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Abstract

The C/C++11 concurrency model balances two goals: it is
relaxed enough to be efficiently implementable and (leaving
aside the “thin-air” problem) it is strong enough to give-use

ful guarantees to programmers. It is mathematically peecis
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flexible range of synchronisation primitives, with semasti
strong enough to support both sequentially consistent (SC)
programming and fine-grained concurrency. It has been used
in research on compiler testing, optimisation, librarytedos

tion, program logics, and model-checking [3, 17, 19, 23, 25,

and has been used in verification research and compiler test<>

ing. However, the model is expressed in an axiomatic style,

as predicates on complete candidate executions. This suf-

fices for computing the set of allowed executions of a small
litmus test, but it does not directly support the incremknta
construction of executions of larger programs. It is also at

odds with conventional operational semantics, as used im-

plicitly in the rest of the C/C++ standards.

Our main contribution is the development of an opera-
tional model for C/C++11 concurrency. This covers all the
features of the previous formalised axiomatic model, and we
have a mechanised proof that the two are equivalent, in Is-
abelle/HOL. We also integrate this semantics with an opera-
tional semantics for sequential C (described elsewhdte); t

combined semantics can incrementally execute programs in

a small fragment of C.

Doing this uncovered several new aspects of the C/C++11
model: we show that one cannot build an equivalent opera-
tional model that simply follows program order, SC order,
or the synchronises-with order. The first negative result is
forced by hardware-observable behaviour, but the latter tw
are not, and so might be ameliorated by changing C/C++11.
More generally, we hope that this work, with its focus on in-
cremental construction of executions, will inform the figu
design of new concurrency models.

1. Introduction

C and C++ have been used for concurrent programming
for decades, and concurrency became an official part of
the ISO language standards in C/C++11 [8, 28, 29]. Batty
et al. contributed to this standardisation process, riagult

in a mathematical model in close correspondence with the
standard prose [6].

Extensionally, the C/C++11 design is broadly satisfac-
tory, allowing the right observable behaviour for many pro-
grams. On the one hand, the semantics is relaxed enough t
allow efficient implementation on all major hardware plat-
forms [5, 6], and on the other hand, the design provides a

Intensionally, however, the C/C+11 model (in the ISO
text and the formalisation) is in an “axiomatic” style, auit
different from a conventional small-step operational sema
tics. A conventional operational semantics builds execisti
incrementally starting from an initial state and following the
permitted transitions of a transition relation. This imoen-
tal structure broadly mirrors the way in which conventional
implementations produce executions. To calculate the se-
mantically allowed behaviours of a program, one can calcu-
late the set of all allowed behaviours by an exhaustive Bearc
of all paths (up to some depth if necessary), and one can find
single paths (for testing) by making pseudorandom choices
of which transition to take from each state. The incremental
structure also supports proofs by induction on paths, as in
typical type preservation proofs, and dynamic analysis and
model-checking tools.

In contrast, an axiomatic concurrency model defines the
set of all allowed behaviours of a program in a quite differ-
ent and more global fashion: it defines a notiorcafdidate
executionthe set of memory actions in a putative complete
execution (together with various relations over them), and
consistency predicatbat picks out the candidate executions
allowed by the concurrency model; the conjuncts of this are
the axioms of the axiomatic model. Executions must also
be permitted by the threadwise semantics of the program,
though this is often left implicit in the relaxed-memoryelit
ature (for C/C++11, one additionally needs to check whether
any consistent execution exhibits a race). With this stmagt
to calculate the set of all allowed behaviours of a program,
in principle one first has to calculate the set of all its coltr
flow unfoldings, then for each of these consider all the possi
ble choices of arbitrary values for each memory read (using
the threadwise semantics to determine the resulting values
of memory writes), and then consider all the possible arbi-
trary choices of the relations (the reads-from relation, co

Merence order, etc.). This gives a set of candidate exesutio

which one can filter by the consistency predicate (and then
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apply a race check to each). This is viable for small litmus sirable in principle, but the C/C++11 model is an abstrarctio
tests, and it is essentially what is done by th@mem [6] invented to be sound with respect to multiple quite différen
andherd [1] tools. It intrinsically scales badly, however: the implementations, covering compiler and hardware optimi-
number of candidate executions increases rapidly with pro- sation; it is unclear whether an equivalent abstract-nmechi
gram size, and the fraction of consistent executions amongmodel is feasible. Instead, the operational semantics-is de
them becomes vanishingly small. fined using the axioms of the axiomatic model.

We are also deliberately not addressing the “thin-air”
problem: the C/C++11 model permits certain executions that
are widely agreed to be pathological, but which are hard to
characterise [4]. Here we are aiming to be provably equiv-
alent to that model, and those executions are therefore also
permitted by our operational model. Instead we are solving
an orthogonal problem: the cyclic executions presente@in §
Our approach To solve the above problem we construct that are the main reasons why developing an operational se-
an equivalent operational concurrency model, and incremen mantics is difficult are not out-of-thin-air executions.€fa
tally generate executions by taking both this concurrency may be scope for combining this work with proposals for
model and the threadwise semantics into account at eachthin-air-free models for the relaxed and nonatomic fragimen
step. of C/C++11 [21].

First contribution: negative results Our first contribution

is a negative result: we show that one cannot build an equiva-
lent operational concurrency model for C/C++11 that simply
follows program order, SC order, or the synchronises-with
order (83). The axiomatic model allows executions with cer-
tain cycles in the union of program order, the reads-from
relation, coherence order, SC order and synchronises-with
order (we recall these relations in §2). In a sequentially-co
sistent semantics, each of the latter relations are cemsist
with program order: as one builds an execution path incre-
mentally, each read is from a write that is earlier in the path o :
each write is a coherence-successor of a write that is earlie allel composition. Supporting non-scalar types such as ar-

in the path, and so on. For a relaxed-memory semantics, thatr(?r{”nsa;:iosr:rclijcrtrz:\i Olri:zlc(ijeel ?:echgesgf ”:)'f‘t \t,\r/g;: ;22 ?r)]((;
is not always the case, and so in order to be complete Withintention of the stan):jard s not clear bp
respect to the axiomatic model the transitions of our opera- :

tional semantics must be able to generate those cycles anorlan-[jr:)?nlln t(zg)](ra}gfg ;?ne)f:cﬁ,bsleoﬁn?oc?grﬁse uﬁeisc,j tﬁofj::\;ﬁo'
can therefore not simply follow all the above relations. y €Xp gep prog ) ' '

The first negative result (one cannot build an equivalent not intended to be an efficient tool: the size of the state and

operational model that follows program order) is forced by :ir:'_)?qtlnl:\:zt:]?afotwsl?:]et;hfagsﬁt;g?\;]sétl(t)hneger?r\:\(ljg#]r(la?gaTxi%lé——
hardware-observable behaviour, but the latter two (abGut S ' ' 9 P

order and synchronises-with order) are not, and so might beIem we described apove: we can find out whether choices
ameliorated by changing C/C++11. of control-flow unfolding and memory read values are com-

patible with the concurrency modeiiring the execution.

The fundamental problem The fundamental difficulty
with calculating behaviour in the axiomatic concurrency
model is that one has to construct candidates with no knowl-
edge of whether the choices of control-flow unfolding and
memory read values are actually compatible with the con-
currency model; the vast majority of them will not be.

