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Abstract—The application of complex network theory to
communication systems has led to several important results.
Nonetheless, previous research has often neglected to take into
account their temporal properties, which in many real scenarios
play a pivotal role. Mainly because of mobility, transmission
delays or protocol design, a communication network should not
be considered only as a static entity. At the same time, network
robustness has come extensively under scrutiny. Understanding
whether networked systems can undergo structural damage and
yet perform efficiently is crucial to both their protection against
failures and to the design of new applications. In spite of this, it is
still unclear what type of resilience we may expect in a network
that continuously changes over time.

In this work we present the first attempt to define the concept
of temporal network robustness: we describe a measure of
network robustness for time-varying networks and we show how
it performs on different classes of random models by means of
analytical and numerical evaluation. Particularly, we show how
static approximation can wrongly indicate high robustness of
fragile networks when adopted in mobile time-varying networks,
while a temporal approach captures more accurately the system
performance.

I. INTRODUCTION

The study of real-world communication systems by means
of complex network models has provided insightful results
and has vastly expanded our knowledge on how single enti-
ties create connections and how these connections are used
for communication or, more generally, interaction [1]. In
particular, technological networks such as the Internet and
the World Wide Web have been under scrutiny in terms of
structure and dynamic behavior [2]. More recently, with the
widespread adoption of mobile and opportunistic networks, it
has become important to develop new analytical tools to keep
into account network dynamics over time [3], [4], [5] and how
this affects phenomena such as information propagation [6],
[7]. Results have shown that time correlations and relative
temporal ordering of connection events among nodes cannot
be neglected, otherwise the performance of a given system can
be greatly overestimated [3], [4].

At the same time, the problem of understanding whether
real systems can sustain substantial damage and still maintain
acceptable performance has been extensively addressed [8].
Various measures of network robustness have been defined and
investigated for several classes of networks, evaluating how
different system can be more or less resilient against random
errors or targeted attacks thanks to their underlying structural
properties [9], [10].

Nonetheless, it is still unclear how to approach the study
of robustness of networks by taking into account their time-
varying nature: by adopting a static representation of a
temporal network, important features that impact the actual
performance might be missed. Thus, it becomes important
to develop a robustness metric that takes into account the
temporal dimension and gives insights on how a mobile
network is affected by damage or change. Particularly, the
fact that links are not always active means that information
spreading can be delayed or even stopped and that relative
ordering in time of connection events may affect the creation
of temporal paths in mobile networks.

Our main goal is to design a novel framework for the anal-
ysis of robustness in mobile time-varying networks. We adopt
temporal network metrics [3] to quantify network performance
and define a measure of robustness against generic network
damages. We study its performance on random network mod-
els to understand its properties, describing how temporal ro-
bustness gives a more accurate evaluation of system resilience
than static approaches.

Our contributions can be summarized as follows:

• We describe the use of temporal network metrics such
as temporal distance to estimate the current network
connectivity taking temporal variability into account. We
define temporal network robustness (Section II), a novel
measure that quantifies how the communication of a given
time-varying network is affected by damage.

• We evaluate temporal robustness through numerical simu-
lation both on a temporal version of the Erdős Rényi (ER)
random graph model, on a Markov-based link connectiv-
ity model, investigating the effect of time-correlations,
and on two random mobility models, which instead
introduce space-correlations (Section III).

• We show how temporal networks do not exhibit sharp
breakdowns but instead fail gracefully when they are
subjected to failures. The temporal dimension is able to
capture the evolution dynamics, exposing the fact that
time allows to create temporal paths across otherwise
disconnected portions of the network.

We discuss some implications of our findings for the design
of new systems and applications (Section IV). Finally, we re-
view related results on this topic (Section V) and we conclude
the paper (Section VI).



II. TEMPORAL ROBUSTNESS

In this section, we will review some basic metrics for
temporal networks and describe how these measures can be
adopted to quantitatively define temporal network robustness.

