
Sybil-resistant DHT routing

George Danezis1, Chris Lesniewski-Laas2,
M. Frans Kaashoek2, and Ross Anderson1

1 University of Cambridge, Computer Laboratory,
15 J J Thomson Avenue, Cambridge CB3 0FD,

United Kingdom
{George.Danezis,Ross.Andreson}@cl.cam.ac.uk

2 MIT Computer Science and Artificial Intelligence Laboratory,
The Stata Center, Building 32,

32 Vassar Street, Cambridge, MA 02139, USA
ctl@mit.edu, kaashoek@csail.mit.edu

Abstract. Distributed Hash Tables (DHTs) are very efficient distributed
systems for routing, but at the same time vulnerable to disruptive nodes.
Designers of such systems want them used in open networks, where an
adversary can perform a sybil attack by introducing a large number of
corrupt nodes in the network, considerably degrading its performance.
We introduce a routing strategy that alleviates some of the effects of
such an attack by making sure that lookups are performed using a di-
verse set of nodes. This ensures that at least some of the nodes queried
are good, and hence the search makes forward progress. This strategy
makes use of latent social information present in the introduction graph
of the network.

1 Introduction

Distributed Hash Tables (or DHTs) [14, 15, 12, 10] are distributed systems that
allow efficient lookup of identifiers and routing to the corresponding nodes. They
achieve this by imposing on the routing tables of nodes a rigid structure that
guarantees quick convergence to a target.

This rigid structure makes DHTs easy to disrupt by a set of malicious nodes
that return useless information instead of helping in the routing. An adversary
can create a very large number of bogus nodes and flood the DHT network, in
order to disrupt it or degrade its performance. This is called a sybil attack [3].

We present a method that lowers the probability an honest user queries a
malicious node. The method takes into account the DHT’s introduction graph,
which describes which node introduced which to the network. We assume that
the adversary is connected to the graph at very few points, but that it can cre-
ate large numbers of virtual “sybils” behind its attachment points. Following a
strategy inspired by Advogato [5], our method turns these few corrupt attach-
ment points into trust bottlenecks. We ensure that queries use a diverse set of
nodes, thereby minimising our reliance on a localized set of nodes that might be



controlled by the adversary. We also show that trying to minimise the number
of corrupt nodes in honest nodes’ routing tables makes a significant difference
to the performance of the DHTs.

The security of DHTs, including routing security which is the main concern
of our work, has been the subject of discussion in [13, 2]. Trust metrics based
on social networks were introduced in Advogato [5]. Advogato uses maximum
flow in a network to make trust judgments, but there are other proposals, such
as Appleseed [16], which use spreading activation models. Our work uses such
social network trust metrics to tackle the sybil attack in structured peer-to-peer
systems. Sprout [7] is also making use of social network information, to route
messages over trusted nodes. We follow the opposite approach and attempt to
eliminate trust bottlenecks, thereby trying not to trust any nodes more than
others.

2 The sybil attack against DHTs

The basic premise of the sybil attack [3] is that an adversary in a peer-to-peer
system can easily introduce a very large set of corrupt participants. All of these
participants, or sybils, are controlled by the adversary; they can be used to com-
promise security properties of the system or degrade its performance. The latter
can be framed in the context of computer security by considering degradation
of performance as service denial [9].

A Distributed Hash Table (DHT) is a specialized distributed system that
aims to look up identifiers efficiently in order to route messages to and from the
corresponding nodes. Our designs will be based on Chord [14], but the principles
we will examine (both in terms of understanding the sybil attack and defending
against it) are applicable to other systems [15, 12, 10]. Nodes in Chord arrange
themselves into a ring sorted according to their IDs, where each knows its suc-
cessor. In correct operation, this guarantees that all nodes are reachable. Chord
achieves its efficiency by additionally requiring each node to know a small num-
ber of other nodes in the network, its finger table. Finger nodes are selected to
be carefully spaced [4] around the ring address space to ensure that lookups will
quickly converge towards a target node.

Lookups can happen in two ways: either recursively or iteratively. In a recur-

sive lookup the initiator looks up a particular ID by asking the finger with the
closest ID to the target node. The finger node will in turn ask one of its fingers,
and this procedure is repeated until the target node is located and the answer
propagated back. Iterative routing relies on the initiator of a lookup to query the
finger with the closest ID to the target, which in turn returns one of its fingers.
The initiating node can then perform further lookups itself, using the additional
information until the target node is located. Our sybil resistant lookup strategies
will implement a variant of the iterative method, giving the requesting node the
most flexibility. Each iteration returns a set of nodes instead of just one.

