
List Objects with Algebraic Structure
Marcelo Fiore1 and Philip Saville2

1 Computer Laboratory, University of Cambridge, 15 JJ Thomson Avenue,
Cambridge CB3 0FD, UK
Marcelo.Fiore@cl.cam.ac.uk

2 Computer Laboratory, University of Cambridge, 15 JJ Thomson Avenue,
Cambridge CB3 0FD, UK
Philip.Saville@cl.cam.ac.uk

Abstract
We introduce and study the notion of list object with algebraic structure. The first key aspect
of our development is that the notion of list object is considered in the context of monoidal
structure; the second key aspect is that we further equip list objects with algebraic structure
in this setting. Within our framework, we observe that list objects give rise to free monoids
and moreover show that this remains so in the presence of algebraic structure. In addition, we
provide a basic theory explicitly describing as an inductively defined object such free monoids
with suitably compatible algebraic structure in common practical situations. This theory is
accompanied by the study of two technical themes that, besides being of interest in their own
right, are important for establishing applications. These themes are: parametrised initiality,
central to the universal property defining list objects; and approaches to algebraic structure, in
particular in the context of monoidal theories. The latter leads naturally to a notion of nsr (or
near semiring) category of independent interest. With the theoretical development in place, we
touch upon a variety of applications, considering Natural Numbers Objects in domain theory,
giving a universal property for the monadic list transformer, providing free instances of algebraic
extensions of the Haskell Monad type class, elucidating the algebraic character of the construction
of opetopes in higher-dimensional algebra, and considering free models of second-order algebraic
theories.

1998 ACM Subject Classification D.1.1 Applicative (Functional) Programming; D.3.1 Formal
Definitions and Theory; D.3.3 Language Constructs and Features; F.3.2 Semantics of Program-
ming Languages F.3.3 Studies of Program Constructs.

Keywords and phrases list object; free monoid; strong monad; (cartesian, linear, and second-
order) algebraic theory; near semiring; Haskell Monad type class; opetope.

Digital Object Identifier 10.4230/LIPIcs.FSCD.2017.16

1 Introduction

Lists are a basic and fundamental construction in computer science and mathematics.
In type theory [35] and programming theory [37], the polymorphic type of lists L(X) is

an inductive type with constructors

nil : L(X) , cons : X × L(X)→ L(X)

and an eliminator supporting definitions by primitive recursion. Amongst the variety of
possible primitive-recursion schemes, here we will be concerned with pure iteration [43];
by which from n : P → L and c : X × L → L one may form the parametrised iterator

© Marcelo Fiore and Philip Saville;
licensed under Creative Commons License CC-BY

2nd International Conference on Formal Structures for Computation and Deduction (FSCD 2017).
Editor: Dale Miller; Article No. 16; pp. 16:1–16:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSCD.2017.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


16:2 List Objects with Algebraic Structure

it(n, c) : L(X)× P → L defined by
it(n, c)(nil, p) = n(p) , it(n, c)(cons(x, l), p) = c

(
x, it(n, c)(l, p)

)
.

The type of Natural Numbers is then that of lists on the unit type.
In category theory, the list type is universally modelled by the notion of (parametrised)

list object, directly generalising Lawvere’s notion of NNO (Natural Numbers Object) [29].
A list object L(X) on an object X in a category with finite products (1,×), is an initial
algebraic structure of the form

1 nil−−→ L(X) cons←−−− X × L(X) .
Such a structure is a parametrised list object whenever it is parametrised initial, in the
sense that for every structure (P n−→ L

c←− X × L) there exists a unique mediating map
it(n, c) : L(X)× P → L such that

1× P nil×P
//

∼=
��

L(X)× P

it(n,c)
��

X × L(X)× Pcons×P
oo

X×it(n,c)
��

P
n

// L X × L
c

oo

It is well-known that when the binary product (×) is closed these notions of list object
coincide, and that in the further presence of binary coproducts (+) one may explicitly
describe list objects by means of initial algebras:

L(X) = µA. 1 +X ×A

where we use the common notation µA.F (A) for the initial F -algebra. However, there are
important scenarios (e.g. pretoposes [21, 33]) where the product structure is not closed. For
them the more general parametrised concept is the appropriate one, and we henceforth adopt
it as primitive.

In this paper, we investigate two orthogonal generalisations of list objects. One gener-
alisation is concerned with weakening the cartesian structure of list objects to a monoidal
one (Definition 3.1). Whilst NNOs have been studied in cartesian [29] and monoidal [6, 38]
settings, list objects have been mainly considered in the cartesian one. The other generalisa-
tion is novel in that we equip list objects with further algebraic structure with respect to
which the iterator is an algebra homomorphism (Definition 5.1).

Section 2 provides the necessary categorical background for setting up the above definitions.
List objects in monoidal categories are introduced in Section 3, where we observe that they
give rise to free monoids (Lemma 3.4). A main example is the monad freely generated
by an endofunctor (Example 3.5). The parametrisation aspect inherent to list objects is
considered and studied in broader generality in Section 4. In particular, we present a theory
that accounts for the parametrised initiality of list objects as iteratively-constructed initial
algebras

L(X) = µA. I +X ⊗A

in contexts where the monoidal structure (I,⊗) may not be left-closed (Corollary 4.9). This
general theory applies in the further context of list objects with algebraic structure (specific-
ally Lemma 4.8) and plays an essential role in the application to higher-dimensional algebra
that we present in Section 7.2.2.

The central notion of list object with T -algebraic structure, as prescribed by a strong
monad T , is introduced in Section 5 and referred to as T -list object (Definition 5.1). This is
accompanied by a related notion of monoid with compatible T -algebraic structure, referred
to as T -monoid (Definition 5.2). These two notions are related as follows: firstly, we observe



M. Fiore and P. Saville 16:3

that T -list objects M(X) yield free T -monoids (Lemma 5.6); secondly, we give an explicit
description of T -list objects as parametrised initial algebras (Lemma 5.7):

MT (X) = µA. T (I +X ⊗A)

that is available in common practical situations (Corollaries 5.10 and 5.11). Overall, thus,
this yields a universal inductive description of free T -monoids by means of parametrised
initial-algebras that is of wide applicability (Theorem 5.8). This result, which we had obtained
independently, also features in the recent work of Piróg [39], who establishes it by different
methods.

Throughout the above development, algebraic structure is considered abstractly as
encapsulated by the notion of strong monad. Section 6 complements this from the perspective
of algebraic theories, whilst Section 7 discusses applications to programming semantics and
algebraic theories presented in the context of related work. The study of linear algebraic
theories (Section 6.2) led us to the notion of nsr (or near semiring) category (Definition 6.2),
which, besides being of independent interest, plays a role in the applications to functional
programming and higher-dimensional algebra respectively presented in Sections 7.2.1 and 7.2.2.
Finally, Section 8 concludes with a brief discussion on the significance of our results, and
indications of ongoing work.

2 Algebraic structure in monoidal categories

We begin by outlining the basic categorical notions of algebraic and monoidal structure which
are relevant to our development.

