
BOSTON UNIVERSITY

GRADUATE SCHOOL OF ARTS AND SCIENCES

Dissertation

TERRIER: AN EMBEDDED OPERATING SYSTEM

USING ADVANCED TYPES FOR SAFETY

by

MATTHEW DANISH

B.S., Carnegie-Mellon University, 2004

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2015



c© 2015 by
MATTHEW DANISH
All rights reserved



Approved by

First Reader

Hongwei Xi, Ph.D.
Associate Professor of Computer Science

Second Reader

Richard West, Ph.D.
Associate Professor of Computer Science

Third Reader

Chris Hawblitzel, Ph.D.
Research Scientist



Acknowledgments

My parents Bonnie and Keith Danish for everything; my primary advisor Hongwei

Xi for his infinite patience with my questions; my frequent collaborator Richard West

for supporting my foray into systems; my fellow students Likai Liu, Zhiqiang Ren,

Ye Li and Mikhail Breslav; and the many other students, staff and faculty at Boston

University who have helped me along in countless ways over the years. Without their

support, none of this is possible.

iv



TERRIER: AN EMBEDDED OPERATING SYSTEM

USING ADVANCED TYPES FOR SAFETY

MATTHEW DANISH

Boston University, Graduate School of Arts and Sciences, 2015

Major Professor: Hongwei Xi, Ph.D.
Associate Professor of Computer Science

ABSTRACT

Operating systems software is fundamental to modern computer systems: all other

applications are dependent upon the correct and timely provision of basic system

services. At the same time, advances in programming languages and type theory

have lead to the creation of functional programming languages with type systems

that are designed to combine theorem proving with practical systems programming.

The Terrier operating system project focuses on low-level systems programming in

the context of a multi-core, real-time, embedded system, while taking advantage of a

dependently typed programming language named ATS to improve reliability. Terrier

is a new point in the design space for an operating system, one that leans heavily on

an associated programming language, ATS, to provide safety that has traditionally

been in the scope of hardware protection and kernel privilege. Terrier tries to have far

fewer abstractions between program and hardware. The purpose of Terrier is to put

programs as much in contact with the real hardware, real memory, and real timing

constraints as possible, while still retaining the ability to multiplex programs and

provide for a reasonable level of safety through static analysis.
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Chapter 1

Introduction

Recent years have seen a proliferation of small, embedded, electronic devices con-

trolled by computer processors as powerful as the ARM R©. These devices are now

responsible for tasks as varied as flying a plane, talking on a cellphone, or helping to

perform surgery. Some of these tasks have severe consequences for a mistake caused

by faulty programming or missed deadlines. The best defense against these mistakes

is to prevent them from happening in the first place.

The operating systems software is fundamental to modern computer systems, such

as these embedded devices: all other applications are dependent upon the correct and

timely provision of basic system services. Ideally, the operating system is written with

maximum attention to detail and the use of optimal algorithms. In practice, many

difficult decisions must be made during the design and implementation of a realistic

system.

There are many aspects of operating system development that contribute to this

situation: the low-level behavior of hardware can be finicky, the asynchronous com-

bination of system processes may produce unforeseen results, many of the resource-

management problems are intractable to solve optimally, the slightest mistake can

have profound consequences, and there is little room for any wasteful overhead. To

maximize performance and ease of hardware interaction, most operating systems soft-

ware is written in type-unsafe, low-level memory model programming languages like

C or C++. But, this often leads to compromised reliability and safety because of

programmer error.

At the same time, advances in programming languages and type theory have lead

to the creation of functional programming languages with type systems that are de-
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signed to combine theorem proving with practical systems programming. This allows

programmers to bring the rigor of mathematical verification to important properties

of their processes. I argue that the usage of these kinds of languages, in operating

system development, can lead to better assurance that the processes running on an

embedded device are correct, responsive, and safe.

The Terrier operating system project focuses on low-level systems programming

in the context of a real-time embedded system, while taking advantage of a depen-

dently typed programming language named ATS (Xi, 2004) to improve reliability.

The purpose of this project is to identify effective, practical means to create safer,

more reliable systems through use of advanced type system features in programming

languages. I am also interested in the implications of having expressive programming

language tools available, and the effects on plausible system design. For example,

the Terrier OS moves much of the responsibility for program safety back out onto

the programs themselves, rather than relying strictly on run-time checks or hard-

ware protection mechanisms. For another, the Terrier program model is one in which

asynchronous events play a central role in program design. These two shifts in think-

ing put more burden on the programmer—a burden that will be lightened through

language-level assistance—but they also open up more flexibility in potential pro-

gram design that will enable higher performance, better responsiveness and more

naturally-written code in difficult problem domains.

ATS is a programming language with the goal of bringing together formal specifi-

cation and practical programming. The core of ATS is an ML-like functional program-

ming language that is compiled into C. The type system of ATS combines dependent

and linear types to permit sophisticated reasoning about program behavior and the

safety of resource usage. The design of ATS provides close coupling of type-safe

functional code and low-level C code, allowing the programmer to decide the balance

between specification and speed. The ATS compiler can generate code that does not
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require garbage collection nor any other special run-time support, making it suitable

for bare metal programming.

Using ATS, I have generated C code that links into my kernel to provide several

critical components. I also encourage the use of ATS to help ensure the safety and

correctness of programs that run under the OS. For example, programs that wish to

communicate with one another are provided with libraries written in ATS that im-

plement protocols that have been statically checked for safety and correctness. Most

of these protocols fall into the category of asynchronous communication mechanisms,

which ties into the central role that asynchronous event handling plays in the Terrier

OS.

1.1 Operating system design

There are several competing goals of operating system design. For example, general

purpose operating systems like Linux (Torvalds et al., 2014) might strive for maximum

flexibility and practicality. Those systems are used by a wide diversity of people with

many different applications. Figure 1.1 compares the goals of a general purpose

operating system with those of a real-time operating system. In the latter case,

responsiveness and predictability may be held as the most important properties of

all.

But in doing so, the real-time operating system becomes less flexible, because it

makes extraordinary demands of programs. It may ask for “Worst Case Execution

Time” (Wilhelm et al., 2008) profiles, strict static scheduling parameters (Liu and

Layland, 1973), priority ceiling protocol cooperation (Sha et al., 1990), or other kinds

of information that require extensive analysis. A real-time system is not necessarily

a high-performance system either. Some techniques used for high-performance, such

as caching, are inherently difficult to predict (Basumallick and Nilsen, 1994) and

therefore may be eschewed.
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Correctness

Responsiveness

PredictabilityPracticality

Flexibility
General
Purpose

OS
Real
Time
OS

Figure 1.1: Goals of operating system designs

Either type of operating system might try to incorporate correctness guarantees in

some form. Depending on how strong the assurances are, the amount of effort required

could easily skyrocket. Or it could detract from other goals, such as flexibility, for

instance, by making it more difficult to support diverse applications or hardware.

It could hurt performance, practicality and responsiveness by requiring the use of

run-time checks in certain cases. Compromise is necessary to balance these goals.

1.1.1 Programming languages and operating systems

In the same way, compromise is required in the design of programming languages

and type systems. Also, many operating systems are intertwined with a particular

programming language. In no particular order:

• Unix: C (Ritchie and Thompson, 1974)

• SPIN: Modula-3 (Bershad et al., 1995)

• Singularity: Sing# (Hunt and Larus, 2007)

• seL4: Isabelle, Haskell and C (Klein et al., 2009)

• House: Haskell (Hallgren et al., 2005)
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It is sometimes said that types are “partial specifications” for programs. That means

that the correctness guarantees of an operating system can be linked to the capability

of the type system of the programming language in which it is written.

Some systems use a more powerful type system than others. For example, House is

written in Haskell, a reasonably powerful programming language and type system, but

it is supported by lifting the run-time environment straight from GHC (Peyton-Jones

et al., 2014) and grafting it onto a bare-metal support framework. This means House

must defer interrupt handling until known safe points in order to avoid breaking the

garbage collector. Another popular system is Unix and C, which has a weak type

system, but is popular with performance-oriented programmers.

The system that is being introduced in this text, Terrier, is intended to be a

practical, incremental approach to leveraging advanced types while retaining efficiency

enough to make it usable for real-time applications.

1.2 Motivation and structure

The purpose of most operating systems is to multiplex the hardware, to allow it to be

shared between multiple processes and possibly multiple users. The most customary

approach to this task is for the kernel to build environments that are an abstraction

of the real hardware.

For example, the physical memory address space of most architectures is limited

by real constraints, and is often strewn with many kinds of exceptional uses and al-

ternate meanings. On the typical ARM-based architecture, general-purpose memory

is restricted to certain ranges of physical addresses, while much of the rest is used

for memory-mapped device communication. However, the details of physical address-

ing are almost always irrelevant to application developers, who just need a place to

store their processes and data. So, typically, an operating system devotes significant

effort to the construction of the “virtual memory” abstraction: it is the illusion of
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flat, nearly unlimited, unrestricted and unconflicted memory address space that is

provided to each process separately. The traditional operating system uses memory

management hardware to give every process its own private address space, which is

both a (virtual) resource, and a protection against unauthorized access into other

processes’ data.

Another way that operating systems abstract a real resource is through scheduling:

the CPU can essentially only be working on a single process at a time, but there

are many processes that want to make forward progress. Even in computers with

multiple CPUs available, there are usually more processes than available processors.

The standard way to deal with this problem is to time-share the CPU: each process

in turn gets a chance to run, and then when that time-slice elapses, it is put to sleep

and the next process is woken up. The exact details of which process is selected

and for how long it runs is up to the specifics of the scheduling algorithm. But the

common characteristic is that the CPU is rapidly switching between processes and

that processes spend significant amounts of real time not running. However, that is

not the abstraction that is provided to the application programmer. The traditional

kernel is engineered to provide the illusion of continuous process execution that is

uninterrupted unless explicitly requested by the application programmer.

There are other abstractions as well: filesystems that organize raw disk sectors

into virtual resources such as files and directories, network stacks that multiplex the

frame transceiving capabilities of network cards and do high-level routing of data, and

a menagerie of other device drivers that make the computer usable in practice. Many

of these abstractions are created to help multiplex but also to help protect processes

from each other.

A great deal of the work done by the traditional operating system is to create the

illusion of nearly limitless space and time for each process to enjoy separately. When

application programmers do not care about real time, or real memory constraints,
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then this approach makes sense. But does it still make sense for real-time applica-

tions? Does it make sense to go through the trouble of creating these abstractions

and then breaking them for the sake of processes that must have a firm relation to

real resources? Does it make sense to put up hardware barriers between two processes

when the failure of one means the failure of the other, anyway?

