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ABSTRACT
Wireless Sensor Networks (WSNs) are challenging types of
networks where resources can be scarce. In particular, bat-
tery is often a very limited resource and the radio interface
is the culprit for most of the energy consumption. This
makes any discovery of other sensors a difficult task, less
cumbersome if sensors are fixed but crucial if (some) sensors
start being mobile (such as in wildlife monitoring projects
with tagged animals). In this paper we propose a middle-
ware offering node discovery for partially mobile wireless
sensor networks, where fixed nodes (sinks), deployed in the
environment to monitor the movement of entities, detect
those patterns with low power consumption. The approach
is based on various machine learning techniques which allows
for learning and adapting the wake up strategy of the sinks
dynamically. We also report on the evaluation of the ap-
proach through simulation and use of real movement traces.

1. INTRODUCTION
Energy saving in wireless sensor networks is an issue of

paramount importance. This is because in most scenarios
the location of the sensors forbids both the use of constant
power sources and the frequent replacement of the batter-
ies. Energy scavenging solutions are also sometimes not suf-
ficient, due, for example, to limited solar exposure or to the
footprint of a possible solar panel. Most sensor networks
therefore use some duty cycling to control the awake time of
the sensor (or of its radio interface, which often is the most
considerable source of power consumption).

Duty cycling however may jeopardize the ability to suc-
cessfully discover neighbouring nodes: this is less of a prob-
lem with a fixed sensor network where nodes can discover
once in a while and then synchronize but becomes an is-
sue in mixed sensor networks where some nodes start being
mobile. In these networks nodes arrival times is often un-
certain. To obtain a full discovery, a node would have to be
awake all the time, waiting for a contact with other nodes
which would limit the useful lifetime of a typical mote to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MIDSENS ’07, California USA
Copyright 2007 ACM 1-59593-424-3/06/11 ...$5.00.

just 80 hours1.
In this paper we present a node discovery approach for

partially mobile sensor networks, where sink nodes, aim-
ing at registering the presence of the moving nodes around
them, optimize their duty cycle through the use of machine
learning based techniques which learn movement patterns
and adapt to changes dynamically. We formulate the prob-
lem in terms of reinforcement learning and suggest a control
strategy for a sink. The control strategy adjusts the sink’s
duty cycle depending on the mobile node arrival patterns,
and attempts to maximize the number of registered encoun-
ters within a given limited energy budget, while investing
enough energy into exploration of alternative options.

Applications of these ideas are mainly, but not only, in the
area of wildlife monitoring, where sink nodes, strategically
positioned in crucial places, register movement and encoun-
ters of animals tagged with sensors. However other applica-
tions of human movement in other environments could offer
other examples.

In this paper we also report about the evaluation we
have conducted through the use of real human connectiv-
ity traces using R statistical package [20]. Our evaluation
compares different machine learning techniques and reports
of the strengths and limitations in various conditions.

The paper is organized as follows: Section 2 describes
our approach. Section 3 illustrates a reinforcement learning
framework and explains why it is suitable for our problem.
Section 4 presents our results and Section 6 indicates possi-
ble future work.

2. SYSTEM OVERVIEW
In this section we give an overview of our approach and

of its basic assumptions.

2.1 Assumptions
We consider our sensor network to consist of numerous

wireless mobile sensor nodes and static sinks located in
strategic locations (Figure 1). The network is sparsely con-
nected and used for tracking and data collection applica-
tions.

We assume asynchronous operation. Global time synchro-
nization requires precise clocks or GPS which is expensive
and not always available. The use of time synchronization
protocols [10, 18] is of course possible but limited to con-
nected areas of the network only. This means the nodes
need to adopt asynchronous operation and rely on synchro-
nization only where possible. The precision of the clocks is

1TMote Sky 30mA @3V, with AA 2500mA battery



Figure 1: S1, S2 - static sinks, M1-M5 - mobile
nodes. R - discovery range. M3 is unreachable by
both sinks.

limited by cost of a crystal and is about 50 parts per million
for inexpensive watch crystals.

