
BOAT: Building Auto-Tuners with Structured Bayesian
Optimization

Valentin Dalibard Michael Schaarschmidt Eiko Yoneki
Computer Laboratory

University of Cambridge
firstname.lastname@cl.cam.ac.uk

ABSTRACT
Due to their complexity, modern systems expose many con-
figuration parameters which users must tune to maximize
performance. Auto-tuning has emerged as an alternative in
which a black-box optimizer iteratively evaluates configura-
tions to find efficient ones. Unfortunately, for many systems,
such as distributed systems, evaluating performance takes
too long and the space of configurations is too large for the
optimizer to converge within a reasonable time.

We present BOAT, a framework which allows developers
to build efficient bespoke auto-tuners for their system, in
situations where generic auto-tuners fail. At BOAT’s core
is structured Bayesian optimization (SBO), a novel exten-
sion of the Bayesian optimization algorithm. SBO leverages
contextual information provided by system developers, in
the form of a probabilistic model of the system’s behavior,
to make informed decisions about which configurations to
evaluate. In a case study, we tune the scheduling of a neural
network computation on a heterogeneous cluster. Our auto-
tuner converges within ten iterations. The optimized config-
urations outperform those found by generic auto-tuners in
thirty iterations by up to 2×.

1. INTRODUCTION
From the number of machines used in a distributed appli-

cation, to low-level parameters such as compiler flags, man-
aging configurations has become one of the main challenges
faced by users of modern systems [6]. Recently, auto-tuning
has successfully been applied to address this challenge in
a range of areas [26, 3, 4]. Users employ it by exposing
their configuration parameters and a performance metric of
their application to a black box optimizer which will evalu-
ate many configurations. A popular auto-tuning technique
is Bayesian optimization [5], which uses the results to in-
crementally build a probabilistic model of the impact of the
parameters on performance. This allows the optimization to
quickly focus on efficient regions of the configuration space.
Unfortunately, for many systems, either the configuration
space is too large to develop a good model, or the time to
evaluate performance is too long to be executed many times.

©2017 International World Wide Web Conference Committee (IW3C2),
published under Creative Commons CC BY 4.0 License.
WWW 2017, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4913-0/17/04.
http://dx.doi.org/10.1145/3038912.3052662

.

The problem addressed in this paper is automatically find-
ing efficient configurations in situations where black box op-
timizers fail. We present BOAT, a framework that allows a
system developer to build a BespOke Auto-Tuner for their
system. The key idea of this work is to allow developers to
provide contextual information in the form of a probabilis-
tic model reflecting the system’s behavior. At BOAT’s core
is structured Bayesian optimization (SBO), our extension
of the Bayesian optimization algorithm capable of leverag-
ing these probabilistic models to make informed decisions
about which configurations to evaluate. Our approach dras-
tically reduces the number of iterations needed to converge,
making auto-tuning applicable in a range of new areas.

System developers implement probabilistic models using
BOAT’s probabilistic programming library. Probabilistic pro-
gramming has recently been proposed as an intuitive way to
construct structured probabilistic models [17]. In BOAT,
developers use it to expose their understanding of system’s
executions. Throughout the optimization, runtime measure-
ments from the system are used to perform inference on the
model and make it resemble the true underlying behavior.

For example, in our neural network case study, we built
an auto-tuner which balances a computational load across
a heterogeneous cluster. Our associated model iteratively
infers the computational power of machines and uses it to
predict a machine’s computation time as a function of its as-
signed load. Similarly, a different part of the model predicts
communication time based on the inferred network speed of
each machine. Our contributions are:

• We propose Structured Bayesian Optimization (SBO), a
novel extension of Bayesian optimization capable of lever-
aging bespoke probabilistic models to rapidly converge to
high-performance configurations (Section 3).

• We present BOAT, a framework to build bespoke auto-
tuners (Section 4). BOAT includes an implementation of
SBO as well as a probabilistic programming library. We
discuss the design of useful probabilistic models in the
context of BOAT (Section 5).

• We demonstrate the use of BOAT through two case stud-
ies. First, a garbage collection case study (3 parameters)
in which we tune the configuration flags of a database to
minimize its tail latency. This is a domain simple enough
for generic auto-tuners to be amenable. We present it here
to show that BOAT brings convergence improvements in
these simple settings and to illustrate the construction
of probabilistic models. Second, a neural network case
study (30+ parameters) in which we optimize the dis-
tributed scheduling of a neural network computation on

a heterogeneous cluster. We show that our bespoke auto-
tuners converge within ten iterations. Our optimized con-
figurations are up to 2.9× faster than simple configura-
tions an application user may have selected, and 2× faster
than the ones found by generic auto-tuners after thirty it-
erations (Section 6).

2. MOTIVATION
2.1 The need for auto-tuning in systems

Due to the diversity of workloads, modern systems have no
“one size fits all” approaches to best execute their computa-
tion. They therefore expose many configuration parameters
which users must manually tune to maximize performance.
This is a difficult task as it requires an understanding of
the underlying system execution. Furthermore, changes in
the hardware or the workload being executed will affect the
system’s behavior thus requiring new adjustments.

In this paper, we consider the task of automatically tun-
ing configuration parameters associated with system perfor-
mance. This can include any parameter for which the opti-
mal value is dependent on the hardware or software context,
ranging from low level parameters such as compiler flags or
configuration files, to higher level ones like the number of
machines used in a computation.

Ideally, generic auto-tuners could be applied to these tasks
and determine high performance configurations in reason-
able time. In practice, this is rarely the case for two rea-
sons. First, measuring performance is often expensive. In
distributed systems, it will take at least a few minutes to get
an accurate measure of the “objective function” being tuned.
This discards the evolutionary or hill climbing approaches
used by auto-tuners like Petabricks [3] or OpenTuner [4], as
they usually require thousands of evaluations.

Second, the configuration space of most real world prob-
lems is too complex. For example, in our neural network
case study, the computation is scheduled on up to ten ma-
chines. The configuration space includes at least three pa-
rameters per machine, for a total of over thirty parameters.
This is too large for the traditional Bayesian optimization
approach which is used by optimizers like Spearmint [26] and
SMAC [19]. Bayesian optimization tends to require fewer it-
erations to converge than other optimizers, but fails to work
in problems with many dimensions (more than 10) [25].

