
Nominal Techniques

Andrew Pitts, Computer Laboratory, University of Cambridge, UK

Programming languages abound with features making use of names in various ways. There is a mathe-
matical foundation for the semantics of such features which uses groups of permutations of names and the
notion of the support of an object with respect to the action of such a group. The relevance of this kind of
mathematics for the semantics of names is perhaps not immediately obvious. That it is relevant and useful
has emerged over the last 15 years or so in a body of work that has acquired its own name: nominal tech-
niques. At the same time, the application of these techniques has broadened from semantics to computation
theory in general. This article introduces the subject and is based upon a tutorial at LICS-ICALP 2015 [Pitts
2015a].

1. INTRODUCTION
What mathematical structures are appropriate for modelling locality? This question
concerns the syntax and semantics of programming language features for restricting
named resources to specific lexical scopes and hiding information about names outside
their scope. Here are three examples of such features:

• local variables in Algol-like languages, new X in hcommandi
• generativity + local declarations in ML-like languages, let x = refhvali in hexpi
• channel-name restriction in the ⇡-calculus, (⌫a)hprocessi

What mathematical or logical structures are needed for the semantics of these lo-
cality constructs? Is it the same in each case? I am sure the reader can think of many
similar questions, because the semantics of locality is of great importance to software
science. That this is so follows partly from the need to use compositional methods when
constructing large and complicated systems from more manageable parts. If the parts
involve names, then one has to have mechanisms for controlling accidental (or even
malicious) clashes of names when combining them into a whole. Explaining the se-
mantics of such mechanisms involves answering a more fundamental question: what
does it mean for a mathematical structure (used in the semantics of programming
languages) to depend upon some names, or to be independent of some names?

A popular answer to that question involves explaining name-dependence in terms of
parameterization: structures that may depend upon a name are represented by func-
tions mapping names to name-free structures. A nice aspect of this approach is that it
allows name-dependency to be subsumed by well-understood and widely applied logics
of functions, such as the typed �-calculus. A not-so-nice aspect is that it forces depen-
dency upon names to be completely explicit: if we are dealing with structures that may
depend on say 42 distinct names, then we use functions of 42 arguments. Later on we
may wish to use such a structure in a context with more distinct names, but to do
so we have to explicitly weaken 42-ary functions into functions of greater arity. The
book-keeping involved with such explicit weakening can be very irksome.

In contrast, nominal techniques provide a setting in which dependence of structures
upon names is implicit. They achieve this by representing name independence, rather
than dependence, in terms of invariance under symmetry, as I explain next.

ACM SIGLOG News 57 January 2016, Vol. 3, No. 1

2. INDEPENDENCE VIA SYMMETRY INVARIANCE
Let PermA denote the set of all finite permutations of a fixed, countably infinite set A.
I will call the elements of A atomic names, or just atoms, and write them as a, b, c,
The elements of PermA are the bijections ⇡ from A to itself for which {a 2 A | ⇡ a 6=
a} is a finite set. The identity function idA is in PermA; if ⇡ and ⇡

0 are in PermA,
then so is their composition ⇡

0 � ⇡; and so is the inverse function ⇡

�1. Therefore we
get the structure of a group on PermA. Among the very many things that are known
about this group, let me mention that every ⇡ 2 PermA can be factored (non-uniquely)
as a composition of finitely many transpositions. The transposition (a b) is the finite
permutation of A that maps a to b, b to a and leaves all other atoms fixed.

If data is constructed in some way using names drawn from A, then it should be pos-
sible for finite permutations ⇡ 2 PermA to act upon the data by replacing occurrences
of each atom a 2 A in a datum by the corresponding atom ⇡ a, thereby producing an-
other datum. For example, if the data are abstract syntax trees of untyped �-terms
using elements of A to name variables

t ::= a | �a.t | t t (a 2 A) (1)
then the action of ⇡ 2 PermA on a tree t produces another such, ⇡ · t, where

⇡ · a = ⇡ a

⇡ · (�a.t) = �(⇡ a).(⇡ · t)
⇡ · (t t0) = (⇡ · t)(⇡ · t0)

(2)

As another example, consider the set PA of all subsets of A. Finite permutations ⇡ 2
PermA act upon subsets A 2 PA by

⇡ ·A = {⇡ a | a 2 A} (3)
There are many other examples, from all of which one abstracts the following defini-
tion.

Definition 2.1 (Action). An action of the group PermA on a set X is a binary oper-
ation mapping each ⇡ 2 PermA and x 2 X to an element ⇡ · x 2 X, satisfying

idA · x = x

(⇡0 � ⇡) · x = ⇡

0 · (⇡ · x)
for all x 2 X and ⇡,⇡

0 2 PermA.
If a set X comes equipped with such an action, then we have a way of expressing the

fact that an element x 2 X only depends upon atoms in some particular subset A ✓ A
and no others: for in that case, if a permutation ⇡ leaves each a 2 A invariant (⇡ a = a),
then it should also leave x invariant (⇡ · x = x). This gives us the key concept upon
which nominal techniques depend:

Definition 2.2 (Support). For each A ✓ A, write PermA A for the subgroup of PermA
consisting of finite permutations ⇡ satisfying (8a 2 A) ⇡ a = a. Suppose PermA acts
upon a set X. A set of atoms A ✓ A supports an element x 2 X if ⇡ · x = x holds for all
⇡ 2 PermA A. The set X together with the action · is called a nominal set if for each
x 2 X there is a finite set of atoms that supports it with respect to the action.

Example 2.3 (The set ⇤ of �-terms is a nominal set). The set of syntax trees of un-
typed �-terms (1) is a nominal set when equipped with the action defined in (2). For
it is not to hard to see that each such tree is supported by the finite set of atoms that
occur anywhere in the tree (either as variables at its leafs, or as part of a �-binder
at a node of the tree). A related and more interesting example is given by the set ⇤ of

ACM SIGLOG News 58 January 2016, Vol. 3, No. 1

untyped �-terms themselves, by which I mean ↵-equivalence classes of abstract syntax
trees. (See Section 4 if you are unfamiliar with the notion of ↵-equivalence.) The action
(2) respects ↵-equivalence and hence induces an action on ⇤. One can show that with
respect to that action, each �-term is supported by its finite set of free variables (and
this is the smallest support set); see [Pitts 2013, Section 4.1].

On the other hand, the powerset PA equipped with the action defined in (3) is not a
nominal set. This is because we can partition A into two countably infinite subsets, A0

and A1 say. Neither subset, as an element of PA, is supported by a finite set of atoms
with respect to the action (3). This is because for any finite A ✓ A, both A0 � A and
A1 � A are non-empty; so picking a0 2 A0 � A and a1 2 A1 � A, the finite permutation
(a0 a1) transposing a0 and a1 is in PermA A, but satisfies (a0 a1) · Ai 6= Ai and hence
A does not support Ai. In fact the finitely supported elements of PA are precisely the
subsets A ✓ A that are either finite, or whose complement A � A is finite; see [Pitts
2013, Proposition 2.9].