Our approach targets applications which demand low en-
ergy consumption, such applications where battery replace-
ment is not easy and energy scavenging is impossible or
limited. Applications do not need to be necessarily long
running, but in general the framework is suitable for those
where battery size needs to be limited, e.g., a mote attached
to a small animal or to a patient might be required to op-
erate on a coin cell battery, which demands for a very low
duty cycle.

The approach is based on the assumption that sensor dis-
covery is an expensive service. This applies to a variety of
low-power wake-up scheduling protocols, where, in the ab-
sence of global synchronization, a node has to use long con-
tinuous transmissions to advertise its presence to low duty
cycled neighbours.

2.2 The Middleware
The node discovery service we propose allows application

developers to specify a daily energy budget for potentially
expensive node discovery function. The daily energy bud-
get is equivalent to an average daily duty cycle and provides
a convenient way to budget and plan the node’s battery
power. Our middleware learns the arrival pattern of the
mobile nodes and provides a feedback to an application by
suggesting how to optimally spread the duty cycle through-
out a day.

Because learning is expensive, the middleware has to bal-
ance exploitation and exploration costs. High resolution
data allow to take better decisions, but are expensive to
obtain, thus negating the benefit of learning, i.e., frequent
beaconing will guarantee fast discovery of potential neigh-
bours but will quickly deplete the nodes battery. Low res-
olution data lead to less optimal decisions, but is relatively
cheap to obtain in terms of energy.

We have investigated machine learning techniques to op-
timize the discovery algorithm of the sinks. The techniques
try to learn and exploit the temporal patterns in mobile
node arrivals and wake-up nodes only when the arrival is
expected. The static sinks located in various locations are
responsible for waking up and then communicating with mo-
bile sensors. The mobile nodes only perform periodic carrier
sensing and therefore work at a very low duty cycle.

The rest of the discussion will assume that the middle-
ware will work on top of low power listening (LPL) based
MAC protocols. The low power listening technique, also
known as carrier sensing has been first proposed by [9] for
the WiseMAC protocol. In LPL, the nodes periodically

Figure 2: Middleware Architecture.

wake-up and sample for energy in the channel for very short
amount of time. Carrier sensing takes a very short amount
of time, much shorter than receiving an entire packet. When
a node (say node B) needs to send data, it prepends each
data packet with a preamble, which is long enough to wait
for the time needed for its neighbour(s) to wake up.

In our middleware, the role of node discovery and beacon-
ing is performed by static sinks, whereas mobile nodes do
only carrier sampling and work at a very low duty cycle. We
assume that the mobile nodes have fixed check interval and
sinks have fixed preamble length, so the energy consump-
tion of sinks depends on frequency of service advertisements
(packets with long preambles).

In the following section we describe the learning problem
and how we balance exploitation and exploration costs.

3. WAKE-UP ALGORITHM
We formulate the node discovery problem as follows:
Given a limited daily energy budget P, what is the best

wake-up strategy to maximize the number of encounters, if
the temporal distribution of node arrivals is not known? 2.

3.1 Example scenario
Let us consider a daily distribution of node arrivals pre-

sented on Figure 3 extracted from real human connectivity
traces taken from Dartmouth College Campus [16], which
we used as a possible example of mobility patterns of hy-
pothetical entities. The traces contain log entries of wifi
users registering with wifi access points installed around the
campus.

To maximize the number of detected encounters a sink
could be trained to wake up between 11am and 12am, when
the probability of contact is the highest and occasionally try
other timeslots to detect any potential changes (ε-Greedy
strategy). Alternatively, the sink can pick a timeslot with
probability proportional to the height of the peak (Boltz-
mann strategy). Thus, the highest peak would be more likely
to be chosen, but if there are several peaks, they will be all
equally likely to be chosen. Finally, it could be trained to
spread the load to all time slots, but adjusting a duty cycle
proportionally to the height of the peak (Balanced strategy).
Thus spreading risk evenly throughout a day.

2Note that specifying a daily energy budget is equivalent to
specifying an average daily duty cycle
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Figure 3: The probability of contact depends on a
time of day. The middleware learns the temporal
pattern in arrival of nodes and saves power during
quiet periods.