An adversary can participate in a Chord network by introducing nodes it
controls. These malicious nodes take their respective places in the ring structure



and populate other nodes’ finger tables. The objective of the adversary nodes is
to disrupt lookups as much as possible: make them fail if possible or make them
very slow otherwise. Two basic strategies malicious nodes can use to sabotage
lookups are:

– Non-cooperation. Malicious nodes do not provide any information to other
nodes. They fail to look up nodes, and just forget about their successors: they
return no information. As a result, requests are slower, and the structure of
the ring is fractured.

– Flooding. Malicious nodes, when prompted for a request, provide another
malicious node as the reply. This sends the requesting node in a wild goose
chase [13], never successfully finishing its request.

Both non-cooperation and flooding can lead to a standard Chord lookup
failing. Using the standard Chord strategy a node looking up a target ID tries
to make ‘progress’: the next hop is chosen from among the nodes discovered
between the current hop and the target ID. If all the known nodes in this region
are non-cooperating, the lookup will fail. Similarly, flooding nodes will provide
a set of corrupt virtual nodes with IDs ever approaching the target, yet never
reaching it. In both cases there will be no answer to the query.

In this paper we will attempt to protect DHTs, and a variant of Chord in
particular, against random flooding attacks. Our threat model is based on an
adversary that aims to disrupt as many queries as possible through the network,
and positions its nodes, at random around the Chord ring. Note that targeted
attacks could be more easily accomplished by concentrating the dishonest nodes
on particular regions of the ring [13]. Targeted attacks that aim to maximally
disrupt queries from or to specific nodes are beyond the scope of our study.

In order to address these attacks, we need to modify the iterative Chord
lookup. When choosing a next help, our variant will take into account the sources
of information about the previous hops, and strive to avoid relying on a single
trust bottleneck.

3 The bootstrap graph model

The traditional peer-to-peer model, within which the sybil attack was formu-
lated, views the network as an undifferentiated set of nodes, each with an indi-
vidual ID. The attacker controls some fraction of these nodes and can cheaply
introduce new ones until the network is flooded. Once the fraction of bad nodes
exceeds approximately 25%, the system is unable to reliably route queries to the
correct ID [2]. So one proposed solution to the sybil attack is to rate limit new
nodes joining and to impose a centralized admission control system.

The bootstrap graph adds new elements to the peer-to-peer model that might
help tackling the sybil attack without any centralized authority. In most peer-to-
peer systems, a new node needs to have a first point of contact with the network
in order to join; thus, the nodes in the network must have some previous off-line
relationship. We call the set of these relationships the network’s introduction



0

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15
16

17

18
19

20

21

22

23

24

2526

27

28

2930

31

32

33

34

3536

37

38

39

40

41

42
43

44

45

46

47
48

49

50

51

52

5354

55

56

57

58
59

60

61

62

63
64

65

66 67

68

69

7071

72

73

7475

76

77
78

79

80

81

82
83

8485

86

87

88

89

90
91

92

93

94

95

96

97

98

99

Fig. 1. Example of a bootstrap graph.

graph, or “bootstrap graph”. Figure 1 provides an example of such a graph, in
which nodes joined in the order of their label numbers.

Now, the goal of a secure overlay network is to enable Alice and Bob, nodes in
the network, to communicate with each other if there is any path of good nodes
between them in the bootstrap graph. In the DHT context, “communicate with
each other” means to be able to look up each others’ IDs. This is a good security
criterion because if there is no such path between Alice and Bob, then they
might as well be in separate DHTs: the only nodes common to the two graph
components are malicious, so connecting them would require some out-of-band
mechanism, i.e. a new bootstrap graph link.

A “flood fill” routing mechanism provides a proof of concept: if Alice flood-
fills the bootstrap graph with her query, it will eventually reach every connected
good node regardless of the actions of the adversary. However, this is a very
inefficient solution, and it is not resiliant to nodes in the path failing. We’d like
to solve this problem using less storage and communication cost than flood filling
(which is quadratic in the number of nodes).1

The methods presented in this paper assume that the bootstrap graph is a
tree, which is typical for current DHTs. We analyze the case of an adversary
which has managed to convince one honest node to allow it to join the network,
perhaps by social engineering. The adversary can then introduce a large num-
ber of sybils into the network via this attachment point. The adversary spends
much less effort per sybil than it spent obtaining the attachment point. In sec-
tion 4.3 we examine what happens when a set of sybils are attached to the honest
bootstrap graph at more than one points.

