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 THE JOURNAL OF SYMBOLIC LOGIC

 Volume 57, Number 1, March 1992

 ON AN INTERPRETATION OF SECOND ORDER
 QUANTIFICATION IN FIRST ORDER INTUITIONISTIC

 PROPOSITIONAL LOGIC

 ANDREW M. PITTS

 Abstract. We prove the following surprising property of Heyting's intuitionistic propositional calculus,

 IpC. Consider the collection of formulas, ?, built up from propositional variables (p, q, r, . . .) and falsity

 (I) using conjunction ( A ), disjunction ( v ) and implication (-a). Write H?o to indicate that such a
 formula is intuitionistically valid. We show that for each variable p and formula ? there exists a formula

 Apo (effectively computable from 0), containing only variables not equal to p which occur in 0, and such

 that for all formulas / not involvingp, H-ii AP- if and only if H- / -+ 0. Consequently quantification
 over propositional variables can be modelled in IpC, and there is an interpretation of the second order

 propositional calculus, IpC2, in IpC which restricts to the identity on first order propositions.

 An immediate corollary is the strengthening of the usual interpolation theorem for IpC to the statement

 that there are least and greatest interpolant formulas for any given pair of formulas. The result also has a

 number of interesting consequences for the algebraic counterpart of IpC, the theory of Heyting algebras.

 In particular we show that a model of IpC2 can be constructed whose algebra of truth-values is equal to any

 given Heyting algebra.

 ?1. Introduction. This paper establishes a new and rather surprising property of
 Heyting's intuitionistic propositional calculus IpC. We show that quantification
 over propositional variables can be modelled in IpC, and hence that there is an
 interpretation of the second order propositional calculus IpC2 in IpC which re-
 stricts to the identity on first order propositions. In order to state this result more
 precisely, we briefly recall the syntax and proof theory of first and second order
 intuitionistic propositional logic.

 We will take the first order propositions, 0, to be given by the following grammar:

 ::= l PIII A O' v O'I ',

 where p ranges over a set of propositional variables. Negation, truth and bi-
 implication can be defined in the usual way:

 def def d-f

 --I =q I, T =n1 -- - 0 0- ' A ($-q)
 Table 1 gives a collection of natural deduction style rules for IpC. The premisses

 and conclusion of each rule are sequents, F , which we take to be specified by a
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 34 ANDREW M. PITTS

 finite multiset (unordered list) F of first order propositions and a single first order

 proposition b. The use of multisets rather than sets in sequents will be important

 when we consider the "size" of sequents in ?2. For the moment, we note that since the

 order of formulas in F is immaterial, an explicit structural rule of exchange is not

 needed. As usual, we identify formulas with one-element multisets, and write Fz for

 the union of two multisets F and zi. We will write

 IpC H F

 to indicate that the sequent is provable using the rules in Table 1. The new property

 of IpC which we establish here is:
 THEOREM 1. Given a propositional variable p, for each first order proposition +

 there is a first order proposition Apo, containing only variables not equal to p which
 occur in 0, and satisfying:

 (i) If IpC F r 0, then IpC H F r Apo, provided p does not occur in F.
 (ii) If IpC F r AP , then for all /, IpC H F 44 / [up] (where 4 [)/p] denotes

 the result of substituting t for p throughout 0.
 This theorem will be proved in ?2 using proof-theoretic methods. The key tool is

 the use of a Gentzen-style sequent calculus for IpC for which there is a well-founded
 relation on sequents making the hypotheses of each rule of the calculus less than

 its conclusion. (The first order proposition Apo will be defined by recursion over
 this well-founded relation.) The particular sequent calculus we use is that given
 (independently) by Hudelmaier [6] and Dyckhoff [4]; its implicational part (the
 most important part) also occurs in the work of Lincoln, Scedrov and Shankar [8].
 In fact, essentially similar refinements of the sequent calculus for IpC were de-

 veloped by the Soviet school of proof theory some time ago-see Vorob'ev [13].

 TABLE 1. Natural deduction rules for IpC.

 F # (Weaken) rF140 , (Contract)
 Fq$=0 F0 =>

 0 (Id)

 F= I

 F (_lElim)

 0 ( A Intr) F 0 ( A Elim) F= 0 ( A EliM2)
 FJ => qAt/ F => b

 V(V IntrF) ( v Intr2)
 F => qvt/ F => qvt/

 F0b=>O At/u=>O 0> raw F=ArQ<Eb- no s t V V ( v Elim)
 rare~~F 0 T+8 0 c -,a

This content downloaded from 128.232.109.87 on Thu, 20 Dec 2018 15:33:00 UTC
All use subject to https://about.jstor.org/terms



 INTERPRETATION OF SECOND ORDER QUANTIFICATION 35

 REMARK 2. It is perhaps worth pointing out that the analogue of Theorem 1

 for classical logic is rather trivially true, since there we may take Apo to be
 O[T/p] A 0[I/p].

 The existence of first order propositions Apo satisfying Theorem 1 enables one to
 interpret in IpC the second order intuitionistic propositional logic IpC2, a logic which
 extends IpC with quantification over propositional variables. As is well known,
 in this logic implication and universal quantification suffice to define the other
 connectives and existential quantification-see [11]. However, we will take the
 second order propositions to be given by the grammar

 0::= pi I 1A q'Jq$ V k'(k4+)'IVpo
 in order that they be a superset of the first order propositions. The natural deduction

 rules for Vpo are given in Table 2. Occurrences of p in 4 become bound in Vpo; all
 other types of occurrence of variables are free. We will write

 IpC2 -F =r

 to indicate that a sequent of second order propositions can be proved using the rules
 in Tables 1 and 2.

 TABLE 2. Natural deduction rules for V

 (*provided p is not free in F).

 F => 0 (Vlntr)* F tf>r/ ] (VElim)

 In ?3 we use Theorem 1 to define a translation of second order propositions, 4,
 into first order ones, 4*. The translation has the following properties:

 (i) If IpC2 F- F = a, then IpC H F* .- 0* (where F* indicates the translation
 applied elementwise to the multiset F).

