Skew monoidal structures on categories of algebras

Marcelo Fiore and Philip Saville

University of Cambridge Dept. of Computer Science

11th July 2018

Skew monoidal categories

A version of monoidal categories: structural transformations α, λ, ρ need not be invertible

Introduced by Szlachányi (2012) in the context of bialgebroids

Skew monoidal categories

A version of monoidal categories: structural transformations α, λ, ρ need not be invertible

Introduced by Szlachányi (2012) in the context of bialgebroids Recently studied in some detail: Uustalu (2014), Andrianopoulos (2017), — MFPS paper, Bourke \& Lack (2017, 2018), Lack and Street (2014) ...

Captures some old examples (Alternkirch 2010) and can be better behaved than the monoidal case (Street 2013)
monoidal
T monoidal
reflexive coequalizers in $T+$ preservation conditions

The monadic list transformer

The monadic list transformer

We want to model effects as monads.

The monadic list transformer

We want to model effects as monads.
Problem: monads do not compose straightforwardly!

The monadic list transformer

We want to model effects as monads.
Problem: monads do not compose straightforwardly!
Want to

The monadic list transformer

We want to model effects as monads.
Problem: monads do not compose straightforwardly!
Want to

- Build new monads from old, while

The monadic list transformer

We want to model effects as monads.
Problem: monads do not compose straightforwardly!
Want to

- Build new monads from old, while
- Lifting the operations from our old monad to the new one.

The monadic list transformer

We want to model effects as monads.
Problem: monads do not compose straightforwardly!
Want to

- Build new monads from old, while
- Lifting the operations from our old monad to the new one.

Definition

The list transformer of Jaskelioff takes a monad T to the monad $\operatorname{Lt}(T) X:=A . T(1+X \times A)$.

The monadic list transformer

We want to model effects as monads.
Problem: monads do not compose straightforwardly!
Want to

- Build new monads from old, while
- Lifting the operations from our old monad to the new one.

Definition

The list transformer of Jaskelioff takes a monad T to the monad $\operatorname{Lt}(T) X:=A . T(1+X \times A)$.

Our contribution: universal description as a list object with algebraic structure.

Abstract syntax with binding and metavariables (Fiore)

To build the abstract syntax of a type system...

Abstract syntax with binding and metavariables (Fiore)

To build the abstract syntax of a type system...
Without binding: freely generate the terms from the rules and basic terms. Constructors modelled as algebras.

Abstract syntax with binding and metavariables (Fiore)

To build the abstract syntax of a type system...
Without binding: freely generate the terms from the rules and basic terms. Constructors modelled as algebras.

With binding: freely generate the algebra with

Abstract syntax with binding and metavariables (Fiore)

To build the abstract syntax of a type system...
Without binding: freely generate the terms from the rules and basic terms. Constructors modelled as algebras.

With binding: freely generate the algebra with

- A monoid structure modelling binding,

Abstract syntax with binding and metavariables (Fiore)

To build the abstract syntax of a type system...
Without binding: freely generate the terms from the rules and basic terms. Constructors modelled as algebras.

With binding: freely generate the algebra with

- A monoid structure modelling binding,
- A compatibility law between binding and constructors, so that $\operatorname{app}(\sigma, \tau)[x \mapsto \omega]=\operatorname{app}(\sigma[x \mapsto \omega], \tau[x \mapsto \omega])$.

Abstract syntax with binding and metavariables (Fiore)

To build the abstract syntax of a type system...
Without binding: freely generate the terms from the rules and basic terms. Constructors modelled as algebras.

With binding: freely generate the algebra with

- A monoid structure modelling binding,
- A compatibility law between binding and constructors, so that $\operatorname{app}(\sigma, \tau)[x \mapsto \omega]=\operatorname{app}(\sigma[x \mapsto \omega], \tau[x \mapsto \omega])$.

Abstract syntax $=$ free such structure
$=\mathbf{a}$ list object with algebraic structure.

