

## Honware: A virtual honeypot framework for capturing CPE and IoT zero days

Alexander Vetterl and Richard Clayton

University of Cambridge

eCrime 2019, APWG Symposium on Electronic Crime Research – November 14, 2019

## Introduction

Honeypot:

A resource whose value is being attacked or compromised

- We are good in building software honeypots for specific Malware (e.g. Mirai)
- Honeypots emulate a vulnerable device by sending appropriate strings back
- Finding vulnerable devices never has been easier
  - Stateless scanning & Shodan, Censys, Thingful

```
// root xc3511
// root vizxv
// root admin
// admin admin
// root 888888
// root admin
// root
// root admin
// root
// root admin
// root
// support
// root
// root
// root
// root
// root
// root
// support
// root
```

#### Problem:

Slow, iterative process only suitable for well-understood attacks

## Honware: Virtualised honeypot framework

- Virtualised, because deploying and monitoring physical devices does not scale
- Aimed for Linux-based CPE and IoT devices
- We need access to the firmware image and the firmwares filesystem
- We want to run the firmwares' applications such as Telnet, SSH and Web servers
- Lightweight
  - <64MB RAM, <128MB disk space</p>
- Fast: Honeypots can be set-up in minutes!



Customised pre-built kernel (1/2)



We built kernels for ARM, MIPSEB and MIPSEL

- 1. Honeypot logging
  - do\_execve

#### 2. Signal interception

- SIGABRT (abort)
- SIGSEGV (seg fault)
- SIGPFE (floating point errors)

#### 3. Module loading

Ignoring vermagic strings (e.g. 2.6.22-xyz)

| httpd/317: potentially unexpected fatal signal 11               |
|-----------------------------------------------------------------|
| [··170.020000]·CRIF                                             |
| [··170.020000]· <u>Cpu</u> ·0 <b>CRLE</b>                       |
| [··170.020000]·\$·0···:·00000000·1000a400·80800000              |
| [··170.024000]·\$·4···: 00000008·0000008·80808080               |
| [170.024000].\$.8:00000000.000000002aceb870                     |
| [170.024000].\$12: 2ad2cb80.0000016d.07a99846                   |
| [170.024000].\$16: 00000008.2ad17d5c.7fb3adb0                   |
| [170.024000].\$20:.00480000.0045f310.0045f2fc                   |
| [170.024000].\$24:.2ad2b4b0.2ad43d80                            |
| [170.028000].\$28:.2ad78ac0.7fb3ad08.7fb3ada8                   |
| [··170.028000]·Hi····:0000019cCRLF                              |
| [··170.028000]·Lo····: 0003c3daCRLF                             |
| [170.028000] .epc: 2ad43dbc 0x2ad43dbcCRLF                      |
| [··170.028000]·····Not·taintedCRLF                              |
| [170.028000].ra:.2ad41d78.0x2ad41d78CRLF                        |
| [··170.028000] · Status: ·0000a413 · · · · USER · EXL · IE · CR |
| [··170.028000]·Cause·:·10800008CRLF                             |
| [ 170.032000] BadVA : 00000008CRLF                              |
| [··170.032000] · PrId · : 00019300 · (MIPS · 24Kc) CRLF         |

## Customised pre-built kernel (2/2)



#### 4. NVRAM (non-volatile memory)

- Set LD\_PRELOAD to the path of our own nvram implementation
- Intercept nvram\_get and nvram\_set calls

#### 5. Network configuration

- Look for bridge configuration: br0 and ra0
- If that fails, the kernel will execute a default configuration (customisable by users!)
  - Necessary interfaces
  - Assign static IP addresses

nvram set: lan ipaddr = "192.168.1.250"CRLE nvram set: lan dns = "0.0.0.0"CRLE nvram set: lan gateway = "0.0.0.0" CRLE nvram set: pre lan ipaddr = "0.0.0.0"CRLE nvram set: pre lan netmask = "255.255.255.0"CRLF nvram set: lan netmask = "255.255.255.0"CRLF nvram set: lan proto = "dhcp"CRLE nvram set: lan wins = ""CRLE nvram set: lan domain = ""CRLE nvram set: lan lease = "60"CRLF nvram set: lan stp = "1"CRLF nvram set: lan route = ""CRLF nvram set: lan1 ifname = ""CRLF nvram set: lan1 ifnames = ""CRLE nvram set: lan1 hwnames = ""CRLF nvram set: lan1 hwaddr = ""CRLF nvram set: lan1 dhcp = "0"CRLE nvram set: lan1 ipaddr = "192.168.2.1"CRLE nvram set: lan1 netmask = "255.255.255.0"CRLF nvram set: lan1 gateway = "192.168.2.1" CRLE

