, distinctive hard-

ware features such as its 512-bit barrel shifter are leveraged and/or re-purposed.

Due to the predicted prevalence of lattice-based PQC, we focus on a characteristic bottle-
neck of such schemes: polynomial multiplication. We accelerate polynomial multiplica-
tion via the number theoretic transform (NTT) and inverse number theoretic transform
(INTT) in Kyber. Our techniques should also be applicable to Dilithium, due to the high
level of similarity between the ntt and invntt function implementations. The target
platform is OTBN. The proposed instruction set extensions and software implementations
leverage its existing capabilities and incorporate viable extensions to the architecture. We
have submitted a paper to the 23rd International Conference on Cryptology And Network
Security (CANS) (pending acceptance at the time of writing) and our code is publicly
available on the author’s fork of the OpenTitan repository (submitted in .zip format),

including documentation for reproducibility of results. Our main contributions include:

e Baseline implementations of NTT and INTT in Kyber using the existing OTBN

instruction set, replicating the reference implementations as closely as possible.
e Identification and analysis of the bottlenecks in the baseline implementations.

e 9 new instructions for acceleration of (I)NTT on OTBN, cycle count estimates for

each and descriptions of the required hardware modifications.

e Vectorized implementations of the (I)NTT in Kyber, which leverage the new in-
structions and reduce cycle cost from 91,939 to 4,356 (21.1x) for NTT and 149,435
to 6,133 (24.3x) for INTT, over the baseline implementations.

e Analysis of performance optimisations and comparison with the performance of
the reference (I)NTT implementations on RISC-V Ibex, the architecture on which
OpenTitan is modelled.

e Extension to the OTBNSim testing infrastructure, automating the generation of
input/output file pairs. Enhancement of debugging capabilities within OTBNsim

by re-purposing of existing code from the OpenTitan repository.
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Chapter 2

Background

2.1 Post-Quantum Cryptography

We begin this section with an overview of cryptography and the motivation for its evolu-
tion in anticipation of quantum advancement. We consider the relevance of post-quantum
cryptography to the OpenTitan platform. We describe the current status of the NIST
PQC standardisation process, which informs our choice of Kyber as our target algorithm

for acceleration.

2.1.1 Cryptography and the transition to the quantum era

Cryptography is the practice of securing communications using mathematical techniques,
such that only the sender and the intended recipient can view the message contents [38].
Cryptography underpins the security of digital communications, which have become in-
trinsic to everyday life. The internet now encompasses a complex web of interconnected
devices. Currently, PKC enables confidential communication between devices over inse-
cure channels such as the internet. PKC utilises corresponding public and private keys
for encryption and decryption, respectively. Compared to their symmetric (private-key)
counterparts, public-key algorithms are more computationally complex due to the differ-
ent key types and the requirement for much longer keys to guarantee an equivalent level
of security. However, on the internet, communicating parties cannot meet to securely

exchange private keys in advance, therefore the use of PKC is required.

Current standards for PKC include Rivest-Shamir-Adleman (RSA) [39] and Elliptic Curve
Cryptography (ECC) [28]. The security of both of these algorithms is based on the hard-
ness of factoring a large positive integer into its prime factors. In 1994, Shor published a
quantum algorithm capable of computing the prime factors of any large positive integer
in polylogarithmic time [42]. Currently, quantum computers do not have the capacity to
break PKC algorithms if a sufficiently large key is used. However, quantum computing is

a rapidly developing field. It seems that the realisation of large-scale quantum computers
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is imminent and inevitable, and once this happens, current PKC cryptosystems will be
rendered obsolete [4].

Bernstein and Lange [4] present approaches to cryptography which are invulnerable to
cryptanalysis by a quantum adversary. PQC describes a class of algorithms which are
capable of withstanding both classical and quantum attacks, can be deployed on general-
purpose hardware and are interoperable with existing protocols and networks, which will
facilitate a seamless transition. However, PQC algorithms are prohibitively inefficient on
general-purpose hardware in its current form. There are a number of contributing factors

to this challenge:

e PQC algorithms are based on different and often more complex mathematical prob-

lems than traditional algorithms. This increases the computational effort required.

e Certain operations, such as those involving large polynomials, can be very resource-

intensive on hardware that has not been specialised for their execution.

e The maturity of algorithms such as RSA and ECC has resulted in highly optimised
deployments of the classical PKC standards. This is the result of decades of focused
research. As PQC is still in its infancy, the full potential for optimisations and

specialised support has not yet been explored.

The potential rise to prominence of PQC is prompting research in the optimisation do-
main. Analysis of current platforms and their incremental adaptation to support faster
PQC are prerequisites for the transition to quantum-secure communication infrastructure.
As an emerging and pioneering platform in the open-source hardware ecosystem, the same

considerations and investigations should be tailored to OpenTitan, specifically OTBN.

2.1.2 NIST PQC Standardisation Process

NIST began a standardisation process for PQC in 2016 [12], which is now in its fourth
round. The candidate algorithms are potential substitutes for classical PKC solutions,
aiming to address the tasks of general encryption and digital signatures, for which RSA

and ECC currently employed. Two main classes of algorithms have emerged:

e Digital signature schemes: algorithms that enable the sender to sign a message
with their private key and the receiver to authenticate that message by verifying

the signature with the sender’s public key.

e Key Encapsulation mechanisms (KEM): algorithms that enable establishment
of a shared secret key between two parties over non-confidential communication

channels. KEMs have 3 main stages and progress as follows.

In the key generation phase, a public/private key pair is generated. Any party with

access to another party’s public key can establish a shared secret key with them.
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The sender provides as input to the encapsulation algorithm the intended recipient’s
public key. The encapsulation algorithm generates and returns a shared secret key.
It also encapsulates (effectively, encrypts) the shared secret key using the receiver’s

public key. The resulting encapsulation is then forwarded to the receiver.

The receiver can then decapsulate it using their private key. The decapsulation
process will yield the unencrypted shared secret key. This key may then be used for

secure communication between the two parties, e.g. via symmetric encryption.

NIST has so far selected four PQC algorithms for standardisation: CRYSTALS-Kyber
[35], a key encapsulation mechanism, along with three digital signature schemes: CRYSTALS-
Dilithium [14], Sphincs™ [4] and Falcon [18]. Kyber was selected for general encryption,
e.g. in accessing secure websites. Its main advantages include short encryption keys
which facilitate ease of transmission and its speed of execution, relative to competitors.
Of the three digital signature schemes, NIST endorses Dilithium as the primary algo-
rithm. Falcon was selected for its applicability to scenarios requiring smaller signatures
than Dilithium. Sphincs™, although larger and slower than the other two, was selected

for its foundation in hash functions, to avoid over-reliance on lattice-based schemes.

In our selection of a suitable target algorithm for acceleration on OpenTitan, we consulted
experts from lowRISC who suggested focusing on a KEM. Since only one had been se-
lected for standardisation (Kyber), it was the logical choice. In the context of real-world
deployment of OpenTitan, which is specialised for integration in lightweight IoT devices,
a key encapsulation mechanism such as Kyber would be critical to ensuring efficient key

establishment between interconnected devices on public channels.

2.2 The Kyber Key Encapsulation Mechanism

Kyber is currently the only quantum-secure KEM which has been approved for standard-
isation. In this section, we explore the fundamental hard mathematical problem on which
Kyber is based, the ring-learning-with-errors (RLWE) problem. We profile the reference
implementation of Kyber and analyse the distribution of computational effort within the
algorithm. Based on the profiling results, we discuss why the NTT and INTT are ideal

candidates for acceleration on OTBN.

2.2.1 The Learning with Errors (LWE) Problem

The learning with errors (LWE) problem is a computationally hard problem, meaning
that no algorithm has been found which can solve it efficiently [37]. It was originally
proposed by Regev in 2005 [36]. It forms the basis for the cryptographic strength of
lattice-based schemes, a prominent class of PQC algorithms which accounts for three of

the four algorithms selected by NIST for standardisation.
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LWE and its derivatives are based on the concept of solving a “noisy” system of linear
equations, i.e. a small amount of error is added to the system to create a computationally
hard problem. Mathematically, such a system may be represented as follows, where the
matrix of coefficients A and the vector b combine to form the public key and the vector s
represents the secret key. e represents an error vector, which is typically a random vector

of small values used to perturb the equations slightly.

Ax(s+e)=0b (2.1)

The addition of error to the equation greatly amplifies the complexity of the problem. To
solve the system, an adversary would need to extract the value s. The sizes of the matrix

and vectors vary according to the target security level of the algorithm.

The LWE problem has several variants which satisfy different requirements. The Ring
Learning with Errors (RLWE) problem restricts computations and values to polynomial
rings, instead of matrices and vectors in LWE. This leads to significantly smaller key sizes

and more efficient computations.

The variant of LWE used in Kyber is known as Module Learning with Errors (MLWE)
[23]. MLWE is a variant of LWE, which reconciles the flexibility of LWE with the ef-
ficiency and lower bandwidth requirements of RLWE. Module lattices, used in MLWE;,
are more complicated than the ideal lattices used in RLWE, yet more structured (i.e.
less complicated) than the Euclidean lattices used in LWE [44]. Therefore, the hardness
of MLWE schemes is based on an intermediate problem between RLWE and LWE. The
use of MLWE circumvents various security risks associated with the use of RLWE. These
risks have been highlighted in numerous works demonstrating vulnerabilities of RLWE
which exploit the algebraic structure of ideal lattices [6], [16], [10], [9], [11]. MLWE also
offers the advantage of straightforward scalability to higher security levels, requiring only

minimal changes to the parameters of Kyber [7].

2.2.2 Profiling the reference Kyber C implementation

After selecting Kyber as the focus of our optimisation efforts, we conducted an analysis
of the reference C implementation to inform our choice of algorithmic components to
target for acceleration. Two implementations of Kyber are available within the official
repository [35], a platform-agnostic implementation (within ref/) and an optimised AVX2
implementation. The optimised implementation may be run on processors which support
the AVX2 instruction set. AVX2 offers capabilities for signed and unsigned processing of
high and low parts of packed values within SIMD registers. These processors also offer
out-of-order execution, meaning that instructions can be interleaved. Our target platform
is OTBN, which has a restricted instruction set, does not support advanced extensions like

AVX2 and does not support out-of-order execution. Therefore, the platform-independent
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implementation was the most suitable reference point for our work. It should, however,
be noted that the reference implementation has not been optimised for any platform and
instead favours readability over performance. Given that OTBN is not yet equipped with
a compiler, the reference C code cannot be directly excuted on the platform. We obtained
the profiling results by executing the reference code on a regular laptop (Core i7 processor).
We assume an approximate equivalence in terms of distribution of computational effort

within the Kyber algorithm between the reference C code and an OTBN implementation.