2.2 Garbage collection case study
As an example, we briefly present our garbage collection

case study. The goal is to tune the Garbage collection (GC)
flags of a Java Virtual Machine (JVM) based database to
minimize its 99th percentile latency. We tune three param-
eters of the Concurrent Mark Sweep (CMS) collector: the
young generation size and survivor ratio flags, which gov-
ern the size of the different sections of the heap, and the
max tenuring threshold which sets the rate at which ob-
jects are promoted between heap sections. We measure the
99th percentile latency of Cassandra [28], a popular JVM-
based wide-column store, using the YCSB cloud benchmark-
ing framework [11] with a variety of workloads. The details
and results of our experiments are presented in section 6.1.

The behavior of the garbage collection has a high impact
on the latency. In one context, setting appropriate values of
these three flags reduces the 99th percentile latency from
19ms using Cassandra’s default values, to 7ms. This is

Algorithm 1 The Bayesian optimization methodology

Input: Objective function f()
Input: Acquisition function α()
1: Initialize the Gaussian process G
2: for i = 1, 2, . . . do
3: Sample point: xt ← arg maxx α(G(x))
4: Evaluate new point: yt ← f(xt)
5: Update the Gaussian process: G← G | (xt, yt)
6: end for

mostly due to minor collections which frequently collect ob-
jects in the young generation section of the heap, provoking
a “stop-the-world” pause which halts the application. Good
configurations will minimize the average duration of these
collections as well as their total time.

The small domain of this tuning problem means off-the-
shelf auto-tuners are still applicable. In our evaluation, we
find Spearmint converges to good configurations in 16 iter-
ations, after four hours of auto-tuning time (15 minutes per
evaluation). However, leveraging contextual information can
significantly reduce convergence time. Our auto-tuner im-
plemented in BOAT is simple yet converges to within 10% of
the best found performance by the second iteration. We use
it for illustration throughout this paper. Our neural network
case study tackles a more complex tuning problem, with over
thirty dimensions, in which case off-the-shelf auto-tuners fail
to find good values after thirty iterations.

3. STRUCTURED BAYESIAN OPTIMIZATION
3.1 The Bayesian optimization algorithm

We start by reviewing the Bayesian optimization method-
ology. Bayesian optimization [5] attempts to find the mini-
mum of some objective function f(x) where typically x ∈ RD.
To this end, it incrementally builds a probabilistic model
which reflects the current knowledge of the objective func-
tion. Most of the time, a Gaussian process (GP) is used [22].
GPs are a powerful class of models which can be viewed as
an elaborate interpolation tool. Given a dataset of multi-
dimensional inputs X = {x1,x2 . . .xt} and corresponding
real valued observation Y = {y1, y2 . . . yt} their prediction
for a new input x is normally distributed.

The overall procedure of the optimization is shown in Al-
gorithm 1. It executes three steps each iteration. First, it
performs a numerical optimization to find a point in the con-
figuration space which maximizes an acquisition function.
Acquisition functions measure how promising a point x is
based on the distribution predicted by the GP at x. They
trade-off exploration and exploitation. For example, a pop-
ular acquisition function is the expected improvement which
returns the expected value of the improvement brought by
evaluating f(x) over the best value η found so far:

αEI (x) = E(max(0, f(x)− η))

Finding a point xt which maximizes the acquisition function
can be performed using an off-the-shelf numerical optimiza-
tion algorithm. Second, the optimization measures the out-
put of the expensive objective function at this point. Third,
it updates the Gaussian process with this new measurement.

When compared with other optimization methods, such
as evolutionary algorithms, Bayesian optimization tends to
converge in fewer iterations. This however comes at the
cost of a high overhead per iteration due to the computa-
tional complexity of performing the numerical optimization.

Predicted
Performance

Configuration
Space

Objective
Function

Performance &
Runtime properties

Probabilistic
Program

①

②

③

Figure 1: Procedure of Structured Bayesian Optimization

Recently, Bayesian optimization has successfully been used
to tune the parameters of machine learning programs [26]
and surpass human experts. However, it has so far been
unsuccessful at tackling optimizations in high dimensional
spaces [25]. This can be attributed to two issues which may
occur:

1) The probabilistic model fails to accurately capture the
objective function landscape after a reasonable number
of iterations. This is due to the curse of dimensionality .

2) The numerical optimization algorithm, used in each
iteration, fails to converge and find a promising point.

In this work, we extend Bayesian optimization to tackle
the first of these issues. In practice, we found both may
need to be addressed and our neural network case study also
involved improvements to help the numerical optimization
converge, but these are out of the scope of this paper.

3.2 Structured Bayesian optimization
Structured Bayesian optimization (SBO) extends Bayesian

optimization methodology to take advantage of the known
structure of the objective function. It uses a structured prob-
abilistic model, provided by the developer, instead of a sim-
ple Gaussian process. In BOAT, those models are imple-
mented in our probabilistic programming library.

Figure 1 shows the overall procedure of a structured Bayesian
optimization. It is similar to the one of a traditional Bayesian
optimization and performs three steps each iteration: (1) It
looks for a point in the configuration space with high pre-
dicted performance by the probabilistic program. (2) It eval-
uates the best found point using the objective function and
collects runtime measurements (3) It performs inference on
the probabilistic program using the resulting observations.

When compared with traditional Bayesian optimization,
using a bespoke probabilistic models brings two advantages.
First, it captures the user’s understanding of the behavior
of the system. This drastically reduces the number of itera-
tions needed for the model to converge towards the true ob-
jective function. In the context of BOAT, models are imple-
mented in probabilistic programming and can reason about
arbitrary data structures – like regular programs – and re-
produce complex behaviors. For example, the model in our
neural network case study predicts the individual computa-
tion time of each machine in a distributed cluster. The total
time is predicted to be the maximum of individual times plus
a communication cost. It would take many evaluations for a
Gaussian process to accurately model the function max over
multiple inputs, our model does so by default.

Second, using such a model allows us to monitor runtime
properties reflected in the model and use them for inference.
For instance, in our garbage collection case study, our model
predicts the number and average duration of minor collec-
tions. After each experiment we parse the garbage collection
logs to observe their true value and use them for inference.