In this paper, we only concern ourselves with routing security, i.e. resolving a
particular ID to a node. We assume that if we actually reach the target node, we
will be able to verify that it owns the target ID, e.g. using self-certifying IDs [1,

1 Insecure DHTs like Chord achieve polylogarithmic cost; it is an open question
whether this is possible for a secure overlay.



8]. We won’t discuss the security of data stored on nodes, or the mechanics of
data block migration as nodes join and leave the network; these must be left to
other security layers.

3.1 Efficient bootstrap path calculation

When the bootstrap graph is a tree, there is an efficient decentralized algorithm
for calculating the shortest path between any two nodes. This means that no
node is required to know the totality of the bootstrap tree at any time, and the
path is constructed as a natural side effect of node lookups.

Each node stores, in addition to IDs and addresses, the path from itself to
each node it knows. This includes the node’s Chord-ring successor, its predeces-
sor, its finger nodes, and the connections it has in the bootstrap tree. The same
is true for all resolutions: the current hop returns not only the ID and address
of the next hop, but also the path of bootstrap links from the current hop to the
next hop. The path from the querier to the next hop may be computed as the
concatenation of the querier-to-current-hop path and the current-hop-to-next-
hop path, with any loops removed. In this way, a querier can compute the path
from itself to any other node it discovers.

Nodes that first join the network not only have to discover their successor
node, predecessor node, and fingers, but also the paths to them. This is done as
a side effect of the joining protocol. The new node asks the node it uses to join
the network for the IDs of the nodes, and as a result also gets their paths. This
allows it to compute its paths to them.

When the bootstrap graph is a tree, nodes can join paths and eliminate all cy-
cles, therefore guaranteeing that they know the shortest path. This is convenient
but not necessary for the security properties we will describe next, and extending
our algorithms for discovering paths in generic graphs should be possible.

4 Reducing the impact of the sybil attack

Our objective is to devise a resolution strategy that will always succeed, and
provide better performance than the standard Chord strategy when under a
sybil attack. First we shall deal with the issue of failed queries, then we shall
assess the efficiency of our approach.

We modify the standard Chord iterative strategy in the following two ways.

1. A node, when queried, returns all nodes that it knows about, and not simply
the closest to the target. The node returns its successor, fingers, and con-
nections in the bootstrap tree. Such a modification requires more bandwidth
per query, but does not add any latency to standard iterative lookups.

2. Having a set of nodes returned by each query allows the initiator to be in
full control of the resolution, and be able to schedule lookups to maximize
efficiency and minimize the potential for disruption from corrupt nodes. A
number of query strategies can be used to establish which nodes should be
queried and in which order.



We will first look at the standard Chord query strategy that selects nodes
according to closeness in ID space, and then present a radically different query
strategy that routes according to trust diversity. These two extremes can be
combined, as in the mixed and zig-zag strategies, to provide fast yet robust
lookups.

4.1 Query scheduling strategies

The aim of a node that wants to perform a lookup is to select hops that might
provide more information about the address of the target ID, and that are not
malicious. The basic Chord strategy, which we will call closeness routing, is
extremely effective at ensuring the first, but does not take into account the
second issue (corrupt nodes): given a set of known nodes, Chord chooses to
query the one whose ID is closest to the target. When all nodes are honest,
the worst case for performance is that the last hop’s successor is the only node
closer to the target ID. On the other hand, when some nodes are liars, the ring
structure is effectively broken. Thus, looking only at nodes between the initiator
and the target of the lookup is not guaranteed to succeed. To address this, we
need an alternative resolution strategy.

We have assumed that the set of bad nodes are connected to the rest of
the bootstrap network through a single good node. We therefore expect that
this single good node, along with the bad node it is directly connected to, will
always be in the bootstrap graph path from the quering node to the bad nodes.
An intrusion detection approach could be used to detect them — this will not be
the strategy we chose to implement since nodes that are not always misbehaving
might fool it. Instead we will try to balance the number of requests going to bad
nodes by making sure that not too much ‘trust’ is put on any particular node
when answering queries. For the purpose of routing we will consider that a node
is trusted if it is on the path of the bootstap graph from the initiator of the
request to the queried node. The core of our sybil defense mechanism consists
of distributing queries around the network in such a way that no small set of
nodes is predominantly present on the paths of the queries.