A. Network Robustness

The study of robustness of complex networks has mainly
focused on describing how a given performance metric of the
network is affected when nodes are removed according to a
certain rule. The underlying assumption is that the absence or
malfunctioning of some nodes will cause the removal of their
edges and, thus, some paths will become longer, increasing the
distances between the remaining nodes, or completely disap-
pear, resulting in the loss of connectivity in the whole system.
The performance measures previously adopted include the
network diameter [8], the size of the giant component [8], [9]
and the average inverse geodesic length [9], [10]. Moreover,
the strategies used to choose which nodes are to be removed
can be divided in two broad categories: random failures,
where every node has the same probability of being removed,
and targeted attacks, where nodes are ranked according to a
performance metric and then accordingly removed [9].

In this work, we will study the problem of defining and
analyzing robustness in evolving networks: as a consequence,
we need to use a performance metric that includes the tem-
poral dimension in its definition. At the same time, we focus
on the first strategy of node removal: we consider random and
independent failures for every node and we evaluate how the
system tolerates increasing level of malfunctioning nodes.

B. Temporal Network Metrics

In networks where nodes can connect with a large number
of other nodes over time (e.g., mobile and peer to peer
networks) time ordering of events is important. Traditional
approaches that aggregate links over time always overestimate
network connectivity, which means that some paths that seem
to be present are in reality not present due to the actual
ordering of the links over time. Hence, in this section we
describe the notion of temporal graph we use to model mobile
networks [3], [4].

Temporal graph: A temporal graph is a graph G(t) =

(V (t), E(t)) where V (t) is the set of nodes at time t and E(t)

is the set of edges at time t. We assume that |V (t)| = N ,
thus nodes cannot be added or removed from the graph.
Furthermore, we treat time as a discrete entity and we create a
sequence of graphs G(t1), . . . G(t2) by adopting an appropriate
resolution time.

Temporal distance: Then, given two nodes i and j we can
define a temporal path pij(t1, t2) between them in the time
window [t1, t2]. The length of a temporal path is defined as
the amount of time steps it takes to spread information from
node i to node j on that particular path. This value is always a
positive integer. As a consequence, we can define the shortest
temporal distance dij(t1, t2) as the smallest length among all
the temporal paths between nodes i and j in time window
[t1, t2]. For example, if a message sent by node A is received

by node B at time td, then dAB = td−t1. If there is no temporal
path between i and j in [t1, t2], their distance can be considered
infinite, i.e. dij(t1, t2) = ∞. The average temporal distance
L(t1, t2) of a given temporal graph G during a time window
[t1, t2] is defined as:

L(t1, t2) =
1

N(N − 1)

∑
i,j

dij(t1, t2) (1)

This quantity is not well defined when some pairs of nodes are
not temporally connected. As a consequence, another metric
has been introduced.

Temporal efficiency: We can define the temporal global
efficiency E(t1, t2) of a given temporal graph G

E(t1, t2) =
1

N(N − 1)

∑
i,j

1

dij(t1, t2)
(2)

This value is not affected by disconnected pairs of nodes,
because their contribution to the efficiency is computed as
zero. Network efficiency is normalized between 0 and 1 and
it does not depend on the size of network, hence, it can be
adopted to compare graphs with different sizes.

Since a temporal graph is continuously evolving, we can
evaluate how temporal efficiency changes over time by con-
sidering a value τ and evaluating EG(t) as the relative temporal
efficiency of the temporal graph in the time window [t− τ, t].
Similarly, LG(t) is computed as the average temporal distance
in [t−τ, t]. If the properties of the temporal graph are stationary,
we expect these values to reach a steady value as time
progresses.

C. Temporal Robustness Metric

Given a temporal graph G, we define a damage D as any
structural modification on it and we define GD as the graph
resulting by the effect of the damage D on G. A damage
may be the deactivation of some nodes or the removal of
some edges at a particular time tD. Because of damage D,
some temporal shortest paths will be longer or will not exist
any more, thus, we expect that the temporal efficiency will
eventually reach a new steady value EGD

≤ EG. It is important
to evaluate the new value of the temporal efficiency on a new
temporal graph that still contains the deactivated nodes, in
order to obtain a decrease in efficiency. Otherwise, we might
obtain a smaller temporal graph that is more efficient than the
original graph, although it has lost much of its structure.