Strong monoidal structures. Throughout we work with monoidal categories (C, I,⊗). To
simplify notation, we replace the structural isomorphisms by an unlabelled ∼= in diagrams.

We will be considering strong multiary endofunctors (F, st) on monoidal categories (C, I,⊗)
consisting of a functor F : Cn → C (n ∈ N) together with a strength st, which is given by a
natural transformation st(X1,...,Xn),Y : F (X1, . . . , Xn)⊗ Y → F (X1 ⊗ Y, . . .Xn ⊗ Y ) subject
to coherence conditions. Maps of strong endofunctors (F, st)→ (F ′, st′) are strong natural
transformations given by natural transformations F → F ′ satisfying coherence conditions.
(See e.g. [25] for details, or [10, Section I.1.2] for related, more general, notions.)

A strong monad T = (T, st, µ, η) is a strong functor (T, st) equipped with strong natural
transformations η : (Id, id)→ (T, st) and µ : (TT, T (st) ◦ st)→ (T, st) subject to the monad
laws. (See e.g. [32, Section VI.1].)

We will be specifically concerned with two kinds of algebraic structure on objects in a
monoidal category: monoids and monad algebras. We recall both notions.

Monoids. A monoid (M, e,m) in a monoidal category (C, I,⊗) consists of an object M ∈ C
together with a unit map e : I →M and a multiplication map m : M ⊗M →M , subject to
identity and associativity laws. Homomorphisms of monoids are morphisms of the underlying
objects that preserve units and commute with the multiplications. We write Mon(C) for the
corresponding category. (See e.g. [32, Section VII.3] for details.)

Monad algebras. An algebra (X,x) for a (strong) endofunctor (F, st) consists of an objectX
together with a structure map x : FX → X. Algebra homomorphisms (X,x)→ (Y, y) are
maps h : X → Y such that h ◦ x = y ◦ Fh. We write F -alg for the corresponding category.

An algebra for a (strong) monad (T, st, η, µ) is a T -algebra with structure map satisfying

FSCD 2017



16:4 List Objects with Algebraic Structure

identity and associativity laws with respect to η and µ. We write T -Alg for the full subcategory
of T -alg so determined. (See e.g. [32, Section VI.2].)

Crucially, we will be interested in left homomorphisms [24] between algebras. These are
given by maps h : X ⊗ P → Y such that

F (X)⊗ P F (X ⊗ P ) FY

X ⊗ P Y

x⊗P

stX,P Fh

y

h

(1)

3 List objects

List objects have been mainly studied in the cartesian setting, see e.g. [21, 7, 33]. In the
linear setting, the special case of Lawvere’s NNO [29], which amounts to the list object on a
unit object, has been considered in monoidal categories [38] (see also [6]) and in a syntactic
calculus [2]. As for general list objects, as far as we know, they have only appeared indirectly
under the guise of algebraically-free monoids (see Remark 3.2 below). The notion of list
object is as expected and we make it explicit below.
I Remark. What we define under the name of list object is frequently referred to, in the
cartesian setting, as a parametrised list object. We have adopted the shorter terminology for
brevity and because we feel that it is the appropriate concept for the monoidal setting —
especially in the extension to include algebraic structure put forward in Section 5.

I Definition 3.1. Let X be an object of a monoidal category (I,⊗).
1. A list algebra on X is an object L together with a pair of maps

(
I → L← X ⊗ L

)
.

2. A list object on X is a list algebra
(
I

nil−−→ L(X) cons←−−− X ⊗ L(X)
)
that is parametrised

initial, in the sense that for every parametrised list algebra (P n−→ L
c←− X ⊗ L) there

exists a unique mediating map it(n, c) : L(X)⊗ P → L such that

I ⊗ P nil⊗P
//

∼=
��

L(X)⊗ P

it(n,c)
��

X ⊗ L(X)⊗ Pcons⊗P
oo

X⊗it(n,c)
��

P
n

// L X ⊗ L
c

oo

Thus, list objects are universally characterised by their constructors and their support of
definitions by pure iteration [43].
I Remark 3.2. In a monoidal category (I, ⊗) with binary coproducts (+) that are preserved by
the endofunctor (−)⊗P for every object P , the notion of list object on an objectX is equivalent
to Kelly’s notion of the algebraically-free monoid on the free pointed-object (I → I + X)
on X, see [23, §23.1].

I Example 3.3. Our notion of list object on the unit object coincides with the notion of
LNNO (Left Natural Numbers Object) of Paré and Román [38].

We summarise the algebraic structure of and provided by list objects.

I Lemma 3.4. 1. Every list object on X with carrier L(X) provides a monoid structure
with carrier L(X) that is the free monoid on X.

2. If the ambient category C has list objects, then the forgetful functor Mon(C) → C is
monadic. This induces a list (or free monoid) monad L.

3. When the monoidal structure is cartesian the monad L is strong.



M. Fiore and P. Saville 16:5

I Example 3.5. The above explains the well-known construction of the free monad on an
endofunctor by means of free algebras. Indeed, for an endofunctor F , a choice of free F -algebra(
X

ηX−−→ TFX
ϕX←−− F (TFX)

)
on each object X determines a list object (Id η−→ TF

ϕ←− F ◦ TF )
on F in the category of endofunctors with the composition monoidal structure, inducing the
free monad TF on F . The case F = Id is precisely Burroni’s notion of NNO functor that
underlies his notion of Peano-Lawvere category [6] (consult also [38]).

I Remark. In general, the notions of list object and of free monoid do not agree. The former
may not be available, as in the category of sets with the coproduct monoidal structure.

4 Parametrised initial algebras

As natural as the definition of list object is, it is also important to analyse its universal
property through the theory of parametrised initial algebras. This section presents the
relevant aspects of this theory.

I Definition 4.1. An F -algebra for a functor F : D × C → C is defined as a pair
(
(D,C), ϕ

)
with ϕ : F (D,C) → C in C. F -algebras form a category F -alg in which a homomorphism
(D,C)→ (D′, C ′) is a pair (g : D → D′, f : C → C ′) such that f ◦ ϕ = ϕ′ ◦ F (g, f).

I Definition 4.2. For a functor F : D × C → C, the initial-algebra functor µF : D → C is
defined, whenever possible, by choosing an initial F (X,−)-algebra

(
µA.F (X,A), ϕX

)
and

setting µF (X) := µA.F (X,A). On morphisms, the action of µF on f : X → Y is uniquely
determined by the fact that

(
f, µF (f)

)
is an F -algebra homomorphism from (µF (X), ϕX)

to (µF (Y ), ϕY ).

I Example 4.3. Consider the functor F : C × C → C : (X,A) 7→ I +X ⊗ A in a monoidal
category (C, I,⊗) with binary coproducts (+). In the presence of list objects L(X) on
every X ∈ C, the endofunctor µF is available and canonically isomorphic to the list-object
endofunctor L.

We recall the basic iterative construction for building initial-algebra functors.