 (ii) p* p, I*I, (0#I)* = 0*#I* (for # A, v, -), and hence in par-
 ticular k* = < for all first order propositions 4.

 See Proposition 9 below for more details. An immediate corollary of the existence
 of such an interpretation is a strengthening of the usual interpolation theorem for
 IpC. Recall that the latter says that, given first order propositions 4 and / for which
 4 => / is provable in IpC, there is some first order proposition 0 containing only
 variables common to both 0 and A, and for which both 0 :- 0 and 0 => IP are
 provable. Here we establish (Proposition 11) that the collection of such interpolant
 propositions is not merely nonempty but in fact contains least and greatest elements
 (with respect to the provability ordering for IpC).'

 Theorem 1 also has interesting consequences for the theory of Heyting algebras,
 a theory which bears the same relationship to IpC as does the theory of Boolean
 algebras to classical propositional logic. In ?4 we establish a form of "second order
 completeness" for Heyting algebras: letting H[X] denote the Heyting algebra
 obtained by adjoining an indeterminate X to a given Heyting algebra H, we prove
 (Theorem 13) that the inclusion iH: H c--+ H[X] possesses both left and right adjoints,

 'The author is grateful to G. R. Renardel de Lavalette for pointing out that this solves his open
 problem 6.5 in [14].
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 36 ANDREW M. PITTS

 i.e. there are monotone functions aH, eH: H [X] >+ H satisfying (eH ? i) = idH =
 (aH ? iH) and (iH aH) < idH[X] < (iH eH)- Moreover, these adjoints are natural in
 H in the category-theoretic sense. It follows from this that, given any Heyting

 algebra H, the generic model of the algebraic theory of "Heyting algebras equipped
 with a morphism from H" is actually a model of IpC2. Since the algebra of truth-
 values of this model is just H, we conclude (Proposition 18) that any Heyting algebra
 can appear as the algebra of truth-values of a model of IpC2. Equivalently, any
 Heyting algebra can appear as the Lindenbaum algebra of a second order intuition-
 istic theory.

 The results presented in this paper have had a rather long gestation period. Some
 ten or so years ago I tried to prove the negation of Theorem 1 in connection with
 the higher order analogue of Proposition 18- the question of whether any Heyting
 algebra can appear as the algebra of truth-values of an elementary topos. I estab-
 lished that the free Heyting algebra on a countable infinity of generators does
 not so appear provided the property of IpC given in Theorem 1 does not hold. It
 seemed likely to me (and to others to whom I posed the question) that a first order

 proposition 0 could be found for which Apo does not exist (although I could not find
 one!), thus settling the original question about toposes and Heyting algebras in the
 negative. That Theorem 1 is true is quite a surprise to me. Unfortunately, it appears
 that not all the results for second order logic reported here generalize to the set-
 ting of higher order logic. Whilst it is the case that Theorem 1 remains true if IpC
 is replaced by a quantifier-free fragment of intuitionistic higher order logic, the
 substitution property of Lemma 8 fails (so that one does not get an interpretation of
 full higher order logic in its quantifier-free fragment). It remains an open question
 whether every Heyting algebra can be the Lindenbaum algebra of a theory in
 intuitionistic higher order logic.

 Acknowledgement. I would like to thank R. Dyckhoff for bringing to my atten-
 tion the particular sequent calculus for IpC used in this paper. I would also like to
 thank him, A. Scedrov and G. Mints for elucidating its history.

 ?2. Proof of Theorem 1. Our proof will use the methods of proof theory. To be
 more precise, we will employ a certain refinement of the cut-free Gentzen sequent
 calculus for IpC, and we begin by explaining that.

 Table 3 contains a fairly standard cut-free sequent calculus for IpC. This
 formulation of the sequent calculus has essential uses of the structural rules
 (Weaken) and (Contract) of Table 1 built in implicitly: weakening is built in via the
 (Atom) axiom, and an essential use of contraction is built in to the rule (-+ =m) by
 repeating the active proposition k -+ t in the first premiss of the rule. We refer the
 reader to [3, Part 1, ?3] for a proof of the fact that (Weaken), (Contract), (Id) and the
 cut rule

 are all derivable from the rules in Table 3, and hence that these rules determine the
 same provable sequents as do those in Table 1.
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 INTERPRETATION OF SECOND ORDER QUANTIFICATION 37

 TABLE 3. Sequent calculus for IpC

 (*where p is any propositional variable).

 Fp => (Atom)*

 FTI => I~

 F =>q F => Fi(>
 b ( v1) F=' A) v e) (A O

 F r> 0t , = VJ) F r g,#i, V2) FO =e, 0 F#) => 0 (V A) F => q vt F => qvt F(Obv i) =>

 F0 = Ft(O ,)r( 0 F+ ro 0

 TABLE 4. Replacements for(- =>)
 (*where p is any propositional variable).

 Fpob => i/i)
 Fp(p -+ ) => 1

 F(q1 + (02 >q3)) => 2)
 Q01 lA 02) >03) i/ 2

 F(0 +l 03)(02 >+ 03) '> 3 ,)
 Q0(1 V 02) 0 3) -> +

 F(02 -+03) =q$-1 02 Fb3 => 4,
 Q0(1 '+ 02) 0 3) =>

 Note that (->=.) is the only rule in Table 3 which fails to have the property that its
 premisses are structurally simpler than its conclusion. Following Dyckhoff [4] and
 Hudelmaier [6], we can overcome this defect by replacing (-+ =>) by the four rules
 shown in Table 4. The new rules correspond to the possible forms of the antecedent
 of the introduced implication-except that a separate rule is not needed for the case
 when the antecedent is I (since the appropriate rule is an instance of weakening).

 We will refer to the system of rules obtained from Table 3 by replacing (- =>) by
 the rules in Table 4 as LJ*. Clearly any sequent provable in LJ* is intuitionistically
 valid, since the rules in Table 4 are all derivable in IpC; the converse is also true, so
 that one has:

 THEOREM 3. IpC F- F r 0 if and only if the sequent is provable in LJ*.
 We refer the reader to [4, Theorem 1] for a proof of this result.
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 38 ANDREW M. PITTS

 DEFINITION 4. The weight, wt(o), of a first order proposition 4 is a positive
 integer defined by induction on the structure of 0 as follows:

 wt(p) wt(I) = 1,

 wt(M v 0 = wt(M O 0 = wt()) + wt() + 1,
 wt(o A I) = wt()) + wt(V) + 2.