A unifying framework for many diverse examples of list objects with algebraic structure

- Notions of natural numbers in domain theory,
- The monadic list transformer,
- Abstract syntax with binding and metavariables,
- Algebraic operations,
- Instances of the Haskell MonadPlus type class,
- Higher-dimensional algebra.

This talk

This talk

list objects
T-list objects

This talk

list objects

\leadsto

- well-understood datatype

T-list objects

- extends datatype of lists

This talk

list objects

- well-understood datatype
- are free monoids

T-list objects

- extends datatype of lists
- are free T-monoids

This talk

list objects

T-list objects

- well-understood datatype
- are free monoids
- described by $A .(I+X A)$.
- extends datatype of lists
- are free T-monoids
- described by A. $T(I+X A)$.

This talk

list objects

T-list objects

- extends datatype of lists
- are free T-monoids
- described by A. $T(I+X A)$.

Gives a concrete way to reason about free T-monoids.

This talk

list objects

T-list objects

- well-understood datatype
- are free monoids
- described by $A .(I+X A)$.
- extends datatype of lists
- are free T-monoids
- described by A. $T(I+X A)$.

Gives a concrete way to reason about free T-monoids.
Gives an algebraic structure for T-list objects.

Past work: list objects in CCCs (Joyal, Cockett)

A list object (X) on X consists of

Past work: list objects in CCCs (Joyal, Cockett)

A list object (X) on X consists of

$$
1(X)
$$

Past work: list objects in CCCs (Joyal, Cockett)

A list object (X) on X consists of

$$
1(X) X \times(X)
$$

Past work: list objects in CCCs (Joyal, Cockett)

A list object (X) on X consists of

$$
1(X) X \times(X)
$$

that is initial:

Past work: list objects in CCCs (Joyal, Cockett)

A list object (X) on X consists of

$$
1(X) X \times(X)
$$

that is initial: given any $(1 A X \times A)$, there exists a unique iterator

List objects in a monoidal category $(,$,

List objects in a monoidal category $(,$,

A list object (X) on X consists of

$$
I(X) X(X)
$$

List objects in a monoidal category $(,$,

A list object (X) on X consists of

$$
I(X) X(X)
$$

that is parametrised initial:

List objects in a monoidal category $(,$,

A list object (X) on X consists of

$$
I(X) X(X)
$$

that is parametrised initial: given any $(P n A c X A)$, there exists a unique iterator

$$
\begin{aligned}
& P \xrightarrow{P}(X) P \stackrel{P}{\longleftrightarrow} X(X) P
\end{aligned}
$$

List objects in a monoidal category $(,$,

Remark

If each $(-) P$ has a right adjoint, parametrised initiality is equivalent to the non-parametrised version:

List objects in a monoidal category $(,$,

Connection to past work

- Closely connected to Kelly's notion of algebraically-free monoid in a monoidal category.
- The list object () is precisely a left natural numbers object in the sense of Paré and Román. E.g. the flat natural numbers A. $(1+A)$ in Cpo.

List objects are free monoids

List objects are free monoids

Definition

A monoid in a monoidal category (,,) is an object () such that the multiplication is associative and is a neutral element for this multiplication.

List objects are free monoids

Lemma

1. Every list object (X) is a monoid.

List objects are free monoids

Lemma

1. Every list object (X) is a monoid.
2. This monoid is the free monoid on X, with universal map $X X X X(X)(X)$ taking $x \mapsto(x, *) \mapsto(x,[]) \mapsto x::[]=[x]$.

List objects are free monoids

Lemma

1. Every list object (X) is a monoid.
2. This monoid is the free monoid on X, with universal map

$$
X X X X(X)(X)
$$

$$
\text { taking } x \mapsto(x, *) \mapsto(x,[]) \mapsto x::[]=[x]
$$

We can reason concretely about free monoids by reasoning about lists.