We define the loss in efficiency ∆E(G,D) caused by the
damage D on the temporal graph G as ∆E(G,D) = EG−EGD

.
Finally, we define the temporal robustness RG(D) of the
temporal graph against the damage D as

RG(D) = 1−
∆E(G,D)

EG
=
EGD

EG
(3)

This value is normalized between 0 and 1 and it measures the
relative loss of efficiency caused by the damage: if the damage
does not effect the efficiency of the graph (EGD

= EG) then
its robustness is 1, while if the damage destroys the efficiency
of the graph (EGD

= 0) the robustness drops to 0.
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Fig. 1. Fraction of connected couples of nodes CG (a) and temporal
efficiency EG (b) as a function of link probability p for a temporal ER graph
with N = 100 nodes and with T = 100. Simulation results are averaged
over 100 runs.

III. NUMERICAL EVALUATION

In this section, we present a numerical analysis of temporal
metrics and robustness for different classes of random tempo-
ral networks.

A. Temporal Network Models

Here we describe the different temporal network models we
investigate in this work.

1) Erdős-Rényi Temporal Network Model: An Erdős-Rényi
(ER) random graph with N nodes and parameter p is created by
independently including each possible edge in the graph with
probability p and it is denoted as G(N, p) [11]. We generalize
this model to the temporal case by creating a sequence of T ER
random graphs G(N, p) and we denote the resulting temporal
graph as G(N, p, T ).

2) Markov-based Temporal Network Model: The temporal
ER network model does not provide temporal correlations
between consecutive graphs in the sequence. We now consider
a model where link evolution is described by a Markov
process, thus enabling memory effects in network dynamics.

We consider a complete graph G with N nodes. At every
discrete timestep t each link may or may not be present: a
temporal graph is created where the existence of each link
evolves according to a 2-state discrete Markov process. We
denote with p the probability that a link present at time t will
be removed at time t+ 1 and with q the probability that a link
which is not present at time t will be added at time t + 1.
The steady probability of link presence then is PON = q

p+q :
as a consequence, each observation of the temporal graph
appears as an ER random graph with each edge present with
probability PON .

3) Mobility-based Temporal Network Models: We can cre-
ate a random model of a temporal network by using mobility
models. In this case we are introducing topological constraints:
a key difference with the previous temporal models is that each
node is not equally likely to connect with all the other nodes,
due to the effect of spatial distance.

We consider N = 100 nodes moving in a square area
1000x1000 meters and we define a communication range r:
at every time step, we create a graph where nodes are
connected if their Euclidean distance is shorter than r. Thus,
we change the probability of link presence PON by varying
the communication range. Then, a temporal graph can be
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Fig. 2. Probability of link presence PON (a) and temporal efficiency EG (b)
as a function of parameters p and q in the Markov-based temporal network
model. The two quantities exhibit similar trends in the parameter space.

defined as the sequence of graphs extracted at each time step
while the nodes move. We investigate two different mobility
models that are implemented using the Universal Mobility
Model Framework [12]: Random Waypoint Model (RWP) and
Random Waypoint Group Model (RWPG).

In RWP each node selects uniformly at random a location
towards which it moves with speed uniformly distributed in a
fixed range [5, 40] mph. As the node reaches its destination, it
waits for a randomly distributed time in [0, 120] seconds and
repeats the above steps until the end of the simulation.

In RWPG nodes are divided into two classes: there are
M group leaders and N − M group followers. Every group
followers has its own leader so that the N nodes are divided
into equally-sized groups. Each group leader selects a random
target and moves towards it, similarly to the RWP mobility
model. Group members do not select any target; instead, they
follow their group leader according to the pursuit force [12]
which is set to give a group span of 200 meters.

B. Simulation Strategy

We numerically evaluate temporal efficiency EG(t) over
time, adopting a time window of τ = 100, for a graph with
N = 100 nodes: after an initial phase, the random temporal
graph reaches an equilibrium state and we compute the steady
value of temporal efficiency. We run each simulation for 2τ

steps and we compute the average value of temporal efficiency
over the last τ steps. All results have been averaged over 100
different runs. We evaluated numerically temporal robustness
by deactivating each node independently with incresing proba-
bility PERR. We measure temporal efficiency before and after
the failure, when the network reaches a new equilibrium state.