 This weight function defines a well-ordering -< on first order propositions via the

 definition

 -< t/i if and only if wt(o) < wt(/).

 Now extend < to a relation between finite multisets of propositions via the

 multiset ordering construction of Dershowitz and Manna. Thus F -< A holds if and

 only if A = 'A112 and F = 1 2, for some z11, /12 and F2 with /12 nonempty and such
 that for all y E F2 there exists 6 E /12 with y -< 6. As shown in [2], this relation
 between multisets is well-founded because the original relation on propositions is.

 Finally, define a well-founded relation on sequents by declaring

 (F =. 4) -< (J =O

 to hold just in case F4 -< z A. Note that each rule in LJ* has the property that a
 (premiss, conclusion)-pair lies in this relation between sequents.

 We turn now to the proof of Theorem 1. Recall that in second order intuitionistic

 propositional logic, existentially quantified propositions 3po are definable in terms
 of V and ->:

 P.del
 3p4) = Vq(Vp(o -+ q) -+ q)

 (where q is not free in 4). It follows that the existence of the first order propositions

 Apo for all 4, with properties as in Theorem 1, entails the existence of first order
 propositions Ep4 which model the existentially quantified proposition 3p+. In fact
 to prove the theorem, we will need to define Apo and Epic simultaneously via mutual
 recursion. Moreover, we will need to give the definitions for multisets of formulas

 rather than for single formulas 4, in order to utilize LJ* to prove the required
 properties of the construction.

 PROPOSITION 5. Let a be a finite multiset of first order propositions and 4 a single

 first order proposition. For each variable p there are first order propositions Ep(z1) and

 Ap(z1; o) satisfying the following conditions:
 (i) (a) Var(E,(z1)) c Var(A )\tp}, and
 (b) Var(Ap(,J; 0)) c Var(Jo)\jpj,

 where Var(z) denotes the finite set of propositional variables in a.

 (ii) (a) IpC F- a Ep(z1), and
 (b) IpC F-AAp(A; 4 ;.
 Moreover, for all finite multisets F of first order propositions not containing p, if

 IpCI- Fa =- 4, then:

 (iii) (a) IpC I- FEP(z) => 4, provided p 0 Var()), and
 (b) IpC F- FEp(z) = Ap(A; O).
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 INTERPRETATION OF SECOND ORDER QUANTIFICATION 39

 Theorem 1 follows immediately from Proposition 5 if we make the definition

 def

 For if IpC I- F r - with p 0 Var(F), then by 5(iii)(b)

 IpC F- FEp(0) => Ap(0; )

 and by 5(ii)(a)

 IpC F- 0 =Ep(0),

 which together give IpC F- F r Apo, as required for part (i) of the theorem. For
 part (ii) of the theorem, note that 5(ii)(b) gives IpC F- Apo . Hence the sequent
 obtained from this one by substituting a proposition / for p throughout is also

 provable; but by 5(i)(b) p 0 Var(Apo), so the result of such a substitution is
 IpC F- Apo e 0[/1/p]. So IpC F- F r - 9[/p] holds whenever IpC F- ApF
 does, as required.

 REMARK 6. Properties (i)(a), (ii)(a) and (iii)(a) together imply that EP(z1) acts like
 the existentially quantified formula ]p(Az) (where AA denotes the conjunction of
 the formulas in A). However, properties (i)(b), (ii)(a), (ii)(b) and (iii)(b) imply that it is

 Ep(z) -+ Ap(z; O ), rather than just Ap(z; 44 which acts like the universally quantified
 formula Vp(Az -+ 0). This is because of the appearance of EP(z) in (iii)(b)-a
 complication which is needed to carry through the proof of (iii). This proof proceeds
 by induction on the structure of the proof of Fz - - in LJ*, and it is the case where
 the proof ends with the active formula an implication contained in F which requires

 us to prove (iii)(b) rather than IpC F- F r AP(O; O.
 The rest of this section will be devoted to the proof of Proposition 5.

 The formulas Ep(z) and Ap(z; O) are defined simultaneously by <-induction on
 Ad (where -< is the well-founded relation of Definition 4). At each stage, we define

 EP(z) as the conjunction of a finite set of formulas &p(A) and Ap(z; O) as the dis-
 junction of a finite set of formulas slp(z; 0):

 Ead-A&P(J), APO; od- VdP(J; O)

 The elements of the finite sets 6P(a) and -/p(a; o) are given by Table 5, with one
 element for each match of a and a ;o to the patterns listed in the left-hand column of
 the table. It is quite possible that in a particular case there are no matches, so that

 &p(A) or '/ (A; o) is empty-in which case Ep(A) = AZ f T and Ap(A; +)

 It follows easily by <-induction on a o that Ep(A) and Ap(A; O) are built up from
 subformulas of an and that they do not contain p. So 5(i) holds.

 The validity of the sequents in 5(ii) is proved simultaneously by <-induction on
 a+. At each stage we have to show that IpC F- a E and IpC F--a Ac : hold for

 each E E &p(A) and each a E s?p(A; O). For each of the cases (EO)-(E8) and (A1)-
 (A13) of Table 5, this follows from the induction hypothesis by straightforward
 proofs in IpC.