Definition 2.4 (Freshness relation). If X is a nominal set, then an atom a 2 A is
fresh for an element x 2 X if x is supported by some finite set of atoms A ✓ A with
a /2 A. In this case we write a # x.

This relation of freshness is the symmetry-based notion of a mathematical structure
being independent of a name mentioned in the Introduction. To appreciate its useful-
ness we have to see some of the theory of nominal sets. As I discuss next, there are two
approaches to developing that theory.

3. SET THEORY OR CATEGORY THEORY?
The notion of support (Definition 2.2) goes back as least as far as its use in set theory
by Fraenkel and Mostowski to produce a model of ZFA (axioms for sets with atoms)
that does not satisfy the Axiom of Choice [Fraenkel 1922; Mostowski 1939]. The model
is the universe U of sets containing the elements of A as atoms and closed under taking
finitely supported subsets. More precisely it is the large nominal set that is the union
U =

S
↵2On U↵ of the ordinal-indexed sequence of nominal sets U↵ defined as follows.

The sequence starts with U0 = ;. At successor ordinals, U↵+1 consists of all atoms and
all subsets of U↵ that are finitely supported with respect to the action of PermA on
subsets S ✓ U↵ given by

⇡ · S = {⇡ · x | x 2 S} (4)

At limit ordinals, U� consists of all elements of any U↵ with ↵ < �. The action of PermA
on elements of U is given by (4) if they are sets S and by ⇡ · a = ⇡ a if they are atoms
a. By construction every element has a finite support. This does not stop U satisfying
the ZFA axioms in the same way that the usual Von Neumann cumulative hierarchy
(starting from A) satisfies them. However, as Mike Mislove explains in his Preface to
this article, it does mean that U fails to satisfy the Axiom of Choice.

Gabbay and Pitts [2002] introduced the use of Fraenkel and Mostowski’s universe of
sets to develop a theory of freshness (Definition 2.4) and name abstraction (Section 5)
applied to recursion and induction for data modulo ↵-equivalence of bound names. The
survey of these kind of nominal techniques by Gabbay [2011] uses this set-theoretic
approach. So does the group in Warsaw [Bojańczyk et al. 2014] who are vigorously
applying more general nominal techniques to automata and computation theory (Sec-
tion 7). However, I think that as well as set theory’s element-oriented view, it is useful
to use the morphism-oriented view afforded by category theory [MacLane 1971]. Before
explaining why I think that, let me describe what are the morphisms between nominal
sets.

ACM SIGLOG News 59 January 2016, Vol. 3, No. 1

Definition 3.1 (Category of nominal sets). Nominal sets are the objects of a cate-
gory Nom whose morphisms f : X ! Y are functions f from the underlying set
of X to the underlying set of Y that preserve the action of finite permutations:
(8⇡ 2 PermA, x 2 X) f(⇡ · x) = ⇡ · (f x). Such functions are often called equivari-
ant. The identity function is equivariant, as is the composition of two such functions.
So we get a concrete category with a forgetful functor to the category of sets.

There are at least two reasons why it is useful to develop a category-theoretic ap-
proach to some piece of mathematics:

(A) Equivalence of categories from different mathematical realms (or even just
functors between them) can allow techniques from one realm to be transferred
to another.

(B) Universal properties (adjoint functors) can be used to characterise a mathemat-
ical construction uniquely up to isomorphism and help to filter out its special prop-
erties from ones that are true just because of that category-theoretic characterisa-
tion.

In the case of nominal sets, regarding point (A), Nom has several equivalent for-
mulations. Montanari and Pistore [2000] developed a notion of named set that has
been used for model-checking ⇡-calculus processes using HD-automata; it is reassur-
ing that the category of named sets turns out to be equivalent to Nom [Gadducci et al.
2006; Staton 2007]. Nom is also equivalent to a well-understood Grothendieck topos,
the Schanuel topos; see Pitts [2013, Section 6.3]. The Schanuel topos is characterised
among Grothendieck toposes by possessing an object that is a generic model of the ge-
ometric theory [Vickers 1989] of an infinite, decidable object. Across the equivalence
with Nom, that object is simply the nominal set of names:

Definition 3.2 (Nominal set of names). A equipped with the PermA action given by
application (⇡ · a = ⇡ a) is a nominal set. With respect to that action, each atom a

is supported by {a} and hence the freshness relation for this nominal set is just the
not-equal relation (a # b , a 6= b).

That Nom and A serve to classify infinite decidable objects in Grothendieck toposes
is an intriguing and suggestive fact that has not, so far, directly impacted the devel-
opment of nominal techniques. However, topos theory is highly developed [Johnstone
2002] and provides a lot of useful tools connected with higher-order logic and type the-
ory to apply to nominal sets. In particular it tells us that Nom is a cartesian closed
category. Since we need them later, let me describe products and exponentials in Nom.

Binary products in Nom are created by the forgetful functor to the category of sets.
Thus the underlying set of the product of X and Y is their cartesian product, X ⇥ Y =
{(x, y) | x 2 X^y 2 Y }, and this has to be equipped with the action ⇡ ·(x, y) = (⇡ ·x,⇡ ·y)
in order for the product projection functions to be equivariant; and furthermore �z 2
Z. (f z, g z) : Z ! X ⇥ Y is equivariant when f and g are. With respect to this action,
(x, y) 2 X ⇥ Y is supported by A[B if x 2 X is supported by A and y 2 Y is supported
by B; so X ⇥ Y is a nominal set.

Turning to exponentials in Nom, if X and Y are nominal sets, then the set Y X of all
functions from X to Y has a PermA action given by

⇡ · f = �x 2 X. ⇡ · (f(⇡�1 · x)) (⇡ 2 PermA, f 2 Y

X) (5)

Not all functions are finitely supported with respect to this action, but if we cut down
to the subset

X �fs Y = {f 2 Y

X | f is finitely supported with respect to the action (5)} (6)

ACM SIGLOG News 60 January 2016, Vol. 3, No. 1

then, together with the above action, we get a nominal set. The application function
�(f, x) 2 Y

X ⇥ X. f x is equivariant and so gives a morphism (X �fs Y) ⇥ X ! Y in
Nom. It has the universal property required of an exponential for X and Y in Nom,
because currying an equivariant function Z ⇥ X ! Y yields an equivariant function
Z ! Y

X that factors through the inclusion X �fs Y ✓ Y

X .
We know that (6) is a good notion of function space for nominal sets because, to-

gether with the application function, it satisfies the universal property of an exponen-
tial. That property not only determines it uniquely up to isomorphism, but also allows
one to interpret simply typed �-calculus in Nom – a standard result that is valid for
any cartesian closed category [Lambek and Scott 1986]. This is a small and probably
familiar illustration of point (B) above. Another example of point (B), more specific to
nominal techniques, is given by the concept of name abstraction, described in Section 5.

Before finishing this section let me say that my answer to the question in its title is:
use both approaches, as appropriate.