Predicted
LatencyGC Flags

GC Rate
Model

GC Average
Duration Model

Latency
Model

Figure 2: Dataflow of our garbage collection model

The next subsection presents an example of a structured
probabilistic model from our garbage collection case study.

3.3 A probabilistic model for GC
The probabilistic model written by the developer should

take as input a configuration and predict its performance.
Initially, developers should use a generic probabilistic model,
effectively running traditional Bayesian optimization, and
observe whether the convergence time is acceptable. If it is
not, BOAT allows developers to incrementally add structure
to the model to reduce convergence time. Adding structure
is done by making the probabilistic model more similar to
the behavior of the system. In the following, we illustrate
how this was achieved in our garbage collection case study.

As an initial model, we used a Gaussian process. The GP
predicted 99th percentile latencies based on the flag values.
This took many iterations to converge, despite the simplicity
of the problem. To add structure, we included in the model
a notion of rate and average duration of minor collections.
Given flag values, our model predicted both these statistics.
It then predicted the latency as a function of the flag values
and the statistics. The data flow of our model is shown in
Figure 2. When using the model in BOAT, we collected the
true value of these statistics from the GC logs after each
evaluation and used them for inference. Further, we de-
clared how we believed each of the three model components
behaved as a function of their inputs. For example, we no-
ticed the rate of minor collections was inversely proportional
to the size of the eden memory region in the JVM-heap,
which is where objects are initially allocated. This intu-
ition was included in the corresponding model by building a
semi-parametric model (Section 5.1), which can successfully
combine a user-defined trend with empirical data.

In practice, adding only little structure can be sufficient to
make the optimization converge in a reasonable time. This
is useful as simpler models are able to adapt to a broad
variety of behaviors, such as widely different hardware and
workloads. This allows the construction of bespoke auto-
tuners providing global performance portability.

4. THE BOAT FRAMEWORK
BOAT allows a developer to build a bespoke auto-tuner

for their system via SBO. Figure 3 shows the flow of data to
constuct and use an auto-tuner.

Probabilistic model
of system behavior

Configuration
space

Objective function &
runtime measurements

 OptimizerProbabilistic
programming library

Configuration space
properties Preferences

Bespoke system auto-tuner

User

System
developer

BOAT

Figure 3: Flow of data when using BOAT

0 1000 2000
Vector size

0

1

2

3

4
Ti

m
e

(µ
s)

(a) Parametric (Linear regression)

0 1000 2000
Vector size

0

1

2

3

4

Ti
m

e
(µ

s)

(b) Non-parametric (Gaussian process)

0 1000 2000
Vector size

0

1

2

3

4

Ti
m

e
(µ

s)

Ground Truth
Model Observation
Predicted Time

(c) Semi-parametric (Combination)

Figure 4: Three models predicting the time to insert an element into a sorted vector after five observations.

Application users provide two types of arguments specific
to their application. First, the configuration space proper-
ties. These have an influence on the set of valid configu-
rations. In a scheduling problem, this could be the list of
available machines. Second, their preferences. These define
system performance metrics. For example, a user could spec-
ify to optimize throughput, tail latency, or set the workload
with which the system should be evaluated.

To create a bespoke auto-tuner, a system developer takes
these as input to provide three types of information to BOAT:

1) Configuration space: The domain of the optimization.

2) Objective function & runtime measurements: This
specifies how to evaluate a given configuration. For ex-
ample, this can involve writing configuration values to a
configuration file and starting a distributed system along
with a benchmark. When a BOAT optimization termi-
nates, it returns the configuration that yielded the best
objective function value.

3) Probabilistic model of system behavior: The con-
textual information which allows BOAT to discard re-
gions of low performance and quickly converge.

The first two items are common to all auto-tuners and we
do not discuss them further. The next section discusses the
design of probabilistic models in the context of BOAT.

5. PROBABILISTIC MODELS IN BOAT
Developers build bespoke auto-tuners in BOAT by declar-

ing a probabilistic model of the system’s behavior via BOAT’s
probabilistic programming framework. A probabilistic pro-
gram is similar to a simulator. The programmer implements
code mimicking the behavior of the process being modeled.
The advantage of probabilistic programming is that, in the
presence of empirical data, they can perform inference to
make the simulator’s behavior match the observed one. We
refer the reader to [12] for a review of probabilistic program-
ming and the details of BOAT’s algorithms for probabilistic
inference. This section discusses the design and implemen-
tation of models in BOAT.

There are two key techniques to building useful models.
First, models should be compartmentalized. A model should
consist of a combination of independent components with
each component predicting a single observable value. For
example, the garbage collection model, presented in Sec-
tion 3.3, contains three independent components predicting
the rate and duration of collections and the 99th percentile
latency. This makes models easy to debug. One can com-
pare each component’s predictions with observed values and

diagnose which parts of the model fail to converge. Fur-
thermore, this independence can be exploited by the prob-
abilistic framework. This allows the construction of large
probabilistic model without the need to pay an exponential
inference cost. Section 5.2 shows how such models can be
expressed in BOAT. Second, users should make each compo-
nent a semi-parametric model. We discuss semi-parametric
models, their benefits and their implementation in BOAT in
the next subsection.

5.1 Semi-parametric models
There are two desirable properties a model should have in

the context of SBO:

• It should understand the general trend of the objective
function to avoid exploring low performance regions.

• It should have high precision in the region of the optimum,
to find the point with highest performance.

Semi-parametric models, which we now describe, can ful-
fill both properties. They are a combination of parametric
models and non-parametric models. As a running example,
we model the average time needed to insert an element into
a sorted vector as a function of its length. This has complex-
ity O(n) but implementations will have runtimes affected by
cache effects and other hardware properties. Figure 4 com-
pares the predictions of a parametric, non-parametric and
semi-parametric model after observing five points from the
dataset. The data was obtained using the boost::flat_set
data structure and averaged over a million runs.

Parametric models learn a fixed number of parameters.
For example, simple linear regression typically learns two
parameters, the slope and y-intercept. Parametric models
allow developers to specify the expected behavior of the sys-
tem. In our example, this means specifying that the re-
lationship between length and time is linear and not, for
example, quadratic. They however cannot fit subtleties in
the data. We fit a linear regression to five data points from
the sorted-vector data in Figure 4a. Although the general
trend is correct, the model fails to fit all of the data points
as they are not strictly linear.

