
Honware: A virtual honeypot framework for 
capturing CPE and IoT zero days

Alexander Vetterl and Richard Clayton

University of Cambridge

eCrime 2019, APWG Symposium on Electronic Crime Research — November 14, 2019



Introduction

2

Honeypot: 
A resource whose value is being attacked or compromised

— We are good in building software honeypots for 

specific Malware (e.g. Mirai)

— Honeypots emulate a vulnerable device 

by sending appropriate strings back

— Finding vulnerable devices never has been easier

— Stateless scanning & Shodan, Censys, Thingful

Problem:
Slow, iterative process only suitable for well-understood attacks 



Honware: Virtualised honeypot framework

3

— Virtualised, because deploying and 

monitoring physical devices does not scale

— Aimed for Linux-based CPE and IoT devices

— We need access to the firmware image and 

the firmwares filesystem

— We want to run the firmwares‘ applications 

such as Telnet, SSH and Web servers

— Lightweight 

— <64MB RAM, <128MB disk space

— Fast: Honeypots can be set-up in minutes!

Host OS Kernel

QEMU

Custom Kernel

Firmware Filesystem

Appli-

cation

Appli-

cation
Telnet, SSH, Web, 

SSDP etc.

Logging

Networking

NVRAM

SIGNAL 
HANDLING

Appli-

cation



Customised pre-built kernel (1/2)

4

We built kernels for ARM, MIPSEB and MIPSEL

1. Honeypot logging

— do_execve

2. Signal interception

— SIGABRT (abort)

— SIGSEGV (seg fault)

— SIGPFE (floating point errors)

3. Module loading

— Ignoring vermagic strings (e.g. 2.6.22-xyz)

Custom Kernel
Logging

Networking

NVRAM

SIGNAL 
HANDLING



Customised pre-built kernel (2/2)

5

4. NVRAM (non-volatile memory)

— Set LD_PRELOAD to the path of our own 
nvram implementation 

— Intercept nvram_get and nvram_set calls 

5. Network configuration

— Look for bridge configuration: br0 and ra0

— If that fails, the kernel will execute a default 
configuration (customisable by users!)

— Necessary interfaces

— Assign static IP addresses

Custom Kernel
Logging

Networking

NVRAM

SIGNAL 
HANDLING



Step 1: Extracting firmware images

6

Binwalk

— Looking for standard Linux filesystem 

structure (bin, usr, proc etc.)

Creating an ext2 filesystem 

— Copying the firmwares‘ structures and files 

— Typically very small (<128MB)

Identifying the architecture based on 

ELF headers

— e.g. Busybox binary

— Used to select the appropriate kernel

Firmware Filesystem

Appli-

cation

Appli-

cation

Appli-

cation



Step 2: Modifying filesystem & preparation

7

Supports custom configurations

— Modified do_execve to execute, if present, 

/sbin/boot.sh through the kernel function 

call_usermodehelper

NVRAM emulation

— Added as kernel module

Network configuration

— Re-route incoming packets on the host ethernet 

interface to the QEMU tap interface and 

— Post-route the packets back to the host

Host OS Kernel

QEMU

Custom Kernel

Firmware Filesystem

Appli-

cation

Appli-

cation
Telnet, SSH, Web, 

SSDP etc.

Logging

Networking

NVRAM

SIGNAL 
HANDLING

Appli-

cation



Evaluation

8

— Extraction

— Network reachability

— Responding services

— Timing attacks

— Case studies

— 23,035 firmware images from Firmadyne (2016) 

— As of March 2019, 8,387 images can still be 

downloaded

— Firmadyne (2016) used 23,035 firmware images

— As of March 2019, 8,387 images can still be 

downloaded

— Looked for self-identifying devices 

— Repeated measurements for three protocols: 

FTP, Telnet and HTTPS

— Deployed multiple honeypots on the Internet

— Four case studies which show that devices can 

be rapidly emulated 



Eval. 1: Extraction and network reachability



Evaluation 1: Responding services

— Significantly more 

services respond on 

their listening ports

— Telnet, HTTP, dhcp and 

UPnP are the most 

common services

— Forcing network 

configuration is key 

(failed dhcp, missing 

nvram values etc.)

10



Evaluation 2: Timing attack

11

— Attackers can use timing differences to 

detect honeypots

— Using Shodan, we looked for three self-

identifying devices (“banner”)

— We set up a total of 30 honeypots, ten 

for each device, on two cloud providers 

— We measure the time the applications 

take to respond to our requests 

— RTT is calculated and is subsequently 

used to adjust the timing information 



Evaluation 2: Timing attack (FTP and Telnet)

12

Time to Login message

Zyxel VMG1312-B10A (Telnet)ASUS RT-AC52U (FTP)

Time between resource request 

(carriage return) and login message



Evaluation 2: Timing attack (HTTPS)

13

Time between ClientHello and 

resource received (web page)

D-Link DIR 825 (HTTPS)

Time to complete the TLS 

handshake

D-Link DIR 825 (HTTPS)



Evaluation 2: Timing attack conclusion

14

— Emulation does not generally slow down 

applications

— Low-cost cloud instances > CPE/IoT devices

— Where emulation is faster, it would be 

possible to artificially slow responses

— Internet inherently introduces jitter, 

network delays and artefacts 

— Increases time and effort to mount such attacks 

Attackers need to perform a significant amount of measurements 

to identify the discrepancies and fingerprint the honeypot



Case Study 1 - DNS hijacking attack

15

Whilst emulating a router from ipTIME, we observed a DNS hijacking attack

GET /cgi-
bin/timepro.cgi?tmenu=netconf&smenu=wansetup&act=save&
wan=wan1&ifname=eth1&sel=dynamic&wan_type=dynamic&al
low_private=on&dns_dynamic_chk=on&userid=&passwd=&mtu
.pppoe.eth1=1454&lcp_flag=1&lcp_echo_interval=30&lcp_echo
_failure=10&mtu.static.eth1=1500&fdns_dynamic1=185&fdns_
dynamic2=117&fdns_dynamic3=74&fdns_dynamic4=100&sdns
_dynamic1=185&sdns_dynamic2=117&sdns_dynamic3=74&sdn
s_dynamic4=101 HTTP/1.1

/sbin/iptables -t nat -A 
PREROUTING -i br0 -d 
192.168.0.1 -p udp --dport
53 -j DNAT --to-destination 
185.117.74.100

118.30.28.10

AS41718: China Great Firewall 

Network Limited Company

>40 IPs with 

the same 

certificate



16



Case Study 2: ThinkPhP Malware

17

— Emulating an ADSL 
modem router from 
TP-Link 

— Non-validated input 
allows attackers to 
run arbitrary code

— >50k devices 
affected

— We make malware 
available to the 
defender community 
considerably faster 
than traditional 
honeypots



Conclusion

18

Framework to deploy honeypots for CPE/IoT devices

— We use the real services/applications which are shipped with the device

— Avoids misconfigurations, missing features/commands

Better than existing emulation strategies in all areas

— Extraction, network reachability, listening services

Capable of detecting vulnerabilities at scale

— Four cases which show that devices can be rapidly emulated 

— Rebalancing the economics of attackers by cutting the attackers’ ability 

to exploit vulnerabilities for considerable time 



19

Q & A
Alexander Vetterl

alexander.vetterl@cl.cam.ac.uk