4. PERMUTATION BEFORE SUBSTITUTION
The relation =↵ of ↵-equivalence between abstract syntax trees of untyped �-terms (1)
has a very simple characterisation in terms of the action (2) of PermA on such trees: it
is the binary relation inductively generated by the following three rules:

a =↵ a

t1 =↵ t

0
1 t2 =↵ t

0
2

t1 t2 =↵ t

0
1t

0
2

(b a) · t =↵ (b a0) · t0

�a.t =↵ �a

0
.t

0 b # (a t a0 t0) (7)

The side-condition on the third rule refers to the freshness relation (Definition 2.4)
for the nominal set of abstract syntax trees; concretely it means that b is not equal
to either a or a

0 and does not occur in either t or t

0. In that case the tree (b a) · t
obtained by swapping occurrences of b and a in t is the same as the tree obtained by
substituting b for all occurrences of a in t; and up to ↵-equivalence that is the same
as substituting b for all free occurrences of a. These observations form the basis of a
proof that the above, non-standard definition of =↵ coincides with the standard one
that is based on name substitution rather than name permutation [Barendregt 1984,
Definition 2.1.11]. Given that it is equivalent to the usual definition, why should one
care about this formulation in terms of permutations?

One reason for using permutation actions is because in the theory of programming
languages one deals with many different formal languages containing syntactic con-
structs with often quite complicated forms of name-binding and with many notions of
substitution. There is a simple and uniform action of PermA on well-formed syntax
trees for any particular language, one which ignores any subtleties to do with binders.
(For the simple example of �-terms, this is just the fact that a permutation is applied
uniformly to all the occurrences of names in a tree, be they free, binding or bound.) So
one can always define permutation action before having to worry about possibly tricky
notions of ↵-equivalence and substitution, and then use it to define those notions, much
as we did above for =↵.

That is quite a syntactical reason for using permutations. An even more important
one has to do with semantics. The mathematical structures needed for a program-
ming language semantics are sometimes finitary (for example, an operational seman-
tics based upon finitary inductive definitions), but more often than not involve infini-
tary constructs such as function spaces or powersets (certainly for denotational seman-
tics, but also for operational semantics involving coinductive definitions). Permutation
actions extend very simply to such infinitary structures. Mainly this is because per-
mutations are bijections and hence have inverses, which can be used to simplify many
constructions. We have already seen an example of this in (5), where the permutation

ACM SIGLOG News 61 January 2016, Vol. 3, No. 1

action on functions makes essential use of inverses of permutations. Exponentials for
permutation actions are relatively simple (elements of the exponential are just certain
kinds of function) compared with exponentials for substitution structures, which typ-
ically involve Kripke-style definitions (world-indexed families of functions) that have
their roots in the Yoneda Lemma for presheaf categories [Awodey 2010, Section 8.7].

Experience with nominal techniques over the last 15 years shows that taking name
permutations to be fundamental is very fruitful for programming language theory and
semantics. Here are some examples, the last one of which is considered in more detail
in the following two sections.

• It is natural to give operational semantics of nominal calculi such as the ⇡-
calculus [Milner et al. 1992] using inductive definitions of nominal sets [Pitts 2013,
Chapter 7]; see Gabbay [2003], Staton [2007] and Cimini et al. [2012], for example.

• Game semantics can be carried out in the category of nominal sets to produce fully
abstract, compositional semantics of some of the locality constructs mentioned at the
beginning of this article; see Murawski and Tzevelekos [2013], for example. More
conventional denotational semantics using partially ordered structures and topol-
ogy can also usefully incorporate permutation actions; see Section 8. This involves
the notion of orbit finiteness discussed in Section 7.

• Names and the notion of name abstraction described in Section 5 have been incorpo-
rated into ML-style typed functional programming [Shinwell et al. 2003]. The patch
of OCaml (caml.inria.fr/ocaml/) by Shinwell [2005] has very nice pattern-matching
features for computing with data involving bound names while automatically re-
specting ↵-equivalence.

• There is a permutation-base unification theory for first-order terms involving name
binding operations, introduced by Urban et al. [2004]. This kind of nominal unifi-
cation underlies extensions of first-order logic programming to treat terms modulo
↵-equivalence; the ↵Prolog language of Cheney and Urban [2008] is an example.

• Nominal unification is part of a broader topic of equational logic, and rewriting,
modulo ↵-equivalence; see for example the paper on Nominal Rewriting Systems by
Fernández et al. [2004], which won the PPDP most influential paper 10-year award
in 2014.

• Informal practice when it comes to bound names (such as Barendregt’s variable
convention [Barendregt 1984, 2.1.13]) seems to be captured rather well by the
formal recursion and induction principles that can be established for nominal in-
ductive datatypes involving name abstraction [Pitts 2013, Chapter 8]. Evidence
for this is provided by Urban and Berghofer’s Nominal Package for Isabelle/HOL
(isabelle.in.tum.de/nominal/). See for example the paper on Nominal techniques in
Isabelle/HOL by Urban and Tasson [2005], which won a CADE Skolem Award in
2015.

5. ABSTRACTING NAMES
The third rule in (7) gives the essence of the notion of ↵-equivalence. It can be de-
coupled from the particular, inductive structure of syntax trees to yield a syntax-
independent definition that makes sense for any nominal set:

Definition 5.1 (Nominal set of name abstractions). Given a nominal set X, there is
an equivalence relation ⇠↵ on A⇥X given by

(a, x) ⇠↵ (a0, x0) , (9b # (a, x, a0, x0)) (b a) · x = (b a0) · x0 (8)

ACM SIGLOG News 62 January 2016, Vol. 3, No. 1

We write [A]X for the quotient set (A⇥X)/⇠↵ and haix for the ⇠↵-equivalence class of
a pair (a, x). The relation ⇠↵ is equivariant

(a, x) ⇠↵ (a0, x0)) (⇡ a,⇡ · x) ⇠↵ (⇡ a

0
,⇡ · x0)

and therefore we get a well-defined PermA action on [A]X satisfying ⇡ · haix = h⇡ ai(⇡ ·
x). If A ✓ A supports x in X, then one can show that A � {a} supports the element
haix in [A]X with respect to this action [Pitts 2013, Proposition 4.5]. Therefore [A]X is
a nominal set and the freshness relation associated with it satisfies

b # haix , b = a _ b # x (9)

The mapping X 7! [A]X is the object part of a functor Nom ! Nom: if f 2
Nom(X,Y), then we get [A]f 2 Nom([A]X, [A]Y) well-defined by

([A]f) haix , hai(f x) (10)

and this operation on morphisms preserves composition and identities. This functor
has many nice properties. In particular, as explained in the next section, it can be
used to extend the usual initial algebra semantics of algebraic datatypes [Goguen
et al. 1977] to encompass the common situation where the datatype involves construc-
tors that bind names and one wishes to quotient data by an appropriate notion of
↵-equivalence.

It turns out that the nominal set [A]X can be characterised category-theoretically as
a kind of affine linear function space from A to X in Nom: it is the value at X of the
right adjoint to a functor ⇤ A : Nom ! Nom given by the separated tensor product

X ⇤ A , {(x, a) 2 X ⇥ A | a # x} (11)

which is a nominal set when endowed with the PermA action ⇡ · (x, a) = (⇡ · x,⇡ a). In
other words there is a natural bijection between sets of morphisms

X ⇤ A ! Y

X ! [A]Y
========== (12)

mediated by the morphism

@ : ([A]Y) ⇤ A ! Y (13)

that concretes a name abstraction haiy at any atom b satisfying b # haiy to yield the el-
ement (haiy)@b , (a b) ·y. See Pitts [2013, Theorem 4.12] for a proof of this adjointness
property.