Consider the case of a watchdog process running on an embedded system that is

helping to fly an aircraft. It runs at precise periodic intervals to check on the status

of the control systems. The programmers of this kind of embedded system have

extensively studied the exact behavior of their hardware, have analyzed the worst-

case execution time of their various pieces of software, and have spent a tremendous

amount of effort to flush out all possible errors before deployment. There is no

need for an abstraction of limitless time and space in any of the processes that are

running in this system. Instead, what is needed is close tracking of real time, fast

communication, minimal overhead, and rapid detection of hardware failures.

The watchdog process is, by nature, not continuously executing, but instead it

is event-driven. It interacts with all other processes in the system, but it does not

want to impose overhead on them, or any synchronization delays. Correctness of

the program is important, but hardware memory protection would interfere with its

mission. In a traditional operating system, this kind of program would probably be

implemented as a kernel-level process that can see through the various abstractions of

the kernel. That is one example of the limitations of a traditional operating system’s

model. But watchdog processes are hardly the only kind of program that may benefit

from a less abstracted application model.

The underlying realization behind Terrier is that there already exists a model for

applications that is more natural to the hardware: it is the model on which the kernel

itself is built, the one provided by the hardware. Multiplexing is still needed, but, it

ought to be possible to provide for that while also exposing an interface to processes
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that most closely resembles the hardware. Thus, the philosophy behind the design

for Terrier’s program model:

• Asynchronicity and interrupts

• Explicit memory mapping

• Safety based on programming language features

and some of the derived features:

• Preemptive application-level scheduling

• Delegation of device control

• Flexible, asynchronous interprocess communication

• Ability to operate with or without hardware memory protection

1.2.1 Processes, programs and tasks

This text will use the term “program” to refer to a high-level language file, as well as

the idea of a set of machine instructions packaged together as a single unit, intended

to be loaded and executed by the kernel. The term “program” can be used to either

mean the abstract concept of a program, at a high-level, or the concrete manifestation

of said concept: as a string of binary code stored in a file or loaded into memory. The

term “process” is similar to program but is typically used in contexts where specific

operation of the kernel and the machine is being discussed. Finally, when the term

“task” is used to describe a program, it is in a more abstract sense of something that

requires CPU time and needs to be scheduled.

A “program model” is the environment and functionality provided by the kernel

within which a program must exist and be constructed. A “program point” can either

refer to a specific machine instruction within the compiled program, or to location
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in the high-level language file that corresponds to a programmer’s understanding of

a specific point in the execution of the program. A “process context” is the state of

the processor, including registers, at a given program point.

The kernel loads and manages a set of processes, scheduling them according to

their static specifications, as described by Section 2.4.6. The following section goes

into more detail about how processes may be interrupted by hardware events, and

the way in which control is returned.

1.2.2 Asynchronicity and interrupts

The Terrier program model allows for the unexpected, sudden transfer of control

from the current program point to a designated entry point in the application code.

All programs are expected to have program code that forms the entry handler, and

it should be placed at the designated entry point. The purpose of this code is to

handle asynchronous events and to make decisions about what actions to take next.

Several common behaviors will be made available as pre-compiled static object files

or libraries that may be linked into applications to provide entry handlers, but it will

also be possible for an application programmer to custom-design one.

In order to allow rapid resumption of execution, upon interrupt, the kernel cap-

tures a snapshot of the interrupted process context (with one exception) and later

makes it available to the entry handler. That context will take the form of an array

containing the program status register and the sixteen registers of the ARM proces-

sor. Restoration of context can be done within a few assembly instructions on the

ARM processor in this way.

The kernel will also make available a table of interrupt status bits that reflect the

current state of the interrupt controller. This will enable entry handlers to quickly

decide whether or not a particular interrupt is of interest.
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kernel

interrupt
(no save)

interrupt
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entry
handler rest of program

kernel_context
(psr, r0-r15)

Figure 1.2: Entry handler and interrupts

Reentrancy and restartability

In order to avoid race conditions and make it possible for this mechanism to work

without masking interrupts, the kernel reserves some special behavior for the en-

try handler. If a program is interrupted while the program counter is within the

designated entry handler, as shown in figure 1.2, then the kernel will skip saving

the interrupted process context, and will instead preserve the existing saved context.

There are two main effects: one, the interruption of an entry handler does not destroy

valuable program state before it can be examined, and two, the entry handler must

be programmed to be entirely reentrant and restartable (Bershad et al., 1992) at any

time. Entry handlers are further discussed in Chapter 2.4.1.

Although it is possible to program such an entry handler by hand, the use of

verification techniques such as model-checking are well-suited for the task, and have

been investigated, as discussed in Chapter 5.2.

Application control of scheduling

One of the consequences of the unusual entry handler design is that it allows a program

to gain first-class access to its own contexts, or continuations, in a sense. Therefore, an

entry handler can be designed that allows a choice between different process contexts,
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or even the creation of an abstraction such as “user-level threads” but with support for

preemption at any point, unlike typical implementations. This allows an application

to manage scheduling within itself if the programmer chooses to use it, for example,

to create user-level scheduling hierarchies (Parmer and West, 2008).

1.2.3 Explicit memory mapping

The ARM architecture makes hardware registers available through memory-mapped

address space regions. Therefore, application programs will also be able to request

explicit memory mappings from the kernel, along with desired attributes, in order

to interact with hardware or provide interfaces. The current design has applications

compiled with special sections that statically describe the necessary mappings, so that

the kernel can analyze and decide which ones to fulfill and how. Dynamic mappings

are also anticipated in the future.

Delegation of device control

Like a microkernel, most device support is expected to be fulfilled by application

programs. Unlike a microkernel, these application programs are given very close

control over the hardware. Using explicit memory mapping and access to the interrupt

status table, device drivers may be written with minimal kernel interaction.

Interprocess communication

Communication between programs is mediated by shared memory and therefore falls

under the explicit memory mapping regime. In the current design, applications that

wish to communicate are expected to statically describe the name of the channel

and the method of communication used. The kernel finds pairs of programs, then

allocates the necessary physical memory, and creates virtual mappings if necessary, as

shown in Figure 1.3. The actual communication between programs is expected to be

handled through application libraries, written in ATS, which implement asynchronous



12

pointer

P1

pointer

P2
IPC link

Figure 1.3: Example of interprocess communication

communication mechanisms, without kernel involvement.

The use of asynchronous communication mechanisms avoids the creation of de-

pendencies between two schedulable entities, which avoids the pitfalls of synchronous

IPC on fixed-priority real-time scheduling algorithms (Steinberg et al., 2005).

Hardware memory protection independence

Hardware memory protection is useful when dealing with unknown applications or

during development to find and protect against undesired behaviors. However, it is

less useful when all application code is known, or has been checked for safety with

other means, and it does impose overhead on performance. Therefore, Terrier has

been programmed from the ground up to operate correctly with or without hardware

memory protection. It can be disabled prior to boot, currently as a compilation

option.

The application programming model is affected by the use or non-use of virtual

memory. In a virtual memory environment, all applications are provided the illusion

of having the entire memory space to themselves. In a physical memory environment,
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MOV r0, ??

MOV r0, PP MOV r0, VV

P2

P2 P2

relocatable
label

alternative 1: physical model

alternative 2: virtual model

Figure 1.4: Hardware memory protection independence

applications are given different segments of memory for their own use and must avoid

access outside of their space.

Terrier achieves the flexibility by requiring that all application programs be com-

piled with relocation sections enabled. Then, at load-time, Terrier rewrites the appli-

cation binary code so that it fits into either one of the two memory models as shown

in Figure 1.4.

1.2.4 Programming language-based safety

Terrier shifts much of the responsibility for program safety away from the hardware

and kernel onto the application programmer. It also provides a more challenging

model for programs. To make up for that, Terrier encourages the use of the ATS func-
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Proposition Type
Linear view viewtype

Non-linear prop type

Table 1.1: ATS terminology

tional programming language, which allows the use of dependent and linear types,

while allowing the programmer to avoid most or all of the overhead typically associ-

ated with high level languages.

Types in ATS

ATS has multiple levels of types (i.e. “types” of types) that are necessary in order

to have usable, complex types that can describe interesting properties. ATS uses

the term sort (Xi, 2004) to distinguish “types” of types from types of values. The

programmer may quantify at the sort-level in order to describe particular values to

index a type. Alternatively, you might say, these are the values upon which a type is

“dependent.”

ATS also has other dichotomies: proposition vs “real” type, linear vs non-linear.

Linear types are also nicknamed views, from the common usage of protecting pointers

that have a particular “view” of memory. The various ATS names for these concepts

are shown in table 1.1.

In the example of figure 1.5 the @ (pronounced: at-view) is a constructor for a

view, and it has two parameters: the type of value found in memory ((int, char) in

the example), and the address at which it is found (L in the example). The at-view

[L: addr] ((int, char) @ L | ptr L)

view typequantifier

sort

int

char

L

memory

Figure 1.5: Views and types in ATS syntax
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abstractly represents the “view” of that slice of memory found at that address.

Resource management

One of the biggest tasks in system development is that of resource management. As

a result, one of the biggest source of bugs in systems is caused by resource mis-

management. The linear propositions and types provided by ATS are well suited to

addressing this problem. In short, a value of a linear type is consumed once and

exactly once, avoiding the common errors of memory leak or dangling pointer. In

addition, the dependent types of ATS are useful for describing exactly the kind of

details that need to be statically checked for safe usage. For example, array bounds

length, or contents of a memory region accessible through a particular pointer.

Synchronization

Another use of linear types and properties is for synchronization. For example, locks

can be considered a kind of resource that must be acquired and released. Linear types

can be used to enforce sequencing of steps; they are also useful for locks that must

be acquired in a particular order to avoid deadlocking.

Avoiding overhead

After compilation, all of the types are stripped away and therefore none of it affects

runtime performance.

And even though ATS is a high level language, it primarily works with “flat

types” that are essentially equivalent to C’s data representation. They are types of

varying sizes, often referred to as “unboxed types” in other contexts. For example,

the low-level implementation of a flat “pair” is just a C struct with two members.

To go along with that, ATS has support for templates as a means of gaining the

practical benefits of parametric polymorphism. Like C++, the templates of ATS are

generated for each different type, and the names are mangled to co-exist with each
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other.

1.2.5 Scheduling

In order to provide guaranteed partitions of processor time to each program, Terrier

uses a static priority, rate monotonic (Liu and Layland, 1973) real-time scheduler

algorithm. The design shies away from traditional blocking schemes that use systems

of queues to wake-up programs when their request is available. Instead, the system

programmer is expected to choose parameters for the scheduler that give each program

an adequate amount of time to operate, at periodic intervals. Each program will

respond to events in turn, when given control of the CPU. Most communication

is expected to be conducted asynchronously, so programs will continue to run and

execute code after invoking a communication protocol. Programs that must run

with significant concurrency to each other are expected to be scheduled on separate

CPUs, decoupled by asynchronous communication mechanisms, which helps avoid

unnecessary delays.