Diversity routing is the purest form of this strategy, and choses nodes to
query as following:

1. For each ID lookup the initiator keeps a record of nodes queried. A histogram
is computed of the frequency with which each node in the network has been
on the path of the queries so far. This can be thought as a ‘trust profile’ of
this particular lookup at any time (Fig 2, step (1)).

2. A node proceeds by answering the follwing question: which node is to be
queried next to get more information concerning the node looked up, given
the trust profile so far? We associate with each candidate node the ‘trust
profile’ the lookup would have if it was to be used (Fig 2, step (2)).

3. Then the different trust profiles are compared to each other in order to
assess which one increases the least the trust put on a single or a small set
of nodes. This can be done by sorting the ‘trust profile’ for each candidate



by descending order, and creating a ‘trust list’ of their values: the first value
would be the number of paths the most trusted node was on, and so forth.
Then the candidate nodes can be ranked by sorting lexicographically their
respective sorted ‘trust lists’ (Fig 2, step (3)). We then chose the smallest
element as the next node to query.

Figure 2 illustrates a step of the diversity routing strategy. Strarting with the
nodes that are known to the querying node, this strategy is repeated, until the
target ID node is found.

The above strategy tries to distribute queries across the network, taking into
account bottlenecks that might indicate a sybil attack point. Adversary nodes
that introduce a large number of sybils will aquire high values in the trust
profile and nodes behind them will not be used until other nodes in the network
are queried. Yet the diversity strategy does not make by itself any progress
towards the target node. Note that sybil nodes are not excluded but a balance
is maintained between queries to sybils and other nodes.

We expect this strategy to be more efficient than pure Chord when there
are more sybils than honest nodes. In particular it will always yield the answer
to a query, even if it has to ask the whole network. Still this strategy remains
terribly inefficient under normal circompstances. Table 1 shows the number of
nodes queried to satisfy 100 random ID requests, where there are 1, 50, 100, 200
and 400 sybil nodes amongst 100 honest nodes.

Different nodes

T
ru

st
le

v
el

s

Trust profile so far.

(1) Current Trust histogram (2) Compute histogram for all candidate nodes

Different nodes

T
ru

st
le

v
el

s

Node 87631

Different nodes

T
ru

st
le

v
el

s

Node 94073

Different nodes

T
ru

st
le

v
el

s

Node 92534

Different nodes

T
ru

st
le

v
el

s

Node 35036

Different nodes

T
ru

st
le

v
el

s

Node 96507

(3) Lexicographically sort and select first node

Sort

Different nodes

T
ru

st
le

v
el

s

Node 94073

Different nodes

T
ru

st
le

v
el

s

Node 35036

Different nodes

T
ru

st
le

v
el

s

Node 87631

Different nodes

T
ru

st
le

v
el

s

Node 92534

Different nodes

T
ru

st
le

v
el

s

Node 96507

Fig. 2. Illustrating a step of the diversity routing node selection



4.2 Mixed strategies

In order to maintain some efficiency we need to introduce some bias to choose
nodes that are closer to the target. Two strategies have been assessed.

A first approach is to provide a balance between the closeness and the diver-
sity of nodes, and we call this mixed routing. This can easily be implemented:
given the rank ci of a node according to closeness, and the rank di of the node
according to the strategy that provides diversity, and a balance factor b ∈ [0, 1],
we calculate the new rank ri:

ri = bci + (1 − b)di (1)

Nodes can then be sorted according to ri in decending order, and the first
one chosen to be queried next. Table 2 illustrates the number of queries required
to satisfy 100 random lookups in a network of 100 good nodes flooded by 1, 50,
100, 200 and 400 nodes. It is clear that this mixture strategy balances the two
key factors, closeness and trust diversity. It provides better results than either
of the pure strategies for a lower number of sybils (100 and 200) but does not
perform better than the diversity strategy in case there are a lot more sybils
than honest nodes.

The best results have been achieved using zig-zag routing. Instead of trying
to select diverse yet close to the target nodes, as mixed routing attempts to do,
the closeness strategies and diversity strategies are alternatively employed. First
a node that is close to the target is queried, then a node that is diverse is chosen,
and so forth. With each set of diversity routing the pool of known nodes becomes
more likely to contain honest nodes, and then the step of closeness routing selects
the closest node and queries it for the target.