Third contribution: integration with a sequential seman-
tics We integrate our operational concurrency model with
a sequential operational semantics (87). That sequesmtial s
mantics, covering a substantial fragment of C, will be de-
scribed in detail elsewhere [16]; it is not itself a conttibn
of this paper.

The integration supports integers (of any kind), atomics,
fences, conditional statements, loops, function calld -

Main contribution: an eguivalent operational concurrency
model  We show that the axiomatic moda@besbehave in-
crementally under a particular execution order, we develop
an operational concurrency model following that order, and Mechanisation For such an intricate area, mechanisation
prove this model equivalent to the axiomatic model of Batty has major advantages over hand proofs, but it also comes
et al. [6], with a mechanised Isabelle/HOL proof (84— 6). at a significant cost. The total development amounts to
We do all this for the full C/C++11 model as formalised by 7 305 lines of Isabelle/HOL script (excluding comments and
Batty et al. [6], including nonatomic accesses, all the &om  whitespace), together with 2 676 lines of Isabelle/HOL#cri
memory orders (sequentially consistent, release/acogeire  for the original axiomatic model. We use Lem [18] to gen-
lease/consume, and relaxed), read-modify-write opearstio  erate the latter from its Lem source, which was previously
locks, and fences. used for HOL4 proof. In the paper we only state the most
Our operational semantics is not in an “abstract machine” important theorems and definitions; the proofs and the rest
style, with an internal structure of buffers and suchlikatth  of the theorems and definitions are available as anonymous
has a very concrete operational intuition. That might be de- supplemental material submitted with this paper.
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2. The C/C++11 axiomatic concurrency write-release implementations). In the example in Fig.€l th
model write-release and the acquire fence synchronise.

We begin by recalling the C/C++11 concurrency primitives 2 2 The C/C++11 threadwise semantics
and axiomatic model, referring to previous work [2, 6, 8] for

. The semantics of C/C++11 is factored inttheeadwise se-
the full details.

manticsand aconcurrency semanticBroadly speaking, the
concurrency semantics determines whether a program con-

2.1 Thelanguage: C/C++11 concurrency primitives tains a race and which values can be read from memory,
C/C++11 provide concurrency primitives supporting a range and the threadwise semantics determines everything else.
of different programming idioms. First there are normah- This factorisation works vigre-executiornsthe threadwise

atomicaccesses. Races on these give rise to undefined besemantics determines the set of pre-executions of a pro-
haviour (to allow compiler optimisation to assume there are gram, and the concurrency model is defined in terms of pre-
no races), and so concurrent use of them must be protectedxecutions.
by conventionalocksor other synchronisation. Then there
areatomicaccesses, which can be concurrently used without
constituting undefined behaviour. Atomic accesses include
memory reads, writes, and various read-modify-write oper-
ations, including atomic increments and compare-and-swap
operations. There are also explicit memory fences.

The program in Fig. 1 uses atomics and a fence to syn- ® a, the identifier of the action, unique within the pre-

Pre-executions A pre-execution corresponds to a particu-
lar complete control-flow unfolding of the program and an
arbitrary choice of the values read from memory. It is repre-
sented as a graph, whose nodesmaeenory actionsA node
label such aa:Wna x=0 consists of:

chronise two threads. The first thread non-atomically sets execution.
to a value and then signals the other thread by atomically e W, the type of the action, in this case a store. Other types
settingy to 1. The other threads reag# a loop until it sees are loads R), read-modify-writes RMW), fences ),
1, and then uses for some other computation. locks (L) and unlocks ().

Atomics can be annotated with differememory orders * na, specifying that this action is non-atomic. For atomic
The example uses\arite-release a read-acquireand are- actions, thememory ordefthe synchronisation strength
laxedmemory order. of the action, not an order relation) is specified here:

sequential consistentd), release rel), acquire écq),
acquire-releasea(r), consume don) or relaxed (lx).
Locks and unlocks do not have a memory order.

¢ x, the location of the action. Fences do not have a loca-
tion.

¢ 0, the value written for stores. Load actions similarly
contain the value read (recall that pre-execution contains
arbitrary values for the return values of loads). For read-
modify-writes a pair such &/3 specifies that 2 has been
read, and 3 has been written.

¢ Sequentially consistent (SC) atomics are guaranteed to
appear in a global total order, but their implementation on
relaxed hardware requires relatively expensive synchro-
nisation.

¢ Write-release and read-acquire atomics are cheaper but
weaker: if a write-release is read from by a read-acquire,
then memory accesses program-order after the latter are
guaranteed to see those program-order-before the former.

e Read-consume is a still weaker variant of read-acquire,
implementable on some relaxed hardware simply using
the fact that those architectures guarantee that some de- The edges between the nodes denote various relations:

pendencies are preserved. The status of read-consuméhe sequenced-before relatiah captures program order,
is in flux, as McKenney et al. describe [15]: it is diffi- and the additional synchronises-with relationu captures

cult to implement in full generality in existing compilers ~ thread creation and termination, both from the syntactic
(where standard optimisations may remove source-codecontrol-flow unfolding.

syntactic dependencies), but the basic facility it proside N Fig. 1 we see one of the pre-executions of the mes-
is widely used, e.g. in the Linux kernel. All this notwith- ~Sage passing program. The program has infinitely many pre-
standing, our operational model captures its behaviour as€xecutions: each time the condition of the loop is executed
specified in the formal C/C++11 axiomatic concurrency the value read is arbitrary, so the loop can be executed
model. an indefinite number of times. The program also has pre-

« Relaxed atomics are the weakest of all, guaranteeing co-executions of infinite size where the loop is never exited.

herence but weak enough to require no hardware fence32_3 The C/C++11 axiomatic concurrency semantics
in their implementation on common architectures [22]. _ ) ) )
To determine the behaviour of a program given its set of

Certain combinations of release/acquire, relaxed, andtrea pre-executions, we first extend each pre-execution with all
modify-write atomics and fences also guarantee synchroni- possibleexecution withessga pre-execution combined with
sation (exploiting the force of the memory barriers used in one of its execution withesses formgandidate execution

3 2016/6/3



#include <stdatomic.h>

int main(void) { a:Wna x=0
int x = 0; Sb¢
_Atomic(int) y = 0;
int z; b:Wna y=0
{-{{x=1;
atomic_store_explicit(&y, 1, memory_order_release); } d:‘Wna x=1 asw aSWf:erx y=alpha
1] { while(atomic_load explicit(&y, memory_order_relaxed) != 1) {};

. . sh sh
atomic_thread_fence(memory_order_acquire); ¢ ¢
z=x; } }-% e:Wrel y=1 g:Rrix y=beta

return z; sb¢
} sb h:Facq
On the left: the syntax-{71]|| 7=} -} is short for creating two threads that execlife Sb¢
and7; and then joining them; it avoids the extra memory actionmfpihread-style {Rna x=gamma
thread creation. asw '
On the right: one of the pre-executions of the program. Thelitimn of the loop is Sb¢
execute twice: actiong and g both correspond to the same instruction. The values als\J;iana z=gamma
a, B, v andé that are read from memory are arbitrary, but do agree wittckioéce v

of control flow in this pre-execution: since the conditiortioé loop was true the first
time and false the second time, we have£ 1 and3 = 1. The values written to
memory are determined by the threadwise semantics (sef 8§2.2

c:Rna z=delta

Figure 1: The message passing (MP) program and one of itsxa@itions

Then we use the axiomatic model to determine which of Other axioms define the more subtle properties that are the
those candidate executionsdsnsistentFinally, we check real substance of the C/C++11 model. These axioms typi-
whether any of the consistent executions contains arace. cally use the following derived relations.

