
Skew monoidal structures on categories of
algebras

Marcelo Fiore and Philip Saville

University of Cambridge Dept. of Computer Science

11th July 2018

1 / 26

Skew monoidal categories

A version of monoidal categories: structural transformations
α, λ, ρ need not be invertible

Introduced by Szlachányi (2012) in the context of bialgebroids

Recently studied in some detail: Uustalu (2014),
Andrianopoulos (2017), — MFPS paper, Bourke & Lack (2017,
2018), Lack and Street (2014) ...

Captures some old examples (Alternkirch 2010) and can be
better behaved than the monoidal case (Street 2013)

2 / 26

Skew monoidal categories

A version of monoidal categories: structural transformations
α, λ, ρ need not be invertible

Introduced by Szlachányi (2012) in the context of bialgebroids

Recently studied in some detail: Uustalu (2014),
Andrianopoulos (2017), — MFPS paper, Bourke & Lack (2017,
2018), Lack and Street (2014) ...

Captures some old examples (Alternkirch 2010) and can be
better behaved than the monoidal case (Street 2013)

2 / 26

monoidal

T monoidal

reflexive coequalizers in T + preservation conditions

3 / 26

The monadic list transformer

We want to model effects as monads.

Problem: monads do not compose straightforwardly!

Want to

I Build new monads from old, while

I Lifting the operations from our old monad to the new one.

Definition

The list transformer of Jaskelioff takes a monad T to the monad
Lt(T)X := A.T (1 + X × A).

Our contribution: universal description as a list object with
algebraic structure.

4 / 26

The monadic list transformer

We want to model effects as monads.

Problem: monads do not compose straightforwardly!

Want to

I Build new monads from old, while

I Lifting the operations from our old monad to the new one.

Definition

The list transformer of Jaskelioff takes a monad T to the monad
Lt(T)X := A.T (1 + X × A).

Our contribution: universal description as a list object with
algebraic structure.

4 / 26

The monadic list transformer

We want to model effects as monads.

Problem: monads do not compose straightforwardly!

Want to

I Build new monads from old, while

I Lifting the operations from our old monad to the new one.

Definition

The list transformer of Jaskelioff takes a monad T to the monad
Lt(T)X := A.T (1 + X × A).

Our contribution: universal description as a list object with
algebraic structure.

4 / 26

The monadic list transformer

We want to model effects as monads.

Problem: monads do not compose straightforwardly!

Want to

I Build new monads from old, while

I Lifting the operations from our old monad to the new one.

Definition

The list transformer of Jaskelioff takes a monad T to the monad
Lt(T)X := A.T (1 + X × A).

Our contribution: universal description as a list object with
algebraic structure.

4 / 26

The monadic list transformer

We want to model effects as monads.

Problem: monads do not compose straightforwardly!

Want to

I Build new monads from old, while

I Lifting the operations from our old monad to the new one.

Definition

The list transformer of Jaskelioff takes a monad T to the monad
Lt(T)X := A.T (1 + X × A).

Our contribution: universal description as a list object with
algebraic structure.

4 / 26

The monadic list transformer

We want to model effects as monads.

Problem: monads do not compose straightforwardly!

Want to

I Build new monads from old, while

I Lifting the operations from our old monad to the new one.

Definition

The list transformer of Jaskelioff takes a monad T to the monad
Lt(T)X := A.T (1 + X × A).

Our contribution: universal description as a list object with
algebraic structure.

4 / 26

The monadic list transformer

We want to model effects as monads.

Problem: monads do not compose straightforwardly!

Want to

I Build new monads from old, while

I Lifting the operations from our old monad to the new one.

Definition

The list transformer of Jaskelioff takes a monad T to the monad
Lt(T)X := A.T (1 + X × A).

Our contribution: universal description as a list object with
algebraic structure.

4 / 26

The monadic list transformer

We want to model effects as monads.

Problem: monads do not compose straightforwardly!

Want to

I Build new monads from old, while

I Lifting the operations from our old monad to the new one.

Definition

The list transformer of Jaskelioff takes a monad T to the monad
Lt(T)X := A.T (1 + X × A).

Our contribution: universal description as a list object with
algebraic structure.

4 / 26

Abstract syntax with binding and metavariables (Fiore)

To build the abstract syntax of a type system...

Without binding: freely generate the terms from the rules and
basic terms. Constructors modelled as algebras.

With binding: freely generate the algebra with

I A monoid structure modelling binding,

I A compatibility law between binding and constructors, so that
app(σ, τ)[x 7→ ω] = app(σ[x 7→ ω], τ [x 7→ ω]).

Abstract syntax = free such structure

= a list object with algebraic structure.