1.3 Related work

Verification of operating system software has been a goal of many researchers and

programmers over the decades. In a way, it is reminiscent of the effort by early

20th century mathematicians to find a firm basis for their theories rooted in purely

logical reasoning. Since the operating system forms the basis of a computer system,

its correctness is vital to the correct operation of all other software running on the

system. However there are many challenges: the operating system must manage

many different layers of hardware and software together, many different applications

and devices that may be independently designed, and it must accomplish all of these

feats within a fraction of a millisecond. So while the operating system is a kind of

program, it is a very special kind of program that deserves its own consideration.
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1.3.1 Program verification

There have been a great many efforts to improve the reliability of programs us-

ing programming language techniques. Some are applied to existing languages, like

CCured (Necula et al., 2005), which checks memory safety of ordinary C programs

by applying a carefully designed strong type system that differentiates between dif-

ferent kinds of pointer use. It inserts run-time checks where memory safety cannot be

proven statically, and tracks meta-data about certain pointers in order to implement

those run-time safety tests—these are often called “fat” pointers. In a slightly dif-

ferent approach, Cyclone (Jim et al., 2002) is a memory-safe dialect of C. It achieves

its goal by restricting the behavior of C programs and then recovering some of that

expressiveness by giving the programmer features that: insert NULL-pointer checks,

use “fat” pointers when pointer arithmetic is desired, have growable regions as an

alternative to classical manual memory management, and more.

TESLA (Anderson et al., 2014) is a tool that allows programmers to annotate

their C code with temporal assertions that describe safety properties in a language

based on Linear Temporal Logic. The assertions generate code that is used to in-

strument the program at run-time in order to check the given properties. TESLA

is an entirely dynamic analysis tool and therefore imposes a run-time penalty on

instrumented programs. In contrast, MUVI (Lu et al., 2007) automatically detects

certain classes of concurrency bugs statically using pattern analysis on multi-variable

access correlations. It is able to detect when correlated variables are not updated in

a consistent way, and when correlated accesses are not protected in the same atomic

section. Although useful for finding those two classes of bugs, MUVI cannot verify

arbitrarily specified properties in general.

Other efforts have focused on the creation of novel programming languages. BitC

(Sridhar et al., 2008) is a language intended to be used for systems programming with
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an ML-style type system with effects. It allows precise control of the representation

of types in memory while enjoying the advantage of static type inference. Theorem-

proving is syntactically supported but left to a (yet to be created) plugin or third-party

application.

Bedrock (Chlipala, 2011) is a Coq (Herbelin, 2009) library that forms a program-

ming language to address these concerns. It uses a computational approach to verify

low level code that allows programmers to express invariants using functional con-

structs already present in the Coq environment. Bedrock contains a generic machine

language syntax for describing program implementations. There are few operations,

including: describing registers, memory dereferencing, conditionals, and jumps. On

top of this, assertions in separation logic allow a programmer to define pre- and post-

conditions on functions. Given that ATS and C share the same data representation, it

is possible that I could make use of the C code verified by Bedrock when constructing

ATS programs.

Dafny (Leino, 2010) is an imperative programming language designed to support

the static verification of programs using the Boogie intermediate language (Barnett

et al., 2006) and the Z3 SMT solver (De Moura and Bjørner, 2008). The Dafny

compiler produces code suitable for the .NET platform.

1.3.2 Operating system verification

With operating system software being fundamental to the correct functioning of the

entire machine, many efforts have been directed at trying to verify operating systems.

The seL4 project is based on a family of microkernels known as L4 (Klein et al., 2009).

In that work, a refinement proof was completed that demonstrates the adherence of a

high-performance C implementation to a generated executable specification, created

from a prototype written in Haskell, and checked in the Isabelle (Paulson, 1994)

theorem proving system. The prototype itself is checked against a high-level design.
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One difference with my work is that I seek to eliminate the phase of manual translation

from high to low level language. Another difference is that, while the seL4 approach

can certainly bring many benefits, I feel that the cost associated with it is too high

for ordinary use. For example, it may turn out to be intractably difficult to apply this

technique to a multiprocessor kernel. That is currently an open problem according

to Elphinstone and Heiser (2013).

Singularity (Hunt and Larus, 2007) is a microkernel OS written in a high-level

and type-safe language that employs language properties and software isolation to

guarantee memory safety and eliminate the need for hardware protection domains

in many cases. In particular, it makes use of a form of linear types in optimizing

communication channels. Singularity was an inspiration for Terrier, although several

goals are different. For instance, Terrier seeks to avoid, as much as possible, the

overhead associated with high-level languages. Terrier’s design is more explicitly

geared towards embedded devices responding to real-time events. And inter-program

communication in Terrier is left open enough to accommodate multiple approaches,

tailored to the particular application domain.

House (Hallgren et al., 2005) is an operating system project written primarily in

the Haskell functional programming language. It takes advantage of a rewrite of the

GHC (Peyton-Jones et al., 2014) run-time environment that eliminates the need for

OS support, and instead operates directly on top of PS/2-compatible hardware. Then

a foreign function interface is used to create a kernel written in Haskell. There is glue

code written in C that glosses over some of the trickiness. For example, interrupts are

handled by C code that sets flags that the Haskell code can poll at safe points. This

avoids potentially corrupting the Haskell heap due to interruptions of the Haskell

garbage collector while it is an inconsistent state. SPIN (Bershad et al., 1995) is a

pioneering effort along these lines that used the Modula-3 language (Cardelli et al.,

1989) to provide a protection model and extensibility. In general, these types of
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systems do not tackle the problem of high-level language overhead, generally do not

handle multiprocessing well if at all, and only offer guarantees as good as their type

system can handle.

Verve (Yang and Hawblitzel, 2010) improves on this approach by splitting the sys-

tem into two parts: a “Nucleus” written in verified assembly language that exports

abstractions of the underlying hardware, and a kernel layer on top of that, which

provides traditional services. Verve verifies the correctness of the Nucleus, but only

verifies the safety of the kernel. Verve is fully mechanically verified for type safety,

but it does not support multiple processors, uses a stop-the-world GC, and keeps

interrupts disabled during collection, making it unsuitable for real-time applications.

The Ironclad Apps framework (Hawblitzel et al., 2014) extends the Verve OS with

some advanced features to support end-to-end security, secure hardware, and the

Dafny language. Ironclad Apps uses a modified Dafny compiler that outputs Boo-

gieX86 (Hawblitzel and Petrank, 2009) code that can be verified independently and

easily translated into machine code.

Both VFiasco (Hohmuth and Tews, 2005) and Verisoft (Alkassar et al., 2008) take

a completely different approach to system verification. Verisoft relies upon a custom

hardware architecture that has itself been formally verified, and a verified compiler to

that instruction set. VFiasco claims that it is better to write the kernel in an unsafe

language such as C++ and then mechanically generate theorems from that source

code, to be discharged by an external proof engine.

1.3.3 Asynchronous communication mechanisms

Simpson (1990) designed an ACM called the “four-slot mechanism” intended to allow

the communication of a piece of reference data from a single writer to a single reader

without the use of any mutual exclusion mechanisms nor special atomic operations.

The name “four-slot” comes from the memory space requirement: the mechanism
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requires the use of an array that can hold up to four copies of the reference data.

The same paper also described several of the desired properties of such mechanisms,

as well as a scheme for categorizing the behavior of certain ACMs. This “four-slot

mechanism” was later generalized (Simpson, 1997a) to work with multiple readers

and multiple writers, resulting in a “2×nw× (nr + 1)-slot mechanism”, where nw, nr

are the number of writers and readers respectively.

The ATS implementation (Danish and Xi, 2014) of Simpson’s four-slot mechanism

is compact, efficient and shows how expressive types can provide useful assurances at

a low-level without intruding into run-time performance of critical code or requiring

voluminous quantities of proof-writing.

Simpson (1992) also developed a model-checking technique called “role model

analysis” and then applied it to his four-slot mechanism (Simpson, 1997b) to verify

properties of coherency and freshness. Henderson and Paynter (2002) created a formal

model of the four-slot mechanism in PVS and used it to show that it was atomic under

certain assumptions about interleaving. Rushby (2002) used model-checking to verify

coherency and freshness in the four-slot mechanism but also found the latter can

only be shown if the control registers are assumed to be atomic. By comparison, my

approach has been to encode pieces of the desired theorems into the type system,

apply it to working code, and then allow the type-checker to verify consistency. If

a mistake is made, it will be caught prior to compilation. Or, if the type-checker is

satisfied, then the end result is efficient C code that may be compiled and linked and

used directly by applications.

Subsequent to Simpson’s work, Chen and Burns (1997) collaborated on a “three-

slot mechanism” that offered the same features as the “four-slot mechanism” except it

is able to operate with a smaller memory requirement. This mechanism was proven to

be safe and effective as long as the atomic operation Compare-And-Swap is available

from the hardware. This too was later generalized (Chen and Burns, 1998) into an
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“n+2-slot mechanism” with a single writer and n readers, using the atomic operation

Test-And-Set. Both Simpson’s and Chen’s ACMs have a rising memory requirement

that scales with the number of programs communicating with each other.

The following year, Chen and Burns (1999) introduced one answer to the scal-

ing space problem: a “timing-based” ACM based on circular buffers. In this ap-

proach, the size of the circular buffer is statically configured based on the static

rate-monotonic scheduling parameters. For many real-time systems, this is a rea-

sonable approach, although it does require re-analysis any time the static scheduling

parameters are changed. By comparison, the fixed-slot mechanism remains in the

category of “algorithm-based” solutions, since it does not require foreknowledge of

scheduling parameters.

1.3.4 Related designs

First popularized in the 1980s, a microkernel design (Liedtke, 1995) keeps as much

kernel functionality as possible out of the hardware-privileged level. Normally in such

a design, privileged code is restricted to the minimum necessary to implement hard-

ware memory protection, most basic scheduling, and interprocess communication.

Higher level operating system functions are moved out into unprivileged processes

or threads, and then granted access to the hardware on a restricted basis. These

processes or threads are expected to all coordinate with each other, and with other

programs, by using the core interprocess communication mechanisms.

Originally developed at MIT, an exokernel (Engler et al., 1995) is designed to

have as few abstractions as possible between programs and the hardware. Therefore,

exokernels are tiny, and mostly mediate between various “library operating systems,”

which are software layers that implement more traditional functionality. The ex-

okernel’s job is to multiplex access to the hardware, and to protect those “library

operating systems” from each other. By leaving most of the real functionality out of
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the kernel, the designers of exokernels hope to impose as little prejudice as possible

in the design of programs. Instead, custom tailored “library operating systems” can

be used to create a more conducive environment for each program separately, if need

be.