I Lemma 4.4 ([1, 30]). For every functor F : D × C → C where C has an initial ob-
ject (0) and ω-colimits and FD := F (D,−) is ω-cocontinuous for every D ∈ D, we have
a functor µF : D → C defined by setting µF (D) to be a chosen colimit of the ω-chain
〈FDn(0→ FD0)〉n∈N. Moreover, if F is ω-cocontinuous then so is µF .

We turn our attention to parametrised initiality. The general theory requires the frame-
work of monoidal actions, see [10, Section I.1]. We do not dwell on this here; rather, we
restrict attention to the special case relevant to the present development.

I Definition 4.5. For a monoidal category (C, I,⊗), a strong functor F : C × C → C, and an
object Z ∈ C, an initial F (Z,−)-algebra (µA.F (Z,A), ϕZ) is said to be parametrised initial
whenever for every object P ∈ C and algebra structure γ : F (Z ⊗ P,C)→ C on an object
C ∈ C there is a unique map u :

(
µA.F (Z,A)

)
⊗ P → C making the following diagram

commute

F
(
Z, µA. F (Z,A)

)
⊗ P

ϕZ⊗P
��

st // F
(
Z ⊗ P,

(
µA.F (Z,A)

)
⊗ P

) F (Z⊗P,u)
// F (Z ⊗ P,C)

γ

��(
µA.F (Z,A)

)
⊗ P

u
// C

FSCD 2017



16:6 List Objects with Algebraic Structure

I Remark. As is well-known, for a left-closed monoidal category (i.e., one in which (−)⊗ P
has a right adjoint for all objects P ), the notions of initiality and of parametrised initiality
coincide.

I Example 4.6. Consider a monoidal category (C, I,⊗) with binary coproducts (+) that
are preserved by every endofunctor (−)⊗ P for P ∈ C. For every object X ∈ C, the functor
FX : C × C → C : (Z,A) 7→ Z +X ⊗A is canonically strong and the notion of parametrised
initial F (I,−)-algebra coincides with that of list object on X.

We now provide a conceptual framework for parametrised iteratively-constructed initial
algebras. Our main technical tool is the following lax-uniformity property of initial algebra
functors. (For uniformity in a related 2-dimensional setting see [9, Section 7.3.2].)

I Theorem 4.7. Consider a diagram of categories, functors, and a natural transformation
as on the left below

D × C
h⇐K×J

��

F // C
J
��

B ×A
G
// A

D
µh⇐K

��

µF
// C
J
��

B
µG
// A

(2)

Assume that the categories C,A both have an initial object and ω-colimits, and that the
functors F (D,−), G(B,−), J are ω-cocontinuous for all D ∈ D and B ∈ B. If J also
preserves initial objects, then for all algebras α : G(KD,A)→ A there exists a unique map
α? : J(µF (D))→ A such that

JF (D,µF (D))

J∼=
��

hD,µF (D)
// G
(
KD, J(µF (D))

) G(KD,α?)
// G(KD,A)

α

��

J(µF (D))
α?

// A

and we have the situation as on the right in (2) above with

µhD :=
(
G(KD,µG(KD))

∼=−→ µG(KD)
)? .

The lemma below follows by applying the theorem above to the diagram

C × C
st⇐=

F //

Id×(−⊗P )
��

C
−⊗P
��

C × C
F (−⊗P,=)

// C

for each P ∈ C.

I Lemma 4.8. Let (C, I,⊗) be a monoidal category with an initial object and ω-colimits,
both preserved by the endofunctor (−) ⊗ P for each P ∈ C. For an ω-cocontinuous strong
endofunctor (F, st) : C × C → C, every initial F (Z,−)-algebra for Z ∈ C is parametrised
initial.

From this lemma and Example 4.6, we attain conditions for (not necessarily left-closed)
monoidal categories under which list objects arise as iteratively-constructed initial algebras.

I Corollary 4.9. Let (C, I,⊗) be a monoidal category with finite coproducts (0,+) and
ω-colimits, both preserved by the endofunctor (−) ⊗ P for all P ∈ C. For X ∈ C, if the
endofunctor X⊗ (−) is ω-cocontinuous, then the initial (I+X⊗−)-algebra gives a list-object
structure on X.



M. Fiore and P. Saville 16:7

5 List objects and monoids with algebraic structure

We have observed that list objects provide free monoids (Lemma 3.4). In this section, we
generalise this fact to encompass notions of list object and monoid that are equipped with
algebraic structure.

List objects with algebraic structure. We equip list objects with a monadic algebra struc-
ture. Crucially, we use this algebraic structure to refine their defining universal property.
This is the key concept of the paper.

I Definition 5.1. Let (T, st) be a strong monad on a monoidal category (I,⊗).
1. A T -list algebra on an object X consists of an object A together with a list algebra(

I −→ A←− X ⊗A
)
and a T -algebra structure TA −→ A.

2. A T -list object on an object X is a parametrised initial T -list algebra. Explicitly, it is a
T -list algebra as on the left below

T (M(X))

I M(X) X ⊗M(X)

τ

nil cons

TA

P A X ⊗A

α

n c

such that for every parametrised T -list algebra as on the right above there exists a unique
mediating map it(n, c, α) : M(X)⊗ P → A such that

I ⊗ P M(X) ⊗ P X ⊗ M(X) ⊗ P

P A X ⊗ A

nil⊗P

∼= it(n,c,α)

cons⊗P

X⊗it(n,c,α)

p c

T
(
M(X)

)
⊗ P T (M(X) ⊗ P ) T A

M(X) ⊗ P A

τ⊗P

stM(X),P T (it(n,c,α))

α

it(n,c,α)

Thus, definitions by pure iteration in this setting are required to be left algebra homomorph-
isms

(
recall (1)

)
.

Monoids with algebraic structure. Generalising from [15], we define the notion of monoid
equipped with compatible monadic algebraic structure. This has also recently been considered
by Piróg [39] under the terminology of Eilenberg-Moore monoid.

I Definition 5.2. Let (T, st) be a strong monad on a monoidal category (C, I,⊗). A
T -monoid is an object C equipped with a monoid structure (I e−→ C

m←− C ⊗ C) and a
T -algebra structure (c : TC → C) compatible in the sense that the monoid multiplication is
a left homomorphism; that is, the following diagram commutes:

T (C)⊗ C T (C ⊗ C) TC

C ⊗ C C

stC,C

c⊗C

Tm

c

m

Homomorphisms of T -monoids are morphisms of the underlying objects that are both monoid
and T -algebra homomorphisms. We write T -Mon(C) for the category of T -monoids and their
homomorphisms.

I Remark. The construction T -Mon(C) generalises both the category of algebras for a monad
T -Alg and the category of monoids Mon(C). The former is available for any category C with
finite coproducts by taking these as the monoidal structure; the latter arises by restricting
attention to identity monads.

The notion of T -monoid is essentially an extension of the notion of F -monoid for a strong

FSCD 2017



16:8 List Objects with Algebraic Structure

endofunctor F on a monoidal category C, introduced in [15, Section 4], to incorporate further
algebraic structure. The original notion is typically subsumed by the notion of TF -monoid
for TF the monad on C induced by a left adjoint to the forgetful functor F -alg → C. Indeed,
consider the following proposition.