5 / 26

Abstract syntax with binding and metavariables (Fiore)

To build the abstract syntax of a type system...

Without binding: freely generate the terms from the rules and
basic terms. Constructors modelled as algebras.

With binding: freely generate the algebra with

I A monoid structure modelling binding,

I A compatibility law between binding and constructors, so that
app(σ, τ)[x 7→ ω] = app(σ[x 7→ ω], τ [x 7→ ω]).

Abstract syntax = free such structure

= a list object with algebraic structure.

5 / 26

Abstract syntax with binding and metavariables (Fiore)

To build the abstract syntax of a type system...

Without binding: freely generate the terms from the rules and
basic terms. Constructors modelled as algebras.

With binding: freely generate the algebra with

I A monoid structure modelling binding,

I A compatibility law between binding and constructors, so that
app(σ, τ)[x 7→ ω] = app(σ[x 7→ ω], τ [x 7→ ω]).

Abstract syntax = free such structure

= a list object with algebraic structure.

5 / 26

Abstract syntax with binding and metavariables (Fiore)

To build the abstract syntax of a type system...

Without binding: freely generate the terms from the rules and
basic terms. Constructors modelled as algebras.

With binding: freely generate the algebra with

I A monoid structure modelling binding,

I A compatibility law between binding and constructors, so that
app(σ, τ)[x 7→ ω] = app(σ[x 7→ ω], τ [x 7→ ω]).

Abstract syntax = free such structure

= a list object with algebraic structure.

5 / 26

Abstract syntax with binding and metavariables (Fiore)

To build the abstract syntax of a type system...

Without binding: freely generate the terms from the rules and
basic terms. Constructors modelled as algebras.

With binding: freely generate the algebra with

I A monoid structure modelling binding,

I A compatibility law between binding and constructors, so that
app(σ, τ)[x 7→ ω] = app(σ[x 7→ ω], τ [x 7→ ω]).

Abstract syntax = free such structure

= a list object with algebraic structure.

5 / 26

Abstract syntax with binding and metavariables (Fiore)

To build the abstract syntax of a type system...

Without binding: freely generate the terms from the rules and
basic terms. Constructors modelled as algebras.

With binding: freely generate the algebra with

I A monoid structure modelling binding,

I A compatibility law between binding and constructors, so that
app(σ, τ)[x 7→ ω] = app(σ[x 7→ ω], τ [x 7→ ω]).

Abstract syntax = free such structure

= a list object with algebraic structure.

5 / 26

A unifying framework for many diverse examples of list objects
with algebraic structure

I Notions of natural numbers in domain theory,

I The monadic list transformer,

I Abstract syntax with binding and metavariables,

I Algebraic operations,

I Instances of the Haskell MonadPlus type class,

I Higher-dimensional algebra.

6 / 26

This talk

list objects

I well-understood datatype
I are free monoids
I described by A.(I + XA).

 T -list objects

I extends datatype of lists
I are free T -monoids
I described by

A.T (I + XA).

Gives a concrete way to reason about free T -monoids.

Gives an algebraic structure for T -list objects.

7 / 26

This talk

list objects

I well-understood datatype
I are free monoids
I described by A.(I + XA).

 T -list objects

I extends datatype of lists
I are free T -monoids
I described by

A.T (I + XA).

Gives a concrete way to reason about free T -monoids.

Gives an algebraic structure for T -list objects.

7 / 26

This talk

list objects

I well-understood datatype

I are free monoids
I described by A.(I + XA).

 T -list objects

I extends datatype of lists

I are free T -monoids
I described by

A.T (I + XA).

Gives a concrete way to reason about free T -monoids.

Gives an algebraic structure for T -list objects.

7 / 26

This talk

list objects

I well-understood datatype
I are free monoids

I described by A.(I + XA).

 T -list objects

I extends datatype of lists
I are free T -monoids

I described by
A.T (I + XA).

Gives a concrete way to reason about free T -monoids.

Gives an algebraic structure for T -list objects.

7 / 26

This talk

list objects

I well-understood datatype
I are free monoids
I described by A.(I + XA).

 T -list objects

I extends datatype of lists
I are free T -monoids
I described by

A.T (I + XA).

Gives a concrete way to reason about free T -monoids.

Gives an algebraic structure for T -list objects.

7 / 26

This talk

list objects

I well-understood datatype
I are free monoids
I described by A.(I + XA).

 T -list objects

I extends datatype of lists
I are free T -monoids
I described by

A.T (I + XA).

Gives a concrete way to reason about free T -monoids.

Gives an algebraic structure for T -list objects.

7 / 26

This talk

list objects

I well-understood datatype
I are free monoids
I described by A.(I + XA).

 T -list objects

I extends datatype of lists
I are free T -monoids
I described by

A.T (I + XA).