## Step 1: Extracting firmware images

#### Binwalk

Looking for standard Linux filesystem structure (bin, usr, proc etc.)

#### Creating an ext2 filesystem

- Copying the firmwares' structures and files
- Typically very small (<128MB)

#### Identifying the architecture based on **ELF** headers

- e.g. Busybox binary
- Used to select the appropriate kernel

| var     | 20.04.2010 04:06:44     |        |
|---------|-------------------------|--------|
| usr     | 20.04.2010 04:06:45     |        |
| sys     | 20.04.2010 04:06:45     |        |
| slv     | 20.04.2010 busybox      | 664 KB |
| share   | 20.04.2010 📊 cat        | 1 KB   |
| sbin    | 28.04.2017 📄 chmod      | 1 KB   |
| root    | 20.04.2010 📊 chown      | 1 KB   |
| proc    | 20.04.2010 📊 ср         | 1 KB   |
| opt     | 20.04.2010 📊 date       | 1 KB   |
| mnt     | 20.04.2010 📊 dd         | 1 KB   |
| lib     | 18.06.2013 📊 dmesg      | 1 KB   |
| home    | 20.04.2010 📊 dogtest    | 1 KB   |
| etc     | 03.02.2012 dvrbox       | 659 KB |
| dev     | 24.04.2010 🔊 dvrHelper  | 1 KB   |
| boot    | 10.09.2016 06:31:27     |        |
| bin     | 28.04.2017 12:38:31     |        |
| linuxrc | <br>28.04.2017 12:38:31 |        |

Appli-

cation

Appli-

cation

**Firmware Filesystem** 

Appli-

cation

## Step 2: Modifying filesystem & preparation

#### Supports custom configurations

 Modified do\_execve to execute, if present, /sbin/boot.sh through the kernel function call\_usermodehelper

#### **NVRAM** emulation

Added as kernel module

#### Network configuration

- Re-route incoming packets on the host ethernet interface to the QEMU tap interface and
- Post-route the packets back to the host



## **Evaluation**

- Extraction
- Network reachability
- Responding services

Timing attacks

Case studies

23,035 firmware images from Firmadyne (2016)
 As of March 2019, 8,387 images can still be downloaded

- Looked for self-identifying devices
- Repeated measurements for three protocols:
   FTP, Telnet and HTTPS
- Deployed multiple honeypots on the Internet
- Four case studies which show that devices can be rapidly emulated