Barrelfish (Baumann et al., 2009) introduced the model of a “multikernel”: a

design that treats multiple processors as being independent members of a distributed

system, communicating explicitly through asynchronous messages. The motivation

comes from the increasing number of processor cores readily available in computer

systems: the abstraction of shared memory across many cores is becoming increasingly

difficult to maintain efficiently. By moving towards a shared-nothing design, with

explicit message passing between distributed components, the authors feel that they

are designing an OS model that is more appropriate for upcoming generations of

hardware.

Quest-V (Li et al., 2014) is a “separation kernel” (Rushby, 1981) that takes ad-

vantage of modern virtualization hardware on multicore systems to provide compo-

nent isolation while avoiding much of the overhead of involving a central monitor

or hypervisor. Shadow page table mappings implemented in hardware allow virtual

machines to transparently run within virtual memory without hypervisor interaction;

additionally, with modern hardware, it is possible to deliver interrupts directly to

guest kernels without exiting the virtual machine. When each processor is mapped

to a single guest, there is almost no reason at all to exit the virtual machine, unless

the guest misbehaves. Therefore, under this scheme, each guest kernel can run at

full speed while interacting with other guest kernels only through specially arranged

shared memory regions. I collaborated with Ye Li and Richard West on this project

prior to beginning work on Terrier.



24

1.4 Contributions

Terrier is a new point in the design space for an operating system, one that leans

heavily on an associated programming language, ATS, to provide safety that has

traditionally been in the scope of hardware protection and kernel privilege. The de-

sign takes the liberty to devolve many important functions into programs, but does

not put up the protection barriers of typical microkernels. It also does not expect

a large number of small programs communicating with extensive use of interprocess

communication, but rather a more coarse-grained set of tightly knit subsystems that

are then loosely coupled through asynchronous communication mechanisms. Like

exokernels, Terrier tries to have far fewer abstractions between program and hard-

ware. Unlike exokernels, Terrier expects typical application development to occur at

this low-level program model, rather than being subsumed under “library operating

systems,” which themselves create abstractions. Terrier is also explicitly directed at

supporting SMP, real-time applications, and uses a real-time scheduling algorithm

rather than the typical round-robin method found in an exokernel (Deville et al.,

2004). The purpose of Terrier is to put programs as much in contact with the real

hardware, real memory, and real timing constraints as possible, while still retaining

the ability to multiplex programs and provide for a reasonable level of safety through

static analysis.

To itemize, the contributions of Terrier are:

• An operating system with a significant portion written in a high-level, functional

programming language with advanced type system features such as dependent

and linear types.

• A program model for the operating system that emphasizes the underlying

machine model, putting programs as much in contact with real hardware, real

memory, and real timing constraints as possible, while using advanced program-
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ming language features to manage the additional complexity safely.

• A style of programming that applies programming with proofs in a gradual

manner in order to debug code, and create an increasing amount of confidence

in its correctness, while retaining the low-level efficiency necessary for system

programming.

• A new asynchronous communication mechanism that can have multiple readers

without increasing its memory space requirements, developed using this new

style of programming, and useful for applications written in this operating sys-

tem.

1.5 A crash course in the ATS programming language

1.5.1 From types to dependent types

In order to help you follow the examples in this text, I will introduce some of the

features of ATS that are used. ATS is a functional programming language at heart,

with a syntax based on the ML family of languages. For example, a simple function

named test is defined in Listing 1.1. It takes a single parameter x of type int, and

it returns the value of x plus 1, which is also of type int. The use of let..in..end is

unnecessary in this instance but demonstrates a common syntactic structure in the

language.

Although ATS supports a limited form of type inference that allows you to omit

certain type annotations, it is best to put all of them on function definitions be-

fun test (x: int): int =
let
val y = x + 1

in
y

end

Listing 1.1: A simple function
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fun test {i: int} (x: int (i)): int (i + 1) =
let
val y = x + 1

in
y

end

Listing 1.2: A simple function with dependent types

cause the truly advanced types supported by ATS are not compatible with full type

inference.

Earlier, I briefly described the layers of the type system of ATS, in Section 1.2.4.

The above example does not take advantage of dependent types, but we can modify

it to do so, as seen in Listing 1.2.

Here, {i: int} defines a variable at the type-level of the sort named int (not to

be confused with the type named int, based on context), while int (i) is the name

of an indexed type intended to represent specifically the integer i. The fact that the

function now has a return-type of int (i + 1) is significant: the function body must

satisfy this type or else it will fail to compile. Luckily for us, the addition function

has the type signature shown in Listing 1.3.

ATS has overloaded the + operator with this function and also recognizes that the

constant value 1 has type int (1). The type-checker is smart enough to automatically

put together the pieces and conclude that the expression x + 1 in the function test

has the type int (i + 1) without further programmer intervention.

I realize that the sort, type and value distinction can be confusing. For now, think

of variables defined within curly brackets {...} as being used for specifications and

constraints on the types that are applied to the parameters of functions. Consider

fun add {i, j: int} (x: int (i), y: int (j)): int (i + j)

Listing 1.3: Type signature of indexed-int addition
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fun lookup {ty: type} {i, n: nat} (
idx: int (i),
A: arrayref (ty, n)

): ty =
let
val y = A[idx] // This causes a type error

in
y

end

Listing 1.4: Dependently typed array access (broken)

the following example of how specifications can be useful for practical programming

as shown in Listing 1.4, which indicates that the array access shown will lead to a

type error at compile-time.

Why does that type error happen? Because in ATS, array access requires evidence

that the index will not be outside of the array bounds. We can provide that evidence

in a number of ways: for example, by employing a run-time check such as an if-

statement that tests the value of the variable idx to be sure that it is small enough.

But actually, that would not work in this case because there are no variables telling

us the length of the array: the only knowledge we have of array length is found in the

type-level variable n and that variable is erased by the compiler prior to run-time.

Therefore, we have another option: we can modify the definition of the type-level

variable i to give us a precondition that statically enforces the safety condition that

we need. Any callers of the function lookup will then have to satisfy that condition,

somehow, before successfully passing the type-checker. The type-level variable i is

introduced by the quantifier {i, n: nat}, which is similar to the previous example

but using a sort that is named nat intended to model 0-based natural numbers. ATS

has syntax to conveniently add conditions to these kinds of quantifiers in a manner

that resembles mathematical set-notation: {i, n: nat | i < n} will do. With that

annotation, the example will successfully pass the type-checker. Any callers to the

function lookup will have to demonstrate that the idx argument is both a natural
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fun lookup {ty: type} {i, n: nat | i < n} (
idx: int (i),
A: arrayref (ty, n)

): ty =
let
val y = A[idx] // OK

in
y

end

Listing 1.5: Dependently typed array access (fixed)

fun test (x: & int): void =
begin
x := x + 1

end

Listing 1.6: A simple function using call-by-reference

number and less than the length of the array.

1.5.2 Call-by-reference

ATS is a functional language but it also supports a number of features that will endear

it to C programmers. One of those features is fully integrated, built-in support for

call-by-reference. Listing 1.6 defines our test function in a different way.

This function simply updates the x parameter in-place, a change that will be

reflected within the calling function as well. Dependent types can be utilized this

way as well, as shown in Listing 1.7.

But this will not work as is. The reason is that the type of x is specifically int (i)

and that the value of i is not equal to i + 1. In order to correctly describe the

specification of the function at this level of granularity, we need to be able to reflect

fun test {i: int} (x: & int (i)): void =
begin
x := x + 1 // Type error

end

Listing 1.7: Call-by-reference and dependent types (broken)
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fun test {i: int} (x: & int (i) >> int (i + 1)): void =
begin
x := x + 1 // OK

end

Listing 1.8: Call-by-reference and dependent types (fixed)

the change to the parameter at the type level. And that is accomplished with this

bit of syntax in Listing 1.8.

Now the function signature correctly describes the type of x upon entry to the

function and upon exit from the function.

1.5.3 Protecting resources with linear types

In a previous example, Listing 1.5, I showed how you can use dependent types to

check array-bounds statically. However, the array itself, with type arrayref, can have

indefinite extent and therefore must have its memory managed automatically – most

likely by a garbage collector. In ATS, however, we do not require the use of automatic

memory management techniques such as that. There are many cases where garbage

collection is undesirable or impractical, in the kind of low-level system programming

for which ATS is intended. In fact, ATS offers a whole collection of types for which

proper resource management is a requirement imposed by the type-checker. As laid

out in Table 1.1, ATS offers both Linear Propositions (known as “views”) and Linear

Types (known as “viewtypes”). The introduction and elimination rules for these

views and viewtypes are based on those for linear substructural logic. As a practical

matter, the implication is that values of a linear type must be consumed once and

only once, eventually.

One of the most immediately apparent uses for linear types is to ensure that

allocated memory is freed and that dangling pointers are not dereferenced. The in-

vocation of an “allocation” function using linear types creates a statically-checkable

obligation to show that all control paths result in the eventual “release” of the allo-
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absviewtype my_resource // Introduce an abstract linear type

// Several function signatures (implementations not shown)
extern fun allocate_my_resource (): my_resource
extern fun use_my_resource (my_resource): my_resource
extern fun release_my_resource (my_resource): void

fun test (): void =
let
val x1 = allocate_my_resource ()
val x2 = use_my_resource (x1)

in
release_my_resource (x2);
use_my_resource (x2) // Type error: x2 is not available

end

Listing 1.9: A basic use of linear types

cated resource. Furthermore, once the resource is released, any attempt to try and

use it again results in a type error.

In Listing 1.9, allocate_my_resource is said to “produce” a value of viewtype

my_resource, while release_my_resource is said to “consume” a value of that viewtype.

The function use_my_resource therefore does both: it consumes and then produces a

value of that viewtype.

Functions such as use_my_resource are so common that ATS has introduced a

much more convenient syntax for achieving the same consumption-and-reproduction

signature. By annotating a linear type with the bang prefix (!) you inform the type-

checker that the value should be reproduced after the function returns, as shown in

Listing 1.10.

The program flows a lot more naturally now, in a way that might even be famil-

iar to a C programmer, but with all the guarantees of the linear type-checker still

enforced.
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absviewtype my_resource

extern fun allocate_my_resource (): my_resource
extern fun use_my_resource (! my_resource): void
extern fun release_my_resource (my_resource): void

fun test (): void =
let
val x = allocate_my_resource ()

in
use_my_resource (x); // OK
release_my_resource (x);
use_my_resource (x) // Type error: x is not available

end

Listing 1.10: Consumption and reproduction, conveniently

1.5.4 Linear and dependent types

Naturally, we will want to have the advantages of both linear and dependent types

when writing complex low-level system software. One of the most frequent use cases

for such types is with array manipulation.