Gives a concrete way to reason about free T -monoids.

Gives an algebraic structure for T -list objects.

7 / 26

Past work: list objects in CCCs (Joyal, Cockett)

A list object (X) on X consists of

1(X)

that is initial: given any (1AX × A), there exists a unique iterator

1 (X) X × (X)

1 A X × A

it(,) X×it(n,c)

8 / 26

Past work: list objects in CCCs (Joyal, Cockett)

A list object (X) on X consists of

1(X)

that is initial: given any (1AX × A), there exists a unique iterator

1 (X) X × (X)

1 A X × A

it(,) X×it(n,c)

8 / 26

Past work: list objects in CCCs (Joyal, Cockett)

A list object (X) on X consists of

1(X)X × (X)

that is initial: given any (1AX × A), there exists a unique iterator

1 (X) X × (X)

1 A X × A

it(,) X×it(n,c)

8 / 26

Past work: list objects in CCCs (Joyal, Cockett)

A list object (X) on X consists of

1(X)X × (X)

that is initial:

given any (1AX × A), there exists a unique iterator

1 (X) X × (X)

1 A X × A

it(,) X×it(n,c)

8 / 26

Past work: list objects in CCCs (Joyal, Cockett)

A list object (X) on X consists of

1(X)X × (X)

that is initial: given any (1AX × A), there exists a unique iterator

1 (X) X × (X)

1 A X × A

it(,) X×it(n,c)

8 / 26

List objects in a monoidal category (, ,)

A list object (X) on X consists of

I (X)X (X)

that is parametrised initial: given any (PnAcXA), there exists a
unique iterator

P (X)P X (X)P

P A XA

P

it(,)

P

X it(n,c)

9 / 26

List objects in a monoidal category (, ,)

A list object (X) on X consists of

I (X)X (X)

that is parametrised initial: given any (PnAcXA), there exists a
unique iterator

P (X)P X (X)P

P A XA

P

it(,)

P

X it(n,c)

9 / 26

List objects in a monoidal category (, ,)

A list object (X) on X consists of

I (X)X (X)

that is parametrised initial:

given any (PnAcXA), there exists a
unique iterator

P (X)P X (X)P

P A XA

P

it(,)

P

X it(n,c)

9 / 26

List objects in a monoidal category (, ,)

A list object (X) on X consists of

I (X)X (X)

that is parametrised initial: given any (PnAcXA), there exists a
unique iterator

P (X)P X (X)P

P A XA

P

it(,)

P

X it(n,c)

9 / 26

List objects in a monoidal category (, ,)

Remark

If each (−)P has a right adjoint, parametrised initiality is equivalent
to the non-parametrised version:

(X) X (X)

AP XAP

it(,) X it(n,c)

10 / 26

List objects in a monoidal category (, ,)

Connection to past work

I Closely connected to Kelly’s notion of algebraically-free monoid
in a monoidal category.

I The list object () is precisely a left natural numbers object in
the sense of Paré and Román. E.g. the flat natural numbers
A.(1 + A) in Cpo.

10 / 26

List objects are free monoids

We can reason concretely about free monoids by reasoning
about lists.

11 / 26

List objects are free monoids

Definition

A monoid in a monoidal category (, ,) is an object () such that the
multiplication is associative and is a neutral element for this
multiplication.

We can reason concretely about free monoids by reasoning
about lists.

11 / 26

List objects are free monoids

Lemma

1. Every list object (X) is a monoid.

2. This monoid is the free monoid on X , with universal map

XXXX (X)(X)

taking x 7→ (x , ∗) 7→ (x , []) 7→ x :: [] = [x].

We can reason concretely about free monoids by reasoning
about lists.

11 / 26

List objects are free monoids

Lemma

1. Every list object (X) is a monoid.

2. This monoid is the free monoid on X , with universal map

XXXX (X)(X)

taking x 7→ (x , ∗) 7→ (x , []) 7→ x :: [] = [x].

We can reason concretely about free monoids by reasoning
about lists.

11 / 26

List objects are free monoids

Lemma

1. Every list object (X) is a monoid.

2. This monoid is the free monoid on X , with universal map

XXXX (X)(X)

taking x 7→ (x , ∗) 7→ (x , []) 7→ x :: [] = [x].

We can reason concretely about free monoids by reasoning
about lists.

11 / 26

List objects are initial algebras

Definition

An algebra for a functor F :→ is a pair (A, α : FA→ A).

Lemma

If (, ,) is a monoidal category with finite coproducts (0,+) and
ω-colimits, both preserved by all (−)P for P ∈, then the initial
algebra of the functor

(
+ X (−)

)
is a list object on X .