On the other hand, non-parametric models learn an un-
bounded number of parameters that grows with the training
data. For example, in the k-nearest neighbor algorithm each
training example is memorized so it can be used for pre-
diction. Non-parametric models provide no direct way to
specify a general trend. Traditional Bayesian optimization
uses Gaussian processes which are non-parametric models.
We fit a GP to the same five points from the sorted-vector
data in Figure 4b. It succeeds at fitting all of the data
points, but fails to grasp the overall trend. In the context of

struct GCRateModel : public SemiParametricModel<GCRateModel> {
GCRateModel() {
allocated_mbs_per_sec =
std::uniform_real_distribution<>(0.0, 5000.0)(generator);
// Omitted: also sample the GP parameters
}
double parametric(double eden_size) const {
// Model the rate as inversly proportional to Eden’s size
return allocated_mbs_per_sec / eden_size;
}
double allocated_mbs_per_sec;
};

int main() {
// Example: observe two measurements and make a prediction
ProbEngine<GCRateModel> eng;
eng.observe(0.40, 1024); // Eden: 1024MB, GC rate: 0.40/sec
eng.observe(0.25, 2048); // Eden: 2048MB, GC rate: 0.25/sec
// Print average prediction for Eden: 1536MB
std::cout << eng.predict(1536) << std::endl;
}

Listing 1: The GCRate semi-parametric model.

Bayesian optimization, this can lead to the over exploration
of regions with poor performance. This may seems accept-
able for our sorted vector example, but the number of these
regions grows exponentially with the number of dimensions.

Semi-parametric models combine a parametric model and
a non-parametric one. The non-parametric model is used
to learn the difference between the parametric model and
the observed data. In Figure 4c, we fit the sorted-vector
data with a semi-parametric model that simply combines the
previous two models. Predictions interpolate all data points,
and correctly keep increasing with larger vector sizes. In the
context of BOAT, non-parametric models require little effort
from developers. Including parametric parts to describe gen-
eral behavior will help the optimization to converge faster
but requires some analysis. In our experience, complex para-
metric models designed in a narrow setting may also fail to
generalize. When building a model’s component in BOAT,
we hence recommend to start with a non-parametric model
and to keep adding structure until the optimization con-
verges in a satisfactory time.
Semi-parametric models in BOAT. Developers extend
a SemiParametricModel class to declare a semi-parametric
model. For example, Listing 1 shows the implementation of
the model predicting the rate of garbage collections from our
GC case study. A SemiParametricModel class must define
two functions:

• A constructor, which samples the values of the model pa-
rameters from their prior distribution. Two types of pa-
rameters must be sampled. First, the parameters of the
parametric model. For example, Listing 1 samples a sin-
gle parameter representing the rate at which memory is
allocated. Second, the parameters of the Gaussian Process
(omitted in Listing 1) which consist of one scale parameter
for each input dimension and a variance parameter [22].

• A parametric function which, for a given input, returns
the prediction of the parametric model.

The model can then be used by constructing a probabilistic
engine ProbEngine templated on the model class. Data can
be fed into the model via the observe function and predict
returns the model’s predictions in light of this data. The
next subsection shows how BOAT semi-parametric models
can be used in the context of a larger model.

struct CassandraModel : public DAGModel<CassandraModel> {
void model(int ygs, int sr, int mtt){
// Calculate the size of the heap regions
double es = ygs * sr / (sr + 2.0);// Eden space’s size
double ss = ygs / (sr + 2.0); // Survivor space’s size
// Define the dataflow between semi-parametric models
double rate = output("rate", rate_model, es);
double duration = output("duration", duration_model,

es, ss, mtt);
double latency = output("latency", latency_model,

rate, duration, es, ss, mtt);
}
ProbEngine<GCRateModel> rate_model;
ProbEngine<GCDurationModel> duration_model;
ProbEngine<LatencyModel> latency_model;
};

int main() {
CassandraModel model;
// Observe a measurement
std::unordered_map<std::string, double> m;
m["rate"] = 0.40; m["duration"] = 0.15; m["latency"] = 15.1;
int ygs = 5000, sr = 7, mtt = 2;
model.observe(m, ygs, sr, mtt);
/* Prints distributions (mean and stdev) of rate, duration
and latency with a larger young generation size (ygs)*/

std::cout << model.predict(6000, sr, mtt) << std::endl;
// Print corresponding expected improvement of the latency
std::cout << model.expected_improvement(

"latency", 15.1, 6000, sr, mtt) << std::endl;
}

Listing 2: The full Cassandra latency model.

5.2 DAG models
In BOAT, DAGModels are used to concatenate multiple

semi-parametric models into a single global model. Devel-
opers implicitly define a directed acyclic graph (DAG) of
the flow of data between the semi-parametric components.
Listing 2 shows the implementation of the model used in our
GC case study, already shown diagrammatically in Figure 2.

There are two properties a DAGModel must fulfill. First,
all of its semi-parametric components must be included as
members of the class. For example, CassandraModel con-
tains three members, one for each of its components. Sec-
ond, it must define a model function, specifying the flow of
data through the model. A model function takes as input a
configuration. It then uses the function output to propagate
data through the semi-parametric components and get their
predicted outputs. Each output call is named by passing a
unique string identifier as the first argument.

A DAGModel class can be used in a number of ways. First,
observe performs inference on the model components, given
a configuration and a dictionary mapping each output ID to
an associated measured value. The underlying inference ex-
ploits the conditional independence of DAGModels: all com-
ponents can be trained independently given their measured
outputs. Second, the function predict returns the distribu-
tion of each output call for a given configuration. This is
useful to debug a model, we can compare each component’s
prediction with the observed values. Third, one can compute
the expected improvement of a configuration over a previ-
ously achieved result. Recall from Section 3.1 that expected
improvement is an acquisition function used in Bayesian op-
timization. In SBO, each iteration of the optimization, we
select the configuration which maximizes the expected im-
provement predicted by our structured model.

A B D
YCSB core workload

0

5

10

15

20

25

99
th

 P
er

ce
nt

ile
 L

at
en

cy
 (m

s) Cassandra default
Optimized

Figure 5: Results for YCSB workloads A, B and D.