In Listing 1.11 you can see an example of a linear proposition parameter named

pf_A being used to provide evidence that an array of length n exists at address l. I

haven’t shown explicit use of propositions until now, but you can take them as being

similar to types, but having no run-time presence or effect. Any parameter to the

left side of the vertical bar symbol | is intended to be a purely static argument, of

interest to the type-checker, but erased prior to run-time. Only the parameters that

come after the vertical bar | will be part of the final, compiled program: in this case,

fun test {n: nat} {l: addr} (
pf_A: ! array_v (int, l, n) |
A: ptr l,
len: int n

): int =
if len > 0 then A[0] else 0

Listing 1.11: Linear arrays
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{n: nat}   {l: addr}

pf_A: array_v (int, n, l)     A: ptr l, len: int n

"proof world" "program world"

Figure 1.6: Type indices link proof and program

a pointer and an int value.

The expression A[0] transforms into an array access at index 0, which requires

evidence that A is an array, that the array has at least one element, and that the

type of the element matches the specified return type here (which is int). The linear

proposition (known as a “view”) named by pf_A provides the evidence that A is an

array because both pf_A and A are indexed by the same static variable l. As shown

in Figure 1.6, these type and proposition indices are what provide the link between

the so-called “proof world” and the “program world” so that compile-time proofs are

able to make useful, logical, and checkable statements about program behavior at

run-time. Similarly, there is a static variable n that links the length of the array view

to the value of the int parameter named len. Thus, the ATS type-checker is able to

deduce that an if-statement testing that the value of len > 0 is sufficient evidence

that the array has at least one element.

1.5.5 Linear types that evolve

When writing complex code using linear types, you may come across a situation

where you consume a resource and then reproduce it – but in a slightly different

form. A classic example may be the realloc function from the C standard library.

One example of what would that look like in ATS is shown in Listing 1.12.

For simplicity, I will assume that we are only dealing with an array of ints that

needs to be resized. The function realloc requires a view that proves you have an
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int *realloc (int *ptr, size_t size); // in C

extern fun realloc {n, n’: nat} {l: addr} (
array_v (int, l, n) |
ptr l,
size_t n’

): [l’: addr] (array_v (int, l’, n’) | ptr l’)

Listing 1.12: realloc in ATS

array, as well as the array itself, and the new size. It consumes the old view and

returns a new view of an array of the new size, as well as a possibly-changed pointer.

ATS will not allow us to assume that the old address named by l is equal to the

new address named by l’. The new address has been introduced by the existential

quantifier [l’: addr]. All it says is that there exists an address, and it binds it to a

static variable name.

Oftentimes, though, this is much more verbose than we’d like. So ATS provides

a syntax using the bang prefix (!) that simplifies this pattern. That syntax is shown

in Listing 1.13.

The combination of the bang prefix (!) and the shift-right operator (>>) is intended

to be similar in functionality to the call-by-reference feature discussed in Section 1.5.2.

Except, of course, since this is merely a view, it does not appear in the compiled

output, and therefore calling convention is irrelevant. The annotation is purely for

the sake of the type-checker. Another annotation not to be missed is the hash-tag

(#) that must now be used in combination with existential quantification: if you want

to refer to such existentially quantified variables in the scope after the shift-right

extern fun realloc {n, n’: nat} {l: addr} (
! array_v (int, l, n) >> array_v (int, l’, n’) |
ptr l,
size_t n’

): #[l’: addr] ptr l’

Listing 1.13: realloc in ATS, evolved
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(>>) operator then you must indicate that by putting a hash-tag (#) as prefix to the

quantifier. That is all.

Even though this feature is commonly used with views, it is also valid to use

with viewtypes: then the function call becomes similar, at type-checking time, to

the call-by-reference notation that uses (&), but it retains call-by-value semantics

operationally. This might be useful for examples like file handles: the handle does

not change, but the state of the object behind it might. If you want to represent that

state at the type-level, you might use call-by-value but with linear update, as shown

in Listing 1.14.

What this tells me is that the actual value of my_handle does not change, but I

wish to model something about its change of state at the type level.

1.5.6 Flat types

Another practical feature offered by ATS is the family of “flat types” (also known

as unboxed types). These are useful for working with C types that may be of non-

pointer size. Most high-level functional programming languages require that the run-

time representation of values by uniformly sized. A common technique for handling

larger-sized values is to allocate a piece of memory and then store a pointer in place

of the value: this is known as “boxing” of the value. Because this allocated piece of

memory is created behind the scenes, it must be automatically managed by techniques

such as garbage collection. But in ATS we need to be able to program without garbage

collection, and we need to be able to manipulate values that do not fit neatly into

absviewtype my_handle (state: int)

extern fun change_state {s: int} (
! my_handle (s) >> my_handle (s’)

): #[s’: int] void

Listing 1.14: A call-by-value viewtype that evolves
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data

ptr

data
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"unboxed"

all same size

variable size

Figure 1.7: Boxed and unboxed values

typedef point2D = @{ x = double, y = double }
fun invert (p: point2D): point2D = @{ x = p.y, y = p.x }

// Roughly translates into C code of the following form:

struct point2D { double x, y; };
struct point2D invert (struct point2D p) {
return (struct point2D) { .x = p.y, .y = p.x };

}

Listing 1.15: Flat record types

pointer-sized boxes. ATS supports programming with the same data representation

as C, and the types that support these non-pointer-sized values are given the sorts

t@ype and viewt@ype for regular and linear types respectively.

A common use-case for flat types is for storing records, or C structs. In ATS, you

can denote a record type with the @{ name = type } syntax. For example, Listing 1.15

shows an example point2D flat type and how it might translate into C.

ATS also offers a positional record type known as a tuple, and a flat tuple is

written like so: @(x, y, z).

Flat types tend to be used a great deal when interfacing with C. For example, if
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abst@ype point2D = $extype "struct point2D"
fun do_something (p: point2D): point2D = // ...

Listing 1.16: Referring to a C type

I had defined the point2D as a struct in C, and I wanted to refer to it abstractly in

ATS, then I would write code like that shown in Listing 1.16. Although the internals

of the type would be unavailable to ATS programs (without further elaboration), the

ATS compiler would know that it was dealing with a type that did not have the same

size as a pointer.

1.5.7 Templates

The convenience of having a boxed run-time representation is the ease of implement-

ing polymorphism: when all values have the same size, then one piece of code can

agnostically manipulate them without having to know further details. When dealing

with unboxed representation, such as flat types, it is necessary to compile multiple

versions of the code: for each size of value being handled.

For example, looking back at Listing 1.16, if we were to extend this point2D type

into the third dimension, and create a point3D type, then that new type would have

a larger size than the old one. Even though we cannot see the internal details of

the type, the fact that it is larger means that the compiler must reserve more space

when compiling functions that use it. For example, on some architectures, a value

of type struct point2D could be stored using two machine registers, but a value of

type struct point3D would require three machine registers. That could completely

change the resulting assembly code, depending upon how many registers are needed

and in what way they are used. Therefore, we need to create a separate version of our

function that works on the larger type, as well as the one that works on the smaller

type.

Doing all of that would be very inconvenient and repetitive when writing a function
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fun{ty: t@ype} double (x: ty): @(ty, ty) = @(x, x)

typedef point2D = @{ x = double, y = double }

fun test (): void =
let
val p1 = @{ x = 1.0, y = 2.0 }
val p2 = double<point2D> (p1)

in
// The type of p2 is @(point2D, point2D)

end

Listing 1.17: A simple template example

that is truly polymorphic. So ATS provides a feature known as “templates” to clean

up and simplify the creation of such functions. A template is a function that is

partially delayed in compilation: it is not fully compiled until it is actually applied

in some use with a concrete type. The syntax is relatively simple and unobstrusive:

when the type quantifier comes in between the keyword fun and the actual function

name, it tells ATS that this is a template.

Listing 1.17 shows the use of a template named double that takes a single argument

and returns a flat tuple containing 2 copies of the original argument. Because double

is a template, it is not fully compiled until it is applied within the function test using

the syntax double<point2D>. Then, a version of the template is created that supports

the type point2D, and that version is compiled fully.

Templates allow us to work with ATS flat types in a generic manner, writing

general code that can handle types of many different types. Also, in many cases, ATS

can infer the template application, and does not require the explicit specification of

the type using the <...> syntax. But it doesn’t hurt. Oftentimes, the use of templates

is almost indistinguishable from the use of functions.

1.5.8 ATS program structure

ATS code is commonly split up into several types of files:



38

• Files with the extension .dats are called “dynamics” and contain the general

program code and implementations of functions.

• Files with the extension .sats are called “statics” and contain type definitions

and function signatures.

• Files with the extension .cats are conventionally known as C glue files. The

code within is written in C, and is expected to be connected to ATS definitions

in a related .sats or .dats file.
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Chapter 2

The Terrier Operating System

2.1 Platform support

Terrier began as a small kernel for the Texas Instruments OMAP3530 platform using

an ARM Cortex A-8 single core processor. Basic memory management, schedul-

ing, and I/O functionality was developed within this framework. The initial kernel

project was given the name Puppy and released as an open source demonstration

kernel, while the continued development of Terrier proceeded on a forked branch.

Subsequently, I decided that the limitations of the OMAP3530 platform and Cortex

A-8 processor were impeding interesting research, and I decided to port Terrier to

the newer OMAP4460 platform using the multi-core Cortex A-9 processor. A widely

available development platform is available with these specifications, known as the

PandaBoard ES1, and that is the platform on which Terrier is currently tested.

The PandaBoard ES offers the following features built-in to the board:

• Dual-core Cortex A-9 ARM processor

• 1 GB RAM

• Two high speed USB ports and one USB OTG port

• Integrated Fast Ethernet adapter, Wireless LAN and Bluetooth

• On-board RS232 serial port

• SD/MMC card reader

• Two HDMI display outputs

1http://www.pandaboard.org/
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• 3-D graphics acceleration

• Audio jack input/output

• JTAG debugging

• Expansion connectors

All these and more make the PandaBoard a particularly potent platform for various

kinds of control or data-processing applications: including but not limited to multi-

media. It is also flexible enough to be used in several ways, which was important at

the time since I did not know what applications would be used to test Terrier.