 We turn now to 5(iii); this is proved by induction on the structure of a proof of

 FA + 0 in LJ*, with one case for each proof rule:
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 40 ANDREW M. PITTS

 TABLE 5. Definition of EP(z) and Ap(z; 4)
 (q denotes any propositional variable not equal to p).

 a matches 6fp(A) contains

 (EO) 'Al I

 (E1) l'dq Ep(z1') A q

 (E2) aT(61 A 62) Ep(z'bl 62)

 (E3) zl'(61 v 62) Ep(z1'61) V Ep(1'62)

 (E4) a'(q -*6) q- Ep(J'b)
 (E5) Ap(p -*6) Ep(z1'pb)

 (E6) zT((61 A 62) 63) E(z'(61 (62 63)))

 (E7) a'((1 v 62) 63) E(z'(1 63)(62 + 63))

 (E8) z'((61 -* 62) 63) [Ep(A'(62 63)) -- A,(A'(62 63); 61 62)] E,(A'63)

 a; 4 matches 4p(A; 4) contains

 (A1) J'q;4) AP(A'; 4)
 (A2) Az'(6 A 62); 4 AP(A'6162; 4)

 (A3) a'(61 v 62); 4) [Ep(az'61) AP(A'61; 4)] A [EP(Az'62) -+ A,(Az'62; 4)]
 (A4) A'(q -+ 6); 4 q A AP(A'; )
 (AS) A'p(p -+ ); 0 AP(A'pb; O
 (A6) A'((6l A 62) 63); 4 AP(A'(61 (62 -+ 63)); 0)
 (A7) az'((bl v 62) 63); 4) AP(A'(61 -3)(62 -* 63); 4)
 (A8) A '((l -* 62) 63); 4 [Ep(a (62 3)) A '(z '(2 63); 61 62)] A AP(A '63; 4
 (A9) a; q q

 (A10) A'p; p T

 (Al l) a ; 01 A 02 AP(A ; 1) A AP(A; 02)
 (A 12) A; 41 v 02 A2(z; 4) v Ap(J; 42)

 (A 13) A; 01 )02 EP(z01) -* AP(A1; 02)

 Case (Atom). So 0 is a propositional variable and is an element of ra, i.e.
 ) e F or 0 e A. We will split the argument into two subcases according to whether
 4 is the variable p or not.

 Subcase 4 = p. In this case we just have to check that (b) holds for Fz - 4.
 Since p 4 F, we must have A = A'p. Then case (A10) of Table 5 gives IpC F- T =>
 Ap(A'p; p), from which (b) follows.

 Subcase 4 # p. We know that either 4 e F or 4 e A. In the first case (a) holds
 for rA => 0 by (Atom), and (b) follows from (a) because, by case (A9) of Table 5,

 IpC F- 4 + Ap(A; 4). On the other hand, if 4 e A, say A = A'4, case (E1) of Table 5
 gives IpC F- Ep(A '4)) EP(A') A 0, from which (a) for TA 4) follows; and as before
 (b) follows from (a) by case (A 9).

 Case ( =). So l e TA. If I e F then (a) and (b) hold by( If I e a, then, by
 case (EO) of Table 5, [-EP(A) * 1, from which (a) and (b) follow.
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 INTERPRETATION OF SECOND ORDER QUANTIFICATION 41

 Case (=a A). So 0 = f1 A 02, F[-TA - 4i (i = 1, 2), and (a) and (b) hold for these
 sequents by the induction hypothesis.

 (a) If p 0 Var(o) then p 0 Var(oE), so by (a) for Fz h i we have

 IpC F- FEp(z1) =-

 for i = 1, 2, from which (a) for Fz =+ 0 follows.
 (b) By (b) for Fz h i we have [-FEP(z1) = Ap(zl; 0i) for i = 1, 2, and hence

 IpC F- FEp(z) = Ap(z1; 01) A Ap(z1; b2).

 But by case (All) of Table 5

 IpC F- Ap(z1; 01) A Ap(z1; 02) -- Ap(z1; /4

 So (b) for Fz - - follows.

 Case (A =a). Subcase 1. F = F'(y A Y2), IpC F- F'y1y2zl - 0, and (a) and (b)
 hold for this sequent by the induction hypothesis. Hence (a) and (b) hold for Fz - -
 by an application of (A =a).

 Subcase 2. a = a(61 A 62), IpC F- FA'j12 - -, and (a) and (b) hold for this
 sequent by the induction hypothesis. From this it follows that (a) and (b) hold for

 Fa + 0, since by cases (E2) and (A2) of Table 5 we have

 IpC F- Ep(A) - Ep(A'6162), IpC F- Ap(A'3162; 0) = Ap,(A; /).

 Case (=L vi). This case is analogous to that for (=>A), using case (A 12) of
 Table 5.

 Case (v =-). Subcase 1. F = F'(y v Y2), IpC F-- F'yA + 0 (i = 1,2), and (a)
 and (b) hold for these sequents by the induction hypothesis. Hence (a) and (b) hold
 for FA - - by an application of (v =a).

 Subcase 2. a = A'(61 v 2), IpC F- FA'bi - - (i = 1, 2), and (a) and (b) hold for
 these sequents by the induction hypothesis.

 (a) If p 0 Var(o), then by (a) for FA'bi '5 we have

 IpC F- FEp(A 'bi) =
 for i = 1, 2, and thus

 IpC F- F(Ep(,J'61) v Ep(,J'61)) =>0

 But by case (E3) of Table 5

 IpC F- Ep(A) = Ep(A'61) v Ep(A 1),

 and hence (a) holds for FA .

 (b) By (b) for FA'bi '5 we have

 IpC F- FEP(A'bi) = Ap(A 'bi; X)
 for i = 1, 2, and thus

 IpC F-- F - (Ep(a'61) -+ Ap(a'61; 4)) A (Ep(a'62) -) Ap(A '2; 4))-
 But by case (A3) of Table 5

 IpC F- (Ep(A'61) -) Ap(A'61; 4)) A (Ep(A'32) -) Ap(A'62; 4)) = Ap(A; 4),

 so that IpC F- F r A,(A; O), and hence in particular (b) holds for FA .
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 42 ANDREW M. PITTS

 Case (oh). So 1 = 01 -+ 02, IpC F- FZ a1 + 02, and (a) and (b) hold for this
 sequent by the induction hypothesis.

 (a) If p 0 Var()), then p 0 Var(oi) for i = 1, 2. So by (a) for Fai, l 02we have

 IpC F- Fra1EP(z) =- 2,

 and hence, by an application of (=a -A), (a) holds for Fz =a 1.