Remark

This result relies on a general theory of parametrised initial algebras.

12 / 26

List objects are initial algebras

Definition

An algebra for a functor F :→ is a pair (A, α : FA→ A).

Lemma

If (, ,) is a monoidal category with finite coproducts (0,+) and
ω-colimits, both preserved by all (−)P for P ∈, then the initial
algebra of the functor

(
+ X (−)

)
is a list object on X .

Remark

This result relies on a general theory of parametrised initial algebras.

12 / 26

List objects are initial algebras

Definition

An algebra for a functor F :→ is a pair (A, α : FA→ A).

Lemma

If (, ,) is a monoidal category with finite coproducts (0,+) and
ω-colimits, both preserved by all (−)P for P ∈, then the initial
algebra of the functor

(
+ X (−)

)
is a list object on X .

Remark

This result relies on a general theory of parametrised initial algebras.

12 / 26

List objects are initial algebras

Definition

An algebra for a functor F :→ is a pair (A, α : FA→ A).

Lemma

If (, ,) is a monoidal category with finite coproducts (0,+) and
ω-colimits, both preserved by all (−)P for P ∈, then the initial
algebra of the functor

(
+ X (−)

)
is a list object on X .

Remark

This result relies on a general theory of parametrised initial algebras.

12 / 26

The story so far

list objects

I well-understood datatype
I are free monoids
I described by A.(I + XA).

 T -list objects
(new work)

I extends datatype of lists
I are free T -monoids
I described by

A.T (I + XA).

...and instantiate this for applications

13 / 26

The story so far

list objects

I well-understood datatype
I are free monoids
I described by A.(I + XA).

 T -list objects
(new work)

I extends datatype of lists
I are free T -monoids
I described by

A.T (I + XA).

...and instantiate this for applications

13 / 26

The story so far

list objects

I well-understood datatype

I are free monoids
I described by A.(I + XA).

 T -list objects
(new work)

I extends datatype of lists
I are free T -monoids
I described by

A.T (I + XA).

...and instantiate this for applications

13 / 26

The story so far

list objects

I well-understood datatype
I are free monoids

I described by A.(I + XA).

 T -list objects
(new work)

I extends datatype of lists
I are free T -monoids
I described by

A.T (I + XA).

...and instantiate this for applications

13 / 26

The story so far

list objects

I well-understood datatype
I are free monoids
I described by A.(I + XA).

 T -list objects
(new work)

I extends datatype of lists
I are free T -monoids
I described by

A.T (I + XA).

...and instantiate this for applications

13 / 26

Rest of this talk

list objects

I well-understood datatype
I are free monoids
I described by A.(I + XA).

 T -list objects
(new work)

I extends datatype of lists
I are free T -monoids
I described by

A.T (I + XA).

...and instantiate this for applications

13 / 26

Rest of this talk

list objects

I well-understood datatype
I are free monoids
I described by A.(I + XA).

 T -list objects
(new work)

I extends datatype of lists
I are free T -monoids
I described by

A.T (I + XA).

...and instantiate this for applications

13 / 26

Compatible algebraic structure

Definition

A monad on a category is a functor T :→ equipped with a
multiplication µ : T 2 → T and a unit η :→ T satisfying
associativity and unit laws.

Definition

An algebra for a monad (T , µ, η) is a pair (A, α : TA→ A)
satisfying unit and associativity laws.

Definition

A strong monad T is a monad on a monoidal category (,) that is
equipped with a natural transformation A,B : T (A)B → T (AB)
satisfying coherence laws.

14 / 26

Compatible algebraic structure

Definition

A monad on a category is a functor T :→ equipped with a
multiplication µ : T 2 → T and a unit η :→ T satisfying
associativity and unit laws.

Definition

An algebra for a monad (T , µ, η) is a pair (A, α : TA→ A)
satisfying unit and associativity laws.

Definition

A strong monad T is a monad on a monoidal category (,) that is
equipped with a natural transformation A,B : T (A)B → T (AB)
satisfying coherence laws.

14 / 26

Compatible algebraic structure

Definition

A monad on a category is a functor T :→ equipped with a
multiplication µ : T 2 → T and a unit η :→ T satisfying
associativity and unit laws.

Definition

An algebra for a monad (T , µ, η) is a pair (A, α : TA→ A)
satisfying unit and associativity laws.

Definition

A strong monad T is a monad on a monoidal category (,) that is
equipped with a natural transformation A,B : T (A)B → T (AB)
satisfying coherence laws.

14 / 26

Compatible algebraic structure

Definition

A monad on a category is a functor T :→ equipped with a
multiplication µ : T 2 → T and a unit η :→ T satisfying
associativity and unit laws.