2.2 The boot process

2.2.1 Start-up

The kernel begins at the symbol reset and begins to set up the various ARM modes,

each of them receiving a dedicated stack in order to have clean transitions later when

needed. However, if Terrier is compiled with virtual memory support, then those

stack addresses must be virtual, so in that case the very first code executed is a piece

of C code in the file init/stub.c. This code sets up a very simple page table with two

mappings: first, an identity mapping so that execution can proceed immediately after

enabling virtual memory; and secondly, it establishes the main kernel mappings to

high memory, so that the start-up code can jump directly into the early initialization

function written in C.

2.2.2 Early initialization

The early initialization function found in init/init.c is written in C because it is

not particularly interesting. It is simply a sequence of calls to initialization functions

in other subsystems. A few pieces of hardware are initialized right away because they
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are useful to the early boot process: the performance monitoring unit, the serial port,

and the memory management infrastructure.

2.2.3 Physical and virtual memory

The physical memory initialization process found in mem/physical.cats requires

probing a few platform-specific registers to learn the size of installed memory and

a few of its properties. Then, the bitmaps that track the status of free physical

frames of memory are initialized. The frames are all marked as available, except for

the ones needed by the physical memory allocator and the ones used by the kernel.

These frames are determined with the help of linker symbols and a few calculations

to translate the numbers into the actual physical addresses.

The virtual memory subsystem in mem/virtual.c assumes that virtual memory

has already been enabled during the stub procedure. Therefore its task is largely

to initialize and configure the second-level pagetable that the kernel uses to manage

kernel-space memory. It also takes advantage of an ARM processor feature that allows

you to use two separate page directories: one of the directories covers the memory

space below the 1 GB mark, and the second one covers the space above 1 GB. With

the kernel conveniently mapped above 1 GB, this allows us to deal with user-space

and kernel-space virtual mappings in entirely separate page directories. Finally, the

translation lookaside buffer is flushed to ensure there are no stale mappings.

2.2.4 Multiprocessor support

Initialization

The Cortex-A9 supports multiple processors, as does Terrier. The operating system

begins execution upon a single bootstrap processor and must kickstart the auxiliary

processors. In omap/smp.c, function smp init, the first thing is to find the number

of other cores and prepare shared variables for the initialization process. It is possible
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to boot all the auxiliary processors at the same time, but I have chosen to do it one

at a time for simplicity. On the ARM processor, it is necessary to bring up auxiliary

CPUs in a specified and controlled sequence in order to get them running the right

pieces of code and to enjoy features such as cache coherency. Therefore, for each

processor, the bootstrap processor follows a particular sequence of steps.

1. The desired auxiliary CPU index is stored in the shared variable curboot and

shared variable stage is initialized to 0.

2. Each CPU needs to have its own set of stacks for managing processor modes,

so the bootstrap CPU allocates a set of pages and stores them into the shared

variable newstack.

3. The register AUX CORE BOOT allows us to specify a starting address for the aux-

iliary CPU. That is configured to be smp aux entry point.

4. data sync barrier ensures that everything is written to memory before pro-

ceeding.

5. The default ARM processor state is called “wait-for-event” (WFE) and that can

be tripped by having any processor invoke the ARM instruction “set-event”

(SEV). This causes all waiting processors to resume execution.

6. Then begins a two-sided sequence controlled by the stage variable:

Stage 0 All processors execute smp aux entry point but only the designated one

successfully passes the curboot check. The others are set back to sleep.

The freshly woken processor then goes and sets up its processor mode

stacks, switches back to supervisor mode, and then invokes its first real

function call to smp aux cpu init, where it indicates that Stage 0 is com-

plete and it waits for the bootstrap processor.



43

Stage 1 The bootstrap processor enables the Snoop Control Unit, which is respon-

sible for cache coherency.

Stage 2 The auxiliary processor obtains its affinity number and checks a few vari-

ables for sanity.

Stage 3 The bootstrap processor enables SMP.

Stage 4 The auxiliary processor enables SMP.

Stage 5 The auxiliary processor cleans and initializes its caches, while the bootstrap

processor goes ahead and initializes all the other processors and also its

own caches.

Stage 6 All caches and processors are initialized.

7. The auxiliary processor then goes ahead and initializes its own processor-specific

needs in parallel to everything else, similar to the bootstrap init process, but

only focusing on itself: performance monitoring, interrupt handling, per-CPU

variables, and the dual page directory feature.

8. At this point the auxiliary processor is ready for operation and it waits on a

semaphore for the scheduler to be enabled. When that happens, the auxiliary

processor will begin in a designated “idle process” before it is assigned its first

real task.

2.3 Hardware support

2.3.1 Memory

Physical memory

The physical memory manager is found in mem/physical.{dats,sats,cats}. A set

of bitmaps are maintained to track the free and used frames of memory: each frame,

or physical page, being four kilobytes in size. Physical memory is a resource managed



44

by the kernel. In ATS, it is kept fairly simple, a simple indexed wrapper around the

raw address:

abst@ype physaddr_t (p: addr) = int

typedef physaddr = [p: addr] physaddr_t p

When designing the types I had a choice to make: should physical addresses be

treated as resources to be managed with linear types? I chose not to do so because

most uses of physical addresses in the kernel have indefinite extent, and it was not a

problem that needed the oversight of ATS.

The primary interface to the manager is via the physical alloc pages function,

shown here with an ATS prototype:

fun physical_alloc_pages (

n: int,

align: int,

addr: & physaddr? >> physaddr_t p

): #[s: int] #[p: addr | s == OK <==> p > null] status s

This function attempts to allocate n frames of memory aligned by align frames. If

successful, it returns a status of OK (0) and stores the physical address into the output

parameter named addr. The type of the output parameter physaddr? has a question

mark modifier initially, meaning that it is an uninitialized location, but it will be

initialized upon return. The return type asserts that if the status is not OK then the

physical address stored will be the null address. This forces callers of this function

to perform a safety check to ensure that it actually did succeed.

There is also a physical_free_page function that unmarks the page in the bitmap.

It is straightforward and returns no value. Further discussion of the implementation

of the physical memory manager may be found in Section 4.2.

Virtual memory

The virtual memory manager is in mem/virtual.c and is only available when the

kernel is compiled with virtual memory support. The original code was written in C
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with extensive run-time safety checks, and since safety nor correctness never became

an issue, conversion to ATS was mooted. The virtual memory interface is consider-

ably more flexible than the physical memory interface. It is based on the underlying

ARMv7 Virtual Memory System Architecture and there are two levels currentl sup-

ported: 1 MB pages and 4 kB pages.

The interface relies upon two descriptive data structures found in mem/physical.h:

struct pagetable and struct region. In order to introduce a new pagetable into the

system the following structure must be filled out:

typedef struct pagetable {

void *vstart; /* starting virtual address managed by PT */

physaddr ptpaddr; /* address of pagetable in physical memory */

u32 *ptvaddr; /* address of pagetable in virtual memory */

struct pagetable *parent_pt; /* parent pagetable or self if MASTER */

u16 type; /* one of PT_MASTER or PT_COARSE */

u16 domain; /* domain of section entries if MASTER */

} pagetable_t;

Once a pagetable has been initialized you can associate a virtual “region” with it

by filling out this data structure:

typedef struct {

physaddr pstart; /* starting physical address of region */

void *vstart; /* starting virtual address of region */

pagetable_t *pt; /* pagetable managing this region */

u32 page_count; /* number of pages in this region */

u16 page_size_log2; /* size of pages in this region (log2) */

u8 cache_buf:4; /* cache/buffer attributes */

u8 shared_ng:4; /* shared/not-global attributes */

u8 access; /* access permission attributes */

} region_t;

Mapping a region and activating the pagetable will put the region into effect. The

primary interfaces are the following functions:

status vmm_init_pagetable(pagetable_t *pt);

status vmm_activate_pagetable(pagetable_t *pt);

status vmm_map_region(region_t *r);

status vmm_map_region_find_vstart(region_t *r);

status vmm_get_phys_addr(void *vaddr, physaddr *paddr);
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Other than “get physical address”, the functions operate on the two data structures

shown above. All of them return a status, as described in status.h. Pagetable

initialization means checking the structure for consistency and then clearing out the

entries. Activating a pagetable means either configuring the page directory (TTB0) for

MASTER level tables, or writing the appropriate entry for COARSE level tables. Mapping

a region will cause the pagetable to be modified so that the region is expressed via

pagetable entries. And the second mapping function, suffixed with _find_vstart, is

for when you do not care what virtual address is used, you just want the manager to

find you a set of unused virtual addresses that fit the region.

2.3.2 Timers

The OMAP4460 platform offers a selection of 11 general-purpose timers, and a private

per-CPU timer known as PVTTIMER. The driver in omap/timer.c wraps a simple

interface around some basic memory-mapped register manipulation for general timer

purposes, and omap/timer.h adds a scheduler-oriented wrapper around the PVTTIMER

functionality. General-purpose timer IRQ numbers are mapped from 37 through 47,

while the PVTTIMER IRQ is number 29. ARM also provides a global counter that

always increases at a known constant rate of 32 kHz, until it overflows and resets over

again. A simple spin-wait function that handles overflow, named timer_32k_delay, is

made available for primitive code.

Use of PVTTIMER requires measurement of its rate, which in Terrier is conducted

during timer initialization. The PVTTIMER rate is measured using both the builtin 32

kHz clock, timer_32k_value, as well as the ARM cycle counter, arm_read_cycle_counter

(for informational purposes). This computes a prescaler value based on the measure-

ments. That prescaler value is later used when setting the timer value for scheduling

purposes.

Abstract private timer interface for schedulers:
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void pvttimer_set(u32 count);

u32 pvttimer_get(void);

void pvttimer_enable_interrupt(void);

void pvttimer_disable_interrupt(void);

void pvttimer_ack_interrupt(void);

u32 pvttimer_is_triggered(void);

void pvttimer_start(void);

void pvttimer_stop(void);

void pvttimer_set_handler(void (*handler)(u32));

which are all quite simply implemented as one-line inline functions in C, for perfor-

mance.

2.3.3 Serial port

Serial port support is provided by the NS16650 UART on the OMAP4460 platform.

This particular UART is identified as UART3 in the technical reference manual. The

memory mapped registers are manipulated by code found in init/early uart3.c.

As the name implies, this code is intended largely for debugging purposes, because the

serial port is the major input/output device available to the system from a very early

stage. The primitive functions available are putc_uart3, putx_uart3, and print_uart3,

which respectively print a character, a hexadecimal number, and a string through the

serial port.

Debugging output

The primitive serial port functions are awkward to use. Instead, debugging output is

directed through the debugging subsystem found in debug/log.c and debug/log.h:

void debuglog(const char *src, int lvl, const char *fmt, ...)

void debuglog_no_prefix(const char *src, int lvl, const char *fmt, ...)

void debuglog_dump(const char *src, int lvl, u32* start, u32* end)

void debuglog_regs(const char *src, int lvl, u32 regs[16])

These functions provide convenient, printf-like functionality available for output

through the serial port, controllable by debugging levels, and tagged by a source
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module. Furthermore, convenience macros DLOG, DLOG_NO_PREFIX, . . . , obviate the first

parameter when the MODULE preprocessor variable is defined. Most files define a MODULE

at the top, making DLOG the most typically used debugging output interface.