The atomic nature of the nominal set A of names manifests itself in the fact that the
right adjoint [A] : Nom ! Nom itself has a right adjoint:

([A]X) ! Y

X ! RY

=========== (14)

where

RY , {f 2 A �fs Y | (8a 2 A) a # f a} (15)

(see Pitts [2013, Theorem 4.13]). The adjointness property (14) gives a characterisation
of functions out of nominal sets of name abstractions that is very useful for recursion
and induction principles for data involving binding operations, as I explain next.

ACM SIGLOG News 63 January 2016, Vol. 3, No. 1

6. NOMINAL ALGEBRAIC DATATYPES
Given a category C and a functor T : C ! C, recall that a T -algebra is an object D 2 C

equipped with a morphism i 2 C(T D,D). It is initial if

for any T -algebra f 2 C(T X,X),
there is a unique morphism f̂ 2 C(D,X)
satisfying f � T f̂ = f̂ � i

T D

T f̂ //

i
✏✏

T X

f

✏✏
D

f̂ //
X

(16)

This universal property determines (D, i) uniquely up to isomorphism and also implies
that i : T D ! D is itself an isomorphism. Furthermore, from the universal property
one can derive recursion principles for constructing morphisms out of D and induction
principles for proving properties of them. We have here another illustration of point (B)
in Section 3: initiality characterises D up to isomorphism; and for particular categories
C and functors T , one may be able to develop more easily applicable forms of recursion
and induction for the initial algebra.

Ordinary algebraic signatures give rise to functors T on C = Set that are sums of
products: one summand for each operation symbol in the signature and the number
of factors in a product equal to the number of arguments taken by the correspond-
ing operation symbol. For the nominal version, one replaces the category of sets by
the category Nom and consider functors T : Nom ! Nom. Nominal algebraic signa-
tures [Pitts 2013, Chapter 8] allow operation symbols that bind names in some of their
argument positions; and the functor T : Nom ! Nom corresponding to such a signa-
ture uses the name abstraction functor [A] where there is such a binding argument.
For example, the nominal algebraic signature corresponding to (1) yields the functor

T () = A+ (⇥) + ([A]) : Nom ! Nom (17)

For a proof of the following theorem, see Pitts [2013, Theorem 8.15].

THEOREM 6.1. Functors T : Nom ! Nom derived from nominal algebraic signa-
tures always have initial algebras; and those initial algebras can be constructed as sets
of abstract syntax trees for the signature quotiented by a form of ↵-equivalence auto-
matically generated from the signature.

For example, the initial algebra for (17) is the nominal set ⇤ of �-terms from Ex-
ample 2.3. In this case the universal property (16) gives an iteration principle for con-
structing equivariant functions ⇤ ! X: given f1 2 Nom(A, X), f2 2 Nom(X ⇥ X,X)
and f3 2 Nom([A]X,X), there is a unique f̂ 2 Nom(⇤, X) satisfying for all a 2 A and
t, t

0 2 ⇤

f̂ a = f1 a

f̂(t t0) = f2(f̂ t, f̂ t

0)

f̂(�a.t) = f3(hai(f̂ t))

Instead of supplying a function f3 on name abstractions, in practice it is more conve-
nient to use a function of (name,value)-pairs subject to a side-condition, the freshness
condition on binders (18), that comes from the right adjointness property (14). At the
same time one can derive a form of primitive recursion rather than iteration; and also
allow implicit dependence upon parameters by moving from equivariant to finitely
supported functions, that is, elements of exponential nominal sets (6). Combining all
these refinements, one arrives at the following principle of ↵-structural recursion for
�-terms; see Pitts [2013, Theorem 8.17] for a proof.

ACM SIGLOG News 64 January 2016, Vol. 3, No. 1

THEOREM 6.2 (↵-STRUCTURAL PRIMITIVE RECURSION FOR �-TERMS). Let ⇤ de-
note the nominal set of �-terms. For any nominal set X and finitely supported functions
f1 2 A �fs X, f2 2 ⇤⇥ ⇤⇥X ⇥X �fs X and f3 2 A⇥ ⇤⇥X �fs X satisfying

(8a 2 A) a # (f1, f2, f3)) (8t 2 ⇤, x 2 X) a # f3(a, t, x) (18)

there is a unique finitely supported function f̂ 2 ⇤ �fs X satisfying for all a 2 A and
t, t

0 2 ⇤

f̂ a = f1 a (19)

f̂(t t0) = f2(t, t
0
, f̂ t, f̂ t

0) (20)

a # (f1, f2, f3)) f̂(�a.t) = f3(a, t, f̂ t) (21)

For example, given a

0 2 A and t

0 2 ⇤, the capture-avoiding substitution function
()[t0/a0] : ⇤ ! ⇤ is the f̂ for

f1 a , if a = a

0 then t

0 else a

f2(t1, t2, t
0
1, t

0
2) , t

0
1 t

0
2

f3(a, t1, t
0
1) , �a.t

0
1

for which condition (18) holds, because a # �a.t

0
1. See Pitts [2006] for further exam-

ples. That paper shows that the above notion of ↵-structural primitive recursion gen-
eralizes smoothly from �-terms to any nominal algebraic signature, giving a version of
Gödel’s System T for nominal data types. Urban and Berghofer’s Nominal package for
Isabelle/HOL (isabelle.in.tum.de/nominal/) implements this, and more. It seems to be
a convenient formalisation of informal computational and proving practice to do with
identifying terms up to renaming of bound names.

Finally, I should mention that nominal techniques can usefully apply not only to
algebraic datatypes, but dually to coinductive datatypes; see Kurz et al. [2013], for
example.

7. FINITENESS MODULO SYMMETRY
Using symmetries to reduce the size of finite state spaces is an important technique
for software verification; see for example E. M. Clarke and Peled [2000, chapter 14].
For infinite state spaces, quotienting by symmetry may allow one to regain finiteness.
When the symmetries are given by name permutations, one has the following notion
of finiteness modulo symmetry:

Definition 7.1 (Orbit-finiteness). For each set X equipped with a PermA-action
(Defintion 2.1), consider the equivalence relation ⇠ on the set X given by

x ⇠ y , (9⇡ 2 PermA) ⇡ · x = y (22)

The ⇠-equivalence classes are called the orbits of X and X is said to be orbit-finite
if there are only finitely many of them. We extend the definition to subsets and say
that a subset S ✓ X is orbit-finite if it is both finitely supported (with respect to the
PermA-action (4) on subsets) and contained in a finite union of orbits of X. In this way
one can consider sets in Fraenkel and Mostowski’s cumulative hierarchy U (section 3)
that are orbit-finite in this sense. This notion of finiteness in U plays a central role
in the Warsaw group’s development of nominal computation theory [Bojańczyk et al.
2012; Bojańczyk et al. 2013; Bojańczyk et al. 2014].