 (b) By (b) for Fr /PI) 02 we have

 IpC F- FEP(zd1 1) = Ap(z1 01; 02).

 But since

 IpC F- (EP(z11)1) -> AP(z1; 012)) - Ap(z; ))

 holds by case (A 13) of Table 5, we get IpC F- F -r Ap(z1; .), and so in particular (b)
 holds for FA = 1.

 Case (-I = 1). For this rule there are four subcases to consider according to how
 the active formula and its atomic antecedent occur in FA.

 Subcase 1. F = F'q(q -) y) with q :# p (because p 0 Var(F)), IpC F- F'qyz -= :),
 and (a) and (b) hold for this sequent by the induction hypothesis. Consequently (a)

 and (b) hold for FA + 1 as well, by an application of (-+=>1).
 Subcase 2. F = F'q, a = z'(q -> 5), IpC F- F'qA'b 1), and (a) and (b) hold for

 this sequent by the induction hypothesis.

 (a) If p 0 Var(o), then by (a) for F'qz'. + 1 we have

 IpC F- F'qEp(z1'b) + 1,

 and hence

 IpC F- F(q -) Ep(z1'6)) :- 1

 by an application of (> 1). But by case (E4) of Table 5 we also have

 IpC F- EP(z) = - q -)Ep(a )

 and hence (a) holds for Fz =a 1.
 (b) By (b) for F'qA'b + 1 we have

 IpC F- F'qEp(A'5b) = Ap(A'.5; .),
 and hence

 IpC F- F(q -) Ep(A'.5)) - q A Ap(A'.5; 1).

 But by cases (E4) and (A4) of Table 5, we also have

 IpC F- Ep(A) => q -Ep('),
 IpC F- q A Ap(A'.5; o) = Ap(zJ; O),

 and hence (b) holds for FA = 0.
 Subcase 3. F = F'(q -) y), A = a'q, IpC F- F'qyA' , and (a) and (b) hold for

 this sequent by the induction hypothesis.

 (a) If p 0 Var(o) then by (a) for F'qyA' + 1 we have

 IpC F- F'qTyEP(z') + ),
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 and hence

 IpC F- F(q A Ep(z1')) - =

 But by case (El) of Table 5 we have

 IpC F- EP(z) = q A Ep(at)

 and hence (a) holds for Fza - -.

 (b) By (b) for F'qyzl' 0 we have

 IpC F- F'qyEp(z1') - Ap(z'; O.

 and hence

 F-F(q A Ep(z1')) = Ap,(z';
 But by cases (El) and (Al) of Table 5, we have

 IpC F- EP(z) = q A Ep(at)

 IpC F- Ap(z1'; ) Ap(z; O.
 and hence (b) holds for Fz - -.

 Subcase 4. a = A'd(d >-+ ) with d a propositional variable, IpC F- Fz'db =,
 and (a) and (b) hold for this sequent by the induction hypothesis.

 Subsubcase d = p. (a) If p 0 Var(o), then by (a) for Fzl'p5 we have

 IpC F- FEp(A'pb) = .
 But by case (ES) of Table S we also have

 IpC F- Ep(z1) = Ep(A 'pb),

 and hence (a) holds for Fz - -.

 (b) By (b) for F21'p. - 0 we have

 IpC F- FEp(A 'pb) A (A 'p; .

 Hence, using cases (ES) and (AS) of Table 5, we get (a) for FA =.
 Subsubcase d # p. (a) If p 0 Var(o), then by (a) for FA'db - - we have

 IpC F- FdEp(A'5b) = .

 But by cases (El) and (E4) of Table S we have

 IpC F- Ep(A) = Ep(A'(d >.)) A d - (d -) Ep(a'.5)) A d = Ep(a'.5) A d,

 and hence (a) holds for Fa -.
 (b) By (b) for FA'db we have

 IpC F- FdEp(A'b) Ap(A'.; O.,
 and hence

 IpC F- FEP(a'.5) A d - d A Ap(a5; o

 But as above, by cases (El) and (E4) of Table S we have IpC F- EP(a) Ep(a'5) A d;
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 and similarly, by cases (A4) and (Al) we have

 IpC F- d A Ap(z1'b; ) Ap(z'(d --+ (); ) :- Ap(z'd(d >-+ (); 4
 Hence (b) holds for Fz =a b.

 Case (- => 2). This case is analogous to that for (A A), using cases (E6) and (A6)
 of Table 5.

 Case (-?=>3). This case is analogous to that for (A -:), using cases (E7) and (A7)
 of Table 5.

 Case (- =>4). Subcase 1. F = F'((yl -+ Y2) - y3), IpC I- F'(y2 -> y3)A - 1 2,
 IpC F- F'y3A , and (a) and (b) hold for these sequents by the induction
 hypothesis, i.e.

 IpC F- F'(y2 -+ y3)Ep(z1) : T1 > 2,

 IpC F- F'y33Ep(z) A(z; O.)
 and

 IpC F- F'y3Ep(z1) As

 when p 0 Var(o). Then (a) and (b) for Fz -J follow from these by an application of
 =:> 4)-
 Subcase 2. A = z'a(((1 -+ 2) (33), IpC F- Fz'((2 (33) (31 ( 2, IpC F- Fz'3

 = , and (a) and (b) hold for these sequents by the induction hypothesis, i.e.

 (2) IpC F- FEP(z'((2 - 63)) A,,Ap(z'((2 -+ (3); (1 -) (2),
 (3) IpC F- FEp(z'(3) A:- Ap('(3; O)

 and

 (4) IpC F- FEp(z1'(3) :

 when p 0 Var(o)-in which case, combining (2), (4) and case (E8) of Table 5, we have
 that (a) holds for Fz - . For (b), from (2) we get

 (5) IpC F- F r Ep(A'((2 -+ (3)) -) AP(z'((2 -) (3); 61 (2),
 and this together with (3) and case (E8) of Table 5 yields

 (6) IpC F- FEP(z) AP(z'(3; /)
 Then (5), (6) and case (A8) of Table 5 together give that (b) holds for Fz -

 This completes the proof of Proposition 5. D

 ?3. Interpreting IpC2 in IpC. Using the propositions Apo defined in the previous
 section, we can translate second order propositions into first order ones.
 DEFINITION 7. For each second order proposition 4, define a first order prop-

 osition 0* by induction on the structure of 0 as follows:
 def

 P = A.