2.3.4 USB

The USB subsystem has been delegated out into program space. The ehci pro-

gram implements a portion of the Enhanced Host Controller Interface that is used

by the OMAP4460 platform high-speed USB host controller. This code is found

in progs/ehci/ehci.{dats,sats,cats}. Initialization of the USB subsystem re-

quires the manipulation of a variety of different, esoteric hardware modules on the

OMAP4460 platform, primarily to enable power systems and clocks. Once that is

accomplished, the memory-mapped registers of the standard EHCI design may be

accessed and manipulated according to the standard EHCI specification.

The ehci module defines several data structures to help manage USB operation.

The struct usb_root_port_t describes and helps provide access to the root ports of

the host controller – up to 3 in this case. The struct usb_hub_port_t accomplishes the

same for any discovered hub ports. USB devices, in general, are stored in a directory

composed of struct usb_device_t data structures. One of the interesting features

of this EHCI driver is that these fundamental usb_device_t structures are stored in

an exported directory that is accessible via IPC mechanisms. This is an inside-out

approach to device driver interfaces that ostensibly exposes the internals of the driver

for manipulation by other programs. The safety of this mechanism relies upon the

static checking performed by the IPC protocol code, that code being written in ATS.

Back in the driver itself, upon initialization, it begins to identify attached devices

using the ehci_enumerate function and calls ehci_setup_new_device whenever it finds

one. When hubs are found they are recursively enumerated. The remainder of the

file ehci.cats is primarily concerned with defining the standard USB data structures
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“Queue Head” (QH) and “Transfer Descriptor” (TD) as well as the basic configuration

functions required to perform USB control and bulk data transfers. However, it is not

anticipated that most programs will use these features directly, since they are part

of the ehci module internally. Instead, programs are expected to define their own,

or more likely, use a set of library-defined functions, that perform the necessary data

structure manipulation required to send and receive data over USB.

The EHCI specification defines a circularly-linked set of QHs as being the place

for the host controller hardware to find bulk and control transfers to execute. A

memory-mapped register named EHCI_ASYNCLISTADDR points to one of the QHs, and

the hardware expects to be able to cycle through the circularly-linked list of QHs

from there, while it is running. Therefore, it is important to maintain the consistency

of the QH structures. Typically, each QH corresponds to a USB device, because it

is configured with a particular USB address. A chain of TDs is constructed that

describes a particular transaction, and then that transaction is executed by setting a

field in the QH as a pointer to the first TD in the chain.

Individual programs that manage their own USB device can independently con-

struct and attach a TD chain to the corresponding QH. Therefore, the IPC interface

that manages the USB devices merely has to permit each program to manipulate the

TD pointer in its designated QH, while preventing access to the TD pointers in the

other QHs, and while protecting the overall circularly-linked list of QHs. This is a

task that ATS can handle at the type level, as described in Chapter 4.1.

2.4 Scheduling

2.4.1 The process model

Program entry handlers

One of the distinguishing features of Terrier from other operating systems is the way

it handles processes. A principle of Terrier from the beginning has been to remove
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some uses of hardware barriers or run-time checking in favor of putting more respon-

sibility on the programmer. The goal is to allow programmers the opportunity to

achieve better responsiveness and performance, as well as to explore models of pro-

gramming that are not traditionally supported at the operating system level. Instead

of providing an abstraction that might have to be worked around by the application

programmer, I would like to provide a model that is more closely tied to the way hard-

ware actually behaves. So instead of pretending that programs execute seamlessly, I

give them an opportunity to respond to these kinds of arbitrarily-timed control trans-

fers by employing a designated handler: a piece of code that I call the “entry handler”

because I have decided that it makes the most sense for the beginning of the program

to also serve as the handler. Whenever a program is interrupted, it is not eventually

resumed, but rather, control is transfered to the entry stub. The previous context –

the one that was interrupted – is made available for use by the entry handler, but it

is not required to be used. Instead, applications are given the opportunity to make

their own decision about whether or not they would like to resume, or do something

else.

The result is much more flexible: an application program could implement its

own preemptible thread library without kernel assistance, using this mechanism. The

application is treated as a full partner, together with the kernel, in making decisions

about the continuation of the program after interruption. The continuation is pro-

vided in the form of a data structure that contains the program context at the point of

interruption. A program may instead choose to save that context and load a different

one, in order to create the same effect as a kernel-based thread library.

One immediate concern that may be raised with the entry handler mechanism is:

What happens if the entry handler itself is interrupted? Since entry stubs are not part

of the kernel, but rather part of the application, they do not have the ability to shut

off or mask interrupts. However, shutting off or masking interrupts is also counter to
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the goal of providing a responsive real-time system. Again, I have sought a software

solution in place of a hardware solution. I have designated the entry handler to be

a special section of the program for which interrupts do not save context. Therefore,

any existing context that is saved by the kernel will not be overwritten when the entry

handler is interrupted. However, as a result of this condition, entry handlers must

be programmed in such a manner that they are both reentrant and restartable. In

other words: the entry handler could potentially be interrupted and restarted at any

moment, multiple times. Therefore, the code that runs as part of the entry handler

must be able to tolerate these conditions and still perform its duties.

It is also best if the entry handler has as few instructions as possible, in order to

work most efficiently. Therefore I elected not to write entry handlers in ATS, but

rather, to hand-code them in ARM assembly language. Although it is possible to

use ATS to generate assembly code via embedded C and inline assembly, I felt that

it would be more useful and practical to apply model-checking techniques for the

purpose of verification in this instance. The properties that I wish to verify in this

instance are relatively limited and the typical entry handler is written with simple

techniques resembling a finite state automata. Therefore, model-checking is a good

fit. I describe the use of model-checking to verify certain properties of the entry

handler in Chapter 5.2.

Prior to any verification effort, I will show a simple example of an entry handler.

In Listing 2.1 is an example of the most basic possible entry handler, the one that is

used by default in Terrier programs.

Some explanation is in order: _start is the traditional name for the symbol that

indicates the beginning of a program. .section .entry tells the linker to put this

piece of code in a specially marked section that the kernel will understand to be the

entry stub. Then begins the assembly language code: CMP r13, #0 tests the value of

general-purpose register r13 against the literal constant 0, and sets the Zero Flag if
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.globl _start

.section .entry
_start:

CMP r13, #0 /* r13==0 iff initial entry */
LDREQ r13, =_stack
LDREQ r15, =main

LDR r0, [r13]
MSR cpsr_sf, r0 /* restore cpsr (status, flags) */
ADD r13, r13, #8
LDMIA r13, {r0-r15} /* load context, branch to it */

.section .bss

.space 1024
_stack:

Listing 2.1: Default entry handler

they are equal. The reason for this test is that the entry handler protocol is defined

in the following manner:

• If r13 is 0 upon entry then this is the initial invocation of the program.

• If r13 is not 0 then it must be equal to a valid pointer to a space, accessible by

the program, containing the previously interrupted context of the program.

The LDREQ instruction is actually the load instruction LDR annotated with a special

suffix EQ that will only allow the instruction to execute on the condition that the Zero

Flag is set. This is a feature of the ARM instruction set called “conditional execu-

tion” that allows programmers to compactly branch program flow without creating

additional labels and branch instructions. Therefore, if the Zero Flag is set due to r13

being found to be equal to 0, then the following two instructions will first assign r13,

the conventional stack pointer, to be equal to top of the stack, and will then branch

to the main function by changing the value of the program counter, r15, directly.

In the case that the Zero Flag is not set because r13 is not equal to 0, then

execution will fall through to the following instruction LDR r0, [r13]. If r13 is not 0

then it is presumed to be a valid pointer to a context. The first word in a context is



53

the saved Program Status Register. This must be restored using the MSR instruction

as shown in the listing. Then the pointer contained in r13 is advanced by 8 bytes

so that it is pointing at the saved values of r0 through r15. At this point, we can

take advantage of another feature of the ARM architecture named “Load Multiple”

or LDM. The suffix IA means “Increment, After each load” and the LDMIA instruction

takes a pointer and loads a sequence of values into the specified registers, following

the ordering specified by the suffix. In this particular instance, it loads all 16 registers

simultaneously, from the memory address pointed to by r13. That implies that the

value of r15 is also loaded, and the ARM architecture treats a load into r15 as an

immediate control transfer to the location specified by whatever value is loaded.

Therefore, the entire register context of the program can be loaded and resumed

in one single instruction. This feature of the ARM architecture was found to be

particularly useful during the design of Terrier.

So, the default entry handler does not take advantage of the power or flexibility

offered by this arrangement at all. Instead, it simply behaves like a more traditional

operating system, and resumes the program from wherever it left off. The entry

handler is simple enough that it should be possible to see from cursory examination

that it is both reentrant and restartable under the preconditions described earlier.

If, at any point, it is interrupted, it simply begins the process of loading the context

again, next time it gets to run.

2.4.2 Program file format

Support for the ELF

Terrier has built-in support for loading and parsing files in the standard Executable

and Linkable Format. Executables are expected to be linked in accordance with the

rules found in the linker script ldscripts/program.ld. The basic memory layout of

a program is shown in Table 2.1.



54

.text
*(.entry)

end entry
*(.text)

etext
.rodata

*(.rodata)
.data

*(.data)
.bss

*(.bss)
.device ALIGN(0x1000)

*(.device)

Table 2.1: Terrier executable program memory layout

scheduler capacity The capacity parameter pC

in 32kHz ticks.
scheduler period The period parameter pT in

32kHz ticks.
scheduler affinity The CPU affinity.
kernel saved context Address of memory block

used by kernel to save the
program’s context.

mappings NULL-terminated array of
mapping specs.

ipcmappings NULL-terminated array of
IPC mapping specs.

end entry End of special entry handler
code section as described by
Section 2.4.1.

Table 2.2: Symbols that Terrier interprets specially

Terrier also takes advantage of ELF in order to statically specify parameters of

each program, and implement some features of the OS. Those symbols are shown in

Table 2.2.