Execution witnesses An execution witness consists of the e The synchronises-with relationw contains (among
following relations over memory actions: the reads-from re other things) thewsw relation, synchronising unlock-lock
lation rf, the coherence order.o, the sequential consis- pairs, and synchronising release-acquire pairs.

tent ordersc, and the lock ordefo. In principle every pre- e The happens-before relatiorb. In the absence of the
execution can be extended by every execution witness to memory order consume, we have that= (sb U sw)™
form a candidate execution. It is the next step (determining  where-T is the transitive closure.

which candidate executions are consistent) that gives mean

ing to the relations defined above. In Fig. 2 we see a consistent execution of the message
passing program. There is only one choice for the arbitrary
Consistency The axiomatic concurrency model defines a valuesq, 3, v andd of the pre-execution. The whole set of
consistency predicatthat determines whether a candidate consistent executions of the program consists of one execu-
execution is consistent or not. The consistency predicatetion where the loop executestimes for everyn, and one
consists of several conjuncts, which are called the axiomsinfinite execution where the loop is never exited.
of the model. Some of those axioms give the relations of the
execution witness their intuitive meaning:
Races If one of the consistent executions containsee,
* well_formed_rfrequires (amongst other things) that for  {he whole program is undefined; otherwise the program is
each(w,r) € rf we have thaty andr are actions of  gefined and the behaviour is the set of consistent executions
the pre-executionsy is a write, and- aread to the same A example of a race is data race two actions, at leat

location that reads the value written by one a write and at least one non-atomic, that are of different
* consistent_maequires thatmno is a total order over all  threads, not happens-before related, but to the samedacati
atomic writes to the same location. All the consistent executions of the message passing pro-
e consistent_scequires thatsc is a total order over all  gram are race free. In particular, the actidrend: in Fig. 2
actions with a sequential consistent memory order. do not race with each other becausand i synchronise.
e consistent_l@equires thato is a total order over all locks ~ Without the acquire fence this would not be true, and the
and unlocks to the same location. program would be undefined.
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a:Wna x=0 we discuss in §3.1. In the same section we show that if we

Sb¢ follow mo then this problem does not occur.
b:Wna y=0 The other problems follow from the existence of con-
sistent executions with particular cycles. In 83.2 we show
AW e x y=0 that we cannot followsb (the program order), in §3.3 that
we cannot followsc (the sequential consistent order) and in
Sb¢ §3.4 that we cannot followw (the synchronises-with order).
> gRrixy=1 Each of these also suggests a possible change to future ver-
sb¢ sions of the C/C++11 model.
sb h:Facq . . L
Sb¢ 3.1 Disappearing synchronisation
! _ Most synchronisation is immune to new actions. For exam-
asw i:Rna x=1 . . . .
ple, a synchronising release-acquire pair will be synchro-
Sb¢ nised no matter which or how many new actions are added to
asw, rf IVnaz=1 the execution, and similarly for a synchronising unlockko
) pair. However, this is not true for types of synchronisagion
c'Rna z-1 that depend on release sequences, as can be seen in Fig. 3.

Recall that a release sequence is defined as follows [6,
Figure 2: A consistent execution of the message passingsp 6]. It starts at a write-release, and extends to all stofe
program (see Fig. 1). Note that actionandh synchronise.  the same thread and all RMWs (potentially by other threads)
that immediately follow in modification order, regardleds o
their memory order annotation. The point of this is to pro-
3. Incrementalising the axiomatic model: the vide at the C/C++11 level more of the force of the memory
problems barrier u_sed on some archltectures to implement the write-
release, just before the write.
Such a release sequence can be broken by executing a
new action, of which we give an example below. In the
execution on the left, the writesandb are part of a release

In this section we consider the challenges of developing
an equivalent operational concurrency model that gererate
executions one action at the time. Recall that the axiomatic
model takes complete pre-execunqns as Input, so in OrOIersequence, and because the readads from a write in this

to state the equivalence the operational concurrency mOdelsequence, it synchronises with the first write in the seqeienc
also has to take complete pre-executions as input. In otherIn the second execution. however. a new wais inserted
words, it would incrementally add execution witness data ;, modification order between the existing writesand b

(new rf-pairs, etc.) to a pre-execution given up-front. We nich preaks the release sequence. Therefore, there is no

caII_ adding E_:xecut|on W_ltness datff‘ betwegn an aatiand synchronisation between the readnd writea anymore.
actions previously consideremmmittingactiona.

Another notion that we use is thatfoflowing or respect- a:Wrel x=1 a:Wrel x=1

ing a certain order. If we would commit the actions of Fig. 4 hb Sb¢ nohb - 'Sb¢ mo

(left side) in the orden, b, ¢, ..., f then we would not re- .

spectrf because the edgd,c) € rf goes against this or- ﬁ:wnx x=2 > ‘fﬂ:w"x X:Z‘\

der. Or formally: letcom be the commitment order (that is, c:Racq x=2 c:Racq x=2 MO §:wrlx x=3

(a,b) € com if a has been committed befoblandr a rela-
tion, we say that we follow if for all (a,b) € com we have
(b,a) & r.

A requirement that follows from later sections is that we Such disappearingb edges make it difficult to construct
should followrf. In a complete pre-execution all the reads an operational concurrency model that generates all consis
have a concrete value (that is arbitrarily chosen), but late tent executions. Arkb edge restricts consistent executions
we want the concurrency model to determine which value in many ways: for example, it restricts the set of writes that
is read. Sincef relates reads to the write they read from, a read can read from, and it forces modification order in
this means that the concurrency model has to establish ancertain directions. If the concurrency model took those re-
rf-edge to the read when it commits the read; in other words strictions into consideration but at a later step theedge
it has to followrf. disappeared, the concurrency model would have to recon-

The first problem we face is thdth edges (happens- sider all earlier steps. If on the other hand the concurrency
before edges) between previously committed actions might model already took into account that Al edge might dis-
disappear when committing new actions. This is conceptu- appear when it encounters ah edge, the number of pos-
ally very strange and it has undesirable consequenceshwhic sibilities would blow up, and furthermore many executions

Figure 3: Disappearing synchronisation
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would turn out to be inconsistent when thizedge does not
disappear after all.

Our argument is as follows. The execution in Fig. 5 con-
tains a cycle inmo U rf U sc, so we cannot follow all three

Our solution to prevent disappearing synchronisation is relations together. We saw before that we have to follow

to follow mo when committing actions. We prove that this
suffices in a later section, in Theorem 5.5. Another solution
would be to change the axiomatic model (and the C/C++

both rf andmo, hence we cannot followc. To the best of
our knowledge, this execution is not observable on POW-
ER/ARM, so this suggests another possible strengthening of

ISO standards) by allowing the release sequence to extendC/C++11, which would allow an operational model to follow
to sb-later writes in the same thread irrespective of whether sc by disallowing themo U rf U sc cycle.

the write is immediately following inmo order. We believe

that this matches hardware behaviour, so this change would

not invalidate current implementations of C/C++11.