Three executables are generated for each parameter set (512, 768 and 1024) by compiling
the test program; test _kyber$ALG, test kex$ALG and test vectors$ALG, where $ALG
identifies the parameter set. According to the repository documentation, test _kyber$ALG
runs 1,000 tests which encompass key generation, encapsulation and decapsulation. We
used test_kyber$ALG for profiling. The parameter sets correspond to the different security
levels of Kyber. We obtained results for all three security levels. The algorithm remains
the same for each security level; all that changes are parameter values. We generated a
flat profile for each parameter set using gprof [17]. The flat profile captured the amount
of time spent in the execution of each function. We set the profiling (-pg) flag in the
Makefile’s CFLAGS. This enabled generation of the gmon.out file containing the profiling
data, which was compiled into a text file report using the gprof command. A visualisation

of the percentage of execution time spent within each function is presented in Figure 2.1.

Figure 2.1: Profiling results for reference (I)NTT implementations
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From the data in Figure 2.1, we firstly note that the distributions across the parameter sets
are similar, which aligns with expectations given that the code is the same. The Keccak
function is the most computationally intensive component of the algorithm. However, the
Keccak core is most conducive to acceleration in pure hardware, as it was designed as a
hardware-oriented implementation of the SHA-3 hashing algorithm [5]. The purpose of
our research is to investigate acceleration of Kyber on OTBN through hardware/software
co-design. Therefore, while a custom Keccak accelerator could likely be integrated as
a hardware extension, it is not the ideal candidate for optimisation via instruction set

extensions which do not aim to drastically alter the hardware architecture.

The subsequent four most expensive functions are montgomery_reduce, barrett_reduce,
ntt, and invntt. It is important to note that the montgomery_reduce function is called
from both ntt and invntt, while the barrett_reduce function is called from the invntt
function. Algorithmically, the ntt and invntt functions are closely (inversely) related and
hence share a number of similarities. Although the implementation of invntt is slightly
longer and more complex, it appeared likely that it would be possible to design certain op-
timisations to target both functions. Because ntt and invntt enclose montgomery_reduce

and barrett_reduce, these functions were also targeted in our acceleration strategies.

2.2.3 The Number Theoretic Transform and its Inverse

Efficient polynomial multiplication is one of the most performance-critical implementa-
tion elements of lattice-based PQC schemes such as Kyber and Dilithium. The number
theoretic transform (NTT) is commonly adopted for this purpose, enabling a reduction
in complexity of polynomial multiplication from O(n?) to O(n), where n is the number of
terms in each polynomial. This is compared to the most basic method of polynomial mul-
tiplication, sometimes known as the schoolbook method, which entails multiplying each
term of the first polynomial with all of the terms of the second polynomial and adding
the results. In the context of the ring-based polynomials in Kyber, the final result would
need to be reduced by ¢(x) = 2™+ 1. For the large polynomials processed by lattice-based

schemes, the magnitude of this efficiency optimisation is particularly significant.

The number theoretic transform is a specialised form of the Discrete Fourier Transform,
however it operates on the finite field Z, instead of complex numbers. The NTT operates
by transforming polynomials into a domain in which multiplication is highly efficient.
The multiplications are performed within the NTT domain before the results are trans-
formed back into the normal domain using the inverse number theoretic transform (INTT).
Specifically, the NTT transforms polynomials from their coefficient representation (a vec-
tor of coefficients) to their point-value form (a vector of points along the polynomial).
For polynomials of degree n, n points are sufficient to form the basis for the point-value
representation. Multiplication of two polynomials in their point-value form is a straight-

forward pointwise product. Given two polynomials f and g, we compute their product
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according to Equation 2.2, where o denotes multiplication within the NTT domain:

f-g=INTT(NTT(f)o NTT(g)) (2.2)

The operation of the NTT is given in Equation 2.3. This equation describes the transfor-
mation on a polynomial g of degree n, where g = Z?:_Ol g; X" and g; €Z,. Furthermore, w
represents the primitive n-th root of unity, where w™ =1 mod ¢ and for any 1 < k < n,
w¥ £ 1 mod ¢. Values of w” are known as twiddle factors. Multiplication by these values
is equivalent to evaluating the polynomial at powers of the n-th root of unity. In the Ky-
ber reference implementation and in our implementations, the twiddle factors are stored

as pre-computed constants. The INTT reverses this transformation (Equation 2.4).

n—1 n—1
§=NTT(g) =Y &X', with g =Y gw? (modq). (2.3)
i=0 j=0
n—1 n—1
g=INTT(g) = ZgiX’, with ¢, =n""! Zgjw;ij (mod q). (2.4)
i=0 5=0

In the Kyber reference implementation and in this work, Montgomery reduction and Bar-
rett reduction are integrated into the NTT and INTT functions, to efficiently perform
modular arithmetic within the NT'T domain. Montgomery reduction is used in both
NTT and INTT, while Barrett reduction is used within INTT only. In the Kyber imple-
mentation, the ntt and invntt functions are computed in-place for efficiency reasons, as
this method incurs no additional memory overhead. The consequence of this is that the
outputs are in bit-reversed order. However, this is handled within the functions, e.g. the

invntt function expects its input in reverse.

Montgomery reduction converts numbers to a specialised form known as Montgomery
form, to enable faster modular multiplication. Numbers of the form a (mod m) are
represented as aR (mod m), where R is a power of 2 and R > m. This allows modular
multiplication without explicit division by a modulus. Instead of directly computing
a X b (mod m), the same result is more efficiently obtained by computing ((a x b) X
R™') (mod m), assuming a and b are already in Montgomery form. By incorporating
multiplication by a power of 2 for computational efficiency, this approach leverages the
native bitwise operations in hardware and hence benefits from the speed of bit-shifting,

which is used as a substitute for costly division operations.

Barrett reduction also enables fast modular computations, but by following a different

approach. A precomputed value p is designed to approximate % in a form that can

efficiently be handled in hardware, according to the formula L%J , where £ is selected as a

value slightly larger than the bitlength of m. Division of a by m can then be approximated
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efficiently by: a (mod m) = a — pup. The intrinsic link with binary representation once
again facilitates the use of bit-shifting as a substitute for costly arithmetic multiplication
and division operations. Barrett reduction is used for efficiently computing long divisions

required for evaluating modulus in INTT, by replacing division with multiplication.

2.3 OpenTitan Big Number Accelerator

The OpenTitan project is a collaboration between nine coalition members [26]. The
project is hosted by lowRISC C.I.C. [25], a not-for-profit company based in Cambridge,
U.K. which aims to develop and maintain an open-source silicon ecosystem. It was orig-
inally launched by Google, lowRISC and their partners in 2018. The project reached a
significant milestone in February 2024, becoming the first open-source silicon project to
reach commercial availability with the release to market of validated chips based on the
OpenTitan Earl Grey discrete root of trust (RoT).

A RoT is a highly reliable component which is inherently trusted within a cryptographic
system [15]. Because RoT's are responsible for performing security-critical operations and
safeguarding secret values such as cryptographic keys, they must be secure by design.
A fundamental hardware security primitive of OpenTitan is the OpenTitan Big Number
Accelerator (OTBN), a co-processor for acceleration of asymmetric cryptography. OTBN
provides large number arithmetic capabilities which are fundamental to PKC algorithms
such as RSA and ECC. Its wide data path and specialized instruction set enhance the
efficiency of PKC. However, OTBN is not yet optimised for PQC. As OpenTitan forges a
path to the future of secure hardware, the emerging threat of quantum computing cannot
be overlooked. To ensure the resilience of OTBN in the future, it is imperative to optimise

this platform for secure and efficient PQC before existing solutions are rendered obsolete.

OTBN features a 32-bit wide control path and a 256-bit wide data path, each containing
32 registers. Its security-centric design incorporates a reduced instruction set which com-
prises a base subset for control flow and a big number subset for wide-integer arithmetic in
data flow. The separation of paths reduces the risk of data leakage. OTBN supports data
integrity protection and secure wipe of internal states, which is initiated upon encounter-
ing unexpected errors. Security is enhanced by its internal random number generation
mechanism which is connected to the Entropy Distribution Network. OTBN contains two
dedicated memories of 4kiB: instruction memory (IMEM) and data memory (DMEM).
Each addresses different aspects of cryptographic processing and their separation bolsters
security. The integrity of the instruction stream is ensured by the inaccessibility of IMEM

to user-invoked load/store operations, which are performed on the DMEM.
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2.4 Use Cases of OTBN

This section describes the potential for real-world impact of our work on accelerating PQC
on OTBN. We detail the broad array of applications and use cases of OpenTitan, exploring
their potential vulnerability to quantum computing and how they may be adapted to
support PQC as a defensive measure. The official documentation [34] identifies three
distinct uses cases for OpenTitan —platform integrity modules, trusted platform modules
and universal 2nd-factor security keys, each of which encompass a broad spectrum of
applications. We analyse how OTBN contributes to the core functionality of OpenTitan
in each use case. We describe how our contributions may help to ensure the robustness

of OpenTitan in these application scenarios in the quantum era.

2.4.1 Platform Integrity Modules

Platform integrity modules play a crucial role in securing the boot process. This process
provides assurance that the device is starting in a trustworthy state and verifies that
its firmware has not been tampered with. This guarantee is crucial in situations where
technology is entrusted with handling sensitive data or performing critical operations.
Devices which are likely to incorporate platform security modules include surveillance

cameras, healthcare monitors, autonomous vehicles and industrial process control systems.
Within platform integrity modules, OpenTitan performs the following tasks:

1. Firmware Integrity Verification. OpenTitan acts as an intermediary between
the device’s boot flash and its other components. Once the device starts, OpenTitan
verifies the integrity of the initial stages of the boot firmware. OTBN currently
uses RSA with SHA-256 for digital signature verification in this process. Once
verification is complete, OpenTitan grants the other boot devices access to the boot

flash —the program that defines the boot sequence.

2. Monitoring of downstream devices. When the device is operational, OpenTitan
monitors the resets and heartbeat signals of the downstream devices. Deviation from
expected patterns could indicate compromise and triggers interrupt service routines.
The role of OTBN in this process is likely minor, potentially including verification
of downstream devices using ECDSA (a form of ECC) with SHA-256.

3. Enforcement of runtime boot device access policies. OpenTitan manages
access of boot devices to the boot flash and A/B firmware updates. A/B updates
install seamlessly and include a mechanism for recovery from corruption. OTBN
may be used to verify that the firmware updates have indeed come from the manu-

facturer via digital signatures.

4. Root key storage and attestation flows. OpenTitan securely stores and man-

ages cryptographic keys. Keys and internal flash data are encrypted with AES.
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Attestation flows use the keys from the secure storage to generate a digital signa-
ture for the device. This can be used to prove the identity of the device via remote
attestation. OTBN uses ECDSA with SHA-256 to generate the digital signature.

Digital signature algorithms are critical in platform integrity modules, with PKC also
being used for securing transmission of data between communicating devices. With the
impending quantum threat, classical algorithms such as RSA and ECDSA (a form of
ECC) will be replaced by Dilithium for digital signature generation and Kyber for secure
data transmission. AES is used to secure keys and data within the internal flash. Al-
though quantum computers have the potential to reduce its security level, it is currently
considered quantum-safe. Given that our (I)NTT implementations are targeted at Kyber,

which shares similarities with Dilithium, our contributions are applicable to this use case.