6. EVALUATION
We demonstrate the use of BOAT through our two case

studies: 1) the garbage collection case study in which we
tune configuration flags to minimize tail latency, and 2) the
neural network case study in which we tune the scheduling
of the training of a neural networks on a distributed sys-
tem. In both, we implemented a probabilistic model of the
underlying system behavior, and used it within BOAT to
optimize the system configuration in a range of setting. Our
evaluation focuses on quantifying two properties:

1. The benefits of auto-tuning. Showing that one-size-
fits-all configurations yield sub-optimal performances.

2. The need for a bespoke auto-tuner. Showing that
our auto-tuners reduce convergence time when compared
to off-the-shelf optimizers. We compare our performance
with OpenTuner [4] which dynamically adapts its op-
timization algorithm, and Spearmint [26] which imple-
ments traditional Bayesian optimization.

6.1 Garbage collection
We start by presenting the results of our garbage collec-

tion (GC) case study, as introduced in Section 2.2.
Configuration space. We tune the young generation size,
survivor ratio and max tenuring threshold flags, of the CMS
collector, which is used by default by Cassandra.
Objective function. We configured a single 8 core node to
run Cassandra [28] with a 8 GB fixed heap space to model
a medium-sized web application. We measure the latency
using the YCSB [11] cloud benchmarking framework on a
24 core machine co-located in the same network. Each ex-
periment was run for 15 minutes.
Model. Our probabilistic model, introduced in Section
3.3, is composed of three semi-parametric models: we pre-
dict the rate and average duration of minor collections and
their impact on latency. Our analysis showed that the fre-
quency at which major collections occurred was too low to
have an impact on 99th percentile latency. The GC rate
model was described in Section 3.3. We further found that
the duration of minor GCs tends to increase with the size
of the eden heap region and the max tenuring threshold pa-
rameter. The GC duration model uses this intuition in its
parametric part. The 99th percentile latency tends to be af-
fected by two properties of GCs: their average duration and
the fraction of time spent in GCs. The parametric part of
the latency model includes linear penalties for each of these
two quantities. These models are too simplistic to capture
the full underlying behavior of the computation, but they
do grasp the overall trend. This is sufficient to make the

0 5 10 15 20 25 30
Iteration

0

5

10

15

20

Be
st

 9
9t

h
pe

rc
en

til
e

la
te

nc
y

(m
s)

OpenTuner
Spearmint
BOAT

Figure 6: Convergence of the frameworks on workload B.

BOAT-based optimizer rapidly converge towards high per-
formance areas.
Results. We ran our bespoke auto-tuner for 10 iterations
on YCSB workloads A (50% reads, 50% updates), B (95%
reads, 5% updates) and D (95% reads, 5% inserts) (work-
load C has 100% reads and is not GC-sensitive). After each
optimization, we re-evaluated our optimized configuration
and compared its 99th percentile latency with the default
Cassandra configuration. The results are shown in Figure 5.
Error bars are too small to be displayed in the figure as stan-
dard deviations were consistently below 1 ms (all results
averaged over 3 runs). Our optimized configurations out-
performs the Cassandra default configuration by up to 63%.
Although we run the optimization for 10 iterations, each
optimization converges to within 10% of the best found per-
formance by the second iteration.

We found that the optimized configuration used large eden
size, making minor collections longer but less frequent. Af-
ter inspection we noted that this effectively improved the
batching of the collection, reducing the total work. Opti-
mized configurations spent well under 1% of their time in
stop the world phases, whereas in Cassandra default config-
uration’s case this was around 4%.
Comparison with other auto-tuners. Our previous re-
sults show tuning does yield performance improvements for
our workloads. We now consider whether generic auto-tuners
would be able to yield similar performance in the same
timescale. Figure 6 compares our performance with Open-
Tuner [4] and Spearmint [26] which we ran for thirty itera-
tions. We run each optimization three times. For each iter-
ation, we report the median, min and max of the best 99th
percentile latency achieved so far. We see that within two
iterations, our auto-tuner consistently finds a high perfor-
mance configuration. In contrast, it is only at the 16th iter-
ation that one of the other framework’s median value reaches
a good performance, after four hours of optimization.

6.2 Neural networks
We now present our neural network case study. Neu-

ral networks have seen a surge of interest in recent years,
and many frameworks have been proposed to facilitate their
training. Here, we built a tuner on top of TensorFlow, a re-
cent framework for distributed machine learning [1, 2]. The
API offered by TensorFlow to machine learning applications
is low-level. Users must manually set which of their available
machines should be used and how much work each should
do. TensorFlow offers no automated approach to balance
workloads. This task is especially difficult in heterogeneous
settings, where the optimal load of a machine depends on its

Neural Network name Input Type Network Type Size (MB) Ops (Millions) Batch size range
GoogleNet [27] Image Convolutional 26.7 1582 26 − 29

AlexNet [20] Image Convolutional 233 714 28 − 211

SpeechNet [24] Audio Perceptron 173 45.3 213 − 216

Table 2: The three neural networks used in our experiments. Size is the size of the parameters which must be transmitted
to and from workers each iteration. Ops is the number of floating point multiplications per input. The name “SpeechNet” is
introduced by us for clarity, this network was recently proposed for benchmarking [9].

computational power. Further, the synchronization cost of
machines can be high, and hence the slowest workers should
not be used at all.

Using BOAT, we built a bespoke auto-tuner that balances
a TensorFlow workload. Our tuner takes as input a neural
network architecture, a set of available machines and a batch
size (an algorithmic parameter described in the next subsec-
tion). It then performs ten iterations, each time evaluating
a distributed configuration, before returning the one with
highest performance. The tuning always finishes within two
hours which is small compared to the typical training time
of neural networks. The next subsection gives a background
of the computation used to train neural networks in a dis-
tributed setting.

6.2.1 Distributed training of Neural Networks
Stochastic gradient descent. Neural networks are typi-
cally trained with backpropagation using stochastic gradient
descent (SGD). Each iteration, a random batch of samples
from the training set is drawn. The number of samples is
called the batch size. Using each sample independently, an
estimate of the gradient of the parameters of the network
with regard to a loss function is computed using backprop-
agation. Gradient estimates are aggregated and used to up-
date the neural network parameters.

