
Experiences with Cognitive Dimensions

Margaret Burnett, Jason Dagit, Joseph Lawrance, Laura Beckwith, Cory Kissinger
Oregon State University

{burnett, dagit, lawrance, beckwith, ckissin}@cs.orst.edu

As a researcher often in the situation of designing programming language or
programming environment features, I (MMB) became acquainted with the Cognitive
Dimensions framework (CDs) [Green and Petre 1996] around 1995. I quickly became
one of its biggest fans. Since then, our group has used CDs in almost every research
project we’ve conducted. After these 10 years of using CDs for a number of purposes, we
briefly reflect on our experiences.

Using CDs for evaluating existing and emerging systems

A group of us began by using CDs to evaluate two existing systems that we had written.
We gained immediate insights into issues we had neglected to consider before. We were
immediately so impressed with this aspect that, ever since that time, we have used CDs to
evaluate any new subsystems and languages that we design.

Still, in that first experience, we quickly ran into trouble, and we’ve later seen other
researchers have the same trouble. The trouble we had was this: what can be
accomplished with CDs for the purpose of evaluating existing systems is easily
misunderstood. Many researchers do not realize that CDs are limited in the same way
that testing is limited. In neither case is it possible to “prove” that a system is acceptable;
rather, it is only possible for these mechanisms to find the existence of problems. Yet,
people are often tempted to use CDs (and testing) in exactly this way, as though they
really can be used to “prove usability.”

This problem is exacerbated when the system being evaluated is one’s own system,
because then a conflict of interest arises: there is a strong incentive to decide that the
system has no usability issues. Thus, as soon as the system’s designer finds an
opportunity to approve some aspect of a CD, he or she may be tempted to pronounce that
CD as being satisfactorily considered, rather than thinking a little longer before moving
on to the next CD.

On the other hand, when the system being evaluated is an emerging system, these
conflicts and temptations disappear. In an emerging system, the designer is highly
motivated to find every single problem possible, so as to quickly address problems early
in the design stages rather than having them crop up at a later, more expensive time, such
as after implementation.

Because of these motivational issues, it has been our experience that researchers are
much more effective and productive using CDs on emerging systems than they are at
using CDs on existing systems.

CDs as a basis for Representation Design Benchmarks

As a result of our early experiences, we devised Representation Design Benchmarks
[Yang et al. 1997]. These are an adaptation of some of the Cognitive Dimensions to
make them quantitative. (Only some CDs were applicable to the problem Representation
Design Benchmarks were devised to address, namely the static representation of a visual
program in a visual programming environment.) Because they are quantitative, we have
found Representation Design Benchmarks to be more objective than CDs, and therefore
not so readily misused. Also, they are especially well suited for determining progress and
movement through the design space as a system’s design decisions are changed.

Nowadays, we use both Representation Benchmarks and CDs to evaluate emerging
systems. Despite their common basis, they are different enough that each always
succeeds at finding problems the other misses.

CDs for educating CS students and CS researchers

Cognitive dimensions are a low-cost way of quickly making Computer Science language
and environment designers aware of critical human-oriented issues in the systems they
are creating. we view them as an extremely valuable resource for starting the education
of Computer Science researchers in human-oriented issues. Those who become more
serious about the human side of languages and environments will go beyond CDs to learn
other analytical evaluation techniques, and eventually will move to empirical work as
well. But even those who never go beyond CDs in their study of the human side of
programming systems will gain enough insights from CDs to be more successful than
they were before at designing systems that have some possibility of being actually useful
to humans.

References:
[Green and Petre 1996] T. Green and M. Petre, Usability Analysis of Visual Programming

Environments: A 'Cognitive Dimensions' Framework, Journal of Visual Languages and
Computing 7(2), June 1996, 131-174.

[Yang et al. 1997] S. Yang, M. Burnett, E. DeKoven, and M. Zloof, Representation Design
Benchmarks: A Design-Time Aid for VPL Navigable Static Representations, Journal of
Visual Languages and Computing 8(5/6), October/December 1997, 563-599.