3.2 Abandoning program order

a:Wsc x=1
no

b:Wrlx x=2 T’ c:Rsc x=2

Figure 5: A consistent execution with a cycleritw Urf U sc

There are two kinds of cycles that show that we cannot (omitting initialisation)

follow program order. For the first, recall that the openadio
concurrency model has to followf to determine the return
values of reads. Then the cycleifi U sb in the execution
on the left of Fig. 4 shows that we cannot follow program
order (sb) at the same time. This execution has to be allowed
in C/C++ because it is allowed on POWER and ARM, and
observable on current ARM hardware.

a:Wna x=0

a:Wrel y=1 d:Wrel x=1

f:Racq y=1

f:Wrlx x=42

d:Wrlx y=42

Figure 4: On the left a consistent execution with a cycle in
rf U sb and on the right one with a cycle ino U sb

3.4 Abandoning synchronises-with order

Just as disappearing synchronisation makes it hard to de-
velop an operational semantics, new synchronisation to pre
viously committed actions makes it equally hard.

To see this consider the situation where there was no
hb edge between a writey and a loadr when the load
was committed, but committing a new actiorcreates &b
edge betweemv andr. The consistency predicat®nsis-
tent_non_atomic_rfequires (in case is non-atomic) that
r reads from a write that happens before it. When commit-
ting r we either have to considerand discard the execution
when there never appearsia edge, or we do not consider
it, but then we have to reconsider the execution at soon
as there does appearhé edge. Similarly, the consistency
predicatedet_readrequires that' (regardless of whether it
is atomic or not) is indeterminate if and only if there does
not exists a write that happens before it, so the same prob-
lems applies here.

The hb relation is a superset of the synchronises-with
(sw) relation, that arises from thread creation, synchrogisin

For the second, observe that the execution on the right of ocks and synchronising release-acquire atomics or fences

Fig. 4 has a cycle inmo U sb. As described in the previ-
ous subsection, we follow:o, so the existence of this cycle

If we would have been able to followw, it would have
been easier to prevent new synchronisation between previ-

also shows that we cannot follow program order. Here the gusly committed actions. However, the execution in Fig. 6

corresponding hardware examples, after applying the stan-

dard mapping, are not architecturally allowed or observed
on ARMv8 (2+2W+STLs) or POWER (2+2W+lwsyncs), so
one might conceivably strengthen C/C++11 to similarly for-
bid this behaviour.

3.3 Abandoning sequential-consistent order

Recall from 82 that C/C++11 introduces sequential consis-

tent atomics that are guaranteed to appear in a global totaltiCS in the following three stages
order. When all accesses to atomics have this SC memory 9 ges.

has a cycle insw U rf, and since we followrf we can
therefore not followsw. This execution is not observable on
POWER/ARM, so again one might conceivably forbid it in
C/C++11 to follow thesw order.

4. Constructing an operational model:
overview

In the rest of the paper we construct the operational seman-

order annotation, programs that have no non-atomic racesStage 1 The incremental concurrency model In 85 we

behave as if memory is sequentially consistent (Batty [, 4]
It is therefore surprising that the concurrency model canno
follow the sc relation when other memory orders are present.

present an orderthat can be used to incrementally generate
all consistent executions, in constrast to the orders ptede
in the previous section. The crucial property of the ondisr
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a:RMWrel y=2/3
sh, mo

b:Wrix y=4

e:Wrlx x=1 m f:RMWacq x=1/2

Figure 6: A consistent execution with a

the following: an r-prefix of a consistent execution is again
a consistent execution

We use this order to define tlecremental concurrency
modelin the following way. We assume for now that a com-
plete pre-execution is given (in a later stage we remove this

assumption). We define a notion of state that contains a par-

tially generated execution witness, and we allow a traositi
from states; to s, if so extendss; with one action, and,
is consistent.

To prove completeness (for finite executions), we exploit
that consistency is closed undeprefixes: letex be a con-
sistent execution with, actions, define the stateg, . . ., s,
wheres; is ther-prefix of ex with 7 actions. Then the incre-
mental model can transition from) to s;; and therefore it
can incrementally generate the consistent execution

Limitations To actually compute a next statg from a
states; one would have to enumerate all possible execu-
tion witnesses and filter them according to the criteria “
extendss; with one action, and, is consistent”. Comput-
ing behaviour this way is even less efficient than with the
axiomatic model itself, since there one would only need to
enumerate the witnesses once while here for every transitio
This limitation is precisely what we solve in the next stage.

Stage 2 The executable concurrency model In 86 we
present theexecutable concurrency moddihis is similar

to the incremental model: it also assumes a complete pre-
execution, it has the same notion of states, and it can transi
tion from a state; to ss if and only if the incremental model
can. The difference is that the executable model defines tran
sitions using a function that given a statereturns the set

of all states where; can transition to. This makes it feasible
to compute transitions.

We develop this transition function by examining how the
relationsrf, mo, sc andlo (that together form the execution
witness) can change during a transition of the incremental
model.

Limitations The transition function internally still enu-

k:RMWrel x=2/3

g:RMWacq y=1/2 ﬁm=o J:Wrix y=1

cyclesim U rf (omitting initialisation)

duced when we know exactly ho changes during a tran-
sition (instead of the general results stated in Theorem 5.5
and Theorem 5.6); we leave this, which is an implementa-
tion optimisation, for future work. The point is that we have
to enumerate significantly fewer candidates than in the in-
cremental model: the executable model enumerates at most
n? candidates where is the number of actions in the partial
witness, while the incremental model enumerates all possi-
bilities for four partial orders ovet actions.

The remaining limitation is that the executable model still
assumes a complete pre-execution given up-front. This is
what we solve in the next stage.

Stage 3 The operational semantics In 87 we integrate
the executable concurrency model with an operational model
for the sequential aspects of a substantial fragment of C.
Here the latter incrementally builds a pre-execution while
the concurrency model incrementally builds a witness, syn-
chronising between the two as necessary.

The main obstacle we had to overcome was the fact that
the executable concurrency model cannot follow program
order (as explained in §3), but the sequential semantics doe
Our solution was to allow the sequential semantics and the
concurrency model to transition independently of eachrothe
the formergeneratesactions in program order, and at every
step the concurrency modammitszero, one or more of the
generated actions.

A consequence of the independent transitions is that when
the sequential semantics generates a read, the concurrency
semantics might not immediately commit that read and re-
turn the value. In that case the sequential semantics has to
be able to continue its execution without the return value.
Our solution is to make the sequential semantics symbolic:
for all reads we use fresh symbols for the return values, and
whenever the concurrency model commits a read we resolve
the symbol with the value actually read.