ACM SIGLOG News 65 January 2016, Vol. 3, No. 1

For example, for each n 2 N, the nominal set An of ordered n-tuples of names is
infinite, but is orbit-finite; there are as many orbits as there are equivalence relations
on the finite ordinal {0, . . . , n�1}. On the other hand the nominal set A⇤ of finite lists of
names is not orbit-finite, since the elements of any orbit must be lists of equal length.

Orbit-finiteness underlies the applications of nominal techniques to automata over
infinite alphabets. The work of Montanari and Pistore [2000] on HD-automata and
model-checking for ⇡-calculus processes pioneered the idea using the formalism of
named sets, which turns out to be equivalent to nominal sets [Gadducci et al. 2006;
Staton 2007], but better adapted for giving finite presentations. Orbit-finiteness is im-
plicit in some of the work of Tzevelekos [2011] on fresh register automata, an automata-
theoretic model of computation with fresh-name generation (which includes the finite-
memory automata of Kaminski and Francez [1994]). Studying languages of traces for
that form of computation led Gabbay and Ciancia [2011] to consider Kleene algebra in
this context; and this has recently been extended with a coalgebraic perspective [Kozen
et al. 2015]. As I mentioned above, orbit-finiteness is central to the work of the War-
saw group, which investigates what happens if one does computation theory inside the
Fraenkel-Mostowski universe replacing finite-state notions by orbit-finite ones. (In fact
they do more, by considering different notions of symmetry, as described in Section 9.)
This approach to computation theory is possible because orbit-finite subsets can be
presented in terms of finite information:

THEOREM 7.2. Given a nominal set X, every orbit-finite subset of X is equal to

hullA F , {⇡ · x | ⇡ 2 PermA A ^ x 2 F} (23)

for some finite subsets A ✓ A and F ✓ X. (Recall from Definition 2.2 that PermA A
denotes the subgroup of PermA consisting of permutations ⇡ satisfying ⇡ a = a for all
a 2 A.)

This presentation, which enables calculation with orbit-finite subsets, was discovered
independently by Turner [2009], Gabbay [2009] and Bojańczyk et al. [2012] (in the
last case, in the greater generality considered in Section 9); for a proof see Pitts [2013,
Proposition 5.25].

Orbit-finite subsets generally have good closure properties, the notable exception
being lack of closure under powerset, which leads to a divergence between determin-
istic and non-deterministic forms of nominal computation compared with the classical
situation [Bojańczyk et al. 2013].

8. DOMAIN THEORY
Orbit-finite subsets also play an important role in the nominal version of Scott-Plotkin
style domains and denotational semantics. Turner and Winskel [2009] note that a
poset (X,v) in Nom has joins for all finitely supported chains iff it is uniform-directed
complete, which by definition means that it has joins for all directed subsets all of
whose elements are supported by a common finite subset of A. Lösch and Pitts [2014]
prove that the subsets which are compact with respect to uniform-directed joins are
precisely the orbit-finite ones, thus explaining the central position of orbit-finiteness
in this nominal domain theory.

There is a well-behaved domain theory based upon uniform-directed complete
nominal posets, including recursively defined domains constructed along traditional
lines [Abramsky and Jung 1994]; see Pitts [2013, Chapter 11]. In this setting one has
an operation on domains corresponding to name abstraction (Definition 5.1) and this
can be used to give denotational semantics for languages with features involving local
names. Turner and Winskel [2009] apply this to nominal process calculi. The earlier

ACM SIGLOG News 66 January 2016, Vol. 3, No. 1

work of Shinwell and Pitts [2005] gives a denotational semantics for FreshML [Shin-
well et al. 2003]. One tricky aspect of the name-abstraction domain construct is that
the name concretion operation (13) can be discontinuous; see Pitts [2013, Section 11.2].
However, it is continuous if the domain comes equipped with a notion of name restric-
tion [Pitts 2013, Chapter 9]; this is automatically the case for domains of continuations,
which accounts for the continuation-passing style of denotational semantics employed
by Shinwell and Pitts [2005]. Domains with name restriction feature in the work of
Lösch [2014] and Lösch and Pitts [2014], whose main result is a full abstraction theo-
rem in the style of Plotkin [1977] for the PCF language extended with a form of local
scoping for names due to Odersky [1994].

This nominal domain theory should support a version of Scott’s information sys-
tems [Scott 1982] and a domain theory in logical form [Abramsky 1991], but as far as
I know this has not been investigated. In this respect the work of Gabbay et al. [2011]
on Stone duality for nominal Boolean algebras with a freshness quantifier should be
relevant.

9. DIFFERENT SYMMETRIES
Recall from Definition 2.2 the central concept of nominal techniques: the notion of
support. The concept still makes sense, and is very useful, if one replaces the group
PermA by some subgroup G. In other words, one considers a more restrictive notion
of symmetry than that given by arbitrary (finite) permutations of names. Bojańczyk
et al. [2012] consider three interesting examples:
• Equality: G is the whole of PermA. This is the case we have considered so far. It is

called the equality symmetry because the only relations preserved by all permuta-
tions of A are equality and its complement. A variation on this symmetry is given
by partitioning A into countably many countably infinite subsets and taking G to
be the subgroup of PermA consisting of permutations that map each subset back
into itself. This gives a version of nominal sets with many sorts of names, which is
useful for applications to programming language semantics, where one usually has
to consider several different syntactic categories of names.

• Linear order: identify the countably infinite set of names A with the set of rational
numbers and take G to be all order-preserving permutations.

• Graphs: take A to be the vertices of the Rado graph [Rado 1964] and G to be the
group of automorphisms of that graph.

The general pattern, of which these three are instances, is to take A to be the carrier
of the universal homogeneous structure (Fraı̈ssé limit) for a finite relational signature
and G to be the group of automorphisms with respect to the signature. The category
of finitely supported G-sets and equivariant functions (or if you prefer, the universe
of hereditarily finitely supported sets with respect to this symmetry) appears to have
many of the good properties enjoyed by Nom when it comes to nominal automata the-
ory [Bojańczyk et al. 2014]. The extent to which it has forms of name abstraction like
those considered in Section 5 and Section 6 (and hence can be used to model locality
constructs when computing modulo G-symmetry) remains to be investigated.