I Proposition 5.3. Let (C, I,⊗) be a monoidal category and F a strong endofunctor on it.
1. If the forgetful functor F -alg → C has a left adjoint then it is monadic.
2. If ⊗ is left-closed and the forgetful functor F -alg → C has a left adjoint then the induced

monad TF is canonically strong.
3. Assuming that C has finite coproducts and ω-colimits that are preserved by (−)⊗ P for

all P ∈ C, if F is ω-cocontinuous then the forgetful functor F -alg → C has a left adjoint
and the induced monad TF is canonically strong.

4. In either of the situations (2) and (3) above, the notions of TF -monoid and of F -monoid
coincide.

Wolff [48] noticed that, for T a strong monad on a monoidal category (I,⊗), TI is a
monoid. The notion of T -monoid allows us to sharpen this result.

I Lemma 5.4. For every strong monad (T, st, η, µ) on a monoidal category (C, I,⊗), the
free T -algebra (TI, µI) equipped with unit ηI : I → TI and multiplication

(TI)⊗ (TI) stI,TI−−−−→ T (I ⊗ TI) ∼= T (TI) µI−→ TI

is a T -monoid. In fact, it is initial in T -Mon(C).

The original example in which the lemma above was applied essentially considered the
monad freely generated by a binding-signature endofunctor. In that context, the initiality
property yields initial-algebra semantics for abstract syntax with variable binding and
substitution. See [15, 10] for details.

For further examples of T -monoids consider the following.

I Proposition 5.5. For every monoid M in a monoidal category (C, I,⊗), we have a strong
monad M⊗

(
with underlying endofunctor M ⊗ (−)

)
for which M⊗-Alg is the category of left

M -actions, and M⊗-Mon(C) is isomorphic to the slice category M/Mon(C).

T -list objects induce free T -monoids. For a strong ω-cocontinuous monad T on a fi-
nitely and ω-chain cocomplete monoidal category (I,⊗) in which ⊗ is ω-cocontinuous, free
T -monoids can be shown to exist (for instance, by applying the theory of [13]). However, no
explicit description for this construction is available. The main purpose of this section is to
establish one under practical hypotheses.

First we observe that the situation for list objects generalises in the expected way (compare
Lemma 3.4).

I Lemma 5.6. Let T be a strong monad on a monoidal category C.
1. T -list objects induce free T -monoids.
2. If C has T -list objects then the forgetful functor T -Mon(C)→ C is monadic inducing a

free T -monoid (or T -list) monad MT .
3. When the monoidal structrure is cartesian closed, the monad MT is strong.

The proof that list objects induce free monoids relies on parametrised initiality to define
the multiplication map by iteration and on the uniqueness property of mediating maps to
show that the monoid laws and universal property hold. The proof of Lemma 5.6(1) follows
the same approach, except one needs to check the relevant maps are left homomorphisms.

In the light of the lemma, the problem of constructing free T -monoids can be reduced to



M. Fiore and P. Saville 16:9

that of constructing T -list objects. For an object X in a monoidal category (C, I,⊗) with
binary coproducts (+), we introduce the functor

F (P,C) := T (P +X ⊗ C) ,

consider a parameterised initial F (I,−)-algebra

MX := µA. T (I +X ⊗A) ,

and proceed to equip it with a T -list object structure on X. We construct the list algebra
(I nil−−→ MX

cons←−−− X ⊗MX) as

nil :=
(
I

inl−→ I +X ⊗MX
η−→ T (I +X ⊗MX) ϕ−→ MX

)
and

cons :=
(
X ⊗MX

inr−−→ I +X ⊗MX
η−→ T (I +X ⊗MX) ϕ−→ MX

)
where ϕ : T (I + X ⊗MX)

∼=−→ MX is the structure map for MX. This has a T -algebra
structure, given by

µ̃ :=
(
T (MX) Tϕ−1

−−−−→∼= TT (I +X ⊗MX) µ−→ T (I +X ⊗MX) ϕ−→∼= MX
)
.

I Lemma 5.7. For a strong monad (T, st) on a monoidal category (I,⊗) with binary
coproducts (+) preserved by the endofunctor (−)⊗ P for every object P , the structure

T (MX)

I MX X ⊗MX

µ̃

nil cons

(3)

is a T -list object.

In particular, the mediating map it(n, c, α) : (MX) ⊗ P → A to a parametrised T -list
algebra (P n−→ A

c←− X ⊗A, TA α−→ A) arises by parametrised initiality (recall Definition 4.5)
as follows

T (I +X ⊗MX)⊗ P
T (δ+)◦st

//

ϕ⊗P

��

T (I ⊗ P +X ⊗ (MX)⊗ P )
T (I ⊗ P +X ⊗ it(n, c, α))

// T (I ⊗ P +X ⊗A)
T [n◦∼=,c]
��

TA

α
��

(MX)⊗ P
it(n,c,α)

// A

where δ+ denotes the inverse of the canonical map (−⊗ P ) + (= ⊗P )→ (−+ =)⊗ P .
We thus have the following result.

I Theorem 5.8. Let T be a strong monad on a monoidal category (C, I,⊗) with binary
coproducts (+). If
1. for every P ∈ C, the endofunctor (−)⊗ P preserves binary coproducts, and
2. every functor FX(−,=) := T (−+X⊗ =) for X ∈ C has a parametrised initial FX(I,−)-

algebra
then C has T -list objects as in (3) above and, thereby, the free T -monoid monad MT .

I Remark. We have that µA. T (I +X ⊗A) ∼= T
(
µA. (I +X ⊗ TA)

)
by the Rolling Rule [3,

Theorem 4], which gives the description of free T -monoids of Piróg [39].

FSCD 2017



16:10 List Objects with Algebraic Structure

I Example 5.9. 1. The free Id-monoid monad is the list monad.
2. One may apply Theorem 5.8 in the situation of Proposition 5.3 to describe the free

F -monoid for a strong endofunctor F . This is given by
µA. TF (I +X ⊗A) = µA. µB. I +X ⊗A+ F (B)

or, by the Diagonal Rule [3, Theorem 16], equivalently by
MTF (X) := µC. I +X ⊗ C + F (C) .

Thus, we recover a slightly restricted version of a corresponding result for endofunctors with
pointed strength of Fiore [10, Theorems 2 and 3] (see also Section 7.3 below). In the context
of the motivating application of [10], this yields initial-algebra semantics for abstract
syntax with variable binding and parameterised metavariables, with their associated
operations of capture-avoiding substitution and of meta-substitution. See [17, 10] for
details.

For our applications, we are interested in using Theorem 5.8 in two distinct concrete
scenarios, encapsulated in the corollaries below.

I Corollary 5.10. Let T be a strong monad on a left-closed monoidal category (C, I,⊗) with
binary coproducts (+). If every endofunctor T (I +X ⊗−) for X ∈ C has an initial algebra
then C has T -list objects and, thereby, the free T -monoid monad MT .