List objects are initial algebras

List objects are initial algebras

Definition
An algebra for a functor $F: \rightarrow$ is a pair $(A, \alpha: F A \rightarrow A)$.

List objects are initial algebras

Definition

An algebra for a functor $F: \rightarrow$ is a pair $(A, \alpha: F A \rightarrow A)$.

Lemma

If $(,$,$) is a monoidal category with finite coproducts (0,+)$ and ω-colimits, both preserved by all $(-) P$ for $P \in$, then the initial algebra of the functor $(+X(-))$ is a list object on X.

List objects are initial algebras

Definition

An algebra for a functor $F: \rightarrow$ is a pair $(A, \alpha: F A \rightarrow A)$.

Lemma

If $(,$,$) is a monoidal category with finite coproducts (0,+)$ and ω-colimits, both preserved by all $(-) P$ for $P \in$, then the initial algebra of the functor $(+X(-))$ is a list object on X.

Remark

This result relies on a general theory of parametrised initial algebras.

The story so far

The story so far

list objects

The story so far

list objects

- well-understood datatype

The story so far

list objects

- well-understood datatype
- are free monoids

The story so far

list objects

- well-understood datatype
- are free monoids
- described by $A .(I+X A)$.

Rest of this talk

list objects

- well-understood datatype
- are free monoids
- described by $A .(I+X A)$.

T-list objects

(new work)

- extends datatype of lists
- are free T-monoids
- described by
A. $T(I+X A)$.

Rest of this talk

list objects

- well-understood datatype
- are free monoids
- described by $A .(I+X A)$.

T-list objects

(new work)

- extends datatype of lists
- are free T-monoids
- described by
A. $T(I+X A)$.
...and instantiate this for applications

Compatible algebraic structure

Compatible algebraic structure

Definition

A monad on a category is a functor $T: \rightarrow$ equipped with a multiplication $\mu: T^{2} \rightarrow T$ and a unit $\eta: \rightarrow T$ satisfying associativity and unit laws.

Compatible algebraic structure

Definition

A monad on a category is a functor $T: \rightarrow$ equipped with a multiplication $\mu: T^{2} \rightarrow T$ and a unit $\eta: \rightarrow T$ satisfying associativity and unit laws.

Definition

An algebra for a monad (T, μ, η) is a pair $(A, \alpha: T A \rightarrow A)$ satisfying unit and associativity laws.

Compatible algebraic structure

Definition

A monad on a category is a functor $T: \rightarrow$ equipped with a multiplication $\mu: T^{2} \rightarrow T$ and a unit $\eta: \rightarrow T$ satisfying associativity and unit laws.

Definition

An algebra for a monad (T, μ, η) is a pair $(A, \alpha: T A \rightarrow A)$ satisfying unit and associativity laws.

Definition

A strong monad T is a monad on a monoidal category $($,$) that is$ equipped with a natural transformation $A, B: T(A) B \rightarrow T(A B)$ satisfying coherence laws.

List objects with algebraic structure

T-list objects

T-list objects

Let (,) be a strong monad on a monoidal category (,). A -list object (X) on X consists of

T-list objects

Let (,) be a strong monad on a monoidal category (,). A -list object (X) on X consists of

T-list objects

Let (,) be a strong monad on a monoidal category (,). A -list object (X) on X consists of

such that for every structure

T-list objects

Let (,) be a strong monad on a monoidal category (,). A -list object (X) on X consists of

such that for every structure

there exists a unique mediating map $(,):,() \rightarrow$

T-list objects

such that

and

T-list objects

Remark

Every list object is a T-list object.
If every $(-) P$ has a right adjoint, the iterator $(,$,$) is a$ T-algebra homomorphism.