2.4.2 Trusted Platform Modules

The Trusted Platform Module specification (TPM 2.0) is an international standard for
secure cryptoprocessors. The purpose of this technology is to provide secure storage for
artifacts which are used to authenticate computing platforms, e.g. cryptographic keys,
digital certificates and passwords. Compared to platform integrity modules, trusted plat-
form modules provide a broader range of functionality. In addition to enabling device
authentication, attestation and secure boot, trusted platform modules also generate cryp-
tographic keys and provide disc encryption. Confidence in trusted platform modules is
strengthened through conformance to the TPM specification, which is a widely-recognised
standard. Trusted platform modules play a pivotal role in many applications, including
e-commerce, confidential government communications, password /PIN management and

secure file storage.

OpenTitan can be used to implement TPM 2.0 for both clients and servers. Because
trusted platform modules generate their own cryptographic keys, an internal entropy
source is required. OTBN is equipped with a hardware random number generator, con-
nected to its entropy distribution network. The algorithms for which these random keys
are generated are RSA and ECDSA. OpenTitan uses these algorithms for digital signature
generation and securing data during communication with other devices. Both of these
algorithms will eventually be phased out in favor of their quantum-secure counterparts,
Dilthium and Kyber. In the cases of secure file storage and disk encryption, symmetric

key encryption (AES) is used and therefore this feature may persist into the quantum era.

2.4.3 Universal 2nd-Factor Security Key

When used as a Universal 2nd-Factor Security Key, OpenTitan operates under the U2F
authentication standards developed by the FIDO Alliance (v1.2). These standards out-
line a two-factor authentication protocol, whereby a physical security key is required in

addition to a password. Identity-based services, such as online banking, confidential com-
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munication platforms like email and cloud computing can benefit significantly from the

security afforded by the use of U2F authentication.
The stages of U2F authentication are as follows:

1. Login attempt. The user attempts to login to an account by entering their user-
name and password. Upon initial association of the U2F security key with the
service, a public/private key pair is generated. The key pair is generated for either
RSA or ECDSA, using OTBN’s entropy distribution network as a source of ran-

domness. The private key remains securely stored and is never exposed externally.

2. Cryptographic Challenge. Once the user’s credentials have been verified by the
service, the service generates a cryptographic challenge. The user is required to
connect their U2F security key as a peripheral to receive this challenge, using a
USB port in the case of OpenTitan.

3. Completion of the Challenge. The user is required to physically interact with
their U2F security key to prove their presence, e.g. by pressing a button. The
challenge is a value which must be signed by the private key of the U2F and returned
to the service. This process is completed by generating a digital signature using

ECDSA on OTBN.

4. Verification. The service verifies the integrity of the received signed challenge

using the public key associated with the user’s U2F. ECDSA is used for verification.

The primary cryptographic operations in this use case are performed by digital signature
algorithms, since the purpose of the application is to enable secure authentication proce-
dures for users’ interactions with services. In a post-quantum context, the most applicable
algorithm will likely be Dilithium, acting as a quantum-secure substitute for ECDSA. We
anticipate that our techniques will translate almost seamlessly to Dilithium due to the

implementation commonalities it shares with Kyber.

In summary, the primary use cases of OpenTitan are intrinsically associated with pro-
cesses such as secure boot, attestation, authentication and integrity verification. Because
OpenTitan is intended for use in IoT devices, secure communication of data between
such devices is also an important requirement of its cryptographic co-processor, OTBN.
Although it currently offers support for efficient execution of PKC algorithms, these al-
gorithms will likely be replaced by quantum-secure standards in the future. Both digital
signature algorithms such as Dilithium and key encapsulation mechanisms such as Kyber

have the potential to play a prominent role in post-quantum use cases of OpenTitan.
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Chapter 3

Design and implementation

3.1 Development environment (OTBNSim)

During the development phase of our project, OTBN was still being taped out as an
engineering sample and therefore the physical chip was unavailable. A Python simulator
for OTBN, OTBNSim [33], is available as part of the OpenTitan repository and this
was used for development. OTBNSim comprehensively simulates the OTBN block of
OpenTitan, accurately modelling the state of the core at each step of the simulation.
It emulates the behaviour of internal state components using abstract models of the
registers, DMEM and IMEM. By updating the state abstractions in a stepwise manner,
OTBNSim facilitates detailed inspection and validation of instructions and algorithms. It
is closely aligned with the SystemVerilog model of the OTBN module, which ensures its
conformance to the device verification documentation. OTBNSim includes mechanisms
for error injection, error detection and initiation of a secure wipe of the internal state in
response to detected errors. These capabilities allow it to accurately replicate the security
features which characterise OTBN as a suitable platform for cryptographic processing.
By offering a layer of abstraction from the hardware, OTBNSim provides an efficient

framework for development and validation of cryptographic implementations for OTBN.

Instructions are defined as subclasses of the 0TBNInsn class in Python. They can be found
within the otbn/dv/otbnsim/sim/insn.py file. Tests for each instruction are written
in Python and stored within the otbn/dv/otbnsim/test/ directory. The execute()
method defines each instruction’s behaviour. Instructions are also declared in the file:

otbn/data/bignum-insns.yml, including mnemonics, operands, syntax and encoding.

OTBNSim processes tasks sequentially and can respond to various external inputs during

execution. Successful execution of a task progresses through the following stages:

1. Decoding of the program. The encoded instructions are fetched from the IMEM.
Each instruction is then decoded to extract the opcode. The opcode uniquely iden-

tifies the operation within the instruction set to be executed by the processor.
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2. Loading of the program. The decoded program (sequence of decoded instruc-

tions) is then loaded into dedicated local storage within the simulator.

3. Stepwise simulation of execution. Within the simulated SystemVerilog environ-
ment, each execution step triggers updates to one or more of the following: the state
of the core, the registers and the memory. The relevant abstractions are updated

by modifying the values within the corresponding Python data structures.

4. Generating traces. Following each execution step, a trace is generated, which
provides a detailed description of the operations performed by the processor during
that step and the effects on the processor’s state. The traces are eventually for-
warded to the OTBNTraceChecker, a tool designed to examine them for correctness

and alignment with expected instruction behaviour.

OTBNSim incorporates a cycle-accurate performance reporting mechanism for all existing
OTBN instructions, which execute in either one or two CPU cycles. This is based on
cycle count measurements taken from a prototype chip. As we did not have access to a
prototype chip during development, when designing new instructions, it was necessary to
consider the required hardware modifications to accurately estimate cycle counts. The
instructions we propose are designed to maximally leverage OTBN’s existing hardware
components and require only minor modifications. This not only facilitates a realistic and
feasible solution which enhances performance, but ensures that cycle count estimates are

tightly aligned with the ground-truth performance of existing instructions.

A compiler is not yet available for OTBN; so all development involved coding directly in
OTBN assembly. OTBNSim is capable of directly processing .s assembly files, where the
instruction sequence is defined in the .text section and constants to be stored in memory
are defined in the .data section. At the end of the assembly routine, the ecall (environ-
ment call) command is used to trigger the done interrupt, which signals to the simulator
that the execution is complete. Subsequently, the final state values are reported in the
console. In the event of a runtime error, OTBNSim halts execution. However, the Python
code which orchestrates the execution by default within the simulator does not explicitly
handle different error types. Given that the repository provides simple instruction tests,
this functionality is not typically required. However, for complex assembly routines in
which a large number of instructions are called, such as the ones we developed, an accu-
rate mechanism for error tracing is essential for debugging purposes. We inspected the
internal error handling process, to discover that different errors have individual identifier
codes, stored in a dedicated register called ERR_.BITS. A Python enum is used to map these
values to their error names within the simulator. We identified a script in the repository,
external to the OTBNSim directory (otbn/util/otbn_sim_test.py), which runs a sim-
ulation and includes functionality to identify errors by accessing this enum and recording
the instruction number at which the error occurred. We incorporated this enhanced error

tracing feature into the OTBNSim framework to assist with debugging.
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3.2 Testing Infrastructure

To ensure the correctness of our algorithmic implementations, we extended the testing
infrastructure within the simulator to support more rigorous testing. The repository
contains a simple testing framework for straightforward instructions, such as addition.
For each test case, two files with the same base name are defined. The input assembly
(.s) file defines the assembly routine to be executed, and the corresponding .exp file
contains the expected values of registers upon completion. The standalone.py script
is used to run the simulation. It operates by assembling and linking the given assembly
file. The assembling process constitutes the translation of assembly code into object
code. This is then linked to create an executable ELF file, using a custom linker script in
otbn_ld.py which ensures the correct placement of the code and data in memory. The
simulator is run via a subprocess call, with a command-line argument (--dump-regs) set
which specifies that following execution, the values of GPRs (general-purpose registers)
and WDRs (wide data registers) should be written to an output file. The .exp file is then
parsed to extract the expected values, against which the actual values are compared. Any

discrepancies are displayed in the console.

For each test, input values and expected output values are manually hard-coded into the
.s and .exp files. This approach is acceptable for the purposes of testing simple cases
on the simulator. However, in the context of extensively testing the cryptographic im-
plementations we developed, it lacks the required flexibility to thoroughly test a wide
range of inputs. Therefore, we created a Python script to automate the process of in-
put /output file generation for arbitrary lists of input values. The input values are defined
as a list within the Python script and the corresponding output values are computed by
a prototype function of the assembly code being tested. For each assembly routine, we
created a subdirectory, within the same directory as the script. Within each subdirec-
tory, a file called template.s contains the code for the assembly routine. A file called
template.exp defines the expected final register values. Within these files, placeholders

are used to identify where the input and output values should be inserted before execution.

When the test script is run, a new inputoutput subdirectory is created. For every input,
the expected output is computed by the function prototype. A copy of template.s and
template.exp is made and regular expression matching in Python is used to replace the
placeholders with the actual values. We used a character sequence which was not present
anywhere else in the assembly code as a placeholder (e.g. “[inp1]”) to ensure against
false positives in the matching process. This pair of files is then assigned the base name
of template_inp, where inp represents the number supplied as input to the given test
case, and added to the inputoutput subdirectory. Once all the files have been created,
the existing testing infrastructure processes the corresponding file pairs in inputoutput/.
We developed different versions of this script for different aspects of the implementation,

e.g., for testing the new instructions individually and for the function implementations
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as they were being developed. Our extension was easily integrable into the existing test
suite due to its use of the pytest framework. Separation of different test cases facilitated

straightforward enabling and disabling of tests, which streamlined the testing process.