## Eval. 1: Extraction and network reachability

| # Brand                       | Availat<br>(2019-03/201 | ble $(6-02/\Delta)$ | Extracte<br>(honw./firn | ed<br>n./ $\Delta$ ) | Network r<br>(honw./firm | each.<br>n./ $\Delta$ ) |                            |            |       |           |              |          |             |
|-------------------------------|-------------------------|---------------------|-------------------------|----------------------|--------------------------|-------------------------|----------------------------|------------|-------|-----------|--------------|----------|-------------|
| 1 Actiontee                   | 0/14                    | 14                  | <b>`</b>                |                      |                          |                         |                            | 0.11       |       | 1         | 1            |          |             |
| 1 Actiontec $2 A^2 1^2 1 101$ | 0/14                    | 14                  | _                       | _                    | _                        | _                       | 23 Open Wir.               | 0/1        |       | _         | -            | -        | _           |
| 2 Airlink101                  | 0/15                    | 15                  | _                       | _                    | _                        | _                       | 24 OpenWrt                 | 756/1498   | 742   | 714/705   | 9↑           | 674/0    | 674↑        |
| 3 Apple                       | 0/9                     | 9↓                  | _                       | -                    | _                        | -                       | 25 pfSense                 | 214/256    | 42    | -         | _            | -        | _           |
| 4 Asus                        | 1/3                     | 2↓                  | 1/1                     | $\leftarrow$         | 1/0                      | 1↑                      | 26 Polycom                 | 612/644    | 32    | 0/24      | 24           | _        | _           |
| 5 AT&T                        | 3/25                    | 22                  | 0/2                     | 2↓                   | _                        | _                       | 27 ONAP                    | 8/464      | 456   | _         | _            | _        | _           |
| 6 AVM                         | 0/132                   | 132                 | _                       | —                    | _                        | _                       | 28 RouterTech              | 0/12       | 12    | _         | _            | _        | _           |
| 7 Belkin                      | 123/140                 | 17↓                 | 49/49                   | $\leftarrow$         | 9/0                      | 9↑                      | 20 Router reen<br>29 Seiki | 0/16       | 16    | _         | _            | _        | _           |
| 8 Buffalo                     | 97/143                  | 46                  | 6/7                     | 1↓                   | 2/1                      | 1↑                      | 2) Supermicro              | 0/150      | 150   | _         | _            | _        | _           |
| 9 CenturyLink                 | 13/31                   | 18                  | 7/4                     | 31                   | 7/0                      | 7↑                      | 21 Supermicro              | 1077/2004  | 117   | 1966/220  | 16074        | _        | _           |
| 10 Cerowrt                    | 0/14                    | 14                  | _                       | _                    | _                        | _ '                     | 31 Synology                | 1977/2094  |       | 1800/239  | 1027         | -        | -           |
| 11 Cisco                      | 0/61                    | 61                  | _                       | _                    | _                        | _                       | 32 Tenda                   | 6/244      | 238   | 4/3       | IΥ           | 2/0      | 21          |
| 12 D-L ink                    | 1443/4688               | 3245                | 537/498                 | 391                  | 272/115                  | 1571                    | 33 Tenvis                  | 9/49       | 40    | 6/6       | $\leftarrow$ | 6/4      | $2\uparrow$ |
| 12 D-Link<br>13 Forceware     | 0/2                     | $2 - 3 \downarrow$  | -                       | 57                   |                          | -                       | 34 Thuraya                 | 0/18       | 18    | -         | -            | _        | _           |
| 14 Eccom                      | 14/56                   | 12                  | 5.15                    |                      |                          |                         | 35 Tomato                  | 362/2942   | 2580  | 362/362   | $\leftarrow$ | 217/0    | 217↑        |
| 14 FOSCalli<br>15 Hawamuana   | 44/30                   |                     | 515                     | <u></u>              | —                        | _                       | 36 TP-Link                 | 463/1072   | 609   | 171/171   | $\leftarrow$ | 147/95   | 521         |
| 15 Haxorware                  | 0/7                     |                     | -                       | -                    | _                        | _                       | 37 TRENDnet                | 336/822    | 486   | 134/100   | 341          | 87/37    | 50          |
| 16 Huawei                     | 13/29                   | 16                  | 0/3                     | 3↓                   | _                        | _                       | 38 Ubiquiti                | 26/51      | 25    | 20/19     | 1↑           | 11/0     | 111         |
| 17 Inmarsat                   | 0/47                    | 47                  | _                       | -                    | _                        | -                       | 30 u blox                  | 0/16       | 16    | 20/17     | 1            |          | 11          |
| 18 Iridium                    | 0/17                    | 17↓                 | _                       | -                    | —                        | -                       | 10 Varizar                 | 0/10       | 10    | _         | _            |          |             |
| 19 Linksys                    | 32/126                  | 94↓                 | 26/26                   | $\leftarrow$         | 15/1                     | 14↑                     | 40 verizon                 | 0/37       | 5/    | _         | _            | _        | _           |
| 20 MikroTik                   | 4/13                    | 9↓                  | _                       | —                    | —                        | _                       | 41 Western Dig.            | 0/1        | I↓    | _         | -            | _        | -           |
| 21 Netgear                    | 1396/5280               | 3884                | 639/629                 | 10↑                  | 384/187                  | 197↑                    | 42 ZyXEL                   | 449/1768   | 1319  | 103/67    | 36↑          | 69/20    | 49↑         |
| 22 On Networks                | 0/28                    | 28                  | -                       | -                    | _                        | _                       | Total                      | 8387/23035 | 14648 | 4650/2920 | 1730)        | 1903/460 | 1443        |

