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In This Lecture

* |n this lecture we introduce the process of
spreading epidemics in networks.

— This has been studied widely in biology.
— But it also has important parallels in information/
idea diffusion in networks.
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Epidemics vs Cascade Spreading

* |n cascade spreac
based on pay-off
strategy or the ot

ing nodes make decisions
penefits of adopting one

ner.

* |n epidemic spreading
— Lack of decision making.

— Process of contagion is complex and unobservable
* |n some cases it involves (or can be modeled as

randomness).
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Branching Process

* Simple model.

* First wave: A person carrying a disease enters
the population and transmit to all he meets
with probability p. He meets k people: a
portion of which will be infected.

* Second wave: each of the k people goes and
meet k different people. So we have a second
wave of kxk=k? people.

* Subsequent waves: same process.
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High contagion probability:
The disease spreads
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Basic Reproductive Number

* Basic Reproductive Number R,=p*k
— |t determines it the disease will spread or die out.

* In the branching process model, if R,<1 the
disease will die out after a finite number of
waves. If R,>1, with probability >0, the disease
will persist by infecting at least one person in
each wave.

UNIVERSITY OF
CAMBRIDGE

4P




Measures to limit the spreading!

* When R, is close 1, slightly changing p or k can

result in epidemics dying out or happening.

— Quarantining people/nodes reduces k.

— Encouraging better sanitary practices reduces
germs spreading [reducing p].

* Limitations of this model:
— No realistic contact networks: no triangles!

— Nodes can infect only once.
— No nodes recover.
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Formal Epidemics Models
The S| Model

e S:susceptible individuals.

e X:infected individuals, when infected they can
infect others continuously (different from
before).

* n:total population.

* 3 (called k before) is the number of contacts per
unit of time of an individual.

* Susceptible contacts per unit of time BS/n.

* Qverall rate of infection XBS/n.
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S| Model

dX SX
& _ g2t x e’
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dt n Y Logistic Growth Equation
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SIR Model

Infected nodes recover at a rate y.
* A node stays infected for T time.
* Branching process is SIR with t=1.

ds

— = —[fIsx

dt

dx B

— = psX — yx

dt

dr

at N N
S+X+r= 1 Susceptible Removed
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Example

* The solution to the system is complex

* Numerical examples of solution:

e B=1, y=0.4, s(at start)=0.99, x(at start)=0.01, r
(at start)=0

recovered

Infected

Fraction of nodes
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Epidemic Threshold

* When would the epidemic develop and when
would it die out?

* |t depends on the relationship of B and y:
— Basic Reproductive Number R,=B/y
— If the infection rate [per unit of time] is higher
than the removal rate the infection will survive
otherwise it will die out.
— In SI, y=0 so the epidemics always happen.
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Limitations of SIR

e Contagion probability is uniform and “on-off”

e Extensions

— Probability g of recovering in each step.

— Infected state divided into intermediate states (early,
middle and final infection times) with varying
probability during each.

— We have assumed homogenous mixing : assumes all
nodes encounter each others with same probability:
we could assume different probability per encounter.
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SIS Model

ds
dt—yx—ﬂm
dx
m;—&m—yx

s+x=1

%=</3—y—/3x>x
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If B>y growth curve like in Sl but
never reaching all population infected.
The fraction of infected->0 as 3
approachesy.

If B< y the infection will die out
exponentially.

*SIS has the same R, as SIR.




Relaxing Assumptions

* Homogeneous Mixing: a hode connects to the
same average number of other nodes as any
other.

 Most real networks are not random networks
where the homogeneous mixing assumption
holds.

* Most networks have different degree

distributions.

— Scale free networks!
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Would the model apply to SF2l

* Pastor-Satorras and Vespighani [2001] have
considered the life of computer viruses over
time on the Internet:
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How to justify this survival time?&

* The virus survival time is considerably high
with respect to the results of epidemic models
of spreading/recovering:

— Something wrong with the epidemic threshold!

* Experiment: SIS over a generated Scale Free
network (exponent -3).
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No Epidemic Threshold for SF!
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Infections proliferate in SF networks
independently of their spreading rates! - Scale Free Network
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Following result on Immunizationf

e Random network can be immunized with
some sort of uniform immunization process
[oblivious of the characteristics of nodes].

 This does not work in SF networks no matter
how many nodes are immunized [unless it is

all of them)].
 Targeted immunization needs to be applied

— Keeping into account degree!
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Immunization on SF Networks

¢ Red=SF Uniform Immunization

e Black= Random

Targeted Immunization

\

Uniform and
Targeted _
Immunization
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SIRS Model

* SIR but after some time an R node can
become susceptible again.
A number of epidemics spread in this manner

(remaining latent for a while and having
bursts).

Susceptible Refractory

(S) (R)
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Application of SIRS to
Small World Models

Regular Small-world

™ > p=1
Increasing randomnseas
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Numerical Results

* cisthe jumping probability
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Summary

* Epidemics are very complex processes.

* Existing models have been increasingly
capable of capturing their essence.

* However there are still a number of open
issues related to the modelling of real disease
spreading or information dissemination.
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