Since the simulator is Python-based, we began by writing the function prototypes in
Python. This approach proved successful for simple assembly subroutines and instruction-
level tests. For vectorised instructions, we simply repeated the functionality a number of
times equivalent to the number of lanes, shifted the results to their correct lane indices
and concatenated them. However, we encountered issues with this approach as our imple-
mentations became more complex. We noted a divergence in the behaviour of the Python
and the reference code, which we traced back to the differences between Python and C
in the handling of integer operations and type casting. The reference implementation of
Kyber, which we aimed to replicate precisely, is in C. In C, integers have a fixed size
and may be signed or unsigned. In contrast, in Python, integers are inherently signed,
arbitrarily large and their representation does not correspond to C’s precise type system.
When attempting to replicate the integer operations of the C reference implementation
in Python, issues arose regarding sign interpretation and maintaining fixed-size integer
variables, particularly following operations which caused overflow. This would have re-
quired a large amount of additional processing for integer manipulation in Python. We
attempted to implement this, but found that it confounded the core functionality of the
implementation and made error tracing complex. It also led to various bugs not being

identified promptly, necessitating a more accurate and efficient approach.

We identified ctypes as a means of incorporating the C reference implementation directly
into the testing framework. Using this library, foreign functions, i.e. functions written in
other programming languages, can be invoked from Python. We imported the relevant C
and header files from the GitHub repository of Kyber into the OTBNSim environment.
After compiling the C code into an object file using gcc, we created a shared library (.so
file). This allowed us to wrap the required C functions (ntt() and invntt()) in pure
Python. This facilitated incremental development, whereby we constructed the assembly
code in a stepwise manner and ensured its correctness after each step. We committed

each incremental development to GitHub once fully functional.

The (I)NTT implementations in Kyber perform in-place transformations on a 256-element
array. Throughout development, we defined this array as random but constant. However,
to thoroughly test the implementation to a cryptographic standard, it was necessary to
ensure that the code computed the correct values for arbitrary 256-element arrays. A
standard method of testing cryptographic implementations for correctness is by using
NIST vector tests. Within the Kyber reference implementation, there exists a mechanism
for conducting these tests, whereby the executable test_vectors$ALG generates 10,000
sets of test data for the security level specified by $ALG (512, 768 or 1024). The sets contain

keys, ciphertexts and shared secrets, which are values that both sender and receiver should
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be able to compute independently if the encryption and decryption processes are correct.

Given that we implemented the ntt() and invntt() functions in isolation, as a full
Kyber implementation in OTBN assembly was not available, it was necessary to extract
the array values upon entering and exiting these functions during the vector tests. We
achieved this by modifying the reference code to write the contents of the array before and
after execution of ntt() and invntt() to text files. Separate text files were maintained
for the inputs and outputs of the two functions, where entries of the same index in the
input and output files corresponded to the same test case. Array elements were separated
by a different delimiter to that which separated the arrays. This enabled Python parsing
of the text files to successfully read the values with which to overwrite the placeholders in
the .s and .exp files. This served as a black-box testing method once the implementation
was complete, as we replaced the computation of the output values by a prototype function

with the ground-truth values obtained by separately running the NIST vector tests.

3.3 Baseline Implementations

We first developed baseline implementations of the NTT and INTT by translating the
functions in the Kyber reference implementation as directly as possible to OTBN assem-
bly, using only the existing instructions. This process established the current performance
of OTBN in execution of these functions and provided baseline performance benchmarks
against which to compare optimisation efforts. It should be noted that the Kyber ref-
erence implementation has not been optimised for any platform. However, the reduced
instruction set of OTBN constrains the potential for optimisation without implementing
instruction set extensions, so the baseline performance provides a reasonable estimate
of its capabilities. Analysis of the baseline implementations on OTBN granted insights
into performance bottlenecks and particularly inefficient operations, hence serving to mo-
tivate optimisations and inform the design of instruction set extensions. In Figure 3.1,
we present our analysis of the baseline implementations of NTT and INTT on OTBN.

Performance bottlenecks are analysed in terms of the percentage of overall cycle count.

The baseline implementation of NTT required 91,939 CPU cycles to execute, while the
INTT required 149,435 cycles. During the implementation process, the most significant
performance impediment we noticed was the restriction to scalar computations on the wide
data registers (WDRs) of 256 bits. These registers were designed to perform arithmetic on
large integers; however, in the case of ntt, the integers involved in computation, including
intermediate results, do not exceed 32 bits and hence the large register capacity is not
utilised. The computational effort spent on these operations is not being exploited to its
full potential and the same effects could be achieved by operating on much smaller units.

We noted that vectorisation of operations could be maximised to enable full use of WDRs.

Although the majority of instructions in both subsets execute in a single clock cycle, in the
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Figure 3.1: % execution time spent on functionality types in baseline implementations
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context of the Big Number subset, additional operations are required to perform certain
computations. OTBN only supports unsigned arithmetic and the (I)NTT function oper-
ates on signed values. Two’s complement is used to represent negative numbers. Although
the values involved in multiplication operations are 16 bits in width, it was necessary to
sign-extend these numbers to 64 bits before using BN.MULQACC, as it operates on 64-bit
operands. This was required to be done manually if this data had been transferred from
GPRs. In the interest of maintaining a constant-time implementation, we adopted the
following approach. The sign bit is isolated through a right shift of 15 bits and multiplied
by a 64-bit mask with the upper 48 bits set. The result is then XORed with the original
16-bit value, resulting in sign-extension to 64 bits. This process costs 4 cycles for each of
two operands, before a multiplication can be performed. Sign extension required 10.7%

and 15.8% of the total cycle count of the ntt and intt baselines, respectively (3.1).

In our efforts to design methods to enhance the efficiency of sign extension, we identi-
fied two viable strategies. The first involved reducing the operand size in a vectorised
implementation. For example, if lanes were 16 bits in length, this would align with the
operand width and therefore sign extension beyond this width would not be necessary. In
designing instruction set extensions, we are granted flexibility at a hardware level. This
led us to propose offloading of sign interpretation to hardware in the case of the INTT

where vectorised arithmetic right shifts are required.

Another notable bottleneck was the requirement to transfer data between the register
types to perform different operations. Certain instructions, such as multiplication, are
only available in the Big Number subset. Conversely, other operations, such as left shift,
are only available in the base subset. Given that the Big Number subset is designated for
data flow, transferring data back and forth between WDRs and GPRs during the main
computation is both inefficient and does not conform to standard practice. However, at
certain points in the implementation this is necessary, for example, loading array values
with fine granularity at data addresses and performing a left shift during the Barrett

reduction phase of INTT. A resulting objective of our design of new instructions was
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to minimise the requirement for data transfer between register types. Transferring of
data between register types cost 19.5% and 27% of the cycle count of the ntt and intt

baselines, respectively (3.1).

The array r, which is processed by the NTT function, consists of 256 16-bit elements which
are stored contiguously in memory. Each element is processed individually and reads from
memory to GPRs can only be performed on 32-bit-aligned boundaries. Therefore, data
can only be loaded in fixed 32-bit blocks. This complexified the element loading and
storage procedures. In order to load and operate on r[j], we floor divide the index j by
2 by performing a right shift by 1 bit, in order to identify the index of the 32-bit block
containing r[j]. We then shift the result right by 2 to compute the byte offset from the
base address of r from which to load the block. We determine whether index j is even or
odd by computing j AND 1. In the case of an even index, we isolate r[j] via an AND of
the loaded block with a 16-bit mask. In the case of an odd index, we shift the loaded block
right by 16 bits. However, this approach contains a conditional statement, which may
lead to violation of constant-time properties. In the case of development of the baseline
and optimised implementations, we avoided the use of conditional statements in order to

retain constant-time properties.

Therefore, we require a single execution path for loads and stores of odd- and even-indexed
values. To load and isolate an individual array value (of either odd or even index) in a
GPR, we follow the process outlined in Figure 3.3. We begin by loading a data block
containing 2 contiguous array elements following the previous procedure, one of which is
at the required index j. We compute j AND 1 and its inverse. We shift both values left
by 4 so the non-zero remainder represents 16. We then shift the loaded block right by the
former value ((j AND 1) << 16), shift left by the same value and finally shift right by
the latter value ((NOT(j AND 1) << 16). This method isolates the required element in
the least significant position in the case of both odd and even indices, enabling subsequent
computations. For storing the result, we only overwrite one element of r, leaving the other
16 bits of the 32-bit block unchanged. The opposite 16-bit value in the block is isolated in a
similar way to r[j]. Before the final block is stored to memory, the two 16-bit components
are shifted back to their original position and combined with an XOR. We noted the
evidently large computational overhead introduced by replicating the elementwise loading
procedure of the reference implementation. In the ntt and intt baselines, respectively
(3.1), loading of values into GPRs (including subsequent manipulation of loaded values)
cost 27.1% and 19.5% of the total cycles. Meanwhile, constructing the resulting data
blocks and storing them to memory cost 26.3% and 19.2% of the total cycles, respectively.
We aimed to reduce the number of load and store operations, eliminate manipulation of

loaded values and facilitate parallel computation on loaded values directly.
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3.4 Vectorised Implementation Design

We designed the vectorised implementations of the ntt() and invntt() functions, out-
lined in pseudocode in Appendix A, with the aim of maximising parallelism, minimising
load/store overhead, minimising data transfer between register types and more efficiently
handling signed multiplication. We designed an implementation which maximises the
vectorisation potential of OTBN and enables full usage of the capacity of the WDRs. To
implement it, we designed new instruction set extensions which complement the exist-
ing capabilites of OTBN and incorporate some moderate hardware modifications, which
could realistically be introduced to the platform. The optimised implementation loads and
stores 16 polynomial coefficients at a time, significantly reducing the load/store overhead
of the baseline. Array elements are operated on in-place using vectorised instructions,
which enables us to avoid manipulation of loaded values. Explicit sign extension is no
longer required due to the narrower lane widths and offloading of the sign interpretation

to hardware in the case of a vectorised arithmetic right shift.

The values of zeta are broadcasted at 32-bit intervals across WDRs before entering the
fqmul computation. Because the broadcast instruction replicates the value in a GPR
across all lanes of a WDR, we must load zeta from memory directly into a GPR. How-
ever, we aimed to minimise the overhead of loading and isolating elements. We achieved
this by unrolling two iterations of each loop which required a new value of zeta to be
assigned. This enabled us to load two values at once, isolate them and retain the second
one in a separate GPR instead of performing a second load operation. In the baseline
implementation, loading and isolating two values of zeta cost 26 cycles, whereas this

approach costs only 6 cycles.