Natural numbers in Cpo, revisited

Flat natural numbers, A. $(1+A)$:

Lazy natural numbers, $A .(1+A)_{\perp}:$

Strict natural numbers, $A_{\perp} A_{\perp}$:

Natural numbers in Cpo as T-list objects on the unit

Flat natural numbers, A. $(1+A)$:

Lazy natural numbers, $A .(1+A)_{\perp}:$

Strict natural numbers, $A^{\prime} A_{\perp}$:

Natural numbers in Cpo as T-list objects on the unit

Flat natural numbers, A. $(1+A)$:

Lazy natural numbers, $A .(1+A)_{\perp}:$ Strict natural numbers, $A . A_{\perp}$:

T-list object with $(\times, 1)$ structure and monad $T=$

Natural numbers in Cpo as T-list objects on the unit

Flat natural numbers, A. $(1+A)$:

Lazy natural numbers, $A .(1+A)_{\perp}:$ Strict natural numbers, $A^{\prime} A_{\perp}$:

T-list object with $(\times, 1)$ structure and monad $T=$
T-list object with
$(\times, 1)$ structure and $T:=(-)_{\perp}$ the lifting monad

Natural numbers in Cpo as T-list objects on the unit

Flat natural numbers, A. $(1+A)$:

Lazy natural numbers, $A .(1+A)_{\perp}:$

T-list object with $(\times, 1)$ structure and $T:=(-)_{\perp}$ the lifting monad

Strict natural numbers, $A^{\prime} A_{\perp}$:

T-list object with $(+, 0)$ structure and $T:=(-)_{\perp}$ the lifting monad

Monoids with compatible algebraic structure

T-monoids

T-monoids

Let (,) be a strong monad on on a monoidal category (,). A -monoid (EM-monoid (Piróg)) is a monoid

T-monoids

Let (,) be a strong monad on on a monoidal category (,). A -monoid (EM-monoid (Piróg)) is a monoid equipped with a T-algebra

T-monoids

Let (,) be a strong monad on on a monoidal category (,). A -monoid (EM-monoid (Piróg)) is a monoid equipped with a T-algebra

compatible in the sense that

T-monoids

Let (,) be a strong monad on on a monoidal category (,). A -monoid (EM-monoid (Piróg)) is a monoid equipped with a T-algebra

compatible in the sense that

Remark

T-monoids generalise both monoids and T-algebras.

T-monoids

Remark

In the context of abstract syntax, T is freely generated from some theory, and T-monoids are models of this theory.

T-monoids

Remark

In the context of abstract syntax, T is freely generated from some theory, and T-monoids are models of this theory.

Lemma
For every monoid the endofunctor $T:=(-)$ is a monad, and $T \simeq()$.

T-monoids

Remark

In the context of abstract syntax, T is freely generated from some theory, and T-monoids are models of this theory.

Lemma

For every monoid the endofunctor $T:=(-)$ is a monad, and $T \simeq()$.

Example

In particular, a T-monoid for the endofunctor $T:=S(-)$ is precisely an algebraic operation with signature S in the sense of Jaskelioff, and can be identified with a map $S \eta(S) \rightarrow$ interpreting S inside .

T-monoids

Remark

In the context of abstract syntax, T is freely generated from some theory, and T-monoids are models of this theory.

Lemma

For every monoid the endofunctor $T:=(-)$ is a monad, and $T \simeq()$.

Example

Thinking of a Lawvere theory as a monoid L in (' $(1), \bullet)$, we can identify Lawvere theories extending L with T-monoids for $T:=\bullet(-)$.

T-list objects are free T-monoids

T-list objects are free T-monoids

For a strong monad (T,) on a monoidal category (,),

T-list objects are free T-monoids

For a strong monad (T,) on a monoidal category (,),
Lemma

1. Every T-list object (X) is a T-monoid.

T-list objects are free T-monoids

For a strong monad (T,) on a monoidal category (,),
Lemma

1. Every T-list object (X) is a T-monoid.
2. This T-monoid is the free T-monoid on X, with universal map

$$
X X X X(X)(X)
$$

T-list objects are free T-monoids

For a strong monad (T,) on a monoidal category (,),
Lemma

1. Every T-list object (X) is a T-monoid.
2. This T-monoid is the free T-monoid on X, with universal map

$$
X X X X(X)(X)
$$

We can reason concretely about free T-monoids by reasoning about T-lists.