Number of
bad nodes Closeness Diversity

1 373 552
50 1400 1359

100 3183 2610
200 6977 4807
400 18434 12543

Table 1. Number of queries to satisfy 100 lookups in closeness and diversity routing
(100 good nodes).

As table 2 shows zig-zag routing outperforms closeness as the number of
malicious nodes grows, as well as mixed routing. Zig-zag routing is also easier
to analyze. In the absence of any malicious nodes the lookup will take at most
the double amount of queries to resolve, than using the standard chord strategy.
This is due to the fact that one in two steps implements the Chord strategy.
When there are malicious nodes in the network the diversity step ensures that
the pool of known nodes retains its quality: it makes sure mostly honest nodes



Number of Good entries
bad nodes Closeness Mixted (b = 0.2) Zig-Zag in finger table

1 373 1696 510 99%
50 1400 2172 1291 65%

100 3183 2358 2104 46%
200 6977 4842 3606 30%
400 18434 15110 7004 20%

Table 2. Number of queries to satisfy 100 lookups in closeness, mixed and zig-zag
routing (100 good nodes).

are queried to populate it. On the other hand the closeness step ensures progress
towards the target ID, by choosing out of a the pool of known nodes, the closest
to the target.

Simulations were run and the histograms describing how many queries (i.e.
steps of the iterative routing strategy) were necessary to satisfy 100 requests are
plotted in Figure 3. Note that a significant number of requests are satisfied by
few (< 10) queries even when a lot of sybils are introduced in the system. Zig-
zag routing retains this property as the sybils multiply, while closeness routing
becomes increasingly inefficient.

Note that at the extreme cases, the zig-zag strategy (and any strategy based
on bootstrap graphs) will be following the bootstrap graph to route between two
honest nodes. This makes them fragile against node churn, that could even be
the result of malice, and heavy sybil attacks. Providing routing security under
such extreme conditions is beyond our scope.

4.3 The effects of increased infiltration

In our analysis so far we have assumed that the set of sybils nodes are attached
to the honest part of the bootstrap graph at one honest node only. We briefly
assess how our most effective defense mechanism, the zig-zag strategy, handles
sybils being attached to multiple points of the bootstrap graph, or in other words
an adversary that has fooled more honest nodes.

We performed 100 requests in the DHT, made of 100 good nodes, using
the zig-zag and the closeness routing strategies, and record how many nodes
have been queried to answer them. We repeated the experiment for 100 and 200
additional bad nodes in the network, connected to 1, 10, 20 . . .90, 100 distinct
good nodes. The rest of the bad nodes were only introduced by these ‘attached’
bad nodes. Figure 4 summarises the results.

In the experiment with 100 bad nodes (Figure 4, black lines) we observe
that the zig-zag strategy outperforms the standard closeness strategy until more
than 80 bad nodes have infiltrated the network. For higher values closeness
(represented by the straight line) outperforms the zig-zag strategy, which is due
to the overhead it introduces: it only makes progress in one out of two steps.

On the other hand as the overall number of sybils increases, as in our exper-
iment with 200 bad nodes (Figure 4, dotted lines), our zig-zag strategy outper-