Note that higher batch sizes lead to more parallelism, but
lower batch sizes can result in better accuracy of the final
neural network [20]. We cannot quantify in advance the
impact of the batch size on accuracy, as it depends on the
training data, but our experiments expose the trade-off be-
tween batch size and computational speed.
Distributed SGD. The parameter server architecture [13]
typically used for distributed SGD uses two types of tasks:

• Parameter Server tasks synchronize the gradients at
every iteration and update the parameters. Each param-
eter server task is associated with a section of the neural
network parameters, e.g. the first layer.

• Worker tasks compute the gradient estimates. Each worker
is assigned a set of inputs. Each iteration, the worker
fetches the updated parameter values from the parame-
ter servers. It then computes the gradient estimate using
the inputs it has been assigned. Finally, it sends these
gradients back to the relevant parameter server.

Typically, stochastic gradient descent is implemented syn-
chronously. A barrier after each iteration forces workers to
work on the same parameter values. Some systems imple-
ment asynchronous SGD [23] which removes this barrier and
lets workers compute gradients on stale parameter versions.
This improves computational performance, especially with
large numbers of workers, but can hurt convergence and de-
crease the final result quality [8]. In this case study, we only
consider the synchronous version.

Instance Type # Hyperthread GPU
per setting
A B C

g2.2xlarge 8 1 K520 0 1 2
c4.2xlarge 8 / 6 3 2
c4.4xlarge 16 / 2 3 2
c4.8xlarge 36 / 2 3 4

Total 10 10 10

Table 1: Machine and setting specifications.

6.2.2 Tuning distributed SGD
Configuration Space. We tuned the scheduling of a pa-
rameter server architecture, implemented in TensorFlow, to
minimize the average iteration time. Given a set of ma-
chines, a neural network architecture and a batch size, we set:

• Which subset of machines should be used as workers.

• Which (possibly overlapping) subset of machines should
be used as parameter servers.

• Among working machines, how to partition the workload.
For machines with GPUs, this includes the partition of
workload between their CPU and GPUs. Each device gets
assigned a number of inputs to process per iteration. The
total number of inputs must sum up to the batch size.

There are effectively two boolean configuration parameters
per machine setting whether it should be a worker and/or
a parameter server and one to two integer parameters per
machine, depending on whether it has a GPU, specifying the
load. In our experiments, we tune the scheduling over 10 ma-
chines, setting 30-32 parameters. In our largest experiment,
there are approximately 1053 possible valid configurations,
most of which lead to poor performance.

Note that we are only tuning system parameters, the com-
putation performed will be the same independently of the
configuration used. In particular, the configuration selected
does not affect accuracy.
Objective function. To measure the performance of a set-
ting, we performed twenty iterations of stochastic gradient
descents. The first few iterations often showed a high vari-
ance in performance and hence we report the average time of
the last 10 iterations. We found this was enough to get ac-
curate measurements, repeating configurations showed little
underlying noise.

6.2.3 Probabilistic model of distributed SGD
The probabilistic model contains several components.

Individual device computation time. For each device –
CPU or GPU – on a worker machine, we modeled the time
needed to perform its assigned workload. This time should
be near linear with respect to the number of inputs, hence we
used a semi-parametric model similar to the one of Section
5.1 with a linear parametric model. We fit one individual
device model per type of device available (e.g. c4.4xlarge
CPU, or Nvidia GPU K520).

1.0
2.0
4.0
8.0

16.0

10 10 10 10

7.81
Se

tt
in

g
A

GoogleNet

3 4 6 10

3.62

AlexNet

4 8 10 10

0.11 Normalization
factor (ms)

SpeechNet

1.0
2.0
4.0
8.0

16.0

No
rm

al
iz

ed
 ti

m
e

pe
r i

np
ut

10 10 10 10

5.88

Se
tt

in
g

B

1 1 4 5

2.95
Uniform
GPUs
Uniform
Devices
-
Optimized
Configuration

4 5 7 10

0.08

w

Workers
26 27 28 29

1.0
2.0
4.0
8.0

16.0

10 10 10 10

5.35

Se
tt

in
g

C

28 29 210 211

Batch size (# of inputs)

1 2 2 2

2.39

213 214 215 216

2 6 6 10

0.07

Figure 7: Normalized time per input (lower is better) of simple and optimized configurations on each experiment. Within each
sub-graph, results are normalized by the best achieved time per input. This is always the one of the optimized configuration on
the largest batch size (the lower right point of each sub-graph). The normalization factor, i.e. the best time per input, is shown
at the top right of each sub-graph in milliseconds. For each optimized configuration, we report the number of workers used.

Individual machine computation time. For worker ma-
chines with multiple devices, the gradient estimates from
each device were summed locally on the CPU before being
sent to the parameter servers. We modeled the total compu-
tation time per machine as a semi-parametric model. The
parametric part returned the maximum computation time
of the machine’s devices. The non-parametric part was re-
sponsible for modeling this aggregation time. We fit one
individual machine model per type of machine (e.g. EC2
instance type).
Communication time. We modeled the communication
time as another semi-parametric model. Our parametric
model learns a connection speed parameter per type of ma-
chine. It predicts the total communication time as

max
m∈machines

transfer(m)

connection speedm

where transfer(m) is the amount of data that must be trans-
fered each iteration by machinem. It is a function of whether
m is a worker, the number of other workers, and the size of
the parameters m holds as a parameter server if any. We
fit a single communication time model for the entire cluster.
Finally, we predict the total time of an SGD iteration as the
sum of the maximum predicted individual machine time and
the communication time.

Since our probabilistic model simulates individual device
and machine computation times, it benefits from real mea-
surements of these properties. We therefore also measure in
each iteration the time needed by all devices and machines
to perform their assigned workload.

6.2.4 Experiment results
Experimental Setup. We evaluated our optimizer on
Amazon EC2 using TensorFlow version v0.8. There are
three inputs to our tuning procedure. The machines avail-
able, the neural network being trained and the batch size.