## **Evaluation 1: Responding services**

- Significantly more services respond on their listening ports
- Telnet, HTTP, dhcp and UPnP are the most common services
- Forcing network
   configuration is key
   (failed dhcp, missing
   nvram values etc.)

| Prot. | Port/Service   | Honware | Firmadyne | $\Delta$    |
|-------|----------------|---------|-----------|-------------|
| TCP   | 23/telnet      | 879     | 149       | 730↑        |
| TCP   | 80/http        | 676     | 293       | 383         |
| UDP   | 67/dhcp        | 316     | 160       | 156         |
| UDP   | 1900/UPnP      | 239     | 128       | 111         |
| UDP   | 53/various     | 239     | 174       | 65↑         |
| TCP   | 3333/dec-notes | 222     | 102       | 120         |
| TCP   | 5555/freeciv   | 203     | 57        | 146↑        |
| TCP   | 5431/UPnP      | 177     | 48        | 129         |
| UDP   | 137/netbios    | 154     | 82        | 72          |
| TCP   | 53/domain      | 139     | 73        | 66↑         |
| TCP   | 443/https      | 107     | 105       | $2\uparrow$ |
| UDP   | 5353/mdns      | 102     | 34        | 68          |
| UDP   | 69/tftp        | 104     | 26        | 78↑         |
| TCP   | 1900/UPnP      | 56      | 60        | 4↓          |
| TCP   | 49152/UPnP     | 53      | 62        | 9↓          |

## **Evaluation 2: Timing attack**

- Attackers can use timing differences to detect honeypots
- Using Shodan, we looked for three selfidentifying devices ("banner")
- We set up a total of 30 honeypots, ten for each device, on two cloud providers
- We measure the time the applications take to respond to our requests
- RTT is calculated and is subsequently used to adjust the timing information

| 86.53.218.113<br>host113.akamai-thn.cust.telecomplete.net<br>Akamai Technology<br>Added on 2019-10-20 02:38:22 GMT<br>Thited Kingdom, Burntwood                 | VMG1312-B10A<br>Login: |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| <b>197.245.118.86</b><br>dsl-197-245-118-86.voxdsl.co.za<br><b>Vox Telecom DSL Customer Base</b><br>Added on 2019-10-20 05:29:41 GMT<br>South Africa, Centurion | VMG1312-B10A<br>Login: |
| 82.69.77.156<br>82-69-77-156.dsl.in-addr.zen.co.uk<br>Zen Internet Ltd<br>Added on 2019-10-20 07:21:54 GMT<br>Wited Kingdom, London                             | VMG1312-B10A<br>Login: |
| 185.13.214.189<br>Micro & Services Informatiques SAS<br>Added on 2019-10-20 01:55:29 GMT<br>France, Lesquin                                                     | VMG1312-B10A<br>Login: |

## Evaluation 2: Timing attack (FTP and Telnet)



Zyxel VMG1312-B10A (Telnet)



Time between resource request (carriage return) and login message Time to Login message

## **Evaluation 2: Timing attack (HTTPS)**



Time to complete the TLS handshake

Time between ClientHello and resource received (web page)

## **Evaluation 2: Timing attack conclusion**

- Emulation does not generally slow down applications
  - Low-cost cloud instances > CPE/IoT devices
- Where emulation is faster, it would be possible to artificially slow responses
- Internet inherently introduces jitter, network delays and artefacts
  - Increases time and effort to mount such attacks



Attackers need to perform a significant amount of measurements to identify the discrepancies and fingerprint the honeypot