Closeness/1 bad nodes

Number of queries
Fr

eq
ue

nc
y

1 2 3 4 5

0
20

40

Zigzag/1 bad nodes

Number of queries

Fr
eq

ue
nc

y

2 4 6 8

0
10

30

Closeness/50 bad nodes

Number of queries

Fr
eq

ue
nc

y

0 20 40 60 80

0
10

20

Zigzag/50 bad nodes

Number of queries

Fr
eq

ue
nc

y

0 20 40 60 80 100

0
10

20
30

Closeness/100 bad nodes

Number of queries

Fr
eq

ue
nc

y

0 50 100 150

0
20

40

Zigzag/100 bad nodes

Number of queries

Fr
eq

ue
nc

y

0 20 40 60 80 100 120 140

0
10

20

Closeness/200 bad nodes

Number of queries

Fr
eq

ue
nc

y

0 50 100 150 200 250

0
10

20
30

Zigzag/200 bad nodes

Number of queries

Fr
eq

ue
nc

y

0 50 100 150

0
10

20
30

Closeness/400 bad nodes

Number of queries

Fr
eq

ue
nc

y

0 100 200 300 400

0
10

20

Zigzag/400 bad nodes

Number of queries

Fr
eq

ue
nc

y

0 100 200 300

0
10

20

Fig. 3. Closeness and Zig-Zag routing



Attachment points to the good network

Re
qu

es
ts

 re
qu

ire
d 

to
 s

uc
ce

ed

1 10 20 30 40 50 60 70 80 90 100

3000

4000

5000

6000

7000

100 bad nodes

200 bad nodes

Fig. 4. The number of requests required to satisfy a query increase with the number
of sybil nodes attached to the honest network. The network used was composed of 100
honest nodes, and 1 to 100 attachment points for 100 and 200 sybils. In each case the
horisontal line denotes the standard closeness strategy, while the other set of points
denotes the zig-zag strategy under increased infiltration.

forms the standard closeness strategy even when the adversary has managed to
infiltrate and connect to every single one of the 100 honest nodes. It is encour-
aging that the number of requests ‘stabilises’ for more than 30 infiltrated nodes,
and infiltrating more of them does not seem to degrade the performance of the
network further. An adversary that chooses to infiltrate more and more honest
nodes will therefore experience diminishing returns.

These initial simulation results indicate that there is an optimal number or
percentage of infiltrated nodes to disrupt the network, after which the adversary
does not get much advantage. Still we cannot do away with our initial assump-
tion that the bootstrap graph should contain a connected components with all
honest nodes, otherwise an adversary would be able to split the network in many
separate ones to better attack it.

4.4 Balanced finger tables

The diversity based strategy, and the zig-zag strategies, make sure that a fair
share of good nodes are selected to answer a query. Yet the quality of the infor-
mation provided, even by good nodes, decreases as more sybils are introduced
in the network. The reason for this is that their finger tables are populated with
an increasing number of sybils that will not contribute to answering the queries.



The solution to this is to select fingers according to a strategy that ensure that
good nodes are still present. A variant of the strategy based on the ordered ‘trust
lists’ described above in the context of lookups can be used for that purpose.

Chord fingers are distributed around the ring in a manner that maximizes
the efficiency of lookups. The original design is very deterministic and requires
nodes to pick fingers half way across the ring, a quarter across, an eight, and so
forth. The idea behind this distribution is that nodes will know mostly about
their immediate successors, but also some far away nodes to make far lookups
efficient.

We propose a sybil resistant finger distribution: A set of 32 fingers are se-
lected with an exponential distribution around the ring. This reflects the Chord
paradigm, of discovering more about the immediate environment. Out of these
fingers the 16 are selected in the following manner: the successor is first used to
create a ’trust profile’ of the table. Then all the candidate fingers are assessed
to find out which would least increase the trust put into a small set of nodes,
using the ‘trust list’ strategy described above. The procedure is repeated with
all selected fingers contributing to the ‘trust profile’, until 16 fingers have been
chosen.

Number of Good entries
bad nodes Closeness Mixted (b = 0.2) Zig-Zag in finger table

1 309 1634 413 99%
50 809 1962 725 66%

100 1519 1503 1056 53%
200 3581 1801 1400 37%
400 8762 5873 3627 26%

Table 3. Number of queries to satisfy 100 lookups in closeness, mixed and zig-zag
routing (100 good nodes) with diverse routing tables.

Requests routed using these more trust ‘balanced’ finger tables exhibit a
better performance as illustated in table 3. Note that the percentage of corrupt
finger entries is lower than in table 2, when the strategy described was not in
use. The efficiency results are positively correlated to the degree of finger table
corrution.

5 Conclusions

Distributed Hash Tables are very efficient distributed systems to lookup identi-
fiers, and in the past it has been demonstrated that they can be made robust
against node churn, random failures, and fluctuating network conditions [6, 11].
We devise strategies that make DHTs resilient to malicious nodes trying to poi-
son lookups by providing inaccurate information. We achieve this by routing
queries, not only to make them converge fast to their destinations, but also in



a way that minimizes trust bottle necks. This minimizes the amount of poi-
soned information that honest nodes receive from hostile sybils controlled by
the adversary.