 1e * - 1,

 ( ao)* def Po>*.#I #= ,v
 =fY) ApX*
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 In order to see that this translation sends IpC2-provable sequents to IpC-

 provable ones, we need to establish a crucial property of the mapping Apo,
 namely that it commutes with substitution. It is a peculiarity of second order logic
 (compared with third or higher order logic) that this follows automatically from the

 properties of Apo established in Theorem 1.
 LEMMA 8. Given distinct propositional variables p and q, and first order proposi-

 tions 0 and / with p, q 0 Var(f), one has

 IpC F- 0 -: Ap(o[q/q]) +(Apo[qlq].

 PROOF. By part (ii) of Theorem 1 we have IpC F- Ap 0, and hence
 IpC F- (APO)[f/q] +[+/47,tiq]; but since p does not occur in (Apo)[f/q], we can
 apply part (i) of the theorem to conclude that IpC F- (Apo)[/lq] Ap(o[01q]).

 To prove the converse, we use the following congruence property of +-+ in IpC:

 (7) IpC F- (I +-+ A') 0[0/q] -+0['q]

 From part (ii) of Theorem 1 we have

 IpC F- Ap(o [Iraq]) [01q],
 and so, using (7), we also have

 IpC F- (I + q)Ap(b[f/q]) : h.
 Since p does not occur in the left-hand side of this sequent, part (i) of the theorem
 implies that we also have

 IpC F- (fr + q)Ap(b[0/q]) -: Apo.

 On substituting / for q throughout this sequent, we obtain

 IpC F- Ap(o[f/q]) -: (Apo)[01q],
 as required. E

 PROPOSITION 9. The translation + "* has the following properties:
 (i) For all sequents of second order propositions, if IpC2 F- F r 0, then IpC F
 F* k* (where F* indicates the translation applied elementwise to the multiset F).
 (ii) If 0 is a first order proposition, then -* = 0.
 Thus (-)* gives an interpretation of IpC2 into IpC which restricts to the identity on;
 first order propositions.

 PROOF. Part (i) is proved by induction on the structure of the proof of F - -
 from the rules in Tables 1 and 2. The induction step for rule (VIntr) uses part (i) of
 Theorem 1. The induction step for rule (VElim) uses part (ii) of the theorem in
 conjunction with Lemma 8.

 Part (ii) is immediate from the definition of (-)*. D

 Since IpC-provability is decidable whereas IpC2-provability is not (see [5], for
 example), the interpretation (-)* cannot be conservative. Here is an interesting
 example of an unprovable second order proposition whose interpretation is
 provable.

 EXAMPLE 10. For all second order propositions 0 and A,

 IpC F- 0 :- [Vp(o v A) + (Vpo vrV ]
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 For combining Definition 7 with the definition of AP in (1), we have

 (Vp(ot v 0))* = Ap(0; 0* v af*).

 The construction of AP according to Table 5 then gives

 Ap(0; 0* v if*) = Ap(0; 4*) v Ap(0; 0/*) = (Vp@)* v (Vp//)*.

 Second order intuitionistic propositional logic has an interpolation property
 which is a trivial consequence of quantification over propositions. Using the inter-
 pretation (-)*, we can transfer this to a nontrivial interpolation property for IpC

 which strengthens the usual interpolation theorem for this logic.

 PROPOSITION 1 1. Let 0 and / be first order propositions for which IpC F + --
 holds. Call a first order proposition 0 an interpolant for (4, 0/ if

 * Var(O) c Var(o) r- Var(t), and
 * IpC F- = 0 and IpC F- 0 = ,.
 There exist first order propositions E and a which are respectively least and greatest

 interpolants for (4, 0), in the sense that any interpolant 0 satisfies IpC 1E=> 0 and
 IpC F- 0 => a.

 PROOF. Suppose that

 Var(o) = {JP1,.. ,puq1,. , qvi,}, Var(t) = {q1, ., q, r1,. rW. ,

 with the variables pi, qj, rk pairwise distinct. Since IpC F = i/I, it is also the case
 that IpC2 F- + : i, and hence

 IpC2 FOS[P-- 3p . po= , IpC2 Ad = Vrl ..Vrwor,

 since Pi,..., pu 0 Var(t) and rl,.. ., rw 0 Var(o). Furthermore, one always has

 IpC2 H_ : SP1 3p . P"+, IpC2 F- rl ..Vrwor => 0.
 delfP del

 So, if we set E d (= i... -p u)* and ad = (Vr1 ... Vrwt)*, properties (i) and (ii) in
 Proposition 9 applied to the above sequents imply that E and a are indeed inter-

 polants for (4, 0) in IpC. Moreover, if 0 is any other first order interpolant, from
 IpCF- 0 = we get IpC2 FO=_ and hence IpC2 FO - =: Vr ... Vrwo/ (since
 r.,... , rw, Var(O)); and then on applying (-)* we get IpC F- 0 a o. Similarly,
 IpC F- 0 implies IpC F- 0. E

 ?4. Heyting algebra applications. Recall that a Heyting algebra H is a (distri-

 butive) lattice in which every pair of elements h, h' E H possesses a relative

 pseudocomplement, h -+ h' (the greatest element whose meet with h lies underneath
 h' in the ordering on H). A morphism of Heyting algebras is a function preserving all
 finite meets, finite joins and relative pseudocomplements. We will denote by Heyt
 the category of Heyting algebras and morphisms. As their name suggests, Heyting
 algebras are the models of an algebraic theory: see for example Balbes and Dwinger
 [1, Chapter IX] for an equational presentation and further information on the
 theory of Heyting algebras.
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 The relationship between Heyting algebras and intuitionistic logic is exactly
 analogous to that between Boolean algebras and classical logic. In particular, there
 is a correspondence between Heyting algebras and first order intuitionistic
 propositional theories, induced by the process of forming the Lindenbaum algebra
 of a theory. Thus for each set G, let F<G> denote the set of first order propositions
 built up from the elements of G regarded as propositional variables. Given a subset

 R c F<G>, let

 F<G> - F<G;R>,

 denote the quotient of F<G> by the equivalence relation identifying two first order
 propositions q and / if and only if IpC F-- F q5 holds for some finite F c R.
 Endowing F<G; R> with the partial order

 [4] < [V] if and only if for some finite F c R, IpC F-F F ,

 one obtains a Heyting algebra-the Lindenbaum algebra of the IpC-theory
 (determined by) R over the language G. Moreover, every Heyting algebra H can be
 presented in this way: for example, take G to be the set H itself and R to be those
 propositions mapped to T by the obvious evaluation function F<G> -+ H induced
 by the identity function G -+ H.