T-list objects are initial algebras

T-list objects are initial algebras

For a strong monad (T,) on a monoidal category (,),
Lemma
If every $(-) P$ preserves binary coproducts, and the initial algebra exists, then $A . T(I+X A)$ is a T-list object on X.

Theorem

Let be a strong monad on a monoidal category (, ,) with binary coproducts (+). If

1. for every \in, the endofunctor (-) preserves binary coproducts, and
2. for every $X \in$, the initial algebra of $T(I+X-)$ exists

Then has all-list objects and, thereby, the free -monoid monad.

Theorem

Let be a strong monad on a monoidal category (, ,) with binary coproducts (+). If

1. for every \in, the endofunctor (-) preserves binary coproducts, and
2. for every $X \in$, the initial algebra of $T(I+X-)$ exists

Then has all-list objects and, thereby, the free -monoid monad.
Remark
Thinking in terms of T-list objects makes the proof straightforward!

Technical contribution

Technical contribution

A. $(I+X A) \rightsquigarrow$ list object \rightsquigarrow free monoid

Technical contribution

A. $(I+X A) \rightsquigarrow$ list object \rightsquigarrow free monoid

T-list object

Technical contribution

A. $(I+X A) \rightsquigarrow$ list object \rightsquigarrow free monoid

$$
T \text {-list object } \rightsquigarrow \text { free } T \text {-monoid }
$$

Technical contribution

A. $(I+X A) \rightsquigarrow$ list object \rightsquigarrow free monoid

A. $T(I+X A) \rightsquigarrow T$-list object \rightsquigarrow free T-monoid

Technical contribution

$$
\text { A. }(I+X A) \rightsquigarrow \text { list object } \rightsquigarrow \text { free monoid }
$$

$$
\text { A. } T(I+X A) \rightsquigarrow T \text {-list object } \rightsquigarrow \text { free } T \text {-monoid }
$$

Remark

A natural extension: algebraic structure encapsulated by Lawvere theories or operads. This gives rise to a notion of near-semiring category, which underlies many of the applications.

Applications

Applications

T-NNOs

In a a monoidal category (,):

$$
\begin{aligned}
\mathrm{NNO} & =\text { list object on } \\
T \text {-NNO } & =T \text {-list object on }
\end{aligned}
$$

In Cpo: gives rise to the flat-, lazy- and strict natural numbers.

Applications

Functional programming

- In the bicartesian closed setting: Jaskelioff's monadic list transformer $\operatorname{Lt}(T) X:=A . T(1+X \times A)$ is just the free T-monoid monad.

Applications

Functional programming

- In the bicartesian closed setting: Jaskelioff's monadic list transformer $\operatorname{Lt}(T) X:=A . T(1+X \times A)$ is just the free T-monoid monad.
- In the category of endofunctors over a cartesian category: the MonadPlus type class $\operatorname{Mp}(F) X:=A \cdot \operatorname{List}(X+F A)$ of Rivas is a List-list object.

Applications

Functional programming

- In the bicartesian closed setting: Jaskelioff's monadic list transformer $\operatorname{Lt}(T) X:=A . T(1+X \times A)$ is just the free T-monoid monad.
- In the category of endofunctors over a cartesian category: the MonadPlus type class $\operatorname{Mp}(F) X:=A \cdot \operatorname{List}(X+F A)$ of Rivas is a List-list object.
- In the category of endofunctors over a cartesian category: the datatype

$$
\operatorname{Bun}(F) X:=A .(1+X \times A+F(A) \times A+A \times A)
$$

is an instance of Spivey's Bunch type class that is a T-list object for T the extension of the theory of monoids with a unary operator.