Definition

An algebra for a monad (T , µ, η) is a pair (A, α : TA→ A)
satisfying unit and associativity laws.

Definition

A strong monad T is a monad on a monoidal category (,) that is
equipped with a natural transformation A,B : T (A)B → T (AB)
satisfying coherence laws.

14 / 26

List objects with algebraic structure

such that for every structure

there exists a unique mediating map (, ,) : ()→

15 / 26

T -list objects

such that for every structure

there exists a unique mediating map (, ,) : ()→

15 / 26

T -list objects

Let (,) be a strong monad on a monoidal category (,). A -list
object (X) on X consists of

() ()

such that for every structure

there exists a unique mediating map (, ,) : ()→

15 / 26

T -list objects

Let (,) be a strong monad on a monoidal category (,). A -list
object (X) on X consists of

(())

() ()

such that for every structure

there exists a unique mediating map (, ,) : ()→

15 / 26

T -list objects

Let (,) be a strong monad on a monoidal category (,). A -list
object (X) on X consists of

(())

() ()

such that for every structure

there exists a unique mediating map (, ,) : ()→

15 / 26

T -list objects

Let (,) be a strong monad on a monoidal category (,). A -list
object (X) on X consists of

(())

() ()

such that for every structure

there exists a unique mediating map (, ,) : ()→

15 / 26

T -list objects

such that

() ()

∼=
(,,)

(,,)

and (
()
)

(())

()

(), ((,,))

(,,)

16 / 26

T -list objects

and (
()
)

(())

()

(), ((,,))

(,,)

Remark

Every list object is a T -list object.

If every (−)P has a right adjoint, the iterator (, ,) is a
T -algebra homomorphism.

16 / 26

Natural numbers in Cpo, revisited

Flat natural numbers,
A.(1 + A):

⊥

0 1 2 3 · · ·

Lazy natural numbers,
A.(1 + A)⊥:

⊥

s(⊥)0

1 s2(⊥)

· · · · · ·

Strict natural
numbers, A.A⊥:

· · ·

1

0

⊥

T -list object with
(+, 0) structure

and T := (−)⊥ the
lifting monad

17 / 26

Natural numbers in Cpo as T -list objects on the unit

Flat natural numbers,
A.(1 + A):

⊥

0 1 2 3 · · ·

Lazy natural numbers,
A.(1 + A)⊥:

⊥

s(⊥)0

1 s2(⊥)

· · · · · ·

Strict natural
numbers, A.A⊥:

· · ·

1

0

⊥

T -list object with
(+, 0) structure

and T := (−)⊥ the
lifting monad

17 / 26

Natural numbers in Cpo as T -list objects on the unit

Flat natural numbers,
A.(1 + A):

⊥

0 1 2 3 · · ·

T -list object with
(×, 1) structure

and monad T =

Lazy natural numbers,
A.(1 + A)⊥:

⊥

s(⊥)0

1 s2(⊥)

· · · · · ·

Strict natural
numbers, A.A⊥:

· · ·

1

0

⊥

T -list object with
(+, 0) structure

and T := (−)⊥ the
lifting monad

17 / 26

Natural numbers in Cpo as T -list objects on the unit

Flat natural numbers,
A.(1 + A):

⊥

0 1 2 3 · · ·

T -list object with
(×, 1) structure

and monad T =

Lazy natural numbers,
A.(1 + A)⊥:

⊥

s(⊥)0

1 s2(⊥)

· · · · · ·

T -list object with
(×, 1) structure

and T := (−)⊥ the
lifting monad

Strict natural
numbers, A.A⊥:

· · ·

1

0

⊥

T -list object with
(+, 0) structure

and T := (−)⊥ the
lifting monad

17 / 26

Natural numbers in Cpo as T -list objects on the unit

Flat natural numbers,
A.(1 + A):

⊥

0 1 2 3 · · ·

T -list object with
(×, 1) structure

and monad T =

Lazy natural numbers,
A.(1 + A)⊥:

⊥

s(⊥)0

1 s2(⊥)

· · · · · ·

T -list object with
(×, 1) structure

and T := (−)⊥ the
lifting monad

Strict natural
numbers, A.A⊥:

· · ·

1

0

⊥

T -list object with
(+, 0) structure

and T := (−)⊥ the
lifting monad

17 / 26

Monoids with compatible algebraic structure

Let (,) be a strong monad on on a monoidal category (,). A
-monoid

(
EM-monoid (Piróg)

)
is a monoid

equipped with a
T -algebra

T
τ

compatible in the sense that

() ()
,

Remark

T -monoids generalise both monoids and T -algebras.