Table 1: CC2420 power consumption
State Power Consumption
transmit, P = 0dBm (max) 17.4mA
transmit, P = -25dBm (min) 8.5mA
receive 19.7mA
idle mode 426µA
power down 20µA

3.2 Reinforcement Learning Approach
Reinforcement learning [15] provides a formal framework

for describing and solving our problem. Reinforcement
learning algorithms try to learn by themselves in a trial-and-
error fashion by iterating through all possible options and
remembering the best ones. Reinforcement learning frame-
work is particularly suitable to our problem because it natu-
rally considers a trade-off between exploration and exploita-
tion phases. It has been successfully applied to problems in
operations research, control and robotics [15].

To illustrate the problem of exploration versus exploita-
tion let us consider a classical multi-armed bandit problem
from machine learning. Each arm of the machine when
pulled, produces a certain amount of reward, and pulling
an arm costs a coin. The goal of the gambler is to identify
the best strategy of trying different arms to maximize the
total reward.

The crux of the multi-armed bandit problem is that the
probability distributions of rewards for each arm have un-
known distribution. If a gambler finds an arm which gives
a certain (positive) reward, shall it stick to current arm or
try other options at extra cost?

While there are many theoretical solutions to this prob-
lem, the objective of this work is to apply the most basic
ones and evaluate their performance on real human mobil-
ity traces.

In the following section we describe the problem in terms
of reinforcement learning framework and compare various
strategies.

3.3 Strategies
An agent interacts with an environment through percep-

tion and action. At each step an agent perceives a state st ∈
S of an environment and responds with an action a ∈ A(St).
The action results in a certain reward R : S × A→ R. The
goal of an agent is to maximize a long-term reward based
on the interactions with an environment. Specifically, the
goal is to learn a policy mapping from states to actions that
maximizes the long-term agent reward.

A day is modeled as N timeslots. A node has the following
set of actions: 1. sleep 2. wake-up 3. set duty cycle (1-
100%). A high duty cycle might or might not increase the
chances of detecting more contacts. For example, it might
be sufficient for a node to work from 11am to 12am, but
with a 10% duty cycle (as opposed to 100%). A reward r is
the number of successful encounters. The goal of an agent
is to detect the maximum number of successful encounters
within a given energy budget.

After taking each action a node observes the outcome and
updates the payoff for a given timeslot. The payoff esti-
mation is done using an exponential weighted moving av-
erage (EWMA) filter [2]. The filter estimates the current
payoff value by taking into account the past measurements.
rn = rmeasured∗α+rn−1∗(1−α). Where rn and rn−1 are the
estimated and previous payoff values, rmeasured is the mea-
sured payoff over the last time slot. The weight assigned to
past measurements (1 − α) depends on how responsive the
node has to be to changing environment.

We compare four strategies: random, greedy and Boltz-
mann exploration and balanced strategies. The idea is to
use the most basic strategies, and see their behaviour with
real mobility traces.

3.3.1 Random
In a basic strategy the node spreads its energy budget

evenly throughout a day, i.e., it sends service advertisement
with a certain fixed interval. The strategy is equivalent to
normal asynchronous wake-up scheduling with fixed duty
cycle, so would not require additional implementation. This
is the most basic strategy and will be used as a baseline.
The obvious problem with random strategy is that a node
will waste resources when there are no nodes around.

3.3.2 ε-Greedy
In a pure greedy strategy, a node always selects the best

known timeslot. During this timeslot a node spends all its
daily budget. The problem with a greedy strategy is that it
can converge too early on suboptimal solution [15] without
finding for an optimal solution.

In ε-Greedy, a node selects the greedy action, but also ex-
plores other choices with a probability ε. During exploration
a node selects a random action. This guarantees that the
node always invests a certain amount of resources in learning
about the environment.
ε-Greedy is intuitively simple to understand and to im-

plement and will be compared with other strategies.

3.3.3 Boltzmann exploration
In Boltzmann exploration the selection of a timeslot a

depends on its expected reward ER(a). The advantage is
that better timeslots have higher chances of being explored.
The reward has the following distribution:
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Figure 4: Seasonal arrival patterns in the residential
building. The arrival patterns are relatively similar
throughout a year.