We constructed three machine settings, described in Table 1,
designed to recreate heterogeneous environments. Each con-
tains 10 machines of varying computational power. Settings
B and C contain one and two GPU instances respectively.
While neural networks perform most efficiently on GPUs, we
tried to design realistic settings where a variety of CPUs and
GPUs are available. We evaluated each of the three hard-
ware setting with the three neural networks referenced in
Table 2 using four batch sizes for a total of thirty-six exper-
iments. The four batch sizes for each network were selected
to explore the tradeoff with processing speed. Recall that
batch size is an algorithmic parameter equaling inputs per
iteration, and that lower batch sizes tend to improve final
result accuracy at the cost of less parallelism.
Comparison with simple configurations. To show the
importance of tuning, we compared our optimized configu-
rations with two simple configurations 1) Uniform Devices:
a load balanced equally among all devices, and 2) Uniform
GPUs: a load balanced equally among GPUs (in Settings
B and C). In both cases, we set worker machines to also be
parameter servers which tends to yield good results. Figure
7 shows the outcome of each experiment. Our optimized
configurations significantly outperform these simple config-
urations on most experiments.

Inspecting the optimized configurations and their associ-
ated models delivers a number of insights.

• Communication cost. Large networks, like AlexNet,
are often scheduled on a subset of the machines due to
their expensive communication cost. This is lessened with
larger batch sizes where there is more computation to
perform per iteration and hence the cost of using more
workers is amortized. On the other hand, the smaller
GoogleNet was always scheduled on all available machines.

• Parameter servers. Another key setting that must be
optimized, which we do not report here due to lack of
space, is the set of parameter server machines. Param-

0 5 10 15 20 25 30
Iteration

10

100

5

50
Be

st
 S

G
D

ite
ra

tio
n

tim
e

(s
)

OpenTuner
Spearmint
BOAT

Figure 8: Convergence of the frameworks on Setting C using
SpeechNet with a 216 batch size.

eter servers need to perform large amounts of communi-
cation and hence benefit from being placed on machines
with high network speed. In the optimized configurations,
most of the parameters were usually placed on c4.8xlarge
instances, which indeed have the largest bandwidth. In-
specting the learned communication models shows that
they had correctly inferred that the connection speed pa-
rameter of c4.8xlarge was higher than those of other
instances.

• Load balance. Comparing “Uniform Devices” configu-
rations with our optimized configurations on GoogleNet
shows the importance of load balancing, both used all
available devices but the optimized configurations are sig-
nificantly faster. Interestingly, the correct load balance
depends on the neural network architecture. AlexNet’s
optimized configurations had a higher proportion of work
assigned to GPUs than those of SpeechNet.

• Batch size tradeoff. Recall that batch size is an algo-
rithmic parameter and lower batch sizes tend to produce
better accuracy of the final neural network at the cost of
less parallelism. Each sub-graph of Figure 7 shows the
tradeoff between processing rate and batch size. With
our auto-tuner, users can find optimized configurations for
different batch sizes and easily explore this Pareto-front,
hiding the details of the configuration used.

These observations confirm the intuition that “one size fits
all” approaches are not appropriate, as optimized configura-
tions are influenced by hardware, workload and batch size.
Comparison with traditional Bayesian optimization.
We now consider whether the benefits of auto-tuning could
have been achieved with an off-the-shelf optimization tool.
Figure 8 compares the performance of our bespoke auto-
tuner with OpenTuner [4] and Spearmint [26], which were
each ran for thirty iterations. Each optimization was run
three times, we report for every iteration the median, min
and max performance of the best configuration found so far.
Our bespoke auto-tuner significantly outperforms generic
auto-tuners. The median best configuration achieved by
OpenTuner is 8.71s per SGD iteration, more than twice
slower than our median time (4.31s), and not much faster
than the Uniform GPUs configuration (9.82s). The rea-
son this tuning task is difficult is because the space of ef-
ficient configurations is extremely narrow, assigning one of
the workers too much work creates a bottleneck, yielding
poor performance.

All of our experiments finished the ten iterations within
two hours. As neural networks training typically lasts over
a week, the performance gains largely outweigh the tuning

overhead, making our auto-tuner practical in realistic set-
tings. Our largest experiments involved 32 dimensions, we
expect our auto-tuner would scale well to larger settings as
there would be a proportional increase in the number of
measurements.

7. RELATED WORK
System performance modeling. Predicting the perfor-
mance of workloads has received significant interest. Most
of the time, this is used online as part of a scheduler to
best execute an incoming workload. Ernest [29] uses para-
metric probabilistic models to predict the performance of
distributed analytics jobs by first running them on small
samples of the data. Quasar[15], Paragon [14] and Pro-
teusTM [16] profile the early stages of workloads to find
similar previously-scheduled workloads. They use this to
suggest appropriate configurations. These frameworks use
generic probabilistic models to predict performance. They
work well when few parameters are being tuned but have
difficulty scaling to large configuration spaces due to the
curse of dimensionality [21]. BOAT tackles this by using be-
spoke models which are engineered to resemble the system’s
behavior and can leverage high rates of measurements.

Many fined-grained performance predictors have been built
for MapReduce workloads [18]. In comparison, probabilistic
programming allows to build simple models, requiring little
programmer effort, and leverage empirical data to accurately
predict performance. Databases use performance models to
predict the behavior of queries [7]. These perform an op-
timization over a complex configuration space, but rely on
the constrained scope of queries, which only use relational
operators, to make accurate predictions.
System auto-tuning. Auto-tuning is often used to adapt
numerical libraries to their underlying hardware, ATLAS [30]
does this in the context of BLAS libraries. OpenTuner [4]
is a generic auto-tuner which combines multiple optimiza-
tion algorithms. In these works, evaluating a configuration
can be done quickly, and hence the objective function can
be evaluated many times. BOAT makes auto-tuning appli-
cable to new domains where this isn’t the case. Spearmint
[26] and Yelp’s MOE [10] are optimizers implementing tra-
ditional Bayesian optimization. BOAT builds upon them by
allowing the use of bespoke models.

8. CONCLUSION
In this paper we presented BOAT, a framework to build

bespoke auto-tuners in environments where black box opti-
mizers fail. We introduced Structured Bayesian Optimiza-
tion, which enables developers to inject domain knowledge
about the structure of their systems into the optimization
procedure. Evaluation results show how optimizers built
with BOAT can significantly outperform traditional auto-
tuners in complex tuning problems. BOAT is open source
and available at https://github.com/VDalibard/BOAT.