18 / 26

T -monoids

Let (,) be a strong monad on on a monoidal category (,). A
-monoid

(
EM-monoid (Piróg)

)
is a monoid

equipped with a
T -algebra

T
τ

compatible in the sense that

() ()
,

Remark

T -monoids generalise both monoids and T -algebras.

18 / 26

T -monoids

Let (,) be a strong monad on on a monoidal category (,). A
-monoid

(
EM-monoid (Piróg)

)
is a monoid

equipped with a
T -algebra

T
τ

compatible in the sense that

() ()
,

Remark

T -monoids generalise both monoids and T -algebras.

18 / 26

T -monoids

Let (,) be a strong monad on on a monoidal category (,). A
-monoid

(
EM-monoid (Piróg)

)
is a monoid equipped with a

T -algebra
T
τ

compatible in the sense that

() ()
,

Remark

T -monoids generalise both monoids and T -algebras.

18 / 26

T -monoids

Let (,) be a strong monad on on a monoidal category (,). A
-monoid

(
EM-monoid (Piróg)

)
is a monoid equipped with a

T -algebra
T
τ

compatible in the sense that

() ()
,

Remark

T -monoids generalise both monoids and T -algebras.

18 / 26

T -monoids

Let (,) be a strong monad on on a monoidal category (,). A
-monoid

(
EM-monoid (Piróg)

)
is a monoid equipped with a

T -algebra
T
τ

compatible in the sense that

() ()
,

Remark

T -monoids generalise both monoids and T -algebras.

18 / 26

T -monoids

Remark

In the context of abstract syntax, T is freely generated from some
theory, and T -monoids are models of this theory.

Lemma

For every monoid the endofunctor T := (−) is a monad, and
T '

()
.

Example

Thinking of a Lawvere theory as a monoid L in
(,

(1), •
)
, we can

identify Lawvere theories extending L with T -monoids for
T := •(−).

19 / 26

T -monoids

Remark

In the context of abstract syntax, T is freely generated from some
theory, and T -monoids are models of this theory.

Lemma

For every monoid the endofunctor T := (−) is a monad, and
T '

()
.

Example

Thinking of a Lawvere theory as a monoid L in
(,

(1), •
)
, we can

identify Lawvere theories extending L with T -monoids for
T := •(−).

19 / 26

T -monoids

Remark

In the context of abstract syntax, T is freely generated from some
theory, and T -monoids are models of this theory.

Lemma

For every monoid the endofunctor T := (−) is a monad, and
T '

()
.

Example

In particular, a T -monoid for the endofunctor T := S(−) is precisely
an algebraic operation with signature S in the sense of Jaskelioff,
and can be identified with a map Sη(S)→ interpreting S inside .

Example

Thinking of a Lawvere theory as a monoid L in
(,

(1), •
)
, we can

identify Lawvere theories extending L with T -monoids for
T := •(−).

19 / 26

T -monoids

Remark

In the context of abstract syntax, T is freely generated from some
theory, and T -monoids are models of this theory.

Lemma

For every monoid the endofunctor T := (−) is a monad, and
T '

()
.

Example

Thinking of a Lawvere theory as a monoid L in
(,

(1), •
)
, we can

identify Lawvere theories extending L with T -monoids for
T := •(−).

19 / 26

T -list objects are free T -monoids

For a strong monad (T ,) on a monoidal category (,),

Lemma

1. Every T -list object (X) is a T -monoid.

2. This T -monoid is the free T -monoid on X , with universal map

XXXX (X)(X)

We can reason concretely about free T -monoids by reasoning
about T -lists.

20 / 26

T -list objects are free T -monoids

For a strong monad (T ,) on a monoidal category (,),

Lemma

1. Every T -list object (X) is a T -monoid.

2. This T -monoid is the free T -monoid on X , with universal map

XXXX (X)(X)

We can reason concretely about free T -monoids by reasoning
about T -lists.

20 / 26

T -list objects are free T -monoids

For a strong monad (T ,) on a monoidal category (,),

Lemma

1. Every T -list object (X) is a T -monoid.

2. This T -monoid is the free T -monoid on X , with universal map

XXXX (X)(X)

We can reason concretely about free T -monoids by reasoning
about T -lists.

20 / 26

T -list objects are free T -monoids

For a strong monad (T ,) on a monoidal category (,),

Lemma

1. Every T -list object (X) is a T -monoid.

2. This T -monoid is the free T -monoid on X , with universal map

XXXX (X)(X)

We can reason concretely about free T -monoids by reasoning
about T -lists.

20 / 26

T -list objects are free T -monoids

For a strong monad (T ,) on a monoidal category (,),

Lemma

1. Every T -list object (X) is a T -monoid.

2. This T -monoid is the free T -monoid on X , with universal map

XXXX (X)(X)

We can reason concretely about free T -monoids by reasoning
about T -lists.