## Case Study 1 - DNS hijacking attack

#### Whilst emulating a router from ipTIME, we observed a DNS hijacking attack

GET /cgi-

bin/timepro.cgi?tmenu=netconf&smenu=wansetup&act=save& wan=wan1&ifname=eth1&sel=dynamic&wan\_type=dynamic&al low\_private=on&dns\_dynamic\_chk=on&userid=&passwd=&mtu .pppoe.eth1=1454&lcp\_flag=1&lcp\_echo\_interval=30&lcp\_echo \_failure=10&mtu.static.eth1=1500&fdns\_dynamic1=185&fdns\_ dynamic2=117&fdns\_dynamic3=74&fdns\_dynamic4=100&sdns \_dynamic1=185&sdns\_dynamic2=117&sdns\_dynamic3=74&sdn s\_dynamic4=101 HTTP/1.1



/sbin/iptables -t nat -A PREROUTING -i br0 -d 192.168.0.1 -p udp --dport 53 -j DNAT --to-destination 185.117.74.100



118.30.28.10 AS41718: China Great Firewall Network Limited Company









#### 841N v13 fake DNS in DHCP server

Model: TL-WR841N

Hardware Version: V13

Firmware Version: 0.9.1 4.16

Hello

My two klients was a problem. DHCP DNS address was modyfied from default 0.0.0.0 to 185.117.74.100 and 185.117.74.101. I don't know how. Admin password is hard, remote management is enabled.







Re:841N v13 fake DNS in DHCP server

Hi,

The DHCP DNS is assigned by ISP once it gets access to internet. The default one is 0.0.0.0 and it will change once router get installed.

It won't affect the performance and you do not have to worry about it.

Good day.

## Case Study 2: ThinkPhP Malware

- Emulating an ADSL
   modem router from
   TP-Link
- Non-validated input allows attackers to run arbitrary code
- >50k devices affected
- We make malware available to the defender community considerably faster than traditional honeypots

| #Seen | Filename    | Country | First seen<br>Honware Virustotal |            | Detection ratio<br>Virustotal |
|-------|-------------|---------|----------------------------------|------------|-------------------------------|
| 52    | Tsunami.x86 | DE      | 2019-23-02                       | unknown    | 5/67                          |
| 35    | cayo4       | DE      | 2019-28-02                       | 2019-21-03 | 10/68                         |
| 34    | Tsunami.x86 | RO      | 2019-19-02                       | unknown    | 5/67                          |
| 8     | X86_64      | CA      | 2019-28-02                       | unknown    | 0/66                          |
| 6     | shiina      | US      | 2019-28-02                       | unknown    | 7/67                          |
| 5     | Tsunami.x86 | US      | 2019-27-02                       | unknown    | 0/66                          |
| 5     | Tsunami.x86 | US      | 2019-24-02                       | unknown    | 2/67                          |
| 5     | lessie.x86  | NL      | 2019-26-03                       | 2019-23-02 | 2/66                          |
| 4     | Tsunami.x86 | ZA      | 2019-26-03                       | 2019-01-03 | 13/71                         |
| 4     | Tsunami.x86 | US      | 2019-18-02                       | unknown    | 4/67                          |
| 3     | Tsunami.x86 | DE      | 2019-23-02                       | unknown    | 0/66                          |
| 3     | Tsunami.x86 | US      | 2019-21-02                       | unknown    | 2/66                          |
| 2     | cayo4       | NL      | 2019-22-02                       | unknown    | 0/66                          |
| 2     | x86         | US      | 2019-19-02                       | unknown    | 0/66                          |
| 2     | Tsunami.x86 | US      | 2019-27-02                       | unknown    | 1/66                          |

## Conclusion

#### Framework to deploy honeypots for CPE/IoT devices

- We use the real services/applications which are shipped with the device
- Avoids misconfigurations, missing features/commands

#### Better than existing emulation strategies in all areas

- Extraction, network reachability, listening services

### Capable of detecting vulnerabilities at scale

- Four cases which show that devices can be rapidly emulated
- Rebalancing the economics of attackers by cutting the attackers' ability to exploit vulnerabilities for considerable time

# Q&A

#### **Alexander Vetterl**

alexander.vetterl@cl.cam.ac.uk