The implementation is split into two parts: the first deals with values of len which are
multiples of 16. This means that the number of elements between r[j] and r[j+len]
can be stored in a distinct number of wide data registers. Therefore the new values of
r[j] and r[j+len] can be separately computed and written to memory in batches of
16 elements. Within the fgmul function, intermediate values can occupy up to 32 bits.
At this point, the lane widths are effectively expanded from 16 to 32 bits. This process
is illustrated in Figure 3.4, where shaded sections of mask registers represent all Os and
non-shaded sections all 1s. Note that shifts applied are vectorised on 32-bit lanes. The
lower and upper 16-bit elements in each 32-bit lane of the wide data register are extracted
into two separate registers. We isolate the elements of even index by pre-loading a 256-
bit mask with every even-indexed 16-bit element set and performing an AND operation
between this register and the loaded values. Then, to isolate the values at odd indices,
a vectorised right shift by 16 bits of each 32-bit lane is used to place them in the lower
positions. The fqmul operations can then proceed in the same way for both vectors.
The results of the two fqmul computations are then combined by reversing the shift and

performing an XOR between the two registers.
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The second part of the implementation deals with values of len which are factors of
16. The number of elements between r[j] and r[j+len] is less than the capacity of a
wide data register. As data elements are loaded contiguously, computations of the new
values of r[j] and r[j+len] are combined within registers. Iteration levels are merged
to maximise computational capacity. This part of the implementation has one less nested
loop than the first, merging the loading of zetas into the innermost loop. 8/len zetas
are loaded into a single register, occupying equal proportions. Each iteration reads 16
consecutive elements as a vector of r[j]. Since loads to wide data registers are only
permitted at 256-bit boundaries, OTBN’s 512-bit barrel shifter, which produces a 256-bit
output, is used to load r [j+1en] at the required level of finer granularity. The subsequent
block of 16 elements is then loaded, concatenated with the previous and shifted right by
len elements, returning the low 256 bits as the corresponding vector of r[j+len]. This
construction of the vectors of zetas, r [j] and r [j+1en] allows the rest of the computation
to proceed in the same way as the first part of the implementation. Once fqmul has been
computed however, the computations of the new values of r[j] and r[j+len] must be
combined within the same resulting register. This is achieved using bitmasks and shifting
to interleave the calculated values at offsets of length len within the register. Due to
the direct operations on data in WDRs throughout the computation, the overhead of
transferring data between register types in NTT and INTT is reduced to zero from cycle
counts of 17,918 and 40,320 in the respective baselines (3.1).

Throughout the vectorised computation, elements are fully packed into the WDRs. The
combination of the computation of new values of r[j] and r[j+len] within the same
registers ensures that this potential remains maximised even for values of 1len which are
less than the element capacity a WDR. The expansion of lane widths from 16 to 32 bits
is implemented for the least possible number of instructions. Once 32-bit precision is
no longer required for intermediate computations, the implementation transitions back
to the initial mode of operation on 16 elements in parallel. Minimisation of load/store
overhead is achieved, as the optimised implementation loads and stores 16 elements at
once. Additional pre-processing of loaded array values is eliminated as all loaded values
are operated on directly in the positions within the register at which they were loaded. As
shown in Table 3.1, the number of cycles spent on the loading of values and manipulation of
loaded values was reduced from 24,947 to 1,196 cycles for NT'T and from 29,171 to 1,273 for
INTT, over the baselines (3.1). Similarly, the cycles required for constructing and storing
data blocks to memory was reduced from 24,192 to 592 for NTT and 28,672 to 672 for
INTT. Loading of zeta values into GPRs before broadcasting is optimised by isolating
and storing the two values that are loaded at once from memory. The multiplication
process has been streamlined to eliminate the requirement for explicit sign extension in
software. In the baseline implementations of INTT and NTT, respectively, 9,854 and
23,680 cycles were spent on sign extension, however this costs no additional cycles in the

optimised implementations.
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Figure 3.3: Loading and isolating data elements into GPRs

Table 3.1: Comparison of Cycle Count Distribution Between Implementations

Implementation Slgn. Register Load Store Other Total
Extension | transfer

ntt_baseline 9854 17918 24947 24192 15028 91939

ntt_optimised 0 0 1196 592 2568 4356

invntt_baseline 23680 40320 29171 28672 27592 149435

invntt_optimised 0 0 1273 672 4188 6133
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3.5 Instruction Set Extensions for OTBN

In this section, we propose 9 new instructions for OTBN. We implemented these within the
Python simulator by defining them in the file: hw/ip/otbn/dv/otbnsim/ sim/insn.py.
We leveraged the new instructions in our vectorised implementations of ntt () and invntt ().
Although they have not been implemented in hardware, OTBNSim granted us the abil-
ity to define and implement these instructions within the simulation environment for
the purposes of demonstrating the correctness, efficiency and viability of the optimised

implementations which are enabled by these instructions.

An important consideration when designing hardware modifications for PQC is that it is a
rapidly-evolving field and the standardisation process is ongoing. Although PQC is poised
for mainstream adoption, it is a dynamic field of research that will inevitably experience
many changes. Therefore, developing extremely specialised and targeted hardware pre-
maturely may result in technology which will rapidly become obsolete. The instructions
we propose enable maximisation of the vectorisation potential of OTBN in the ntt () and
invntt () computations, yet are not exclusive to these use cases. Rather, they are generic

and could be leveraged in the implementation of many other algorithmic components.

Our design strategy focused on proposing realistic extensions to OTBN, which could be
feasibly incorporated into the chip without extensive hardware modifications or addi-
tion of an entirely separate data path. We aimed to minimise the percentage increase
in chip area that would be required by our instructions by aligning them as closely as
possible with OTBN'’s existing hardware components. However, to precisely quantify this
increase, we would need access to the physical hardware and would ideally consult with
experts at lowRISC. We were careful to avoid proposing any drastic changes to the ar-
chitecture of OTBN. This approach conforms to OTBN’s intentionally minimalist design,
which facilitates security countermeasures by minimising the attack surface. Therefore,
we aimed to leverage OTBN’s existing capabilities by re-using and re-purposing its un-
derlying hardware features where possible. We carefully considered the required hardware
modifications and aimed to minimise these, whilst still exploiting the speed of hardware
for particularly inefficient operations in software on OTBN. This approach was impor-
tant from the perspective of security, but also performance estimation. OTBNSim is a
cycle-accurate model of OTBN. The cycle count of each existing OTBN instruction is
fully accurate. However, OTBNSim does not have a mechanism for measuring the cycle
count of new instructions. Therefore, we were required to estimate the cycle counts of our
new instructions as accurately as possible, using inference from the ground-truth values

wherever applicable.

The rest of this section describes the new instruction set extensions, the reasoning used
to estimate their cycle counts, details of how they leverage OTBN’s existing hardware

components and descriptions of any hardware modifications required.
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BN.LSHI (Concatenate and left shift)

Concatenates the contents of the WDRs <wrs1> and <wrs2>, with <wrs1> forming the
upper part and shifts left by an immediate value of up to 255 bits. Writes the uppermost
256 bits of the resulting value to the destination WDR, <wrd>. The equivalent instruction
for performing a right shift already exists in OTBN (BN.RSHI), where the final result is

instead truncated to return the lowest 256 bits.

Syntax: | BN.LSHI <wrd>, <wrsl>, <wrs2> << imm

wrd Destination WDR.

wrsl Source WDR which will form the upper part
of the 512-bit value to be shifted.

wrs2 Source WDR which will form the lower part
of the 512-bit value to be shifted.

imm Immediate value specifying the number of
bits by which to shift (range: 0 to 255).

Cycle Count Estimate: 1 cycle.

Justification of Cycle Count Estimate: This instruction essentially operates in the same
way as the existing BN.RSHI instruction for OTBN which executes in one cycle, but
performs a left shift instead of right. Therefore it is reasonable to infer that a barrel

shifter can operate in both directions within the same window.

Hardware Modifications Required: OTBN’s current 512-bit barrel shifter only supports
right shift operations. Therefore, the same hardware logic would need to be added, but

configured to shift in the opposite direction.

BN.MULVEC ( Vectorised multiplication of low 16 bits of 32-bit lanes)

This instruction performs a vectorised multiplication on source WDRs <wrs1> and <wrs2>.
It multiplies the values represented by the low 16 bits of each 32-bit lane and writes the
resulting value (up to 32 bits) to the corresponding lane of the destination WDR (<wrd>).

Its operation is illustrated in Figure 3.4.

Syntax: | BN.MULVEC <wrd>, <wrsl>, <wrs2>
wrd Destination WDR.
wrsl First source WDR.
wrs2 First source WDR.

Cycle Count Estimate: 1 cycle.

Justification of Cycle Count Estimate: OTBN currently has a 64-bit multiplier which acts
on WDRs via the BN.MULQACC instruction and has a latency of 1 cycle. This instruction
would require eight 32-bit multiplications to be performed in parallel. The combinatorial

path of 32-bit multiplication is much shorter than that of the 64-bit multiplication which
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Figure 3.4: Operation of BN.MULVEC c, a, b

<urst>a | a7| [ao| os| [ Jas| [az] Ja1] [a0]
<urs2> b [ Jor| Jus| [os| [va] [os| [v2] Jor] [uol

<wrd> ¢ | a7h7 | a6b6 | a5b5 | adh4 | a3b3 | aZb2 | aibl | a0b0 |

is already supported. Since these multiplications would execute in parallel, the critical
path through this part of the instruction should be shorter than that of BN.MULQACC.
Given that this instruction acts on the low 16 bits of every 32-bit lane and produces a
32-bit result, it is similar to the operation of BN.MULQACC, which acts on the low 64 bits
of source WDRs to produce a 128-bit output. Isolation of the low 16 bits of each lane
could be done using a similar masking mechanism which is already used to isolate the low
64 bits of a WDR. Isolating values across multiple lanes would not incur any additional
overhead, as the AND operation on source WDRs is applicable, using a different mask.

Therefore, this instruction could realistically execute within a single cycle.
Hardware Modifications Required:

e The masking mechanism which is used to isolate the low 64 bits of the source WDRs

would need to be modified to instead isolate the low 16 bits of every 32-bit lane.

e The 64-bit multiplier units would need to be segmented and the data paths to and

from these units modified to process 16-bit elements separately.

e The 64-bit multiplier units would need to be reconfigured to operate independently
on 16-bit segments in 32-bit lanes. This may involve replicating parts of the circuitry

to enable parallel operations and reducing the size of the operands.

BN.MULVEC32 ( Vectorised multiplication of 32-bit lanes)

This instruction performs a vectorised multiplication on source WDRs <wrs1> and <wrs2>.
It multiplies the full 32-bit values in each 32-bit lane and truncates the resulting value to
32 bits before writing it to the corresponding lane of the destination WDR, (<wrd>). Its

operation is illustrated in Figure 3.5.

Syntax: | BN.MULVEC32 <wrd>, <wrsl>, <wrs2>
wrd Destination WDR.
wrsl First source WDR.
wrs2 First source WDR.

Cycle Count Estimate: 1 cycle.