I Corollary 5.11. Let T be a strong monad on a monoidal category (C, I,⊗) with finite
coproducts (0,+) and ω-colimits. If
1. for every P ∈ C, the endofunctor (−)⊗ P preserves finite coproducts, and
2. the functors ⊗ and T are ω-cocontinuous
then C has T -list objects and, thereby, the free T -monoid monad MT .

I Example 5.12. In view of Proposition 5.5 and Corollary 5.10, for every monoid M in a
left-closed monoidal category (C, I,⊗) with binary coproducts (+) the free M -pointed object
in Mon(C) on an object X ∈ C is given by µA.M ⊗ (I +X ⊗A).

6 Strong algebraic structure

Our discussion so far has considered algebraic structure abstractly as encapsulated by the
notion of monad. Our main interest is in monads that are strong, and this section examines
these as they arise from algebraic theories. Our aim here is not to treat these in full
generality (as e.g. in the enriched setting [41]) but to focus attention on two traditionally
important contexts: cartesian and monoidal. By way of introduction, Section 6.1 recalls the
setting of (cartesian) algebraic theories as studied in universal algebra [28, 8, 40]. Then, in
Section 6.2, we develop the operadic [5, 36] or linear [27] setting. Our analysis unveils the
notion of nsr (or near semiring) category (Definition 6.2), a categorification of the algebraic
structure of near semiring [47], as the basic categorical framework in which to consider
monoidal (or linear) algebraic models.

6.1 Algebraic theories
A Lawvere theory [28] is seen in universal algebra as an abstract clone of operations (see e.g. [8,
40]). This is a family of sets O = {On}n∈N together with variables x(n)

i ∈ On (1 ≤ i ≤ n ∈ N)
and substitution operations sm,n : Om × On

m → On (m,n ∈ N) subject to identity
and associativity laws. A map f : O → O′ of abstract clones is a family of functions
fn : On → O′n (n ∈ N) preserving variables and commuting with substitution.



M. Fiore and P. Saville 16:11

A main example of an abstract clone is the concrete clone of operations (or clone of
endomorphisms) on an object in a cartesian category C. For an object X ∈ C this is defined as
E(X) = { C(Xn, X) }n∈N with variables given by projections and substitution by composition.
An O-algebra (or model) of an abstract clone O is an object X together with a structure
map O → E(X) of abstract clones. An algebra homomorphism h : (X,x) → (Y, y) is a
map h : X → Y such that h ◦ xo = yo ◦ hn : Xn → Y for all n ∈ N and o ∈ On. We write
O-Alg for the corresponding category. If C is cocomplete and the product (×) is separately
cocontinuous in each argument, the forgetful functor O-Alg → C is monadic and the induced
monad TO is given on an object X ∈ C by the coequaliser

∐
m,n∈N

∐
ρ∈F([m],[n])Om ·Xn

[ιm◦(Om·Xρ)]ρ:[m]→[n]
//

[ιn◦(Oρ·Xn)]ρ:[m]→[n]

//

∐
`∈FO` ·X` // // TO(X)

where we write · for the functor Set × C → C : (I, C) 7→
∐
i∈I C, and where we let F

denote the category of finite cardinals [n] := {1, . . . , n} (n ∈ N) and functions between
them and set Oρ := sm,n

(
−, (x(n)

ρ1 , . . . , x
(n)
ρm)
)

: Om → On for all ρ ∈ F([m], [n]). Intuitively,
thus, the coequaliser identifies ιo(−ρ1, . . . ,−ρm) and ιOρ(o)(−1, . . . ,−n) for all m,n ∈ N,
ρ ∈ F([m], [n]), and o ∈ Om.

Important to our concerns here, when C is furthermore monoidal and the tensor product (⊗)
is left cocontinuous, the free monad TO is canonically strong, with strength components
given by the unique map making the following diagram commute∐

`∈FO` · (X` ⊗ P )∐
`∈F

O`·〈π1⊗P,...,π`⊗P 〉
��

// // TO(X)⊗ P

��∐
`∈FO` · (X ⊗ P )` // // TO(X ⊗ P )

We can therefore consider TO-monoids. At any rate, one can also give an equivalent direct
definition for abstract clones (or for their equational presentations).

I Definition 6.1. An O-monoid, for an abstract clone O in a monoidal category with finite
products, is an object C equipped with a monoid structure (I e−→ C

m←− C ⊗ C) and an
O-algebra structure γ : O → E(C) compatible in the sense that the monoid multiplication is
a left algebra homomorphism; that is, the diagram

Cn ⊗ C (C ⊗ C)n Cn

C ⊗ C C

γo⊗C

〈π1⊗C,...,πn⊗C〉 mn

γo

m

commutes for all n ∈ N and o ∈ On.

In the next section we shall see that this construction falls within a more general
framework.

6.2 Linear algebraic theories
Operads are a well-established formalism for investigating monoidal or linear algebraic
structure, see e.g. [34]. In their basic form, they come in two guises: plain and symmetric.
Here, for simplicity, we limit the discussion to the plain case; the development can be suitably
adapted to the symmetric case. A plain operad is a family of sets O = {On }n∈N together with

FSCD 2017



16:12 List Objects with Algebraic Structure

a variable x ∈ O1 and linear substitution operations s(n1,...,n`)
` : O` ×

∏
i∈[`]Oni → OΣi∈[`]ni

(`, n1, . . . , n` ∈ N) subject to identity and associative laws. A map f : O → O′ of plain
operads is a family of functions fn : On → O′n (n ∈ N) preserving the variable and commuting
with substitution. (See e.g. [31, Chapter 2]).

A main example of a plain operad is the endomorphism operad on an object in a
monoidal category. For an object X in a monoidal category (C, J, ∗) this is defined as
E(X) = { C(X∗n, X) }n∈N with variable given by the identity and substitution by multi-
composition. The category of algebras for an operad O is defined analogously to that for
abstract clones, and equally denoted O-Alg. Without going into details, the theory of [13]
may be applied to show that when C is cocomplete and ∗ is ω-cocontinuous, the forgetful
functor O-Alg → C is monadic. We are interested in establishing a framework in which the
induced free O-algebra monads are strong. This is provided by the following notion.

I Definition 6.2. An nsr-category is a category equipped with two monoidal structures,
(I,⊗) and (J, ∗, λ, ρ, α), together with a distributive structure of the former over the latter
specified by ⊗-strengths for J and ∗

δ
(0)
P : J ⊗ P → J , δ

(2)
A,B,P : (A ∗B)⊗ P → (A⊗ P ) ∗ (B ⊗ P )

such that λ, ρ, α are ⊗-strong.

I Remark. As in [42], the above terminology is motivated by the algebraic structure known
as a near semiring [47], consisting of two monoid structures on the same carrier that are
subject to one-sided annihilation and distributivity laws of one structure over the other.

I Example 6.3. 1. For a monoidal category (C, I,⊗) with finite coproducts (0,+), the
opposite category Cop has a canonical distributive structure

0⊗ P ← 0 , (A+B)⊗ P ← (A⊗ P ) + (B ⊗ P )
of ⊗ over +. Hence, whenever the above maps are invertible, we also have a distributive
structure of ⊗ over + in C.