 Theorem 1 can be rephrased as a statement about the relationship between a
 Heyting algebra H and the algebra obtained from it by freely adjoining an indeter-
 minate X.

 DEFINITION 12. Given a Heyting algebra H, a Heyting polynomial algebra over H
 is a Heyting algebra HEX] equipped with a distinguished element X and a
 morphism iH: H -+ H[X] with the following universal property:

 For each morphism f: H -* K in Heyt and each element k E K, there is a

 unique morphism g: H[X] -+ K such that g ? iH= f and g(X) = k.

 As usual, the universal property in the definition determines H[X] uniquely up to
 isomorphism (over H). Given a presentation of H as F<G; R>, one can present
 H[X] as F<G u {p}; R>, where p is any element not contained in G; the morphism
 iH is induced by the inclusion F<G> c F<G u { p} >, and the distinguished element
 X is the equivalence class [p].

 When R = 0, H = F<G; R> is the free Heyting algebra on the set of generators
 G and H[X] is free on G u {p}. Except for the case of a single generator, the
 structure of free Heyting algebras is not well understood. The following theorem
 sheds some new light on this structure.

 THEOREM 13. For any Heyting algebra H, the morphism iH: H -+ H[X] possesses
 both left and right adjoints. In other words, there exist functions eH: H[X] -+ H and
 aH: H[X] -+ H satisfying

 (8) eH(P) < h if and only if P < iH(h),

 (9) h < aH(P) if and only if iH(h) < P.

 for all P E H[X] and h E H.

This content downloaded from 128.232.109.87 on Thu, 20 Dec 2018 15:33:00 UTC
All use subject to https://about.jstor.org/terms



 48 ANDREW M. PITTS

 These adjoints are natural in H. In other words, for each morphism f: H -4 H' in
 Heyt the following squares commute

 f [XI f[XI
 H[X] > H'[X] H[X] f C ] > H'[X]

 H eH' H aH'

 (where f [X] is the unique morphism g satisfying (g ? WH) = (iH' o f) and g(X) = X
 whose existence is guaranteed by the universal property of H[X] in Definition 12).

 PROOF. As remarked above, we can assume H = F<G; R> for some G and R, and
 then take H[X] = F<G u {p}; R>. Thus each element h E H is of the form h =
 [tk], where i/ is some first order proposition with variables in G. Similarly, each

 P E H[X] is of the form P = [4], where 0 may involve p as well as variables in G.
 Moreover, iH(h) < P in H[X] if and only if IpC F r / , 0 holds for some finite
 F c R. But by Theorem 1 we have

 IpC F F => A -, iff IpC F0 Fr=

 iff IpC F0 /= APO
 iff IpC F=>i-,Apo.

 So on defining aH(P)= [APO] we get (9). (Clearly the definition of aH(P) is
 independent of the choice of representative for P.) The naturality of aH follows from

 Lemma 8, because any morphism F<G; R> -+ F<G'; R'> is induced by a function
 F<G> -+ F<G'> of the form

 0 [T9/lg Ig -G]

 for some G-indexed family (yT e F<G'> I g E G). Alternatively, the naturality of aH
 can be deduced from an interpolation property of pushout squares in Heyt-see

 [9, Theorem B].
 The existence of the left adjoints eH (and their naturality) follows from the

 existence of the natural right adjoints by an algebraic version of the proof that 3 is
 definable from V and -> in IpC2. Alternatively, we can use Proposition 5 to give a
 direct definition:

 eH([01) = [Ep()]. [
 REMARKS 14. (i) The morphism iH: H -4 H[X] is always a monomorphism

 (since the universal property of H[X] implies that 'H has a left inverse sending X to,
 for example, the top element of H). Consequently the adjoints to iH satisfy

 eH ? 'H = idH = aH 0 iH-

 (Of course they also satisfy iH ? aH < idH[X] < 'H ? eH)
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 (ii) (cf. Remark 2). The analogue of Theorem 13 for Boolean algebras is rather
 trivial. This is because a Boolean polynomial in a single indeterminate X with
 coefficients in a given Boolean algebra B can always be put in the normal form

 (bAX)v(b'A -X) (b,b'eB).

 Then the inclusion of B into its algebra of Boolean polynomials is given by

 b "(b A X) v (b A -iX),

 and it is easy to see that this has left and right adjoints, given respectively by
 (b A X) v (b' A - X) -?(b v b') and (b A X) v (b' A - X) P-+(b A b').

 Consider the morphism

 k: F<G; R> -+ F<G u {p}; R u {p}>

 induced by the inclusion F<G> c F<G u {p}>, where as before p is some new
 element not in G and now we have also extended R by adding in some p E
 F<G u {p}>. The proof of Theorem 13 extends to show that this morphism k also
 has left and right adjoints, ek and ak, given by:

 ek( [)]) = [E,(p A 0)], ak( [4]) = [A,(p --+ 4)].

 Iterating, we get adjoints for the morphism induced by extending G and R by finitely
 many elements. Such morphisms are precisely the finitely presented objects in the
 locally finitely presentable category H/Heyt of Heyting algebras equipped with a
 morphism from H (= F<G; R>) (and whose morphisms are commutative triangles).
 So we get the following corollary (the second paragraph of which follows from the
 first and the interpolation property [9, Theorem B] of pushout squares in Heyt):

 COROLLARY 15. Any morphism k: H -+ K in Heyt which makes K finitely pre-
 sented over H possesses both left and right adjoints ek, ak: K -+ H.