20 / 26

T -list objects are initial algebras

For a strong monad (T ,) on a monoidal category (,),

Lemma

If every (−)P preserves binary coproducts, and the initial algebra
exists, then A.T (I + XA) is a T -list object on X .

21 / 26

T -list objects are initial algebras

For a strong monad (T ,) on a monoidal category (,),

Lemma

If every (−)P preserves binary coproducts, and the initial algebra
exists, then A.T (I + XA) is a T -list object on X .

21 / 26

Theorem

Let be a strong monad on a monoidal category (, ,) with binary
coproducts (+). If

1. for every ∈, the endofunctor (−) preserves binary coproducts,
and

2. for every X ∈, the initial algebra of T (I + X−) exists

Then has all -list objects and, thereby, the free -monoid monad .

Remark

Thinking in terms of T -list objects makes the proof straightforward!

22 / 26

Theorem

Let be a strong monad on a monoidal category (, ,) with binary
coproducts (+). If

1. for every ∈, the endofunctor (−) preserves binary coproducts,
and

2. for every X ∈, the initial algebra of T (I + X−) exists

Then has all -list objects and, thereby, the free -monoid monad .

Remark

Thinking in terms of T -list objects makes the proof straightforward!

22 / 26

Technical contribution

A.(I + XA) list object free monoid

A.T (I + XA) T -list object free T -monoid

Remark

A natural extension: algebraic structure encapsulated by Lawvere
theories or operads. This gives rise to a notion of near-semiring
category, which underlies many of the applications.

23 / 26

Technical contribution

A.(I + XA) list object free monoid

A.T (I + XA) T -list object free T -monoid

Remark

A natural extension: algebraic structure encapsulated by Lawvere
theories or operads. This gives rise to a notion of near-semiring
category, which underlies many of the applications.

23 / 26

Technical contribution

A.(I + XA) list object free monoid

A.T (I + XA)

T -list object

 free T -monoid

Remark

A natural extension: algebraic structure encapsulated by Lawvere
theories or operads. This gives rise to a notion of near-semiring
category, which underlies many of the applications.

23 / 26

Technical contribution

A.(I + XA) list object free monoid

A.T (I + XA)

T -list object free T -monoid

Remark

A natural extension: algebraic structure encapsulated by Lawvere
theories or operads. This gives rise to a notion of near-semiring
category, which underlies many of the applications.

23 / 26

Technical contribution

A.(I + XA) list object free monoid

A.T (I + XA) T -list object free T -monoid

Remark

A natural extension: algebraic structure encapsulated by Lawvere
theories or operads. This gives rise to a notion of near-semiring
category, which underlies many of the applications.

23 / 26

Technical contribution

A.(I + XA) list object free monoid

A.T (I + XA) T -list object free T -monoid

Remark

A natural extension: algebraic structure encapsulated by Lawvere
theories or operads. This gives rise to a notion of near-semiring
category, which underlies many of the applications.

23 / 26

Applications

24 / 26

Applications

T -NNOs

In a a monoidal category (,):

NNO = list object on

T -NNO = T -list object on

In Cpo: gives rise to the flat-, lazy- and strict natural numbers.

24 / 26

Applications

Functional programming

I In the bicartesian closed setting: Jaskelioff’s monadic list
transformer Lt(T)X := A.T (1 + X × A) is just the free
T -monoid monad.

is an instance of Spivey’s Bunch type
class that is a T-list object for T the extension of the theory of
monoids with a unary operator.

24 / 26

Applications

Functional programming

I In the bicartesian closed setting: Jaskelioff’s monadic list
transformer Lt(T)X := A.T (1 + X × A) is just the free
T -monoid monad.

I In the category of endofunctors over a cartesian category: the
MonadPlus type class Mp(F)X := A.List(X + FA) of
Rivas is a List-list object.

is an instance of Spivey’s Bunch
type class that is a T-list object for T the extension of the
theory of monoids with a unary operator.

24 / 26

Applications

Functional programming

I In the bicartesian closed setting: Jaskelioff’s monadic list
transformer Lt(T)X := A.T (1 + X × A) is just the free
T -monoid monad.

I In the category of endofunctors over a cartesian category: the
MonadPlus type class Mp(F)X := A.List(X + FA) of
Rivas is a List-list object.

I In the category of endofunctors over a cartesian category: the
datatype

Bun(F)X := A.(1 + X × A + F (A)× A + A× A)

is an instance of Spivey’s Bunch type class that is a T-list
object for T the extension of the theory of monoids with a
unary operator.

24 / 26

Applications

Functional programming

I In the bicartesian closed setting: Jaskelioff’s monadic list
transformer Lt(T)X := A.T (1 + X × A) is just the free
T -monoid monad.