P (a) =
eER(a)/TP

a′∈A e
ER(a′)/T

(1)

The parameter T is referred to as temperature of the sys-
tem (in a metaphorical way). The temperature parame-
ter sets a trade-off between exploitation and exploration.
The low temperature values will encourage greedy behaviour
whereas high temperature will force more exploration. Also
known as softmax, the probability of choosing will depend
on the past history.

3.3.4 Balanced
In a balanced strategy we propose to dynamically ad-

just node’s duty cycle proportionally to an expected reward.
Therefore the node does not commit to any timeslot, but
spreads its energy proportionally to expected reward. The
node sets its duty cycle according the following rule:

D(a) =
ER(a)P

a′∈A ER(a)
(2)

For example, if there are several peak hours during a day,
the budget will be spread evenly among all peaks. During
quiet times the node continues to sample the environment
but with lower intensity.

4. EVALUATION
We evaluated our approach through simulations with real

human connectivity traces and implemented a prototype for
Tmote Sky motes. Obviously it is well known that human
traces have clearly identifiable patterns, however also ani-
mals do have patterns (as already observed by various bio-
logical studies [8] and even by the collected Zebranet traces
[14] . Human traces are readily available in abundance and
are sufficient for the purposes of the evaluation of our work,
which could however be applied much more generally.

0 50 100 150 200 250 300

0
2

4
6

8
1

0

Time, (days)

%
 o

f 
e
n
co

u
n
te

rs

Comparison of Random, E−greedy and Boltzmann strategies

Greedy, e = 0.05
Greedy, e = 0.1
Greedy, e = 0.2
Random
Boltzmann
Balanced

Figure 5: Comparison of various wake-up strategies.

4.1 Simulation setup
In order to evaluate our approach we used mobility traces

collected and used them to simulate movement of entities
around our sinks and evaluated how well the sinks were de-
tecting the movement patterns, by optimizing on their awake
times. We used the 802.11 mobility traces from Dartmouth
campus [16]. We selected the busiest access point and ana-
lyzed the traces of a one year period. The system log was
generated by Cisco wireless access points and contained as-
sociation/disassociation entries. Each association was con-
sidered as an encounter with a fixed duration.

We compared four strategies: random, ε-greedy, Boltz-
mann exploration and a balanced strategies. ε-greedy strat-
egy was tried with different exploration rates. The sinks
were given a daily budget of 600s, and needed to distribute
their energy according to the load.

The simulation was done by using the R [20] statistical
package. The duration of a timeslot was set to one hour.
Shorter time slots could allow more fine-grained decisions
but would have very high variance. Longer time slots will
have low variance, but very coarse-grained decisions. In the
extreme case a system would have two time slots (day/night
modes). The hourly distributions are stored in a vector
r[1..Nslots]. Each value is updated using EWMA filter as:
rn = rmeasured∗α+rn−1∗(1−α), with α = 0.75. The values
are updated only for the active timeslot. Inactive timeslots
are not updated or decayed.

4.2 Results
In the first experiment we compared all four strategies for

an access point (AP) located in residential building (Fig-
ure 5). The balanced strategy shows the best performance
throughout an entire experiment. The performance of ε-
greedy turned out to be very sensitive to exploration rates.
Low exploration rates showed better performance; the node
learned to select the good time slots and invested some re-
sources into exploring other options. As the node spent more
resources into exploration the performance was decreasing
approaching that of a random strategy, as expected.
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Figure 6: Seasonal arrival patterns from an AP in
an academic building. The arrival pattern changes
with the season.

To evaluate how well all strategies adapt to changing ar-
rival patterns we experimented with the busiest AP located
in an Academic building. It has different and more dynamic
arrival patterns throughout the year depending a lot on the
season (Figure 6). As we see from Figure 7, the balanced
strategy again showed the best performance. It adapted
quite well to changing traffic patterns. The ε-greedy strat-
egy performed worse. We see that high exploration rates the
system adapted well to changes and showed better results,
while at low values, the system was very slow to adapt to
seasonal changes and sometime performed worse than ran-
dom. The rapid increase in the performance of all four in
the second half of the experiment can be explained by much
higher load during that time, leading all four strategies to
detect more encounters.