Justification of Cycle Count Estimate: A similar justification of the cycle count estimate is

relevant to this instruction as to the BN.MULVEC instruction. The main difference between
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Figure 3.5: Operation of BN.MULVEC32 c, a, b

<wrsl> a |a7|36|35|a4|aS|aZ|a1|aO|

<wrs2> b |b7|b6|b5|b4|b3|b2|b1|b0|

(a7b7) | (a6b6) | (a5b5) | (a4b4) | (a3b3) | (a2b2) | (alb1) | (aOb0)

<wrd> c mod32 | mod32 | mod32 | mod32 | mod32 | mod32 | mod32 | mod32

them is that this instruction operates on the full 32 bits of each lane. The product of two
32-bit values can occupy up to 64 bits and therefore the result needs to be truncated to
32 bits before being written to the destination register. Therefore, instead of applying a
masking operation to isolate the low 16-bit values of each lane before multiplication, as
is the case for BN.MULVEC, masking is required to truncate the result to 32 bits. The AND
operation is effectively moved within the internal path of this instruction, which should

not introduce additional overhead.
Hardware Modifications Required:

e The masking mechanism which is used to isolate the low 64 bits of the source
WDRs would need to be modified to instead truncate the 64-bit values resulting

from multiplication to 32-bit values.

e The 64-bit multiplier units would need to be segmented and the data paths to and

from these units modified to process 32-bit elements separately.

e The 64-bit multiplier units would need to be reconfigured to operate independently
on 32-bit segments. Some parts of the circuitry would need to be replicated to

enable parallel operations on smaller operands.

BN.ADDVEC ( Vectorised addition of 16-bit lanes)
This instruction performs a vectorised addition on source WDRs <wrs1> and <wrs2>. It
adds the 16-bit values in each 16-bit lane and truncates the resulting value to 16 bits

before writing it to the corresponding lane of the destination WDR (<wrd>).

Syntax: | BN.ADDVEC <wrd>, <wrsl>, <wrs2>
wrd Destination WDR.
wrsl First source WDR.
wrs2 First source WDR.

Cycle Count Estimate: 1 cycle.

Justification of Cycle Count Estimate: OTBN is already equipped with a 256-bit adder,
which operates on the full 256 bits of WDRs via the BN.ADD instruction and executes
within a single cycle. BN.ADD then truncates the result to 256 bits and writes it to the
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destination register. This instruction entails 16 parallel additions of 16-bit values. The
combinatorial path of 16-bit additions is much smaller than that of a 256-bit addition.
Therefore, given that these smaller additions will execute simultaneously, the critical path
of this instruction is significantly shorter than that of the existing BN.ADD instruction. As

a result, it should also execute within a single cycle.
Hardware Modifications Required:

e The 256-bit adder would need to be partitioned into 16 addition units which each

operate on 16-bit values and produce 16-bit results.

e To ensure that results from additions in each lane do not overflow their 16-bit
bounds, the carry logic within the adder would need to be modified. It should be
updated to define boundaries for carry bits in each 16-bit lane, ensuring that they

do not spill over into their neighbouring lanes of higher significance.

BN.SUBVEC ( Vectorised subtraction of 16-bit lanes)
This instruction performs a vectorised subtraction on source WDRs <wrs1> and <wrs2>.
It subtracts the 16-bit values in each 16-bit lane and truncates the resulting value to 16

bits before writing it to the corresponding lane of the destination WDR (<wrd>).

Syntax: | BN.SUBVEC <wrd>, <wrsl>, <wrs2>
wrd Destination WDR.
wrsl First source WDR.
wrs2 First source WDR.

Cycle Count Estimate: 1 cycle.

Justification of Cycle Count Estimate: This instruction will use OTBN’s 256-bit adder,
similar to BN.ADDVEC. The same argument can be used to justify the cycle count estimate
for this instruction as for BN.SUBVEC, using the existing OTBN instruction BN.SUB in
place of BN.ADD.

Hardware Modifications Required:

e The same partitioning of the 256-bit adder which was required by BN.ADDVEC would

be required.

e In the case of the vectorised subtraction, handling of the borrow flag would need to
be managed. To ensure that parallel subtractions do not borrow from values in their
neighbouring lanes, the borrow logic within the adder would need to be modified. It
should define boundaries for borrow bits at the most significant end of each 16-bit

lane.
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BN.LSHIFTVEC, BN.RSHIFTVEC, BN.ARSHIFTVEC (Logical and arith-
metic vectorised shift operations on 32-bit lanes)

BN.LSHIFTVEC and BN.RSHIFTVEC perform vectorised logical right/left shift opera-
tions on each 32-bit lane of the source WDR, <wrs1> of up to 31 bits, writing the resulting
value to the corresponding lane of the destination WDR (<wrd>). BN.ARSHIFTVEC

operates in the same way but performs a vectorised arithmetic right shift.

Syntax: | BN. (L/(A)R)SHIFTVEC <wrd>, <wrsl>, <imm>

wrd Destination WDR.
wrsl Source WDR.
imm Immediate value specifying the number of bits by

which to shift the contents of each lane.

Cycle Count Estimate: 1 cycle.

Justification of Cycle Count Estimate: OTBN features a 512-bit barrel shifter that pro-
duces a 256-bit output within one cycle. This is more complex than a 256-bit barrel
shifter, which would be required for these instructions. Vectorised shifts would be per-
formed across 256-bit registers, in parallel lanes of 32 bits. The combinatorial path of
each of these shifts would be much shorter than that of a full 256-bit shift as computations
within each lane can be computed independently. Therefore it should execute within one
cycle. Following implementation of BN.LSHI, OTBN will support shifts on WDRs in both
directions. The arithmetic right shift operation inserts a copy of the previous most signif-
icant bit into vacant bit positions instead of zero. The value of this bit can be extracted
using a multiplexer in each lane, which is straightforward to implement in hardware and

should not impact the cycle count estimate.
Hardware Modifications Required:
e Segmentation of the low 256 bits of the barrel shifter into eight 32-bit lanes.

e Reconfiguration of the data flow path to and from this unit to operate on separate

values in parallel.

e Implementation of control logic, e.g. using masking, to isolate the shifts within each
lane. As bits are shifted, masks or logical operations can be applied to each lane to

make sure that they do not run over into adjacent lanes.

e Addition of multiplexers to extract the value of the most significant bit in each lane

before performing an arithmetic right shift.

BN.BROADCAST (Broadcast 32-bit value across 32-bit lanes of WDR)
This instruction replicates the value in the source GPR <grs1> across each 32-bit lane of
the destination WDR (<wrd>).
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Syntax: | BN. (L/R)SHIFTVEC <wrd>, <wrsl>, <imm>

wrd Destination WDR.
wrsil Source WDR.
wrs2 Immediate value specifying the number of bits by

which to shift the contents of each lane.

Cycle Count Estimate: 1 cycle.

Justification of Cycle Count Estimate: OTBN does not currently support any instruc-
tions from which the cycle count for BN.BROADCAST can be directly derived, however,
broadcasting is a straightforward operation in hardware. OTBN features a GPR selector
multiplexer, used for instructions which operate on source GPRs in the base instruction
subset. The GPR value should be replicated 8 times across the destination WDR, which
would require a simple fanout of wires from the output of the GPR selector multiplexer.
Reproducing a signal at multiple destinations is primarily handled by wiring. Physical
design tools may insert buffers to maintain signal integrity by preventing attenuation and
interference between signals. This is standard practice and does not introduce much com-
plexity. The existing WDR input multiplexer would need to be extended by one input
to accept data from GPRs. For comparison, OTBN’s BN.SID instruction uses the output
from the GPR multiplexer to index the WDR output multiplexer and stores the value to
memory within one cycle. Storing to memory is the most intensive part of the critical
path of BN.SID due to the structure of SRAM cells, and BN.BROADCAST would not need
to do this. Therefore, critical path requirements of BN.BROADCAST are relatively simple in

the context of the existing instruction set, so this instruction should execute in one cycle.
Hardware Modifications Required:

e Addition of a fanout of wires from the output of the GPR selector multiplexer.

e Potential insertion of buffers by physical design tools

e Extension of the existing WDR input multiplexer by one input.
In summary, we designed 9 new instructions for OTBN, for optimisation of PQC. While
they can be leveraged to significantly accelerate the (I)NTT in Kyber, the vector process-
ing capabilities provided by these instructions have the potential to enhance performance
of a wide range of algorithmic components. They have been implemented in Python in
the hw/ip/otbn/dv/otbnsim/insn.py file. We designed these instructions with careful

consideration of the required increase in chip area and hardware complexity. We aimed

to minimise both of these costs and hence optimise the cost/performance trade-off.

39



Chapter 4
Evaluation

In this section, we describe the evaluation process we followed to empirically assess the
quality of the enhancements we propose in this work. The evaluation process consisted

of the following phases:
1. Rigourous testing of the correctness of our implementation.

2. Quantification of the performance improvements contributed by our hardware/ soft-

ware co-design approach over baseline measurements on OTBN.

3. Comparative analysis of the performance of our optimised OTBN implementation
with the performance of the official reference implementation, executed on the most
similar platform to OTBN —the RISC-V Ibex core.

4.1 Evaluation Methodology

We conducted each of our evaluation phases separately, and in a uniform manner on the
four implementations we developed (baseline implementations of NTT and INTT, and

optimised implementations of NTT and INTT). Each phase was carried out as follows:
1. Testing of correctness

During development, we tested our implementations over arrays of 256 fixed random
values. Once development was complete, we extensively validated both the cor-
rectness of our implementations using the gold-standard input/output value pairs
generated by NIST test vectors. Using the test framework outlined in Chapter 3.2,
we captured the expected input and output value pairs upon entry to and exit from
the I[(NTT) functions during execution of the official reference implementation. We
used the test_vectors$ALG executable upon compiling the reference C code on
Linux. This generates 10,000 sets of test vectors which contain keys, ciphertexts
and shared secrets. The $ALG variable is used to identify the parameter set, which

represents the security level in Kyber. We gathered values for all 3 parameter sets
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and for each set, tested our implementations in a black-box test setting, comparing

expected and generated output values.
. Quantification of Performance Improvements on OTBN

OTBNSim is cycle-accurate for all existing instructions. The cycle counts of existing
instructions were empirically obtained using a prototype chip. Because we did not
have access to a prototype chip during development, we estimated the cycle counts
of our new instructions using inference and hardware-oriented reasoning, described
in Chapter 3.5. We then similarly hard-coded our estimated cycle counts into the
simulator. We read the value of OTBN’s INSN_CNT variable after execution of each

implementation to record the number of cycles spent.
. Comparative Performance Analysis with RISC-V Ibex Core

Because there is no compiler available yet for OTBN, we were unable to run the
official reference C code directly on OTBN. We translated the reference implemen-
tation as directly as possible into OTBN assembly (Chapter 3.3). However, only
conducting comparisons between this baseline and our optimised implementation
presented some limitations. Firstly, we had implemented this baseline ourselves and
in addition, we acknowledged that OTBN may not be familiar to a general audience.
Therefore, to ensure a balanced and objective evaluation, we searched for another
platform that is comparable to OTBN and on which we could run the official ref-
erence C code, to obtain an “anchor” benchmark for comparison. As advised by
experts from lowRISC, the RISC-V Ibex core is the most suitable reference for com-
parison. The OpenTitan chip is modelled on RISC-V Ibex, a 32-bit, customisable

core intended for use in lightweight ToT devices [1].