I In an nsr-category: the MonadPlus type class
Mp(F)X := A.List∗(X + FA) is a List∗-list object.

I In an nsr-category:

Bun(F)X := A.
(
J + (I + XA + A) ∗ A

)
is an instance of Spivey’s Bunch type class that is a T-list

object for T the extension of the theory of monoids with a
unary operator.

24 / 26

Applications

Abstract syntax and variable binding (Fiore)

In the category of presheaves with substitution tensor product

(P • Q)(n) =

∫ m∈
(Pm)× (Qn)m

we get

abstract syntax = free T -monoid on variables

= A.T (V + X • A)

abstract syntax is a list object with algebraic structure

Remark

This relies on a slightly more general theory, in which the strength

X ,I→P : T (X)P → T (XP) only acts on pointed objects.

24 / 26

Applications

Abstract syntax and variable binding (Fiore)

In the category of presheaves with substitution tensor product

(P • Q)(n) =

∫ m∈
(Pm)× (Qn)m

we get

abstract syntax = free T -monoid on variables

= A.T (V + X • A)

abstract syntax is a list object with algebraic structure

Remark

This relies on a slightly more general theory, in which the strength

X ,I→P : T (X)P → T (XP) only acts on pointed objects.

24 / 26

Applications

Abstract syntax and variable binding (Fiore)

In the category of presheaves with substitution tensor product

(P • Q)(n) =

∫ m∈
(Pm)× (Qn)m

we get

abstract syntax = free T -monoid on variables

= A.T (V + X • A)

abstract syntax is a list object with algebraic structure

Remark

This relies on a slightly more general theory, in which the strength

X ,I→P : T (X)P → T (XP) only acts on pointed objects.

24 / 26

Applications

Abstract syntax and variable binding (Fiore)

In the category of presheaves with substitution tensor product

(P • Q)(n) =

∫ m∈
(Pm)× (Qn)m

we get

abstract syntax = free T -monoid on variables

= A.T (V + X • A)

abstract syntax is a list object with algebraic structure

Remark

This relies on a slightly more general theory, in which the strength

X ,I→P : T (X)P → T (XP) only acts on pointed objects.

24 / 26

Applications

Higher-dimensional algebra

The web monoid in Szawiel and Zawadowski’s construction of
opetopes is a T -list object in an nsr-category.

24 / 26

Summary: List objects with algebraic structure

A.(I + XA) list object free monoid
A.T (I + XA) T -list object free T -monoid

Framework unifying a wide range of examples.

Algebraic structure list-style datatype. Simpler proofs!
(abstract syntax, opetopes?)

Initial algebra definition universal property.
(monadic list transformer, MonadPlus)

A journal-length version is in preparation.

25 / 26

Summary: List objects with algebraic structure

A.(I + XA) list object free monoid
A.T (I + XA) T -list object free T -monoid

Framework unifying a wide range of examples.

Algebraic structure list-style datatype. Simpler proofs!
(abstract syntax, opetopes?)

Initial algebra definition universal property.
(monadic list transformer, MonadPlus)

A journal-length version is in preparation.

25 / 26

Summary: List objects with algebraic structure

A.(I + XA) list object free monoid
A.T (I + XA) T -list object free T -monoid

Framework unifying a wide range of examples.

Algebraic structure list-style datatype. Simpler proofs!
(abstract syntax, opetopes?)

Initial algebra definition universal property.
(monadic list transformer, MonadPlus)

A journal-length version is in preparation.

25 / 26

Summary: List objects with algebraic structure

A.(I + XA) list object free monoid
A.T (I + XA) T -list object free T -monoid

Framework unifying a wide range of examples.

Algebraic structure list-style datatype. Simpler proofs!
(abstract syntax, opetopes?)

Initial algebra definition universal property.
(monadic list transformer, MonadPlus)

A journal-length version is in preparation.

25 / 26

Summary: List objects with algebraic structure

A.(I + XA) list object free monoid
A.T (I + XA) T -list object free T -monoid

Framework unifying a wide range of examples.

Algebraic structure list-style datatype. Simpler proofs!
(abstract syntax, opetopes?)

Initial algebra definition universal property.
(monadic list transformer, MonadPlus)

A journal-length version is in preparation.

25 / 26

Summary: List objects with algebraic structure

A.(I + XA) list object free monoid
A.T (I + XA) T -list object free T -monoid

Framework unifying a wide range of examples.

Algebraic structure list-style datatype. Simpler proofs!
(abstract syntax, opetopes?)

Initial algebra definition universal property.
(monadic list transformer, MonadPlus)

A journal-length version is in preparation.

25 / 26