To summarize, the balanced strategy showed the best
overall result for both scenarios. It allocated energy dynam-
ically depending on the expected number of arrivals and
adapted well to changing arrival patterns. The ε-greedy
performance was very sensitive to exploration rates. The
optimal value of exploration rate depends on how dynamic
system is, which can be difficult to know in advance. Ran-
dom and Boltzman performed robustly in all scenarios.

4.3 Implementation
A prototype of the middleware has been implemented as

a component for TinyOS 2.0 [17], which we have tested on
a TMote Sky [5]. The implementation is very compact and
takes 2958 bytes of ROM and 114 bytes of RAM.

The component provides an application programming in-
terface (API) described in Table 2. It provides an inter-
face allowing applications to set an energy budget through
setBudget(). Applications use getDutyCycle() to inquire
about recommended duty cycle depending on a time of day
using a balanced strategy. Whenever a new encounter is dis-
covered, an application registers it through the encounter()
function. The component keeps an estimate of successful en-
counters in a current timeslot and updates its model every
hour.
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Figure 7: Comparison of various wake-up strategies.

5. RELATED WORK
Existing service discovery protocols such as Universal Plug

and Play (UPnP) [4], Service Location Protocol (SLP) [12]
and Salutation [3] focused on autoconfiguration issues al-
lowing devices to automatically join the network and learn
about its capabilities. However such approaches were de-
signed for resource rich networks and are not suitable for re-
source constrained systems. Our proposed mechanism com-
plements existing work in this area and allows to discover
mobile devices in the resource constrained networks. The
specific feature of our middleware is that it helps sensors to
optimize node’s discovery decisions under uncertainty.

Energy efficient service discovery can be done using
power efficient wake-up scheduling protocols, such as
[21][19][22][6][11]. These protocols allow for very energy
efficient communication in static wireless sensor networks.
They do not however deal with the uncertainty of node
contact times. Advertising services when there are no
nodes around would be a waste of energy. Our approach
is supposed to work on top of existing wake-up scheduling
protocols, allowing them to make better decisions as to
when to and how frequently perform service discovery.

Existing middleware solutions for wireless sensor networks
usually have plug-in system [13] for service discovery pro-
tocols or use their own mechanisms [7]. TeenyLime [7] is
a data-sharing middleware designed for mobile sensors. It
uses an operational setting where sensors are fixed and rel-
atively powerful mobile sinks are used to collect data from
sensors. The base station uses long continuous packet trans-

Table 2: Service Discovery API

Function Description
void reset reset model
void setBudget(uint16_t) sets daily budget
uint16_t getBudget() retrieves a daily budget
void encounter() registers a successful encounter
uint16_t getDutyCycle() get recommended duty cycle
based on the model



missions to wake-up low duty cycled sensors. Our setting is
similar in that the base station take the burden of the node
discovery. The difference is that in our setting, the sensors
are mobile and their arrival time is uncertain. Therefore the
basestation will always need to check the environment for
potential neighbours, which is energy expensive.

Existing technologies such as 802.11 and Bluetooth pro-
tocols provide special power save modes for the equipment.
802.11 has a power-save mode where radio is active only a
fraction of time. In the infrastructure mode an access point
(AP) monitors the state of each client. The clients periodi-
cally wake up and checks if an access point has any buffered
packets. This mechanism requires the clients to be syn-
chronized with the access point and a static non-changing
topology. BlueTooth [1] has a special power-save mode, and
also relies on time synchronization between master and slave
nodes.

6. CONCLUSIONS AND FUTURE WORK
We have presented a middleware for power efficient node

discovery service in partially mobile sensor networks. Its
main features are separation of a discovery function from
mobile nodes to sinks and a novel adaptive node discovery
algorithm. We showed how simple optimisations techniques
from machine learning could significantly improve the energy
efficiency of node discoveries. A prototype of the middleware
has been implemented for Tmote Sky motes.

The future work is to extend the algorithm to support fully
mobile wireless sensor networks. In particular, we would like
the nodes to dynamically assign their daily energy budgets
according to past encounters, remaining energy and policy.
Another area of interest is evaluation of an impact of the
adaptive duty cycling on the performance of message dis-
semination algorithms in multi-hop networks. We also in-
tend to perform further evaluation on other type of traces,
possibly in less predictable environments or with non-human
entities.
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