2. Cartesian monoidal categories have a distributive structure of the monoidal structure
over the cartesian structure. This was implicitly used in the previous section.

3. The category of endofunctors of a monoidal category has a distributive structure of the
composition monoidal structure over the pointwise monoidal structure.

4. Joyal’s category of combinatorial species of structures [20] forms an nsr-category with
the substitution and multiplication monoidal structures. This was implicitly used in [11].

The natural ambient universe for monoids with linear algebraic structure (either given by
an operad or their equational presentations) is that of nsr-categories.

I Definition 6.4. An O-monoid, for an operad O in an nsr-category (I,⊗, J, ∗, δ), is an object
C equipped with a ⊗-monoid structure (I e−→ C

m←− C ⊗ C) and an O-algebra ∗-structure
γ : O → E(C), compatible in the sense that the monoid multiplication is a left algebra
homomorphism; that is, the diagram

C∗n ⊗ C (C ⊗ C)∗n C∗n

C ⊗ C C

γo⊗C

δ(n) m∗n

γo

m

commutes for all n ∈ N and o ∈ On, where δ(n)
C1,...,Cn,P

stands for the iterated strength
(C1 ∗ · · · ∗ Cn)⊗ P → (C1 ⊗ P ) ∗ · · · ∗ (Cn ⊗ P ).



M. Fiore and P. Saville 16:13

I Remark 6.5. In well-behaved settings, one may typically rephrase O-monoids in terms of
T -monoids. Specifically, in a cocomplete nsr-category (C,⊗, ∗) with ⊗ left-cocontinuous and
∗ ω-cocontinuous, the forgetful functor O-Alg → C is monadic and the induced free O-algebra
monad TO is ⊗-strong. Furthermore, the notions of TO-monoid and of O-monoid coincide.
For instance, this is the case in the example featured in [11, Example 5.13(3)].

We conclude the section by discussing an important concrete example.

I Lemma 6.6. Let (C,⊗, ∗) be an nsr-category.
1. Assuming that C has ∗-list objects and that ⊗ is left-closed, the ∗-list monad L∗ (arising

from Lemma 3.4) is ⊗-strong.
2. Assuming that C has finite coproducts and ω-colimits, that ⊗ is left ω-cocontinuous, that
∗ is ω-cocontinuous, and that (−) ∗ P preserves finite coproducts for all P ∈ C, the ∗-list
monad L∗ (arising from Corollary 4.9 and Lemma 3.4) is ⊗-strong.

I Example 6.7. The notion of O-monoid for O the theory of monoids in an nsr-category
(C, I,⊗, J, ∗, δ) amounts to an object C equipped with two monoid structures (I 1−→ C

×←− C ⊗ C)
and (J 0−→ C

+←− C ∗ C) such that

J ⊗ C J

C ⊗ C C

0⊗C

δ
(0)
C

0

×

(C ∗ C)⊗ C (C ⊗ C) ∗ (C ⊗ C) C ∗ C

C ⊗ C C

+⊗C

δ
(2)
C,C,C ×∗×

+

×

These two diagrams respectively express one-sided annihilation and distributivity laws.
As such, we refer to these structures as nsr (or near-semiring) objects. Nsr-objects in
nsr-categories have already been considered by Rivas et al. [42].

For a ⊗-strong ∗-list monad L∗ (arising, for instance, as in Lemma 6.6), L∗-monoids are
precisely nsr-objects. In the context of Theorem 5.8 we therefore have that the free nsr-object
on an object X is given by

Nsr(X) := µA.L∗(I +X ⊗A) .

I Example 6.8. For a strong monad T on a monoidal category (C, I,⊗), we have a strong
monad T ◦ (with underlying endofunctor T ◦ (−)) on the monoidal category (Endo(C), I,⊗)
of endofunctors with the pointwise monoidal structure, and MT◦(Id) = MT ; that is, the free
T ◦-monoid on the identity is the free T -monoid monad. Furthermore, it is an nsr-object in
the nsr-category (Endo(C), Id, ◦, I,⊗) (recall Example 6.3(3)).

7 Applications and related work

Structures akin to the ones studied in this paper have been considered in a variety of
contexts. We have already mentioned the algebraic approach to abstract syntax and variable
binding of [15, 10] (see also [18]); we also touch upon this below. Before that, we will
discuss applications to programming theory, in semantics and functional programming, and
to higher-dimensional algebra, in the opetopic approach [4, 45]. Our work connects these
developments and opens up possibilities for interaction between them.

7.1 Semantics and programming
Let us uncover some examples of T -list objects in semantics and programming.

FSCD 2017



16:14 List Objects with Algebraic Structure

Natural Numbers Objects. Following Lawvere [29], we refer to the T -list object on the
unit object as a T -NNO. This general notion provides a uniform sense in which the various
domains of natural numbers that are needed in denotational semantics are Natural Numbers
Objects for suitable algebraic notions of primitive recursion. Indeed, Corollary 5.11 has
the following consequences in the category of cpos and continuous functions: the NNO for
the cartesian monoidal structure is the natural numbers µA. 1 +A and the lifting-NNO for
the cartesian monoidal structure is the lazy natural numbers µA. (1 +A)⊥. Moreover, the
lifting-NNO for the cocartesian monoidal structure is the strict natural numbers µA.A⊥.

List transformer. Corollary 5.10 gives a universal property for the monadic list transformer
of Jaskelioff [19, Example 4.7] (see also [16]): it is a T -list object construction and the
free T -monoid monad in the bicartesian closed setting. Indeed, assuming the needed initial
algebras exist, the list transformer Lt(T ) of a strong monad T on a cartesian closed category
with binary coproducts is defined as Lt(T )X := µA. T (1 + X × A). This result was
first established by Kammar [22] using a type-theoretic internal language. It follows from
Example 6.8 that the list transformer produces instances of the Haskell MonadPlus type
class also discussed below.

7.2 Free monoids with linear algebraic structure in nsr-categories
The examples of this section arise from the linear algebraic framework of Section 6.2, where
instances of free T -monoids have been considered in functional programming and higher-
dimensional algebra.

7.2.1 Functional programming
We consider an nsr-category (C, I,⊗, J, ∗) with left-closed tensor products and binary cop-
roducts, placing ourselves in the setting of Corollary 5.10. This is the setting assumed in the
context of functional programming, say in Haskell.

For nsr-categories with structure as in Example 6.3(2) (i.e. with (J, ∗) = (1,×)),
Rivas et al. [42] constructed free nsr-objects as in Example 6.7. Specialising this construction
to the nsr-category of endofunctors with structure (Id, ◦, 1,×) (recall Example 6.3(3)) over
a cartesian category (1,×) they obtained, and programmed with, instances of the Haskell
MonadPlus type class freely generated from an endofunctor by means of the recursive type
Mp(F )X := µA.List(X + FA). Further examples in this direction may be found in [46].