We cloned the GitHub repository containing the code for the Ibex simulator [24]
and imported the required C and header files (for running NTT and INTT) from
the Kyber reference implementation. We followed the instructions for compiling
and executing code on the Ibex simulator that was available in the repository doc-
umentation. The cycle count was automatically output to the console. We did not
modify any code within the Kyber reference implementation or change any of the

default configuration settings for Ibex.

4.2 Results

All implementations that we developed passed the tests for correctness before they were

analysed further in terms of performance.

The cycle counts spent in the execution of each implementation are presented in Table

4.1. The performance improvement factors achieved by the optimised implementations

over the baseline implementations are shown in Table 4.2. Because the new vectorised
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implementation required a complete redesign of the algorithm, incremental performance
measurements would not have led to meaningful results. Therefore, only the final results

are reported for implementations that had been fully functionally verified.

Table 4.1: Comparison of Implementation Cycle Counts

Implementation Cycle Count
otbn_ntt_baseline 91939
ibex_ntt_baseline 46497
otbn_ntt_optimised 4356
otbn_invntt_baseline 149435
ibex_invntt_baseline 71327
otbn_invntt_optimised 6133

Table 4.2: Performance Improvements over Baseline Implementations

Implementation OTBN Baseline | Ibex Baseline
OTBN Optimised NTT 21.1x 10.7x
OTBN Optimised INTT 24.3x 11.6x

4.3 Discussion

The results showcase the superiority of our optimised implementations over the baseline
implementations on both OTBN and RISC-V Ibex. The NTT implementation achieved
21.1x and 10.7x performance improvements and the INTT achieved 24.3x and 11.6x per-
formance improvements over the baselines on OTBN and Ibex, respectively. This demon-
strates the large performance enhancements that can be gained through integration of
minor architectural modifications into the OTBN platform. In interpreting these results,

there are a number of important considerations.

The results were obtained on simulators as the physical hardware was not readily avail-
able during development. While the simulators are of production quality, external factors
such as concurrent executing processes and the heat of the computer do not affect results,
whereas variations may be observed in real-world scenarios. Although we believe our cycle
count estimates for our new instructions to be accurate, the optimised OTBN implemen-
tations assume the correctness of these estimates (Chapter 3.5) when the instruction set
extensions are deployed on hardware. The Ibex simulator provides optimistic perfor-
mance results as it assumes single-cycle latency for memory read operations, which may
not always be the case due to memory hierarchies in deployment. This means that the
reference implementations of (I)NTT may be slower to execute on a physical Ibex core.
In this case, our techniques would demonstrate a larger performance improvement factor
over Ibex. However, it is not unreasonable to assume that single-cycle memory reads
would be possible for this application, as our code and data size are relatively small. In

contrast, OTBN has 2-cycle latency for memory read operations, a value which was been
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empirically determined by maintainers of the project. It is also noted that the Kyber
reference implementation has not been optimised for any platform and favours readabil-
ity over performance. However, the limited nature of the existing OTBN instruction set

constrains the potential for optimisation without incorporating extensions.

Some additional benefits offered by our implementations, including the baselines, is that
they all execute in constant time, as there is a single execution path through the code
and no branching or conditional statements. This reduces exposure to side-channel at-
tacks such as timing attacks. Furthermore, these performance results were achieved on
a platform that does not support out-of-order execution of instructions. This is a fea-
ture afforded by larger CPUs and can improve performance significantly by pipelining
instructions to maximise resource usage. In spite of the lack of potential to interleave

instructions, strong performance was achieved.
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Chapter 5

Related work

A surge in interest in the field of PQC has been reflected in an abundance of recent research
endeavours. Focus has broadened from a primarily theoretical perspective on PQC to
include the practical implications of deploying quantum-secure cryptosystems. While
developments in the domains of computer architecture and cryptography are advancing
rapidly, the research community is responding to the urgent need to reconcile innovations
in both fields in the realisation of viable post-quantum cryptosystems. The predominance
of lattice-based approaches amongst NIST’s selected candidates is an indicator of their
likely prevalence in the future. Therefore, research is rapidly advancing in the area of
lattice-based PQC. Existing research has explored acceleration methods for lattice-based
PQC in three categories: pure software, custom hardware and hardware/software co-
design. In this section, we will analyse prominent contributions to the field in each

category and identify the research gap that we aim to bridge with our contributions.

5.1 Software-based approaches

Software approaches leverage modern instruction sets which exploit complex hardware fea-
tures of proprietary platforms. In 2018, Seiler [41] published the optimised AVX2 imple-
mentation used in the official Kyber repository. It restructures Montgomery reduction by
splitting multiplications into separate operations on low and high parts. AVX2 supports
packed signed and unsigned multiplication of low and high integer values. The proposed
approach is not directly applicable to Dilithium due to the mismatch in operand size for
multiplications. Our approach exploits the similarities between Kyber and Dilithium and
we predict that it should be straightforward to transfer it to Dilithium. AVX2 was also
leveraged by Roy [40] in the design of a high-throughput implementation of the Saber
algorithm. A batching technique is applied which allows four simultaneous Saber KEM
operations to execute. These specialised approaches use complex, high-latency instruc-
tions, characteristic of high-powered instruction sets such as AVX2 found in large CPUs

but less applicable to low-power platforms like OTBN.
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Optimisation of lattice-based PQC has also been investigated for microcontrollers. In
2019, Botros et al. [8] presented an implementation of Kyber on ARM Cortex-M4, which is
highly efficient in terms of memory and performance. They employ techniques such as link-
time optimisations, packed vectorised operations on lower and upper register elements,
and instruction alignment for smoother transitions between ARM instruction types. They
also leverage the external eXtended Keccak Code Package library from the pqmé [21]
framework. In 2022, Abdulrahman et al. [2] improve upon this work, using ARM’s digital
signal processing (DSP) instructions such as the mixed-width signed multiply-accumulate
(smlaw) operation for reducing the cycle cost of Barrett reduction and floating-point
operations for caching values within the NTT. Many of the optimisations were platform-
specific and the ability to integrate existing optimised code from an external library is
owed to the widespread popularity of the Cortex-M4 platform. Conversely, OTBN is an

emerging technology to which these enhancements do not apply.

The ARM v8 processor series is targeted at higher-powered devices such as the Macbook
Air. It has also been investigated extensively in the context of PQC acceleration. In 2021,
Nguyen et al. [31] designed the first optimised implementations of Kyber, NTRU and
Saber using NEON-Based Special Instructions of ARMvS8, establishing state-of-the-art
(SoA) performance results through matrix-to-vector polynomial multiplication. Becker
et al. [3] subsequently designed an optimised version of the NTT on the Cortex-AT72,
improving on the prior SoA performance for Kyber, Dilithium and Saber. Their key
innovation is the combination of Montgomery multiplication and Barrett reduction. These
approaches rely on the advanced vectorised computational abilities of the Armv8-A Neon
instruction set. These include specialised, fixed-point arithmetic instructions and out-of-
order execution for instruction pipelining. These architectural features are beyond the
scope of OTBN and would require extensive architectural reconfiguration, which could

require OTBN’s security countermeasures to become more complex.

5.2 Hardware-based Approaches

Custom hardware components have been proposed to accelerate performance-critical oper-
ations on low-power platforms. At the expense of integrating specialised modules into the
architectures of these platforms, such solutions offer significant efficiency improvements.
In 2021, Yaman et al. [46] proposed three hardware architectures balancing lightweight
design and high performance for Kyber. They designed a custom polynomial multiplier
using bitwise modular reduction and incorporated it into a unified butterfly structure.
Derya et al. [13] similarly incorporated a unified butterfly structure into a hardware ac-
celerator for polynomial multiplication based on NTT. The approach provides run-time
configurability based on parameters and compile-time configurability based on throughput
and area requirements. This was the first approach to offer this extent of customisation for

NTT acceleration in hardware, and improves on previous works [27] in terms of hardware
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complexity. There may be potential for custom hardware accelerators to be integrated
into OTBN but there are several factors to consider. Any drastic changes to the archi-
tecture may be expensive to validate and align with existing design principles. The data
flow path of OTBN and its extensive use of registers for operations may not integrate well

with structures such as butterfly units. Therefore, the benefit may not justify the cost.

While hardware acceleration of bottlenecks such as the NTT has been extensively inves-
tigated, other avenues have also been explored. Ni et al. [32] incorporate a combination
of inter- and intra-module pipelining optimizations into a custom hardware module for
parallelisation of Kyber on lightweight processors such as Artix-7. Introducing instruction
scheduling and pipelining capabilities into OTBN would significantly increase complexity.
Verification would be challenging and maintaining current security guarantees of OTBN
may introduce complexity. Complete hardware implementations of PQC algorithms such
as Kyber have also been proposed. In 2021, Huang et al. [20] similarly focus on paral-
lelisation through pipelining, in addition to optimising resource reuse on a Xilinx FPGA.
Other variations have been proposed, such as the high-performance and low-memory Ky-
ber implementation for Artix-7 by Xing and Li [45]. Through scheduling and embedding
of custom accelerators within the pipeline, they create a manual design and demonstrate
its efficiency over approaches such as high-level synthesis (HLS), a tool that generates Ver-
ilog code from a higher-level language like C. Such designs are highly efficient yet highly
specific. Kyber-specific processors serve use cases where Kyber is the primary algorithm,
but this design choice sacrifices reusability of components. They also serve as standalone
processors and are not designed to leverage existing features of platforms such as OTBN,
instead using custom components exclusively and incurring a high design cost. Investing
in such specific designs this early in the life cycle of PQC may be unwise as the field will

undoubtedly undergo many changes.

5.3 Hardware/Software Co-Design Approaches

Hardware/software co-design has emerged as a promising approach for PQC acceleration,
blending the design processes of hardware and software in the extension of existing plat-
forms. Recent works in this area have proposed instruction set extensions for acceleration
of lattice-based PQC, with a strong emphasis on the RISC-V architecture. Among these,
Fritzmann et al. [19] introduced RISQ-V in 2020, a modified RISC-V architecture in
which they embedded tightly-coupled hardware accelerators into the processing pipeline.
Due to the close physical integration with the CPU, these accelerators offer reduced la-
tency, increased throughput and efficient and fewer memory accesses. Karabulut and
Aysu [22] developed a novel RISC-V-based architecture that flexibly accelerates different
implementations of the NTT, characteristic of different algorithms. The architecture in-
corporates runtime tracking of program execution to recognise the implementation. The

architecture then responds to the NTT configuration to optimise data flow, predictive
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memory operations and instruction scheduling. We also aim to optimise PQC through
hardware /software co-design. However, although OpenTitan is derived from RISC-V, we

seek to align with the more specific design principles of OTBN.

The development of specialised arithmetic logical units (ALUs) has also been explored.
In 2021, Nannipieri et al. [30] presented instruction set extensions based on two distinct
ALUs for acceleration of Kyber and Dilithium on RISC-V. They achieve large efficiency
improvements, offset by a small area overhead. Although the performance enhancements
are significant, in the context of OTBN, integration of a custom ALU presents challenges.
The concerns listed previously regarding complex hardware integration apply and opti-
mal communication interfaces between the ALU and OTBN would need to be designed.
Miteloudi et al. [29] further investigate the development of specialised ALUs for PQC.
They design a unified ALU for acceleration of both Kyber and Dilithium which is in-
tegrated into a 4-stage pipeline 32-bit RISC-V processor. This is more efficient than

Nannipieri’s approach [30] in terms of efficiency and resource utilisation.