10. CONSTRUCTIVE TYPE THEORY
Urban and Berghofer’s Nominal Package (isabelle.in.tum.de/nominal/) depends, in
part, upon a formalization of some of the mathematics mentioned in Sections 5 and
6 within the Isabelle/HOL implementation of Church’s typed higher-order logic. It
would be useful to provide similar facilities for theorem-proving systems such as Coq
(coq.inria.fr) and Agda (wiki.portal.chalmers.se/agda) that are based upon Martin-
Löf ’s constructive type theory and enhancements of it such as the Calculus of Inductive

ACM SIGLOG News 67 January 2016, Vol. 3, No. 1

Constructions. To do so requires a suitably constructive version of the theory of nom-
inal sets. At least one way in which the material in Pitts [2013] is not constructive is
that it makes extensive use of the support function suppX that assigns to each element
x of a nominal set X the smallest finite set suppX x of atoms that supports it. The defi-
nition of nominal set (Definition 2.2) asks that every x 2 X possesses some finite set of
atoms. From the existence of some such finite set one can prove the existence of a small-
est one; see [Pitts 2013, (2.4)]. However, as Swan [2014, Section 1.2.1] points out, the
validity of that result in a constructive setting relies upon X having decidable equality
and it may fail when that is not the case. It seems that much of the theory of nominal
sets can be developed without relying upon the existence of smallest supports (with the
possible exception of the generalised form of name abstraction [Pitts 2013, Section 4.6]
that has proved useful in Fresh OCaml [Shinwell 2003]). There have been some ex-
periments with constructive versions of nominal sets within Coq [Aydemir et al. 2007]
and Agda [www.cl.cam.ac.uk/⇠amp12/agda/choudhury/html/], but the analogue of the
Isabelle/HOL Nominal Package is still lacking.

Instead of developing the theory of nominal sets within an existing constructive
type theory, one can consider enhancing the type theory with features that are, more
or less, inspired by properties of dependent families of nominal sets. Like any topos,
the category of nominal sets models the extensional version of Martin-Löf ’s construc-
tive type theory. Furthermore, its characteristically nominal features (such as name
abstraction and the freshness quantifier [Pitts 2013, Section 3.2]) have interesting,
dependently-typed versions. This was first investigated by Schöpp and Stark [Schöpp
and Stark 2004; Schöpp 2006] and more recently using the formalism of categories
with families [Dybjer 1996] by Pitts et al. [2015]. There are several proposals for nom-
inal dependent type theories in the literature. Some are closely linked to properties of
families in Nom [Cheney 2012; Pitts et al. 2015], some loosely so [Fairweather et al.
2015] and some are more operationally motivated [Westbrook et al. 2009]. It remains
to be seen which, if any, will be useful in practice.

Finally, nominal techniques have recently been found useful in the study of Ho-
motopy Type Theory [Univalent Foundations Program 2013] in connection with the
search for a model of Voevodsky’s axiom of univalence which has computational con-
tent. Bezem et al. [2014] introduce such a model, based on a category of presheaves
[Cop

,Set], that is, Set-valued functors on the opposite of a certain category C. The
objects of C are finite subsets A of A, where one thinks of the elements of A as a fi-
nite number of named cartesian directions (axes); the morphisms A ! B between two
such finite subsets are functions f : B ! A] {0, 1} satisfying (8b, b0 2 B) f b = f b

0
/2

{0, 1}) b = b

0; such morphisms compose in an evident fashion and there are identity
morphisms for that composition. The category [Cop

,Set] contains a distinguished ob-
ject I, given by the representable presheaf on any one-element subset of A, which acts
like an interval. The representable presheaf C(, A) on an n-element subset A 2 C is
isomorphic to I

n and hence for each X 2 [Cop
,Set], the set X(A) is in bijection with

[Cop
,Set](In, X), the n-cubes of X.

At first the nominal aspect of this description – using finite sets of atoms instead of
finite ordinals for the objects of C – might seem trivial. However, the nominal approach
allows the path space for an object X 2 [Cop

,Set], that is the exponential XI , to be
described by a construction very like name abstraction (Definition 5.1) and to inherit
its good properties. Such path spaces are the (total spaces of) intensional identity types
once one restricts attention to Kan-fibrant objects in [Cop

,Set]; see Bezem et al. [2014,
Section 8.2]. In fact path spaces are not just very like name-abstraction nominal sets,
they actually coincide with them over an equivalence of categories between [Cop

,Set]
and a category of nominal sets equipped with a notion of substitution of 0 or 1 for
names. This equivalence was first noted by Staton in his study of equivalences between

ACM SIGLOG News 68 January 2016, Vol. 3, No. 1

(pre)sheaf categories and nominal sets equipped with substitution structures [Staton
2007; 2010] and provides yet another illustration of point (A) in Section 3. In fact Pitts
[2015b] shows that [Cop

,Set] is also equivalent to a category of finitely supported M -
sets for a certain monoid of substitution operations. The point of this way of describing
cubical sets is two-fold. First, a lot of the theory of group actions to do with support,
freshness and name abstraction extends to monoid-actions. Secondly, by choosing M

suitably one gets, up to equivalence, the latest and (so far) greatest cubical sets model
of homotopy type theory [Cohen et al. 2015].

11. CONCLUSION
I write this article from the UK. It is the first country to allocate research funding
based on its societal impact (www.ref.ac.uk). Leaving aside the question of whether
this is a Good or a Bad Thing (or somewhere in between), I think we can all agree
that it can take a long (possibly infinite) time for some great mathematical ideas to
have impact outside their own area of specialism. For example, the foundational work
of Abraham Fraenkel and Andrzej Mostowski on symmetric models of set theory took
place in Germany and Poland in the 1920s and 1930s. The nominal techniques in com-
puter science that I have described in this article depend in part upon their work and
emerged about 15 years ago. To begin with, the emphasis was on program semantics
and understanding locality of resources. More recently a broader agenda of symmetry-
aware computation has emerged [Bojanczyk et al. 2014]. I hope this article has con-
vinced you that work on nominal techniques is interesting and useful. But maybe it is
still too early to tell what will be the lasting impact of this work on computer science.

REFERENCES
S. Abramsky. 1991. Domain Theory In Logical Form. Annals of Pure and Applied Logic 51 (1991), 1–77.
S. Abramsky and A. Jung. 1994. Domain Theory. In Handbook of Logic in Computer Science, Volume 3.

Semantic Structures, S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum (Eds.). Oxford University Press,
Chapter 1, 1–168. (Corrected and expanded version available via the second author’s web pages.).

S. Awodey. 2010. Category Theory (2nd ed.). Oxford Logic Guides, Vol. 52. Oxford University Press.
B. Aydemir, A. Bohannon, and S. Weirich. 2007. Nominal Reasoning Techniques in Coq: (Ex-

tended Abstract). Electronic Notes in Theoretical Computer Science 174, 5 (2007), 69–77.
DOI:http://dx.doi.org/10.1016/j.entcs.2007.01.028 Proceedings of the First International Workshop on
Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP 2006).

H. P. Barendregt. 1984. The Lambda Calculus: Its Syntax and Semantics (revised ed.). North-Holland.
M. Bezem, T. Coquand, and S. Huber. 2014. A Model of Type Theory in Cubical Sets. In 19th International

Conference on Types for Proofs and Programs (TYPES 2013) (Leibniz International Proceedings in In-
formatics (LIPIcs)), R. Matthes and A. Schubert (Eds.), Vol. 26. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany, 107–128. DOI:http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.107

M. Bojańczyk, L. Braud, B. Klin, and S. Lasota. 2012. Towards Nominal Computation. In 39th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2012), M. Hicks (Ed.).
ACM Press, New York, NY, USA, 401–412.