For the purpose of combinatorial search, Spivey [44] proposed extending the Haskell
MonadPlus type class to a Bunch type class by adding a unary wrap operation subject
to an equation. In our linear algebraic framework of Section 6.2, this precisely amounts
to extending the theory of monoids with an extra unary operation. The free algebras
for this theory are given by T (X) := µA. J + (X + A) ∗ A with induced free T -monoids
Bun(X) := µA. J + (I +X ⊗A+A) ∗A. Specialising these constructions to the monadic
setting of functional programming, one obtains freely generated instances of the Haskell
Bunch type class by means of the recursive type Bun(F )X := µA. 1+X×A+F (A)×A+A×A.

7.2.2 Higher-dimensional algebra
Let (C, I,⊗, J, ∗) be a cocomplete nsr-category (Definition 6.2) where ⊗ is left cocontinuous
and right ω-cocontinuous and ∗ is ω-cocontinuous. Then, the free O-algebra monad TO (Re-
mark 6.5) is ω-cocontinuous and Corollary 5.11 applies.



M. Fiore and P. Saville 16:15

Restricting attention to the theory of monoids, it is enough to require that both tensor
products be ω-cocontinuous and that they preserve finite coproducts in their first argument
for free monoids to be iteratively constructed as list objects. In fact, this is precisely the
context in which the work of Szawiel and Zawadowski [45] takes place. In particular, they
define the web monoid as L∗(I) and establish a universal property for it. Our results sharpen
and generalise theirs: by establishing that the web monoid is the initial nsr-object ML∗(0),
and by providing a general construction of free nsr-objects ML∗(X).

7.3 Second-order algebraic theories
The application of the theory of monoids with algebraic structure for an endofunctor or a
monad in the study of abstract syntax with variable binding [15] and with parametrised
metavariables [17, 10] crucially requires a slightly more general theory than the one expounded
upon here

(
recall Example 5.9(2)

)
. Indeed, because of the presence of binding and the need

for capture-avoidance in substitution, the semantic endofunctors and monads freely generated
from the syntax only admit a pointed strength (see [10] and [14]); that is, a strength of the
form

stX,I−→P : T (X)⊗ P → T (X ⊗ P )
only available for parameters P equipped with a point (I → P ). The results of the present
work generalise not only to this setting but, in fact, to a more comprehensive one involving
monoidal actions (see [10]). As such, they will be presented elsewhere.

8 Concluding remarks

We have introduced the notions of T -list object and T -monoid, developing some of their related
basic theory and discussing applications. In particular, in Section 5, we have established that
T -list objects yield free T -monoids and have provided an explicit description for them:

MT (X) := µA. T (I +X ⊗A)

that we have shown to be available in common practical scenarios. Our theory captures
all the examples of this construction that we are aware of. In this respect, the study of
parametrised initiality of Section 4 is crucial for cases where the tensor product is not
left-closed. Considering compatible algebraic and monoid structures from the perspective of
T -monoids leads naturally to the notion of nsr-category. These categories provide a common
framework for applications in a diverse range of settings, some of which we have presented in
Sections 6 and 7.

Our work opens up intriguing possibilities for interaction between a priori separate
research areas. For instance, the web monoid [45], mentioned in Section 7.2.2, is used to
recast a version of Baez and Dolan’s construction of opetopes [4] (see also [26]). The full
generality of our linear algebraic framework (Section 6.2) may be useful in porting this
approach to new applications. Our perspective on the structure of opetopes (Section 7.2.2)
provides an inductively defined construction for them that may be amenable to formalisation
in proof assistants. At any rate, it has already led to a unification of the algebraic aspects of
the theory of abstract syntax and the theory of opetopes [12].

Acknowledgements. We are grateful to Zawadowski for bringing his work with Szawiel [45]
to our attention, and both of them for discussions about it. We are also grateful to Kammar
for his note [22] and to Rivas for comments. We would like to thank the anonymous reviewers
for their helpful suggestions.

FSCD 2017



16:16 List Objects with Algebraic Structure

References

1 J. Adámek. Free algebras and automata realizations in the language of categories. Com-
mentationes Mathematicae Universitatis Carolinae, 015(4):589–602, 1974.

2 S. Alves, M. Fernández, M. Florido, and I. Mackie. Linear recursive functions. In Rewriting,
Computation and Proof: Essays Dedicated to Jean-Pierre Jouannaud on the Occasion of
His 60th Birthday, pages 182–195. Springer, 2007.

3 R. Backhouse, M. Bijsterveld, R. van Geldrop, and J. van der Woude. Categorical fixed
point calculus. In Category Theory and Computer Science, CTCS 1995, volume 953 of
Lecture Notes in Computer Science, pages 159–179. Springer, 1995.

4 J. C. Baez and J. Dolan. Higher-dimensional algebra III. n-categories and the algebra
of opetopes. Advances in Mathematics, 135(2):145–206, 1998. doi:10.1006/aima.1997.
1695.

5 J. M. Boardman and R. M. Vogt. Homotopy-everything H-spaces. Bull. Amer. Math. Soc.,
74(6):1117–1122, 11 1968.

6 A. Burroni. Récursivité graphique (1e partie) : catégorie des fonctions récursives primitives
formelles. Cahiers de Topologie et Géométrie Différentielle Catégoriques, 27(1):49–79, 1986.

7 J.R.B. Cockett. List-arithmetic distributive categories: Locoi. Journal of Pure and Applied
Algebra, 66(1):1–29, 1990. doi:10.1016/0022-4049(90)90121-W.

8 P.M. Cohn. Universal algebra. Reidel, 2nd edition, 1981.
9 M. Fiore. Axiomatic Domain Theory in Categories of Partial Maps. Cambridge University

Press, 1996.
10 M. Fiore. Second-order and dependently-sorted abstract syntax. In Proceedings of the 2008

23rd Annual IEEE Symposium on Logic in Computer Science, LICS ’08, pages 57–68. IEEE
Computer Society, 2008. doi:10.1109/LICS.2008.38.

11 M. Fiore. An equational metalogic for monadic equational systems. Theory and Applications
of Categories, 27(18):464–492, 2013.

12 M. Fiore. An algebraic combinatorial approach to opetopic structure. Notes and talk,
Seminar on Higher Structures, Program on Higher Structures in Geometry and Physics,
Max Planck Institute for Mathematics, February–March 2016.

13 M. Fiore and C.-K. Hur. On the construction of free algebras for equational systems. The-
oretical Computer Science, 410(18):1704–1729, 2009. doi:10.1016/j.tcs.2008.12.052.

14 M. Fiore and C.-K. Hur. Second-order equational logic. In Computer Science Logic,
CSL 2010, volume 6247 of Lecture Notes in Computer Science, pages 320–335. Springer,
2010.

15 M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In Proceedings of
the 14th Annual IEEE Symposium on Logic in Computer Science, LICS’99. IEEE Computer
Society, 1999.