Acknowledgements
We thank Felix Gessert, Ionel Gog, Tim Harris, Wenjun
Hu, Paul Kelly, Rafal Mantiuk, Hugo Paquet, Amitabha
Roy, Malte Schwarzkopf and Wolfram Wingerath for offer-
ing feedback on early drafts of this paper. This research was
partly funded by the EPSRC (EP/P004024, EP/M508007/1
and GCRF) and a Computer Laboratory Premium Scholar-
ship (Sansom scholarship).

9. REFERENCES
[1] Mart́ın Abadi et al. TensorFlow: Large-scale machine

learning on heterogeneous systems, 2015. Software
available from tensorflow.org.

[2] Mart́ın Abadi et al. Tensorflow: A system for
large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 265–283, 2016.

[3] Jason Ansel et al. Petabricks: A language and
compiler for algorithmic choice. In Proceedings of the
2009 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’09,
pages 38–49, New York, NY, USA, 2009. ACM.

[4] Jason Ansel et al. Opentuner: an extensible framework
for program autotuning. In Proceedings of the 23rd
international conference on Parallel architectures and
compilation, pages 303–316. ACM, 2014.

[5] Eric Brochu, Vlad M Cora, and Nando de Freitas. A
tutorial on Bayesian optimization of expensive cost
functions, with application to active user modeling
and hierarchical reinforcement learning. Technical
Report UBC TR-2009-023, University of British
Columbia, 2009.

[6] Brendan Burns, Brian Grant, David Oppenheimer,
Eric Brewer, and John Wilkes. Borg, Omega, and
Kubernetes. ACM Queue, 14:70–93, 2016.

[7] Surajit Chaudhuri. An overview of query optimization
in relational systems. In Proceedings of the seventeenth
symposium on Principles of database systems, pages
34–43. ACM, 1998.

[8] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal
Jozefowicz. Revisiting distributed synchronous SGD.
arXiv preprint arXiv:1604.00981, 2016.

[9] Soumith Chintala. Deepmark benchmark.
https://github.com/DeepMark/deepmark.

[10] Scott Clark, Eric Liu, Peter Frazier, JiaLei Wang,
Deniz Oktay, and Norases Vesdapunt. MOE: A global,
black box optimization engine for real world metric
optimization. https://github.com/Yelp/MOE, 2014.

[11] Brian F Cooper, Adam Silberstein, Erwin Tam,
Raghu Ramakrishnan, and Russell Sears.
Benchmarking cloud serving systems with YCSB. In
Proceedings of the 1st ACM symposium on Cloud
computing, pages 143–154. ACM, 2010.

[12] Valentin Dalibard. A framework to build bespoke
auto-tuners with structured Bayesian optimisation.
PhD thesis, University of Cambridge
(UCAM-CL-TR-900), January 2017.

[13] Jeffrey Dean et al. Large scale distributed deep
networks. In Advances in Neural Information
Processing Systems 25: 26th Annual Conference on
Neural Information Processing Systems 2012.
Proceedings of a meeting held December 3-6, 2012,
pages 1232–1240, 2012.

[14] Christina Delimitrou and Christos Kozyrakis.
Paragon: QoS-aware scheduling for heterogeneous
datacenters. In ACM SIGPLAN Notices, volume 48,
pages 77–88. ACM, 2013.

[15] Christina Delimitrou and Christos Kozyrakis. Quasar:
resource-efficient and QoS-aware cluster management.
In ACM SIGPLAN Notices, volume 49, pages
127–144. ACM, 2014.

[16] Diego Didona, Nuno Diegues, Anne-Marie Kermarrec,
Rachid Guerraoui, Ricardo Neves, and Paolo Romano.
ProteusTM: Abstraction meets performance in
transactional memory. In Proceedings of the
Twenty-First International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 757–771. ACM, 2016.

[17] Andrew D. Gordon, Thomas A. Henzinger, Aditya V.
Nori, and Sriram K. Rajamani. Probabilistic
programming. In International Conference on
Software Engineering (ICSE, FOSE track), 2014.

[18] Herodotos Herodotou, Harold Lim, Gang Luo,
Nedyalko Borisov, Liang Dong, Fatma Bilgen Cetin,
and Shivnath Babu. Starfish: A self-tuning system for
big data analytics. In CIDR, volume 11, pages
261–272, 2011.

[19] Frank Hutter, Holger H Hoos, and Kevin
Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In International
Conference on Learning and Intelligent Optimization,
pages 507–523. Springer, 2011.

[20] Alex Krizhevsky. One weird trick for parallelizing
convolutional neural networks. arXiv preprint
arXiv:1404.5997, 2014.

[21] Kevin P. Murphy. Machine Learning: A Probabilistic
Perspective. The MIT Press, 2012.

[22] Carl Edward Rasmussen. Gaussian processes for
machine learning. 2006.

[23] Benjamin Recht, Christopher Re, Stephen Wright, and
Feng Niu. Hogwild: A lock-free approach to
parallelizing stochastic gradient descent. In Advances
in Neural Information Processing Systems, pages
693–701, 2011.

[24] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and
Dong Yu. 1-bit stochastic gradient descent and its
application to data-parallel distributed training of
speech dnns. In INTERSPEECH, pages 1058–1062,
2014.

[25] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P
Adams, and Nando de Freitas. Taking the human out
of the loop: A review of Bayesian optimization.
Proceedings of the IEEE, 104(1):148–175, 2016.

[26] Jasper Snoek, Hugo Larochelle, and Ryan Prescott
Adams. Practical bayesian optimization of machine
learning algorithms. In Neural Information Processing
Systems, 2012.

[27] Christian Szegedy et al. Going deeper with
convolutions. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
1–9, 2015.

[28] The Apache Software Foundation. Apache Cassandra.
http://cassandra.apache.org.

[29] Shivaram Venkataraman, Zongheng Yang, Michael
Franklin, Benjamin Recht, and Ion Stoica. Ernest:
efficient performance prediction for large-scale
advanced analytics. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
16), pages 363–378, 2016.

[30] R Clint Whaley and Jack J Dongarra. Automatically
tuned linear algebra software. In Proceedings of the
1998 ACM/IEEE conference on Supercomputing,
pages 1–27. IEEE Computer Society, 1998.