When a control operator with a symbolic condition is en-
countered the sequential semantics non-deterministiesi|
plores both branches, adding the corresponding consraint

merates some candidates and filters them using some of théo a constraint set. In some cases the semantics explores a

conjuncts of the axiomatic consistency predicate. We belie
that the set of a priori possible candidates can be further re

path that leads to an inconsistent constraint set, in whisk ¢
the execution is terminated. A production tool would need
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to backtrack or explore a different path at such points, &and i very non-deterministic. To reduce this non-determinism as
would be critical to resolve constraints as early as possibl  much as possible, we include as muchhéfas we can. Be-

The semantics can detect C/C++11 races on the path itcause we cannot follow program order (see §3.2) we know
explores, but, as for any non-exhaustive semantics, itatann that we cannot include all gfb.

detect races on other paths. We decided to leave outb edges to atomic writes, and
include all kb edges to other types of actions. (For locks
5. The incremental model and unlocks there is a choice whether to inclideedges

In the light of the non-approaches of §3, we now show to locks and unlocks, or to follow the lock-ordgr, but one

how one can, given a complete pre-execution (with concrete cannot include both since there can be a cycle in their union.
values for all the reads), incrementally generate witresse Ve did not see any compelling argument in favour of either

in such a way that every consistent witness over the pre-©f the two, and we chose to follow the former.) In other
execution can be generated. words, this order allows us to speculate writes, and forces

Let ez be a finite consistent execution whose witness US 0 commit all other actions i order.

we want to incrementally generate. The first step is to find Definition 5.1 (Commitment order) Let ez be a candi-

an orderay, . .., a, of the actions ofez in which we plan  date execution. First definez.almost_hb = {(a,b) €
the generate the witness; we define this order in 85.1 andeg.pb | — (is_write(b) A is_atomic(b))}. Then define

prove that it is acyclic, in contrast to the candidate orders ¢y com = (ex.rf U ex.mo U ex.almost_hb*.
considered in §3. h

Then we define the partial executions,, ..., ez, we a'Wna x=0
plan to generate when committing the actiens. .., a,,
see §5.2. In §5.3 we prove thab edges do not disappear l _ B _ B
during a transition fromez; to ex;, 1, and neither do there a:wrely=1 d:Wrel x=1

appear newhh edges between previously committed writes ~ P:Wnay=0
and reads (in respectively 83.1 and §3.4 we discussed why
we need those properties).

Then in 85.4 we prove that the partial executions (c:Rrix x=42
eri,...,er, are all consistent iéz is consistent, and, based
on that, we define a transition relation in 85.5. Finally, we
define the incremental model in §5.6 and prove equivalence
with the axiomatic model for finite executions.

b:Wrel x=2 e:Wrel y=2

e:Rrix y=42 l
c:Racq x=1 f:Racq y=1

d:Wrlx y=42 f:Wrix x=42
Notation Recall from §2 that an execution consists of a Figure 7: The commitment orders of the executions in Fig. 4
pre-execution, an execution witness and derived relations

The function that derives those relationgis’_rel, so ez = Theorem 5.2. Let ez be consistent. Then the relation

(pre, wit, 9615—7’61(1””83 wit)). ex.com defined above is a strict partial order.
We use the notatiopre.sb and wit.rf to refer to parts

of pre-executions and execution witnesses. For brevity, we  The proof, like all our work, has been mechanised in
abuse this notation by Writingx.sb when we should actu- Isabelle/HOL and is included in the supplementary material
ally write “let ex = (pre, wit, rel), considerpre.sb” and
likewise for the parts of the witness (suchasrf) and de- -2 States
rived relations (such ase.hb). A states consists of a set of actionscommitted denoting
the actions that have been committed so far, and an execution
witnesss.wit denoting the execution witness built up so far.
Recall that the operational concurrency model has to fol- Note that the pre-execution is not part of the state, sinise it
low rf to determine the return values of reads, and it has given up-front.
to follow mo in order to preserve earlier synchronisation Let ex be the execution that we want to incrementally
(see 83.1). We cannot prevent new synchronisation appeargenerate, and., ..., a, the actions of that execution in
ing between previously committed actions, but by following some order that agrees with.com defined in the previous
{(a,b) € hd| is_load(b)} we can prevent it between previ- subsection. We want the states. . ., s, to reflect the wit-
ously committedvritesandloads This is enough to prevent  ness build up so far, and an obvious thing to do is to define
the situation described in §3.4 regarding the predicebas s;.committed to be the actionsq, ..., a; that are commit-
sistent_non_atomic_rénddet_read ted so far, ands;.wit as the restriction otz.wit to those
This order satisfies all the properties we would need to in- actions. The initial state, is always the same (regardless
crementalise the axiomatic model, but it leaves many astion of the given pre-execution) becauggcommitted = () and
unordered, which means that the transition relation woald b sy.wit the empty witness.

5.1 The commitment order
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Definition 5.3. Let pre be a pre-execution, anfl a set of
actions. ThemreRestrict(pre, S) is defined by

pre.actions N S
pre.sbN S x S
pre.asw NS x S

preRestrict(pre, S).actions

preRestrict(pre, S).sb

preRestrict(pre, S).asw

Similarly, with wit an execution witnesswitRestrict is
defined by restrictingf, mo, sc andloto S x S, asin

witRestrict(wit, S).rf wit.rf NS x S

And finally, with ex
exRestrict is defined by

(pre, wit, rel) an execution,

/
pre

wit' = witRestrict(wit, S)

exRestrict(ex, S)

preRestrict(pre, S)

(pre’, wit’, get_rel(pre’, wit"))

The partial executiongz; mentioned in the intro of
this section are then given byrRestrict(ex, A;) where
A; = {ay,...,a;}. Note that we have also restricted the
pre-execution to the set of actions committed, although the
complete pre-execution is fixed during the generation of the

witness. We have two reasons for that: one is that otherwise

the partial execution would be inconsistent (since theasti

For examplelownclosed (A, ex.mo) means that there are
no mo edges from outsided into A. Now the following
monotonicity theorem states that if that is true fbrthen
the restriction ofex to A does not contain anytb edges
that are not inex, or in other words none of theb edges
disappeared.

Theorem 5.5. Let ex be an execution. LetA be
a set of actions with downclosed(A, ex.mo). Then
(ezRestrict(ex, A)).hb C ex.hb.

Recall that in §3.4 we mentioned another desirable prop-
erty of how hb changes: there should not appear new
synchronisation between previously committed writes and
reads. We proved a slightly stronger result: there does not
appear new synchronisation between any type of action to
an action that is not an atomic write.

Theorem 5.6. Let ez be a consistent execution. Létbe a
set of actions such thatownclosed (A, ex.com). Then for
all (a,b) € ex.hb withb € A andb not an atomic write, we
have that(a, b) € (exRestrict(ex, A)).hb.

5.4 Consistency of prefixes

in the pre-execution that have not been committed yet haveNow we know howhb changes during incremental genera-
nomo, rf, etc. edges to and from them, while this is in some tion of executions, we can prove that the partial executions
cases required to be consistent). And the second reason iszRestrict(ex, A;) (as defined in 85.2) are consistent, where
that when we integrate with the operational threadwise se- A; is the set of actions committed so far. This means that

mantics, the pre-execution is no longer fixed.

a:Wna x=0
d:Wrel x=1
sb X
b:Wna y=0
b:Wrel x=2
asw
mo e:Rrix y=42 sb
/ c:Racqg x=1
d:Wrlx y=42

Figure 8: On the leftezRestrict(exy, {a,b,d,e}) and on
the rightexRestrict(ex,, {b, ¢, d, e}) whereez, andez, are
respectively the executions on the left and right of Fig. 4

5.3 Properties of happens before

In §3.1 we explained that synchronisation could disappear
when mo is not followed. Since we have includedo in

every consistent execution can be build incrementally evhil
being consistent at every step.

Theorem 5.7. Let A be a set of actions such that
downclosed (A, ex.com). If ex is a consistent execution,
thenezRestrict(ex, A) is a consistent execution.