C. Temporal Metrics

1) ER-based model: As we see in Figure 1, as the proba-
bility p increases both temporal efficiency and the number of
connected couples increases. Furthermore, we note that there
is no evidence of sharp transition from a disconnected to a
connected temporal graph, since as we increase p the fraction
of connected couples CG smoothly increases from 0 to 1. This
effect is due to the temporal dimension: in this model, no
matter how small p is, the temporal graph will be eventually
connected as T →∞ as long as there is a non-zero probability
that each link is present. On the other hand, in the static case
a ER random graph will experience a sharp transition and will
be connected, on average, only when p approaches lnN

N [11].
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Fig. 3. Left: Temporal efficiency EG as a function of probability of link
presence PON in the Markov model and compared to the temporal ER model.
The Markov model has error bars which show standard deviation of EG for
different parameter combinations which hold approximately the same PON

(logarithmic binning has been adopted). Right: Temporal efficiency EG as
a function of probability of link presence PON for different mobility-based
network models: Random Waypoint Model (RWP) and Random Waypoint
Group Model (RWPG) with different number of groups. Temporal ER model
is shown for comparison.

2) Markov-based model: Figure 2(a) reports the probability
of link presence PON as a function of the two parameters of the
Markov process p and q: the parameter space appears divided
in two regions according to which parameter is larger than the
other. As shown in Figure 2(b), temporal efficiency shows a
similar behavior as PON in the parameter space. This is an
indication that in this model the most important parameters is
the probability of link presence.
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Fig. 4. Temporal robustness RG as a function of probability of error PERR

in the ER random model for different link probability p. The size of the
system has no impact on temporal robustness: furthermore, the system fails
smoothly as the probability of error increases.

This intuition is only partially confirmed in Figure 3(a),
where temporal efficiency is a function of the probability of
link presence both for the temporal ER model and for the
Markov model. Similar values of PON results in similar values
of efficiency, regardless the actual values of p and q. Yet, the
same value of PON results, on average, in higher efficiency
in the temporal ER case, since avoiding time-correlations
allows the creation of new edges at higher rate: thus, given
an equal time interval, single nodes have more opportunities
to communicate directly with new nodes in the uncorrelated
case. Instead, for higher values of PON the two models behave
in a similar way as they reach almost complete connectivity:
this is because with high PON at each time step every node is
connected by a direct link to a large fraction of the other nodes
and so efficiency is already close to the maximum value.

3) Mobility-based models: Figure 3(b) depicts temporal
efficiency EG as a function of probability of link presence
in the RWP case (estimated PON ). There is a trend similar
to the previous models: however, for the same value of PON ,
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Fig. 5. Temporal robustness RG as a function of probability of error PERR

and for different values of PON for the Markov-based and for the RWP
random model (RWPG does not deviate from RWP)

the resulting efficiency is always smaller in the RWP case
than in the temporal ER case because nodes move in a
geographically restricted manner and, thus, they do not exhibit
the same probability to connect with any other node. This is
an important observation: in more realistic mobile scenarios,
efficiency might be affected by spatial correlations.

We also investigated RWPG with various group sizes and
we present here three extreme situations: i) 20 groups of 5
nodes (RWPG 20), ii) 4 groups of 25 nodes (RWPG 4) and
iii) 2 groups of 50 nodes (RWPG 2). Figure 3(b) presents the
temporal efficiency EG obtained for the RWPG case: in this
model, the spatial distribution of the groups appears to have a
major impact on the efficiency. Group mobility is less efficient
than RWP: group members have high efficiency between
them but much smaller efficiency with nodes that belong to
other groups. Moreover, every RWPG scenario undergoes a
transition in the trend of EG: as PON increases, there is a
particular value when the efficiency starts increasing more
quickly, as different groups finally become in direct temporal
connection with each other, rather than connected through
longer temporal paths. Before this transition, communication
mainly occurs within single groups, so larger groups result in
higher temporal efficiency. After this transition, scenarios with
smaller groups become more efficient, since they enjoy very
fast communication both within and among groups.