 Furthermore, given any morphism f: H -+ H', forming the pushout square

 f'

 in Heyt, (k' necessarily makes K' finitely presented over H' and) the adjoints satisfy
 f o ek = ek' o f' and fo ak = ak' f . D
 These results enable us to construct, for each Heyting algebra H, a model of the

 second order calculus IpC2. To explain further, we must describe what is needed to
 specify such a model. The particular notion of model we will use is the specialization
 from categories to partial orders of the notion of model of the second order lambda
 calculus described in [10] and [12].
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 First note that since the notion of Heyting algebra is algebraic, it makes sense to

 speak of a Heyting algebra object, U, in any category W with finite products: such an
 object comes equipped with morphisms

 T, 1:1 -- U, A, V, ->: U x U -+ U,

 making various diagrams (derived from the defining equations of the theory of

 Heyting algebras) commute in W. As usual, this structure induces an ordinary

 Heyting algebra structure on the hom-sets 6(I, U); and precomposition with f:

 I -+ I' gives a morphism of Heyting algebras, f*: 16(I', U) --+ 16(I, U).
 DEFINITION 16. Say that a Heyting algebra object U in W possesses internal U-

 indexed meets if for each object I Ec W there is a right adjoint

 A.: W( X U, U) -+W(I. U)
 to the morphism i j induced by composition with the first projection morphism

 ni: I x U -+ I, and moreover these right adjoints are natural in I.
 REMARK 17. The import of this condition on U becomes more apparent from the

 point of view of the internal higher order logic of the topos [W?P, Jet] of presheaves

 on W. Identifying the objects I of W with their corresponding presheaves W(-, I), we

 see that the functions Al constitute a morphism UU -+ U giving the meet of an
 internal U-indexed family of elements of U.

 A Heyting algebra object U possessing internal U-indexed meets in a category W
 with finite products determines a model of IpC2. For each second order proposition

 4 with free variables in the list j = P Pn, p, of distinct variables, we get a morphism

 <t[)(P): Un _+ U

 defined by induction on the structure of 4 as follows:

 Ti( _)~ def n Ei
 = (U -- U),

 1(V_) def (Un x U)

 truth-values of t U X U U),

 Weayt ( U ssfie aUn X U coepr Po ), a e
 Un

 (where =A, v, or >-). In particular, when 0 contains no free variables we can
 take - to be empty and obtain a global element Aid c- W(1, U) of U for each closed
 second order proposition 0. We will call the Heyting algebra 16(1, U) the algebra of
 truth-values of the model (16, U).

 We say that (16, U) satisfies such a closed proposition 0, and write (W, U) I=- 0, if
 T[id is the top element of W(1, U). This notion of satisfaction is sound for provability
 in IpC2: if IpC2 F- 0 =+ 4 then (%, U) I= 4. Conversely, it is not hard to prove (by a
 term model construction) that it is also complete: IpC2 F 0 =* 4 holds if 4 is

 satisfied by all (%, U).
 Returning now to Theorem 13, given H E Heyt, let W be the opposite of the full

 subcategory of H/Heyt consisting of the finitely generated free objects. More

 concretely, we can take the objects of W to be finite ordinals, [n], and the morphisms

 [n] -* [m] to be m-tuples of elements of the polynomial Heyting algebra in n
 indeterminate, H[X1,.. ., Xn]. Composition is given by substitution, and the
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 identity on [n] is (X1,.. ., Xn). Lawvere's categorical treatment of algebraic theories
 (see [7], for example) tells us that W (has finite products and) contains the generic
 model of the algebraic theory of "Heyting algebras equipped with a morphism from
 H". In particular, W does contain a Heyting algebra object, namely U = [1]: its top
 and bottom elements are (T), (1): [0] -+ [1] and its meet, join and pseudocom-
 plementation operations are (X1 # X2): [1] x [1] = [2] -+ [1] (for # = A, V, -).

 For this Heyting algebra object we have for each object [n] E W that

 W([n], U) = W([n], [1]) = H[X1, Xn],

 W([n] x U, U) = W([n + 1], [1]) = H[X1, X.nXn+ 1]
 H [Xl . .. .Xn] [X],

 and ic* is iH[X .... Xn] Consequently, Theorem 13 implies that U has internal U-
 indexed meets and hence determines a model of IpC2. Note that the algebra of
 truth-values of this model is W(1, U) = W([O], [1]) = H, the given Heyting algebra.
 We have thus proved:

 PROPOSITION 18. Given a Heyting algebra H, the algebraic theory of "Heyting
 algebras equipped with a morphism from H" has the property that its generic model
 U has internal U-indexed meets, and hence provides a model of second order intuition-
 istic propositional logic. Since the algebra of truth-values of this model is just H, we
 conclude that every Heyting algebra appears as the algebra of truth-values of some
 model of IpC2 E
 There is a correspondence between instances of the notion of model of IpC2 as

 we have defined it, and IpC2-theories. (By such a theory we mean a suitable lan-
 guage together with a collection of axioms second order propositions over the
 language.) Under this correspondence, the. algebra of truth-values of a model is
 identified with the Lindenbaum algebra of the theory (i.e. the collection of closed
 second order propositions over the given language, quotiented by provability in
 IpC2 augmented with the given axioms). Consequently, Proposition 18 implies:

 Every Heyting algebra is the Lindenbaum algebra of some IpC2_theory.

 In fact one can see this without recourse to the correspondence between models
 and theories, using the interpretation of IpC2 into IpC developed in ?3. For given a
 Heyting algebra H, choose a presentation for it as H = F<G; R>. Then the set of
 second order propositions over G

 {0 I IpC F- F =r -*, for some finite F = R}

 determines an IpC2-theory over G whose Lindenbaum algebra is isomorphic to
 F<G; R> (the isomorphism being induced by (-)*).
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