5.5 Transition relation

Given a consistent executiofx, an orderay,...,a,, and
the partial executionsz; = exRestrict(ex,{ai,...,a;}),
we now define a transition relation that allows the transitio
betweenez; and ex;41. This ensures completeness: if we
use this transition relation to follow paths from the iritia
state (containing an empty witness) we know that we will
generate all consistent executions.

The transition relatiofncrementalStep(pre, s1, s2,a) IS
intended to hold if committing in states; can result in state

the commitment order, the counterexample does not apply s, given the pre-executiopre (recall that we still assume to

anymore, and we can prove thgt grows monotonically.

Definition 5.4. Letr be a relation over actions, antla set
of actions. Therdownclosed(A,r) holds if and only if for
all (a,b) € r with b € A we have that € A.

be given a complete pre-execution). The transition rafatio
has several conjuncts, which we describe after giving the
definition.
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Definition 5.8. The relation
incrementalStep(pre, s1, s2, a) is defined as
a € pre.actions N\ 1)
a ¢ s1.committed A (2)
so.committed = s1.committed U {a} A 3

witRestrict(sq.wit, s1.committed) = sy.wit A (4)
[Vb € pre.actions.
(b € s1.committed — (a,b) ¢ ex.com) N
((b,a) € ex.com — b € s1.committed)] A (5)
(6)

isConsistent( ez prefiz)
whereex andez .5, are defined by

er (pre, so.wit, get_rel(pre, so.wit))

Preyrefic = PpreRestrict(pre, sy.committed)
€Z prefiz (prepreﬁz, $o.wit, get_rel(prepreﬁm, S9.wit))
Conjunct (1) makes sure that an action of the pre-

execution is committed (and not an arbitrary action), Con-
junct (2) that the actiom has not been committed yet, and
Conjunct (3) that the set of committed actions is updated
correctly during the transition. Conjunct (4) ensure tHht a
the changes to the witness involve the new actipim other
words, the execution witness restricted to the old set of-com
mitted actions is still the same. Conjunct (5) ensures tbat a

Theorem 5.11(Equivalence) Let ez be a finite candidate
execution withez (pre, wit, get_rel(pre, wit)). Then
incrementalConsistent(ex) holds if and only ifez is con-
sistent according to the axiomatic model.

6. An executable model

In the previous section we saw that all finite consistent wit-
nesses can be generated incrementally: starting fromithe in
tial sy state we followincrementalStep(pre, s;, Sit1,a;)

to generate the states, ..., s, until we have committed
all the actions of the pre-execution. The problem is that
incrementalStep is a relation, so to actually compute a state
si+1 from the states; we have to enumerate states until one
of them satisfiegncrementalStep.

In this section we define a step functienecutableStep
that given a state and a pre-execution, returns the set of
possible next states, which makes it feasible to compute
executions incrementally.

To find out how we should define the step func-
tion we investigate hows;,; differs from s; when
incrementalStep(pre, s;, si+1,a;) holds. For the set of
committed actions this is clears; 1.committed
s;.committed U {a} since this is directly required by
incrementalStep. For the witness this is not immediately
obvious, so investigate this in the following sections: 18

tions are committed according to the commitment order, and We consider theno relation, in 86.2 the:f relation, and in

finally Conjunct (6) ensures that the generated partial@exec
tion is consistenti Consistent is the axiomatic consistency
predicate).

We define thatincrementalTrace(pre, s) holds if s is
reachable from the initial state following.crementalStep.
The following states that all consistent executions arelrea
able.

Theorem 5.9. Let ex be a consistent, finite execution.
Let A be a set of actions withA C ex.actions and
downclosed (A, ex.com).

Then there exists a state s,
incrementalTrace(pre, s), s.committed
s.wit = witRestrict(ex.wit, A).

such that
A and

5.6 The incremental model

We now define a new notion of consistency that uses
incremental Trace, which is equivalent to the axiomatic
consistency predicate for finite executions.

Definition 5.10. Let ez = (pre, wit, get_rel(pre, wit)) be
a candidate execution. We define

incrementalConsistent(ex) =
Js.

s.wit = wit A\ s.committed = pre.actions

incrementalTrace(pre, s) A

10

86.3 thesc andlo relations. Then in 86.4 we define the step
function.

6.1 Modification order

We consider howmo can change frons; to s;.; when
action ¢ is committed. In consistent executionsp is an
order over atomic writes that is total over the writes of the
same location. We therefore expeet to remain the same

if a is not an atomic write, and to be included inmo
otherwise. Since the modification order is included in the
commitment order, we expect thatcan only be added to
the end of the existingno order. To state that formally, we
define a function that adds an actianat the end of the
modification order of a state

Definition 6.1. Define sameLocWrites(A,a) as {b €
A | is_write(b) A loc_of (b) loc_of(a)}. Then
define addToMo(a,s) as s.wit.mo U {(b,a) | b €
sameLoc Writes(s.committed, a)}.

We now formally state our expectations of howo
changes. We explain the requirements afterwards.
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Lemma 6.2. Let s be a state,ez an execution and: an
action, for which the following holds.

a ¢ s.committed )
ex.actions = s.committed U a (8)
witRestrict(ex.wit, s.committed) = s.wit  (9)
downclosed(s.committed, ex.mo) (20)
isConsistent(ex) (11)

If a is an atomic write, we haver.mo = addToMo(a, s)
and otherwise we haver.mo = s.wit.mo.

The states should be thought of as the current state, and
ex as the execution we try to transition to. The requirements
say that we should be able to transitioneta requirements
(7) and (8) together state that there is one new actian:in
Then (9) states that the witnesseseofand s agree on the
part that is already committed i) requirement (10) states
that so far, the execution has followetb; and finally, (11)
states thatz is consistent.

The conclusion of the lemma then says that ifs an
atomic write, the modification order efchanges according
to addToMo, and otherwise it does not change.

6.2 Reads-from relation

We consider howf can change from; to s;; when ac-
tion a is committed. In consistent executions$,is a relation
from writes to reads. Becausg is included in the commit-
ment order, we only expect nexi edgedo the new action
and not froma. Hence, howf changes depends on whether
a is a load, an RMW, or neither.

In the first case, the consistency predicdét readde-
scribes when there should be a nefvedge: if there exists
a write that happens beforethere should, otherwise there
should not. This could be self-satisfying: if there is noterri
that happens before, creating arf edge might creatéb
edge from a write ta which would then makedet_readrue.
Hence, we non-deterministically choose to creat¢ adge
or not, and when the newb relation is known, we check
whether there should have been an edge or not.

Definition 6.3. Define addToRfLoad(a,s) as follows.
First, non-deterministically choose between return-
ing s.wit.rf (meaning no new edge is added), or
non-deterministically picking a writew from the set
sameLoc Writes(s.committed,a) for which we have
value_written_by(w) = value_read_by(a) and returning
sawit.rf U{(w,a)}.

In the second case (whetds an RMW), the consistency
predicatemw_atomcityrequires that: reads from its imme-
diatemo-predecessor if there is one, and otherwise it should
be indeterminate (not reading from any write).

Definition 6.4. Define addToRfRmw(a,s) as follows. If
the setsameLocWrites(s.committed,a) is empty, return
s.wit.rf. Otherwise, there is ano-maximal elementw

11

of that set. We check whetheralue_written_by(w) =
value_read_by(a) holds, and if so, we returg.wit.rf U
{(w,a)}.