M. Bojanczyk, B. Klin, A. Kurz, and A. M. Pitts. 2014. Nominal Computation Theory (Dagstuhl Seminar
13422). Dagstuhl Reports 3, 10 (2014), 58–71. DOI:http://dx.doi.org/10.4230/DagRep.3.10.58

M. Bojańczyk, B. Klin, and S. Lasota. 2014. Automata Theory in Nominal Sets. Logical Methods in Computer
Science 10, 3 (Aug. 2014), paper 4.

M. Bojańczyk, B. Klin, S. Lasota, and S. Toruńczyk. 2013. Turing Machines with Atoms. In
Logic in Computer Science (LICS), 2013 28th Annual IEEE/ACM Symposium on. 183–192.
DOI:http://dx.doi.org/10.1109/LICS.2013.24

J. Cheney. 2012. A Dependent Nominal Type Theory. Logical Methods in Computer Science 8 (2012), (1:08).
DOI:http://dx.doi.org/10.2168/LMCS-8(1:8)2012

J. Cheney and C. Urban. 2008. Nominal Logic Programming. Transactions on Programming Languages and
Systems 30, 5 (2008), 1–47. DOI:http://dx.doi.org/10.1145/1387673.1387675

M. Cimini, M. R. Mousavi, M. A. Reniers, and M. J. Gabbay. 2012. Nominal SOS. Electronic Notes in The-
oretical Computer Science 286 (2012), 103–116. DOI:http://dx.doi.org/10.1016/j.entcs.2012.08.008 Pro-

ACM SIGLOG News 69 January 2016, Vol. 3, No. 1

ceedings of the 28th Conference on the Mathematical Foundations of Programming Semantics (MFPS
XXVIII).

C. Cohen, T. Coquand, S. Huber, and A. Mörtberg. 2015. Cubical Type Theory: a Constructive Interpretation
of the Univalence Axiom. (Dec. 2015). Preprint.

Peter Dybjer. 1996. Internal type theory. In Types for Proofs and Programs, S. Berardi and M. Coppo
(Eds.). Lecture Notes in Computer Science, Vol. 1158. Springer Berlin Heidelberg, 120–134.
DOI:http://dx.doi.org/10.1007/3-540-61780-9 66

O. Grumberg E. M. Clarke and D. A. Peled. 2000. Model Checking. MIT Press.
E. Fairweather, M. Fernández, N. Szasz, and A. Tasistro. 2015. Dependent Types for Nominal Terms

with Atom Substitutions. In 13th International Conference on Typed Lambda Calculi and Applica-
tions (TLCA 2015) (Leibniz International Proceedings in Informatics (LIPIcs)), Thorsten Altenkirch
(Ed.), Vol. 38. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 180–195.
DOI:http://dx.doi.org/10.4230/LIPIcs.TLCA.2015.180

M. Fernández, M.J. Gabbay, and I. Mackie. 2004. Nominal Rewriting Systems. In Proc. 6th ACM-SIGPLAN
Symposium on Principles and Practice of Declarative Programming (PPDP’04). ACM Press, 108–119.

A. A. Fraenkel. 1922. Der Begriff ‘definit’ und die Unabhängigkeit des Auswahlsaxioms. Sitzungsberichte
der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse (1922), 253–257.

M. J. Gabbay. 2003. The ⇡-calculus in FM. In Thirty-Five Years of Automating Mathematics, Fairouz Ka-
mareddine (Ed.). Applied Logic, Vol. 28. Kluwer, 71–123.

M. J. Gabbay. 2009. A Study of Substitution, Using Nominal Techniques and Fraenkel-
Mostowski Sets. Theoretical Computer Science 410, 12-13 (March 2009), 1159–1189.
DOI:http://dx.doi.org/10.1016/j.tcs.2008.11.013

M. J. Gabbay. 2011. Foundations of Nominal Techniques: Logic and Semantics of Variables in Abstract
Syntax. Bulletin of Symbolic Logic 17, 2 (2011), 161–229.

M. J. Gabbay and V. Ciancia. 2011. Freshness and Name-Restriction in Sets of Traces with Names. In
Foundations of Software Science and Computation Structures, 14th International Conference (FOSSACS
2011) (Lecture Notes in Computer Science), Vol. 6604. Springer-Verlag, 365–380.

M. J. Gabbay, T. Litak, and D. L. Petrişan. 2011. Stone Duality for Nominal Boolean Algebras with N.
In Algebra and Coalgebra in Computer Science, A. Corradini, B. Klin, and C. Cı̂rstea (Eds.). Lecture
Notes in Computer Science, Vol. 6859. Springer Berlin / Heidelberg, 192–207. http://dx.doi.org/10.1007/
978-3-642-22944-2 14

M. J. Gabbay and A. M. Pitts. 2002. A New Approach to Abstract Syntax with Variable Binding. Formal
Aspects of Computing 13 (2002), 341–363.

F. Gadducci, M. Miculan, and U. Montanari. 2006. About Permutation Algebras, (Pre)sheaves
and Named Sets. Higher-Order and Symbolic Computation 19 (2006), 283–304.
DOI:http://dx.doi.org/10.1007/s10990-006-8749-3

J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. 1977. Initial Algebra Semantics and Continu-
ous Algebras. J. ACM 24 (1977), 68–95.

P. T. Johnstone. 2002. Sketches of an Elephant, A Topos Theory Compendium, Volumes 1 and 2. Number
43–44 in Oxford Logic Guides. Oxford University Press.

M. Kaminski and N. Francez. 1994. Finite-Memory Automata. Theoretical Computer Science 134, 2 (1994),
329–363.

D. Kozen, K. Mamouras, D. L. Petrişan, and A. Silva. 2015. Nominal Kleene Coalgebra. In Automata, Lan-
guages, and Programming. Lecture Notes in Computer Science, Vol. 9135. Springer Berlin Heidelberg,
286–298. DOI:http://dx.doi.org/10.1007/978-3-662-47666-6 23

A. Kurz, D. L. Petrişan, P. Severi, and F.-J. de Vries. 2013. Nominal Coalgebraic Data Types with Applica-
tions to Lambda Calculus. Logical Methods in Computer Science 9, 4:20 (Dec. 2013).

J. Lambek and P. J. Scott. 1986. Introduction to Higher Order Categorical Logic. Cambridge University
Press.

S. Lösch. 2014. Program Equivalence in Functional Metaprogramming via Nominal Scott Domains. Ph.D.
Dissertation. University of Cambridge.

S. Lösch and A. M. Pitts. 2014. Denotational Semantics with Nominal Scott Domains. Journal of the ACM
61, 4 (July 2014), 27:1–27:46. DOI:http://dx.doi.org/10.1145/2629529

S. MacLane. 1971. Categories for the Working Mathematician. Springer.
R. Milner, J. Parrow, and D. Walker. 1992. A Calculus of Mobile Processes (Parts I and II). Information and

Computation 100 (1992), 1–77.

ACM SIGLOG News 70 January 2016, Vol. 3, No. 1

U. Montanari and M. Pistore. 2000. ⇡-Calculus, Structured Coalgebras and Minimal HD-Automata. In 25th
International Symposium on Mathematical Foundations of Computer Science, Bratislava, Slovak Re-
public, (Lecture Notes in Computer Science), Vol. 1893. Springer-Verlag, 569–578.