D. Temporal Robustness

1) ER-based model: As reported in Figure 4, the temporal
ER model fails smoothly as we increase the fraction of
removed nodes, without any sudden disruption for any value of
PERR. This is a main difference with respect to what happens
in the static case: for a static ER random graph be a critical
value of PERR which causes a breakdown of the network in
several disconnected components may exist [8]. This is not
true for temporal robustness, as new paths can still appear
after the damage as the network rearranges its connections.
Time provides more redundancy and, hence, more resilience.
Moreover, we also note that temporal robustness does not
depend on system size: since it is normalized with respect to
the value of temporal efficiency before the damage, it depends
only on the relative drop in efficiency, not on absolute values.

2) Markov-based Model: As shown in Figure 5(a), tem-
poral robustness is affected by probability of error PERR in
the same way as in the temporal ER model: the system fails



gradually as more nodes are removed. However, for interme-
diate values of PON robustness has lower values. Figure 3(a)
depicts how exactly in the same range of PON the Markov-
model deviates from the temporal ER: this indicates how in
that range of values memory effects result in a network which
is not well connected nor highly dynamic, with consequently
lower values of temporal efficiency. At the same time, high
and low values of PON provide the same robustness, even if
the absolute value of temporal efficiency can be very different,
thanks to the normalization of temporal robustness.

3) Mobility-based Models: In the case of mobility-based
temporal networks, reported in Figure 5(b), both RWP and
RWPG exhibit a similar behavior: again, the network loses
efficiency in a smooth way and temporal robustness is not
affected by PON in this case as the spatial characteristics of
the network are mainly affecting the resulting robustness.

IV. IMPLICATIONS

In the previous sections we have seen how static robustness
is not adequate to capture all aspects of mobile networks:
instead, a temporal approach allows for a better understanding
of the robustness, since it takes into account time-dependant
connections. Our work presents many implications for the
study of mobile networks and for the design of systems and
applications in this domain.

First of all, a key advantage of our approach is that temporal
robustness accurately models connectivity disruption in mobile
networks: random models fail in a controlled way as we
increase the fraction of removed nodes, without any sudden
network disconnection. Another important property of the
approach is that it does not overestimate connectivity. Time
ordering and the temporal connectivity threshold τ exclude
a number of connection paths that the static analysis would
include. Therefore, the temporal model is able to correctly
identify network connectivity disruptions, especially in real
networks, where time ordering is important.

Finally, this approach can be implemented in a real mobile
network: each node i may maintain a table of Lamport
clocks [13] that contains the shortest temporal distances to
all known nodes that can contact i within τ time steps. Clocks
are then updated whenever two nodes get in contact.

V. RELATED WORK

One of the first attempts to generalize static network models
to handle temporal information was to adopt time labels on
edges to express temporal constraints on their presence [5]:
this mainly algorithmic approach does not handle temporally
disconnected nodes and, thus, is less suitable to investigate
temporal networks arising from communication systems. In-
stead, some first attempts to investigate the properties of
human contact networks reported on the temporal correlations
and periodicities in these systems that arise at peculiar time
scales [6]. More recently, the concept of network distance for
temporal graphs has been formalized and explored [3], [4]. We
build on these results, by adopting these temporal measures in
the definition of temporal network robustness.

Nonetheless, there have been no attempts to address
the problem of network robustness in time-varying graphs.
To our knowledge, our work presents the first method to
quantitatively evaluate network robustness by taking into
account temporal properties.

VI. CONCLUSION

This paper has presented a study of temporal robustness in
time-varying network: we adopt temporal network metrics to
assess network performance in presence of increasingly larger
random failures. We have investigated the performance of our
method via simulations in different random models, exploring
how the temporal dimension provides more redundancy to
communication systems compared to static evaluation. We
plan to extend our work by studying temporal robustness
against attacks on random models and real networks.
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