We can now formally state our expectations about how
rf changes during a transition. For the explanation of
the assumptions we refer to the explanation given after
Lemma 6.2. Note that the functionsddToRfLoad and
addToRfRmw are non-deterministic, so they return a set of
possible newf relations.

Lemma 6.5. Let s be a state,ez an execution andu
an action for whicha ¢ s.committed, ex.actions
s.committed U a, witRestrict(ex.wit, s.committed)
s.wit, downclosed(s.committed, ex.mo),
downclosed(s.committed, ex.rf), andisConsistent(ex).
(1) If a is aload, therez.rf € addToRfLoad(a, s).

(2) If a is a RMW, therez.rf € addToRfRmw(a, s).

(3) Otherwise we haver.rf = s.wit.rf.

6.3 SC and lock order

In consistent executionsg is a total order over all actions
with a SC memory order, anld is an order over locks and
unlocks that is total per location. Because there existesycl
in scU com and inloU com, we have to allow the new action
a to be inserted before already committed actions in either
order. Our approach is to define the functianil ToSc and
addToLo that non-deterministically insed anywhere in
respectivelysc or lo, and later filter the possibilities that
became inconsistent.

Then we prove a lemma similar to Lemma 6.2 and
Lemma 6.5 that shows that this construction suffices: if
has a sequential consistent memory order, we have: €
addToSc(a, s) and otherwise we haver.sc = s.wit.sc; if
a is a lock or an unlock, we haver.lo € addToLo(a,s)
and otherwise we havex.lo = s.wit.lo.

6.4 The transition function

With the results of §6.1, 6.2 and 6.3 it is now straightfordvar
to define a non-deterministic functigrrformAction(s, a)
that returns an execution witness based on the tyjpe of

e Loads: we changef with addToRfLoad. If the memory
order ofa is SC, we change the: relation withadd ToSc.

e Stores: ifa is atomic we changeno with addToMo. If
the memory order is SC we changewith addToSc.

e RMWs: we changerf with addToRfRmw, mo with
addToMo, and if the memory order is SC thewn with
addToSCc.

¢ Locks and unlocks: we chande with addToLo.

e Fences: if the memory order is SC we changewith
addToSc.

Definition 6.6. Define executableStep(pre, s) as follows.
First non-deterministically pick an actian € pre.actions
with a ¢ s.committed. Then, non-deterministically gen-
erate a witnessvit using performAction(s,a). Define the
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new states, with so.committed = s.committed U {a} and the Core dynamics and zero or more steps of the concurrency
so.wit = wit. Finally, check whether our choice followed model.

the commitment order and resulted in an consistent execu- The Core dynamics is a step function: from a given Core
tion by discarding states that do not satisfy Requiremént (5 program state it returns the set of memory actions (and the
or Requirement (6) of Definition 5.8. For each of the non- resulting Core program state should that operation be per-
discarded options, the function returns the gair, a). formed) that can be performed at this point by the program.
These actions are communicated to the concurrency model
by adding them to the pre-execution. For load operations,
the resulting Core program state needs a read value. Since

Theorem 6.7. We have(ss, a) € executableStep(pre, s1)
if and only ifincrementalStep(pre, s1, s2,a).

Define ezecutableTrace and executableConsistent in ffhe concurrency model may Choose_nOt to provide a value
the same way as in the incremental model (Definition 5.10), immediately, we introduce a symbolic name for the value
but then using:zecutableStep instead ofincrementalStep. read, and use it to build the resulting Core state.

From the previous theorem and from Theorem 5.11 it then ~ As a result all values in Core programs must be sym-

follows that the executable model is equivalent to the ax- bolic. This means in particular that the execution of con-
iomatic model for finite executions: trol operators is done symbolically. When a control point

o ) is reached, the threadwise semantics non-deterministical
Corollary 6.8. Let ez be a finite candidate execu- eyplores both branches, under corresponding symbolic con-

tion with ex = (pre,wit, get_rel(pre, wit)). Then straints for each branch.

executableConsistent(ex) holds if and only ifex is con- When the concurrency model does give an answer for a

sistent according to the axiomatic model. read, at some later point in the execution, the set of con-
straints is updated by asserting an equality between the

7. Integration with the threadwise model symbolic name created earlier for the read and the actual

value. In the case of execution branches that should not have
been taken, the constraint therefore becomes unsatisfiable
and the execution path is killed. Our C semantics elabo-
rates the many C integral numeric types into Core operations
on mathematical integers, so all constraints are simply ove
those.

In the previous section we defined an executable transition
function, but we still assumed that we are given a complete
pre-execution with concrete values for all the reads. We now
integrate that executable model with an operational thread
wise semantics that builds pre-executions incrementally.

As the front-end language, we use a small functional pro- This solves the fundamental problem we stated in the

gramming language with explicit memory operations (Core). introduction : although the concurrency model does not need
This is developed as an intermediate language in a broader, )

. : . ) to immediately determine the value of a read, it does so
project [16] to give semantics of C; as such, any C program during the generation of the pre-execution which avoids
can be elaborated to a Core program. exploring many incompatible control-flow unfoldings

The challenge here is that the operational semantics of '

Core follows program order, while the executable concur- I
S 7.2 Validation

rency model does not. Our solution is to let the two models

take transitions independently of each other, so the former The correctness of the concurrency model is guaranteed

can follow program order, while the latter follows the com- by the equivalence theorem. To validate the integration we

mitment order. A consequence of this is that the concurrency have run the semantics on the following classic litmus test

model does not always immediately commit a read when the Programs (these tests are available in the supplementary

threadwise semantics has generated it, which means that thénaterial):

threadwise semantics does not know the return value, but at

the same time it has to be able to continue the execution. Our

solution is to continue the execution symbolically.

We describe the interaction between the operational se-
mantics of Core and the executable concurrency model in
87.1 and the validation in §7.2. The symbolic execution has
significant drawbacks and one might hope that it is only
needed for atomics, but in §7.3 we show that it is also neces-
sary for non-atomics. Then in §7.4 we discuss what remains
necessary to produce a more generally usable tool.

e Message passing: a version with a write-release, a relaxed
read in a loop, and an acquire fence (see Fig. 1)

¢ Load buffering: a version with relaxed atomics (that al-
lows the cycle given on the left of Fig. 4), a version with
release/acquire atomics, and a version with SC atomics.

¢ Store buffering: a version with relaxed atomics, a ver-
sion with release/acquire atomics, and a version with SC
atomics.

¢ A program that allows a cycle imo U sb (see Fig. 4).