The cutting edge of hardware-software co-design generally exercises a high level of free-
dom within hardware design and this has resulted in extremely efficient hardware ex-
tensions which can be leveraged through software. In contrast, our work tightly aligns
with OTBN’s architecture and proposes feasible extensions that could be incorporated
without the requirement for custom hardware components. It is possible that custom
modules could be integrated into future iterations of OpenTitan. However, without ac-
cess to the physical chip and in favor of a more immediately-integrable solution, our work
focuses on maximising utility of OTBN’s existing architecture and incorporating moderate

extensions which are unlikely to violate design principles or security assumptions.
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Chapter 6
Summary and conclusions

Our work demonstrates the optimisation potential of cryptographic co-processors such as
OTBN for PQC. By incorporating minor architectural modifications to enable vectorized
processing, instruction set extensions can exploit OTBN’s wide data path to accelerate
core cryptographic components such as the (I)NTT. In summary, our main contribu-
tions include baseline implementations of (I)NTT using OTBN’s existing instruction set,
instruction set extensions for acceleration of (I)NTT on OTBN and optimised imple-
mentations which leverage the new instructions, achieving 21.1x and 24.3x performance
improvement factors. We also integrated extensions to the OTBNSim testing framework,
enhancing its test case generation and debugging capabilities. Our findings suggest that

further exploration within this field could yield significant findings.

A direct extension of this work would involve the implementation of the proposed instruc-
tion set extensions in hardware and their integration into OTBN. Hardware verification
would be required to confirm the seamless translation from our instruction prototypes
to physical implementations. The precise percentage increase in area required by these
extensions could be quantified following hardware implementation. The assembly code
implementations which we developed could then be executed and benchmarked directly on
OTBN, leveraging the new extensions. The remaining components of the Kyber algorithm
could be implemented in OTBN assembly, which would be the final stage in development
of a fully-functional, complete implementation for this platform. Another promising en-
deavour would lie in the investigation of the general applicability of our technique to other
cryptographic contexts. For example, we predict that it will be straightforward to transfer
our techniques to the (I)NTT in Dilithium given the algorithmic similarities it shares with
Kyber. The (I)NTT is a prominent feature in many lattice-based schemes and therefore
our techniques may prove applicable or extensible in even broader contexts. Finally, the
domain of PQC is dynamic and constantly evolving. We hope that our contributions
will serve as a foundation or inspiration in the adaptation of platforms such as OTBN to

support quantum-safe solutions as the ecosystem develops.
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Appendix A

Pseudocode for Optimised NTT and
INTT implementations
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N =

Algorithm 1: mont_reduce_vec function

Function mont_reduce_vec(a):
for i+ 0 to 7 do
t[i] < ali] x QINV
t[i] < t[i] x KYBER_Q
t[i] < ali] - ti]
t[i] < t[i] > 16

Algorithm 2: fqmulvec function

Function fgqmulvec (vec_a, vec_b):
L return mont_reduce_vec (afi/&S0sFFFF x b[i]/&30cFFFF for i < 0 to 7)

Algorithm 3: barrett_reduce_vec function

Function barrett_reduce_vec(a):

for + < 0 to 7 do
t[i] < ali] x v
t[i] < t[i] AND OXFFFFFFFF
t[i] < t[i] + (1«25)
t[i] < t[i] > 26
t[i] < t[i] x KYBER.Q
return t
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Algorithm 4: Vectorized NTT Implementation

1 Masks[mask_len8] « [0x00000000] * 4 + [OxFFFFFFFF] * 4

2 Masks[mask_lenj] « ([0x00000000] * 2 + [0xFFFFFFFF] * 2) * 2
5 Masks[mask_len2] < [0x00000000FFFFFFFE] * 4

4 k<1

5 Function ntt_vec(r/256/):

6 for len in {128, 64, 32, 16} do

7 for start < 0 to 255 by 2xlen do

8 zetavec < broadcast zeta[k++]

9 for i <~ 0 to 15 do

10 idx < ix16 + start

11 Vec[rj_vec] < r[idx ... idx+15]

12 Vec[rjlen_vec| < r[idx+len ... idx+len+15]

13 Vec[rjlen_vec_low] < rjlen_vec AND [0x0000FFFF] * 8
14 Vec[rjlen_vec_upp] < rjlen_vec > 16

15 t_low «— fqmulvec (zetavec, rjlen_vec_low)

16 t_upp < fqmulvec (zetavec, rjlen_vec_upp)

17 t < t_low XOR t_upp

18 rjlen_vec_new < rj_vec - t

19 rj_vec_new < rj_vec + t

20 store rjlen_vec_new, rj_vec_new to rfidx+len], r[idx]
21 for len in {8, 4, 2} do

22 for i + 0 to 15 do

23 num_zetas <— 8 / len

24 zetavec < 0

25 zeta_mask < (1 < (len < 4)) - 1

26 for z < 0 to num_zetas - 1 do

27 tmp < broadcast zeta[k+-+]

28 tmp < tmp AND zeta_mask

29 zetavec < zetavec XOR tmp

30 zeta_mask < zeta_mask < (len < 5)

31 idx «—1 x 16

32 Vec[rjvec] < rlidx ... idx+15]

33 Vec[neztvec] — rlidx+16 ... idx+31]

34 Vec[rjlen_vec] < (nextvec @ rjvec) > (len < 4)
35 Vec[rjlen-vec_low] < rjlen_-vec AND [0x0000FFFF] * 8
36 Vec[rjlen_vec_upp] + rjlen_vec > 16

37 t_low «— fqmulvec (zetavec, rjlen_vec_low)

38 t_upp < fqmulvec (zetavec, rjlen_vec_upp)

39 t < t_low XOR t_upp
40 Vec[rjlen_vec_new] < rjvec - t
a1 rjlen_vec_new <« rjlen_vec_new AND Masks[mask_len{len}]
42 rjlen_vec_new < rjlen_vec new < (len < 4)
43 Vec[rjvec_new] < rjvec + t
44 rjvec_new <— rjvec_new AND Masks[mask_len{len}]
45 res <— rjvec_new XOR rjlen_vec_new
46 store res to r[idx]
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Algorithm 5: Vectorized INTT Implementation (Part 1)

1 Masks[mask_len8] < [0x00000000] * 4 + [0xFFFFFFFF] * 4

2 Masks[mask_len4] < ([0x00000000] * 2 + [0xFFFFFFFF] * 2) * 2
s Masks[mask_len2] + [0x00000000FFFFFFFF] * 4

4 Const(f) « 1441

5 Vec[fvec] < broadcast_32b f

6 Const(v) < 20159 k <« 127

7 Function invntt vec(r/256]):

8 for len in {2, 4, 8} do

9 for i < 0 to 15 do

10 num zetas <— 8 / len

11 zetavec <— 0

12 zeta_mask + (1 < (len < 4)) - 1

13 for z < 0 to num_zetas - 1 do

14 tmp < broadcast zeta[k- -|

15 tmp < tmp AND zeta_mask

16 zetavec <— zetavec XOR tmp

17 zeta_mask < zeta_mask < (len < 5)

18 idx <1 x 16

19 Vec[rjvec] < rlidx ... idx+15]

20 Vec[neztvec] «— rlidx+16 ... idx+31]

21 Vec[rjlen_vec] < (nextvec @ rjvec) > (len < 4)

22 Vec|[barrett_arg] < rjvec + rjlen_vec

23 Vec[barrett_arg-vec_low] < barrett_arg_.vec AND [0x0000FFFF] * 8
24 Vec[barrett_arg_vec_upp] < barrett_arg vec > 16

25 Vec[rjvec_new_low] < barrett_reduce_vec (barrett_arg-vec_low)
26 Vec[rjvec_new_upp] < barrett_reduce_vec (barrett_arg-vec_upp)
27 Vec[rjvec_new] < rjlen_vec_low XOR rjlen_vec_upp

28 Vec[rjlen_vec] < rjlen_vec - rjvec

29 Vec[rjlen_vec_low] < rjlen_vec AND [0x0000FFFF] * 8

30 Vec[rjlen_vec_upp] < rjlen_vec > 16

31 rjlen_vec_low <— fqmulvec (zetavec, rjlen_vec_low)

32 rjlen_vec_upp ¢ fqmulvec (zetavec, rjlen_vec_upp)

33 Vec[rjlen_vec_new] < rjlen_vec_low XOR rjlen_vec_upp

34 rjlen_vec_new <« rjlen_vec_ new AND Masks[mask_len{len}]

35 rjlen_vec_new < rjlen_vec new < (len < 4)

36 res < rjvec_new XOR rjlen_vec_new

37 store res to r[idx]
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Algorithm 6: Contd. Vectorized INTT Implementation (Part 2)

1 for len in {16, 32, 64, 128} do
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24
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26
27
28

for start < 0 to 255 by 2xlen do

zetavec <— broadcast zetalk- -

for i < 0 to 15 do

idx + ix16 + start

Vec[rj_vec] + r[idx ... idx+15]

Vec[rjlen-vec| < r[idx+len ... idx+len+15]

Vec[barrett_arg| < rjvec + rjlen_vec

Vec|[barrett_arg_vec_low] < barrett_arg vec AND [0x0000FFFF] * 8
Vec|barrett_arg_vec_upp| < barrett_arg vec > 16
Vec|[rjvec_new_low] < barrett_reduce_vec (barrett_arg_vec_low)
Vec[rjvec_new_upp| < barrett_reduce_vec (barrett_arg-vec_upp)
Vec[rjvec_new] « rjlen_vec_low XOR rjlen_vec_upp
Vec[rjlen_vec] < rjlen_vec - rjvec

Vec[rjlen_vec_low] < rjlen_vec AND [0x0000FFFF] * 8
Vec[rjlen_vec_upp] « rjlen_vec > 16

rjlen_vec_low < fgmulvec (zetavec, rjlen_vec_low)

rjlen_vec_upp < fqmulvec (zetavec, rjlen_vec_upp)
Vec[rjlen_vec_new] < rjlen_vec_low XOR rjlen_vec_upp

store rjlen_vec_new, rj_vec_new to r[idx+len], r[idx]

for idx = 0 to 255 by 16 do

Vec[rj_vec] < r[idx ... idx+15]

Vec|[rj_vec_low] < rj_vec AND [0x0000FFFF] * 8
Vec|[rj_vec_upp] < rj_vec > 16

rj_vec_new_low < fqmulvec (zetavec, rjlen_vec_low)
rj_vec_new_upp < fqmulvec (zetavec, rjlen_vec_upp)
rj_vec_new < t_low XOR t_upp

store rj_vec_new to r[idx]
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