The strategies we present have been validated through extensive testing and
simulations, whose results have been presented. It is worthwhile noting that
routing is still possible, and more efficient than broadcasting, even when honest
nodes are in a small minority (our tables illustrate the ratio of 1 honest node to
4 sybils). We have also validated through simulation that our approach would
protect the network, even if a large number of sybil nodes manage to infiltrate
the network by fooling many honest nodes into introducing them. Furthermore
one could describe our approach as ‘value free’, in that there is no attempt to
classify nodes into good and bad: we simply try to spread the queries across all
nodes in the trust graph. Intrusion detection strategies could be devised that
correlate the quality of the information provides with nodes, to determine which
are the bad nodes. Making such a mechanism strategy proof is a hard problem.

Our algorithms also refrains from making global judgments about nodes:
there is no such thing as a good node or a bad node, but only nodes that are
connected to the requesting node through different paths. As a result we expect
our algorithms to be of use when two mutually hostile groups of nodes decide
to form a common DHT. While members of one group might provide poor, or
no information, to members of the other group, they would behave properly to
each other. Our approach should be able to cope with this model.

Finally we hope that this work contributes to a redefinition of ‘identity’ when
used in a distributed systems security setting, as the position of a party in a
social, or other, network, rather than an arbitrary external identifier. The tradi-
tional identity based approach requires additional infrastructure to assign identi-
ties, such as admission control and public key infrastructures that are expensive
and difficult to implement in any network, let alone in a fully decentralized peer-
to-peer setting. We have shown that preserving this contextual information can
yield simpler and more robust mechanisms for dealing with adversaries.

Acknowledgments George Danezis and Chris Lesniewski-Laas are supported by
the Cambridge-MIT Institute (CMI) project on ‘Third generation peer-to-peer
networks’ and part of this work was done while visiting MIT CSAIL.

References

1. Tuomas Aura, Aarthi Nagarajan, , and Andrei Gurtov. Analysis of the hip base
exchange protocol. In 10th Australasian Conference on Information Security and
Privacy (ACISP 2005), Brisbane, Australia, July 2005.

2. Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and Dan S.
Wallach. Secure routing for structured peer-to-peer overlay networks. In 5th Usenix
Symposium on Operating Systems Design and Implementation, Boston, MA, De-
cember 2002.

3. John R. Douceur. The sybil attack. In Proceedings for the 1st International Work-
shop on Peer-to-Peer Systems (IPTPS 02), Cambridge, Massachusetts, March
2002.



4. J. Kleinberg. The small-world phenomenon: An algorithmic perspective. In 32nd
ACM Symposium on Theory of Computing, 2000.

5. Raph Levien. Attack resistant trust metrics. Draft Ph.D. Thesis, at U.C. Berkeley.
6. J Li, J Stribling, TM Gil, R Morris, and F Kaashoek. Comparing the performance

of distributed hash tables under churn. In International Workshop on Peer-to-Peer
Systems (IPTPS04), 2004.

7. Sergio Marti, Prasanna Ganesan, and Hector Garcia-Molina. SPROUT: P2P rout-
ing with social networks. In First International Workshop on Peer-to-Peer and
Databases (P2P&DB 2004), March 2004.

8. David Mazires. Self-certifying file system. PhD thesis, MIT, May 2000.
9. Roger M. Needham. Denial of service: an example. Communications of the ACM,

37(11):42–46, 1994.
10. Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker.

A scalable content-addressable network. In Proc. ACM SIGCOMM 01, San Diego,
California, August 2001.

11. S Rhea, D Geels, T Roscoe, and J Kubiatowicz. Handling churn in a dht. In
USENIX Annual Technical Conference, June 2004.

12. Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed object loca-
tion and routing for large-scale peer-to-peer systems. In Heidelberg, Germany,,
Heidelberg, Germany, 2001.

13. Emil Sit and Robert Morris. Security considerations for peer-to-peer distributed
hash tables. In Proceedings for the 1st International Workshop on Peer-to-Peer
Systems (IPTPS 02), Cambridge, Massachusetts, March 2002.

14. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, , and Hari Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet applications. In
Proc. ACM SIGCOMM 01, San Diego, California, August 2001.

15. Ben Y. Zhao, John D. Kubiatowicz, , and Anthony D. Joseph. Tapestry: An
infrastructure for fault-resilient wide-area location and routing. Technical Report
UCB//CSD-01-1141, U. C. Berkeley, April 2001.

16. Cai-Nicolas Ziegler and Georg Lausen. Spreading activation models for trust prop-
agation. In IEEE International Conference on e-Technology, e-Commerce, and
e-Service (EEE ’04), Taipei, Taiwan, March 29-31 2004,.