¢ WRC: a version with a write-releases, load-acquires in

7.1 The interaction with the threadwise model loops, and a relaxed read.

The integrated semantics starts with an empty pre-exatgutio For each test, pseudo-random exploration revealed all the
and then goes on to alternate between performing one step ofllowed outcomes (and only allowed outcomes). For the
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relaxed version of LB and for the mo-sb-cycle program the models provide a usable order; the last is in the ratherrdiffe
outcomes with cycles in respectively U sb and mo U ent JMM context).
sb happened rarely: only approximately 1 out of a 1000  The most closely related work that we are aware of is the
executions exhibited them. For all the other tests all the work by Lahav et al. [13]. The authors study the fragment of
allowed outcomes where generated in the order of 10 runs. C/C++11 in which all read, write, and read-modify-write ac-
cesses have release/acquire memory orders, without delaxe
7.3 Symbolic execution unavoidable for non-atomics consume, SC, or nonatomic accesses, and with just a single
One drawback of the symbolic execution is that we lose kind of fence. They also identify that the execution present
completeness if the constraint generation and solver ¢annoin 83.2 is not observable in implementations, and go on to
handle the full generality of constraints (e.g. for memory prove that the existing compilation schemes to POWER and
accesses from pointers computed in complex ways). Onex86-TSO can still be used when forbidding hb-mo-cycles.
might hope to only need symbolic execution for atomics, and For this stronger release/acquire semantics (where thyese ¢
that one could always immediately return a concrete value cles are forbidden) they give a concrete operational seman-

for non-atomics, but unfortunately the following showsttha tics in terms of ordered message buffers and memory local to
this is not the case. processors, and their results are largely also mechariised (

Consider the execution in Fig. 6 and imagine a non- Cod). However, the release/acquire fragment of C/C++11 is
atomic writew; to a new location (say, ) that is sb-before considerably simpler than the full model we deal with here.

actiona, and similarly a new writev, that is sb-before ac-  For example, in that fragment the sb-rf and sc-mo-rf cycles
tion k; and imagine a non-atomic reagl of z; that is sb- that we address do not occur. They also work with a small
between actiond ande, and similarly a read that is sb- calculus rather than integrating their model with a larger C

between actions and j. Suppose without loss of general- semantics.

ity that whenr; is generated by the threadwise semantics, ~ The operational semantics by Turon et al. [25] covers
o has not yet been generated. The latter meansjthan- non-atomics, SC-atomics and release/acquire atomics, but
not have been generated (since the threadwise semantics folnot relaxed or consume atomics. Itis precisely these memory
lows program order), and therefore thata, b and ¢ have orders that make developing an equivalent operational se-
not been committed by the concurrency model (because themantics hard. Furthermore, their semantics simplifies some
concurrency model followsf andmo). Hence, theé:b edge of the concepts of the axiomatic model to give a cleaner se-
betweenw; andr; does not exist yet, and therefore we do mantics, at the expense of completeness. For their purposes
not know where-; can read from at this time (see also §3.4) this is not a problem, since they are developing a sound pro-
and the threadwise semantics has to use a symbol as its regram logic, but our goal is to develop an equivalent model.

turn value. The other most closely related work we are aware of is the
model-checker of Norris and Demsky [19]. This is focussed
7.4 Outstanding issues on efficiency, but attempts neither to be sound nor complete

Extending the operational semantics to support random-With respect to the C/C++11 model. Our operational model
mode execution of more realistic C programs requires at My inform future work on C/C++11 model-checking.

least three significant advances. First, the C/C++11 cencur ~ More peripherally, two _Ilnes of Work_ have m_teg_rgted
rency model, in both axiomatic and operational forms, must @ TSO memory model with a semantics for significant
be extended to support aspects of C neglected by Batty etfagments of C: the CompCertTSO verified compiler of
al. [6], including general array, struct, and mixed-size ac S€wik et al. [27], and the K semantics of Ellison [11,
cesses, object lifetime, and dynamic errors. Second, the im §4.2.6]. TSO is much stronger and simpler than C/C++11,
plementation of constraints must support those that arise@nd there cannot be cycles i U rf, so the concurrency
from realistic pointer arithmetic (ideally including bise ~ imPacts much less on the sequential semantics. Moreover,
operations). Third, there will need to be performance opti- Mainstream C compilers do not implement TSO, so the sig-
misation, as at present the state size (and transition cempu nificance of such a semantics for concurrent C/C++11 pro-

time) grows with trace length, but in principle “sufficientl grams is unclgar. . ' .
old” information can be garbage-collected. Then there is work using SAT solvers for axiomatic mod-

els, for C/C++11 by Blanchette et al. [7] and for the JMM
8. Related work by Torl'c_lk et al. [24]. For I|tmgs tests thes_e offer perf_or-

. _ _ _ _ mance improvements w.r.t. naive enumeration of candidate
There is a long history of equivalence or inclusion results executions, but finding single paths of larger programs seem
between operational and axiomatic relaxed memory models, jikely to be challenging, as does integration with a more sub
e.g. Higham et al. [12], Owens et al. [20], Alglave et al. [1], stantial C semantics.
and Cenciarelli et al. [9], but very little that relates teth Finally, there are also a number of less closely related
C/C++11 model issues that we address here (the first three Ofproposa|s for other language-level memory models [10, 14].
those address hardware models, where concrete operational
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9. Conclusion

We have presented an operational concurrency model that

covers the full formalisation [6] of C/C++11 concurrency in
cluding locks, fences, read-modify-writes, non-atomied a
atomics with all memory orders, including consume. We
have proved the equivalence of our model with that formal-
isation and mechanised the proof in Isabelle/HOL. We have
also integrated the operational concurrency model with a se
guential operational semantics [16] (the sequential seman
tics is not our contribution); the combined semantics can in
crementally execute programs in a small fragment of C.

The challenge in defining the operational model was the
fact that many obvious approaches such as following pro-
gram order or the sequential consistency order do not work,
because C/C++11 allows cycles in various orders. These cy-

rency: from C++11 to POWER. IRroc. POPL pages 509—
520, 2012.

[6] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell,
and Tjark Weber. Mathematizing C++ concurrency. In
Proc. POPL, 2011.

[7] Jasmin Christian Blanchette, Tjark Weber, Mark Batty,
Scott Owens, and Susmit Sarkar. Nitpicking C++ concur-
rency. In Peter Schneider-Kamp and Michael Hanus, editors,
Proc. PPDR pages 113-124, 2011.

[8] Hans-J Boehm and Sarita V Adve. Foundations of the C++
concurrency memory model. IACM SIGPLAN Notices
volume 43, pages 68—-78. ACM, 2008.

[9] Pietro Cenciarelli, Alexander Knapp, and Eleonora Sibilio.
The Java memory model: Operationally, denotationally, ax-
iomatically. InProc. ESORpages 331-346, 2007.

cles are not always observed on current hardware, and in[10] Karl Crary and Michael J. Sullivan. A calculus for relaxed

these cases we suggested strengthening the C/C++11 model:
[11] Chucky Ellison.A Formal Semantics of C with Applicatians

we suggested to forbid coherence shapes that invetve
(83.3), cycles iisw U rf (83.4) and we suggested changing
the definition of release-sequences (83.1).

More generally, we highlight two so-far underappreciated

qualities that a programming language concurrency seman-

memory. InProc. POPL, pages 623-636, 2015.

PhD thesis, University of lllinois, July 2012.

[12] Lisa Higham, Lillanne Jackson, and Jalal Kawash. Specifying

memory consistency of write buffer multiprocessor&CM
TOPLAS 25(1), February 2007.

tics should have. It should be incrementally executabld, an [13] Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. Taming

it should be integrable (better yet, integrated) with the se
mantics for the rest of the language, not just a memory model
in isolation. Leaving such integration for future work may
lead to a memory model that makes it remarkably involved.
Since the sequential part of most languages are defined i
an operational style (including C/C++) these requirements
can be best satisfied by developing an equivalent opertiona
concurrency semantics early in the process.
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