A. Mostowski. 1939. Uber die Unabhängigkeit des Wohlordnungssatzes vom Ordnungsprinzip. Fundamenta
Mathematicae (1939), 201–252.

A. Murawski and N. Tzevelekos. 2013. Towards Nominal Abramsky. In Computation, Logic, Games, and
Quantum Foundations. The Many Facets of Samson Abramsky, B. Coecke, L. Ong, and P. Panan-
gaden (Eds.). Lecture Notes in Computer Science, Vol. 7860. Springer Berlin Heidelberg, 246–263.
DOI:http://dx.doi.org/10.1007/978-3-642-38164-5 17

M. Odersky. 1994. A Functional Theory of Local Names. In Conference Record of the 21st Annual ACM
Symposium on Principles of Programming Languages. ACM Press, 48–59.

A.M. Pitts. 2015a. Names and Symmetry in Computer Science (Invited Tutorial). In Logic in Computer
Science (LICS), 2015 30th Annual ACM/IEEE Symposium on. IEEE Computer Society Press, 21–22.
DOI:http://dx.doi.org/10.1109/LICS.2015.12

A. M. Pitts. 2006. Alpha-Structural Recursion and Induction. Journal of the ACM 53 (2006), 459–506.
DOI:http://dx.doi.org/10.1145/1147954.1147961

A. M. Pitts. 2013. Nominal Sets: Names and Symmetry in Computer Science. Cambridge Tracts in Theoreti-
cal Computer Science, Vol. 57. Cambridge University Press.

A. M. Pitts. 2015b. Nominal Presentations of the Cubical Sets Model of Type Theory. In 20th International
Conference on Types for Proofs and Programs (TYPES 2014) (Leibniz International Proceedings in In-
formatics (LIPIcs)), H. Herbelin, P. Letouzey, and M. Sozeau (Eds.). Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, ?–? to appear.

A. M. Pitts, J. Matthiesen, and J. Derikx. 2015. A Dependent Type Theory with Abstractable Names. In
Proceedings of the 9th Workshop on Logical and Semantic Frameworks, with Applications (LSFA 2014)
(Electronic Notes in Theoretical Computer Science), I. Mackie and M. Ayala-Rincon (Eds.), Vol. 312.
Elsevier, 19–50. DOI:http://dx.doi.org/10.1016/j.entcs.2015.04.003

G. D. Plotkin. 1977. LCF Considered as a Programming Language. Theoretical Computer Science 5 (1977),
223–255.

R. Rado. 1964. Universal Graphs and Universal Functions. Acta Arithmetica 9 (1964), 331–340.
U. Schöpp. 2006. Names and Binding in Type Theory. Ph.D. Dissertation. University of Edinburgh.
U. Schöpp and I. D. B. Stark. 2004. A Dependent Type Theory with Names and Binding. In Computer Science

Logic, CSL04, Karpacz, Poland (Lecture Notes in Computer Science), Vol. 3210. Springer-Verlag, 235–
249.

D. S. Scott. 1982. Domains for Denotational Semantics. In Automata, Languages and Programming, Pro-
ceedings 1982 (Lecture Notes in Computer Science), M. Nielson and E. M. Schmidt (Eds.), Vol. 140.
Springer-Verlag, Berlin, 577–610.

M. R. Shinwell. 2003. Swapping the Atom: Programming with Binders in Fresh O’Caml. In Second ACM
SIGPLAN Workshop on Mechanized Reasoning about Languages with Variable Binding, MERLIN’03,
Uppsala, Sweden, August 2003. ACM Press.

M. R. Shinwell. 2005. Fresh O’Caml: Nominal Abstract Syntax for the Masses. In 2005 ACM SIGPLAN
Workshop on ML (ML 2005), Tallinn, Estonia (Electronic Notes in Theoretical Computer Science), P. N.
Benton and X. Leroy (Eds.). Elsevier, 53–76.

M. R. Shinwell and A. M. Pitts. 2005. On a Monadic Semantics for Freshness. Theoretical Computer Science
342 (2005), 28–55.

M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. 2003. FreshML: Programming with Binders Made Simple.
In Eighth ACM SIGPLAN International Conference on Functional Programming (ICFP 2003), Uppsala,
Sweden. ACM Press, 263–274.

S. Staton. 2007. Name-Passing Process Calculi: Operational Models and Structural Operational Semantics.
Ph.D. Dissertation. University of Cambridge. Available as University of Cambridge Computer Labora-
tory Technical Report Number UCAM-CL-TR-688.

S. Staton. 2010. Completeness for Algebraic Theories of Local State. In Foundations of Software Science and
Computational Structures, L. Ong (Ed.). Lecture Notes in Computer Science, Vol. 6014. Springer Berlin
Heidelberg, 48–63. DOI:http://dx.doi.org/10.1007/978-3-642-12032-9 5

A. Swan. 2014. An Algebraic Weak Factorisation System on 01-Substitution Sets: A Constructive Proof.
ArXiv e-prints arXiv:1409.1829 (Sept. 2014). http://arxiv.org/abs/1409.1829

D. C. Turner. 2009. Nominal Domain Theory for Concurrency. Ph.D. Dissertation. University of Cambridge.
Available as University of Cambridge Computer Laboratory Technical Report UCAM-CL-TR-751.

ACM SIGLOG News 71 January 2016, Vol. 3, No. 1

D. C. Turner and G. Winskel. 2009. Nominal Domain Theory for Concurrency. In Computer Science Logic,
E. Grädel and R. Kahle (Eds.). Lecture Notes in Computer Science, Vol. 5771. Springer-Verlag, 546–560.
http://dx.doi.org/10.1007/978-3-642-04027-6 39

N. Tzevelekos. 2011. Fresh-Register Automata. In 38th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL 2011). ACM, New York, NY, USA, 295–306.
DOI:http://dx.doi.org/10.1145/1926385.1926420

The Univalent Foundations Program. 2013. Homotopy Type Theory: Univalent Foundations for Mathematics.
http://homotopytypetheory.org/book, Institute for Advanced Study.

C. Urban, A. M. Pitts, and M. J. Gabbay. 2004. Nominal Unification. Theoretical Computer Science 323
(2004), 473–497.

C. Urban and C. Tasson. 2005. Nominal Techniques in Isabelle/HOL. In 20th International Conference on
Automated Deduction, CADE-20, Tallinn, Estonia, July 2005 (Lecture Notes in Computer Science), Vol.
3632. Springer-Verlag, 38–53.

S. Vickers. 1989. Topology via Logic. Cambridge Tracts in Theoretical Computer Science, Vol. 5. Cambridge
University Press.

E. Westbrook, A. Stump, and E. Austin. 2009. The Calculus of Nominal Inductive Constructions: an Inten-
sional Approach to Encoding Name-Bindings. In Proceedings of the Fourth International Workshop on
Logical Frameworks and Meta-languages: Theory and Practice (LFMTP 2009), Montreal, Canada (ACM
International Conference Proceeding Series). ACM Press, 74–83.

ACM SIGLOG News 72 January 2016, Vol. 3, No. 1