Applications

Functional programming

- In the bicartesian closed setting: Jaskelioff's monadic list transformer $\operatorname{Lt}(T) X:=A . T(1+X \times A)$ is just the free T-monoid monad.
- In an nsr-category: the MonadPlus type class $\operatorname{Mp}(F) X:=A$. List $_{*}(X+F A)$ is a List $_{*}$-list object.
- In an nsr-category:

$$
\operatorname{Bun}(F) X:=A \cdot(J+(I+X A+A) * A)
$$

is an instance of Spivey's Bunch type class that is a T-list object for T the extension of the theory of monoids with a unary operator.

Applications

Abstract syntax and variable binding (Fiore)
In the category of presheaves with substitution tensor product

$$
(P \bullet Q)(n)=\int^{m \in}(P m) \times(Q n)^{m}
$$

Applications

Abstract syntax and variable binding (Fiore)
In the category of presheaves with substitution tensor product

$$
(P \bullet Q)(n)=\int^{m \epsilon}(P m) \times(Q n)^{m}
$$

we get
abstract syntax $=$ free T-monoid on variables

$$
=A \cdot T(V+X \bullet A)
$$

Applications

Abstract syntax and variable binding (Fiore)
In the category of presheaves with substitution tensor product

$$
(P \bullet Q)(n)=\int^{m \epsilon}(P m) \times(Q n)^{m}
$$

we get
abstract syntax $=$ free T-monoid on variables

$$
=A \cdot T(V+X \bullet A)
$$

abstract syntax is a list object with algebraic structure

Applications

Abstract syntax and variable binding (Fiore)

In the category of presheaves with substitution tensor product

$$
(P \bullet Q)(n)=\int^{m \in}(P m) \times(Q n)^{m}
$$

we get
abstract syntax $=$ free T-monoid on variables

$$
=A \cdot T(V+X \bullet A)
$$

Remark

This relies on a slightly more general theory, in which the strength $x, I \rightarrow P: T(X) P \rightarrow T(X P)$ only acts on pointed objects.

Applications

Higher-dimensional algebra
The web monoid in Szawiel and Zawadowski's construction of opetopes is a T-list object in an nsr-category.

Summary: List objects with algebraic structure

Summary: List objects with algebraic structure
$A .(I+X A) \rightsquigarrow$ list object \rightsquigarrow free monoid
$A . T(I+X A) \rightsquigarrow T$-list object \rightsquigarrow free T-monoid

Summary: List objects with algebraic structure
$A .(I+X A) \rightsquigarrow$ list object \rightsquigarrow free monoid
A. $T(I+X A) \rightsquigarrow T$-list object \rightsquigarrow free T-monoid

Framework unifying a wide range of examples.

Summary: List objects with algebraic structure
A. $(I+X A) \rightsquigarrow$ list object \rightsquigarrow free monoid
$A . T(I+X A) \rightsquigarrow T$-list object \rightsquigarrow free T-monoid

Framework unifying a wide range of examples.
Algebraic structure \rightsquigarrow list-style datatype. Simpler proofs!
(abstract syntax, opetopes?)

Summary: List objects with algebraic structure

A. $(I+X A) \rightsquigarrow$ list object \rightsquigarrow free monoid
$A . T(I+X A) \rightsquigarrow T$-list object \rightsquigarrow free T-monoid

Framework unifying a wide range of examples.
Algebraic structure \rightsquigarrow list-style datatype. Simpler proofs!
(abstract syntax, opetopes?)
Initial algebra definition \rightsquigarrow universal property.
(monadic list transformer, MonadPlus)

Summary: List objects with algebraic structure

A. $(I+X A) \rightsquigarrow$ list object \rightsquigarrow free monoid
$A . T(I+X A) \rightsquigarrow T$-list object \rightsquigarrow free T-monoid

Framework unifying a wide range of examples.
Algebraic structure \rightsquigarrow list-style datatype. Simpler proofs!
(abstract syntax, opetopes?)
Initial algebra definition \rightsquigarrow universal property.
(monadic list transformer, MonadPlus)

A journal-length version is in preparation.