16 G. Gonzalez. The list-transformer package, 2016. URL: https://hackage.haskell.org/
package/list-transformer.

17 M. Hamana. Term rewriting with variable binding: An initial algebra approach. In Pro-
ceedings of the 5th ACM SIGPLAN International Conference on Principles and Practice
of Declarative Programming, PPDP’03, pages 148–159. ACM, 2003.

18 A. Hirschowitz and M. Maggesi. Modules over monads and linearity. In WoLLIC 2007,
number 4576 in Lecture Notes in Computer Science, pages 218–237. Springer, 2005.

19 M. Jaskelioff. Lifting of Operations in Modular Monadic Semantics. PhD thesis, University
of Nottingham, 2009.

20 A. Joyal. Foncteurs analytiques et espèces de structures. In Combinatoire Énumérative,
volume 1234 of Lecture Notes in Mathematics, pages 126–159. Springer, 1986.

http://dx.doi.org/10.1006/aima.1997.1695
http://dx.doi.org/10.1006/aima.1997.1695
http://dx.doi.org/10.1016/0022-4049(90)90121-W
http://dx.doi.org/10.1109/LICS.2008.38
https://www.mpim-bonn.mpg.de/node/6586
http://dx.doi.org/10.1016/j.tcs.2008.12.052
https://hackage.haskell.org/package/list-transformer
https://hackage.haskell.org/package/list-transformer


M. Fiore and P. Saville 16:17

21 A. Joyal. The Gödel incompleteness theorem, a categorical approach (abstract). Cah.
Top. Géom. Diff. Cat., 16(3), 2005. Short abstract of the talk given at the International
conference Charles Ehresmann: 100 ans, Amiens, 7–9 October, 2005.

22 O. Kammar. Algebraic construction of the list transformer. Private communication, 2014.
23 G. M. Kelly. A unified treatment of transfinite constructions for free algebras, free monoids,

colimits, associated sheaves, and so on. Bulletin of the Australian Mathematical Society,
22(1):1–83, 1980. doi:10.1017/S0004972700006353.

24 A. Kock. Bilinearity and cartesian closed monads. Mathematica Scandinavica, 29(2):161–
174, 1971.

25 A. Kock. Strong functors and monoidal monads. Archiv der Mathematik, 23(1):113–120,
1972. doi:10.1007/BF01304852.

26 J. Kock, A. Joyal, M. Batanin, and J.-F. Mascari. Polynomial functors and opetopes.
Advances in Mathematics, 224(6):2690–2737, 2010. doi:10.1016/j.aim.2010.02.012.

27 J. Lambek. Multicategories revisited. In Categories in Computer Science and Logic: Proc.
of the Joint Summer Research Conference, pages 217–239. American Mathematical Society,
1989.

28 F. W. Lawvere. Functorial semantics of algebraic theories. Proceedings of the National
Academy of Sciences of the United States of America, 50(5):869–872, 1963.

29 F. W. Lawvere. An elementary theory of the category of sets. Proceedings of the National
Academy of Sciences of the United States of America, 52(6):1506–1511, 1964.

30 D. J. Lehmann and M. B. Smyth. Algebraic specification of data types: A synthetic
approach. Mathematical Systems Theory, 14(1):97–139, 1981. doi:10.1007/BF01752392.

31 T. Leinster. Higher Operads, Higher Categories. Number 298 in London Mathematical
Society Lecture Note Series. Cambridge University Press, 2004.

32 S. Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts in
Mathematics. Springer, 2nd edition, 1998.

33 M.E. Maietti. Joyal’s arithmetic universe as list-arithmetic pretopos. Theory and Applica-
tions of Categories, 24(3):39–83, 2010.

34 M. Markl. Operads and PROPs. In Handbook of Algebra, Volume 5, pages 87–140. Elsevier,
2008.

35 P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
36 J. P. May. The Geometry of Iterated Loop Spaces, volume 271 of Lecture Notes in Math-

ematics. Springer, 1972.
37 B. Nordström, K. Peterson, and J. Smith. Programming in Martin Löf’s Type Theory.

Clarendon Press, 1990.
38 R. Paré and L. Román. Monoidal categories with Natural Numbers Object. Studia Logica,

48(3):361–376, Sep 1989. doi:10.1007/BF00370829.
39 Maciej Piróg. Eilenberg-Moore monoids and backtracking monad transformers. In Proceed-

ings 6th Workshop on Mathematically Structured Functional Programming, MSFP@ETAPS
2016, pages 23–56, 2016. doi:10.4204/EPTCS.207.2.

40 B. Plotkin. Universal Algebra, Algebraic Logic, and Databases. Springer, 1994.
41 J. Power. Enriched Lawvere theories. Theory and Applications of Categories, 6:83–93, 1999.
42 E. Rivas, M. Jaskelioff, and T. Schrijvers. From monoids to near-semirings: The essence

of MonadPlus and Alternative. In Proceedings of the 17th International Symposium on
Principles and Practice of Declarative Programming. ACM, 2015.

43 R. M. Robinson. Primitive recursive functions. Bull. Amer. Math. Soc., 53(10):925–942,
10 1947.

44 J. M. Spivey. Algebras for combinatorial search. J. Funct. Program., 19(3-4):469–487, 2009.
doi:10.1017/S0956796809007321.

FSCD 2017

http://dx.doi.org/10.1017/S0004972700006353
http://dx.doi.org/10.1007/BF01304852
http://dx.doi.org/10.1016/j.aim.2010.02.012
http://dx.doi.org/10.1007/BF01752392
http://dx.doi.org/10.1007/BF00370829
http://dx.doi.org/10.4204/EPTCS.207.2
http://dx.doi.org/10.1017/S0956796809007321


16:18 List Objects with Algebraic Structure

45 S. Szawiel and M. Zawadowski. The web monoid and opetopic sets. Journal of Pure and
Applied Algebra, 217:1105–1140, 2013. doi:10.1016/j.jpaa.2012.09.030.

46 T. Uustalu. A divertimento on MonadPlus and nondeterminism. Journal of Logical and
Algebraic Methods in Programming, 85(5):1086 – 1094, 2016. doi:10.1016/j.jlamp.2016.
06.004.

47 W. G. Van Hoorn and B. Van Rootselaar. Fundamental notions in the theory of seminear-
rings. Compositio Mathematica, 18(1-2):65–78, 1967.

48 H. Wolff. Monads and monoids on symmetric monoidal closed categories. Archiv der
Mathematik, 24(1):113–120, 1973. doi:10.1007/BF01228184.

http://dx.doi.org/10.1016/j.jpaa.2012.09.030
http://dx.doi.org/10.1016/j.jlamp.2016.06.004
http://dx.doi.org/10.1016/j.jlamp.2016.06.004
http://dx.doi.org/10.1007/BF01228184

	Introduction
	Algebraic structure in monoidal categories
	List objects
	Parametrised initial algebras
	List objects and monoids with algebraic structure
	Strong algebraic structure
	Algebraic theories
	Linear algebraic theories

	Applications and related work
	Semantics and programming
	Free monoids with linear algebraic structure in nsr-categories
	Functional programming
	Higher-dimensional algebra

	Second-order algebraic theories

	Concluding remarks