2.4.3 Scheduling parameters

The rate-monotonic scheduling algorithm is described in Section 2.4.6, which fur-

ther details how _scheduler_capacity and _scheduler_period are used. The value of

the _scheduler_affinity global variable is used to choose the processor on which the

program is executed.
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typedef struct {
physaddr pstart;
void *vstart;
u32 page_count;
u16 page_size_log2;

#define R_B 1
#define R_C 2
u8 cache_buf:4;

#define R_S 1
#define R_NG 2
u8 shared_ng:4;

#define R_NA 0
#define R_PM 1
#define R_RO 2
#define R_RW 3
u8 access;
char *desc;

} mapping_t;

Listing 2.2: The mapping_t struct

2.4.4 Mappings

The C struct that describes a mapping is shown in Listing 2.2. Mappings allow a pro-

gram to request that the Terrier memory system provide access to a specified window

of physical memory. In fact, since Terrier can run with or without virtual memory

enabled, the mapping system must handle both cases. When virtual memory is en-

abled, during load-time, Terrier will try to create a virtual mapping of the window,

and store the resulting virtual address in the vstart field. If virtual memory is not

enabled, then Terrier will simply copy the value of pstart into vstart.

The mapping struct allows the program to request certain properties of the virtual

memory mapping. There is the number of pages requested, page_count, and the

size of pages in log2 terms, page_size_log2. The program can also request that the

memory be cached or buffered using cache_buf, and that it be shared or “not global”

using shared_ng. Finally, access can be restricted by mode, and a desc is useful for

interpreting kernel messages. An example set of mappings is shown in Listing 2.3.

The last mapping should always be a NULL mapping.
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mapping_t _mappings[] = {
{ 0x48050000, NULL, 10, 12, 0, 0, R_RW, "needed for GPIO" },
{ 0x4A064000, NULL, 1, 12, 0, 0, R_RW, "EHCI base" },
{ 0x4A009000, NULL, 1, 12, 0, 0, R_RW, "CM base" },
{ 0x4A062000, NULL, 1, 12, 0, 0, R_RW, "USBTLL base" },
{ 0x4A064000, NULL, 1, 12, 0, 0, R_RW, "HSUSBHOST base" },
{ 0x4A310000, NULL, 2, 12, 0, 0, R_RW, "needed for GPIO" },
{ 0x4A30A000, NULL, 1, 12, 0, 0, R_RW, "SCRM base" },

{ 0 }
};

Listing 2.3: Example of mappings

2.4.5 Interprocess communication mappings

The IPC mapping feature, with struct definition in Listing 2.4, helps programs estab-

lish communication channels. These mappings are then made available to application

programs through an ATS interface discussed in Section 3.2. The mappings are spec-

ified at a higher level than the regular mapping feature, which is primarily intended

to help programmers write device drivers. With the IPC mapping feature, Terrier

creates a database of programs and potential channels, and uses it to match them

up as IPC partners. So for example, if a program defines an IPC mapping that is

“seeking” another mapping by the name of “uart”, then Terrier will find a program

that is “offering” a mapping by the name of “uart” and pair them up, if they both

agree to follow the same protocol. A successful pairing means that a piece of memory

is allocated, of pages length, and then that memory is mapped into both program’s

spaces. Each program is informed about the mapping through the address field in the

struct. If virtual memory is enabled, then it is quite possible that the integer value

of address will be different in each program – but if virtual memory is disabled then

both will share the same address.

The type, name, and proto fields allow this search process to take place as described

above. The flags field adds some properties of the channel, for example if the program
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typedef struct {
#define IPC_SEEK 1
#define IPC_OFFER 2
#define IPC_MULTIOFFER 3
u32 type;
char *name;

#define IPC_READ 1
#define IPC_WRITE 2
#define IPC_ALWAYSALLOC 4
#define IPC_DEVICEMEM 8
u32 flags;
char *proto;
u32 pages;
void *address;

} ipcmapping_t;

Listing 2.4: The ipcmapping_t struct

intends to use it as a “read” or a “write” style channel. The IPC_ALWAYSALLOC flag tells

Terrier to always allocate a piece of memory for this mapping, even if it cannot find

a partner. That’s useful for programs that store crucial data structures in the IPC

shared memory region, even if they do not get paired up with another program.

Finally, the IPC_DEVICEMEM flag indicates that the IPC shared memory region is not

only being used by another program, but it could also be accessed by a hardware

device.

An example of IPC mappings is shown in Listing 2.5. This example seeks out the

“uart” channel using the “fourslot2w” protocol, and it offers two channels for other

seekers: “ehci info” using “fixedslot” and “ehci usbdevices” using a custom protocol

named “usbdevices” that is flagged for IPC_ALWAYSALLOC and IPC_DEVICEMEM. That’s

because this last shared memory region will be used for storing data structures used

by hardware devices.

2.4.6 Rate-monotonic scheduling (RMS)

Consider a system where you have a set of tasks that are statically assigned properties

such as capacity, Ci, and period, Ti. Then, a rate-monotonic scheduling algorithm is
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ipcmapping_t _ipcmappings[] = {
{ IPC_SEEK, "uart", IPC_WRITE, "fourslot2w", 1, NULL },
{ IPC_OFFER, "ehci_info", IPC_WRITE, "fixedslot", 1, NULL },
{ IPC_OFFER, "ehci_usbdevices",
(IPC_READ | IPC_WRITE | IPC_ALWAYSALLOC | IPC_DEVICEMEM),
"usbdevices", 1, NULL },

{ 0 }
};

Listing 2.5: Example of IPC mappings

one that treats shorter period tasks as having higher priority than longer period

tasks. The period of a task means how much time there is between activations, and

the capacity is the amount of time that the task is allotted to run within that period.

Therefore, the ratio Ui = Ci/Ti is often referred to as the processor utilization of the

task i, and 0 ≤ Ui ≤ 1. RMS was introduced and analyzed by Liu and Layland (1973),

and it has remained an important algorithm for static priority real-time scheduling

ever since. They proved that for a set of n tasks with n different periods, it is possible

to show that there is always a feasible schedule if the sum of utilizations falls below

a certain bound. That is,
n∑

i=1

Ui ≤ n
(

n
√

2− 1
)

and that this formula converges at ln 2 ≈ 0.693, meaning that any such set of tasks

with
∑
U ≤ 0.693 can be guaranteed a feasible schedule.

The default scheduler of Terrier is based on RMS, although it is parameterized

and can be swapped out at compile-time for the purpose of experiments. A common

problem with RMS is that it is easily subject to priority inversion when multiple

tasks of different priorities participate in locking protocols. Terrier’s main priority

inversion avoidance strategy is to rely on lock-free algorithms for communication

between tasks, as described in Section 3.3. The RMS scheduler is implemented in

sched/rms sched.{dats,sats,cats}. The implementation of a task is referred to

as a process within the context of Terrier. The primary function interface includes
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sched_wakeup, which gives a process a budget equal to its full capacity, and schedule,

which updates all the state and chooses the next process to run.

Each process p is given the following properties:

• pC , pT are the capacity and period of p.

• pb is the budget, or remaining time left to run, for p.

• pr is a time value indicating when the budget is to be refilled.

The pseudo-code for the RMS scheduler is as follows:

1. Look up current running process, named p.

2. Find out how much time tspan has passed since previous context switch.

3. Subtract tspan from pb, setting the budget to zero if it is below a negligible

amount.

4. For each process q in the system, check the replenishment time:

(a) If tnow ≤ qr then increment qr by qT and set qb ← qC .

5. Select the process with positive budget and smallest period, call it pnext.

6. Select a time value tval based on all the replenishment times, or the expiration

of the budget of pnext, whichever is smallest.

7. Mark pnext as context switch target, which will occur upon return to user-space.

8. Set the processor timer to wake-up at tval.

For the purpose of testing, each process selects a CPU affinity ahead of time, and

so the schedulers operating on separate processors do not interfere with each other’s

data structures.
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2.4.7 Interrupt handling

Section 2.4.1 described the mechanism with which Terrier begins and restarts inter-

rupted processes. Upon restarting, the context that was interrupted is made available

through a pointer stored in r13. In addition, a table of interrupt statuses is also made

available through a pointer stored in r12. Each byte in this table corresponds to an

interrupt. The first bit is toggled on when the interrupt is active. The remaining bits

are reserved for future use. An address for the interrupt status table is also available

through invocation of instruction SWI #1, which will store the address of the table in

the saved r0 register. An entry handler can be designed to check the bit in the inter-

rupt status table and take action accordingly. An example of such an entry handler

is discussed in Section 5.2.
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Chapter 3

Interprocess Communication Mechanisms

3.1 Introduction

Terrier provides individual programs with a great deal of power and flexibility to work

within themeselves, but it also provides a set of mechanisms for communicating be-

tween programs. The Terrier philosophy favors loosely-coupled interfaces that avoid

synchronization and its associated problems. Actual communication itself should be

able to avoid invoking kernel functionality, instead relying on a set of libraries that

implement various protocols in ATS. The kernel only provides the channels that will

be used, and they are specified statically by mappings as described in Section 2.4.5.

The interface to the raw memory is described in the following section, and the vari-

ous library mechanisms that use the memory are described in the remainder of this

chapter.

3.2 Interprocess communication memory interface

Section 2.4.5 described the specification mechanism for interprocess communication

(IPC) mappings, and this section describes the programming interface in ATS made

available for programmers to use those mappings. All of the communication mecha-

nisms described in this chapter make use of this IPC mapping interface for obtaining

access to the IPC memory.

Listing 3.1 shows the interface, which has been kept relatively brief. The view

ipcmem_v acts as the proof that a certain pointer over a certain range of pages is entitled

to be a handle for IPC memory. Since IPC memory is shared between processes and

processors, it has been specially set up for that purpose, and the pointer can only be
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absview ipcmem_v (l: addr, pages: int)

fun ipcmem_get_view (
id: int, pages: & int? >> int pages

): #[pages:nat] [l:agez] (option_v (ipcmem_v (l, pages), l > null) | ptr l)

prfun ipcmem_put_view {l:addr} {pages:int} (_: ipcmem_v (l, pages)): void

Listing 3.1: IPC memory interface

obtained through a call to ipcmem_get_view. The first parameter to this function is

the “identifier” for the IPC memory. I have chosen to keep this simple, using only

an index number into the mapping array, but in the future it might make sense to

devise a naming scheme.

The ipcmem_get_view function returns a pointer, and it also modifies the second

parameter by-reference to store the number of pages available in the IPC memory.

But the pointer is not available to be used as IPC memory until it is checked for

the null value. That is the meaning of option_v (ipcmem_v (l, pages), l > null): the

view can only be unpacked from the option_v if we can suitably show that l > null.

This is a means to force programmers to check for null-pointers before proceeding

to use the value in more dangerous ways. Because all of this proof work occurs at

the type-level, it is all erased by the ATS compiler, and therefore poses no additional

run-time overhead apart from a normal null-pointer check.

Finally, the counterpart to ipcmem_get_view is ipcmem_put_view, which has been left

as a proof-function because it currently has no real effect under the implemented

protocol, and can be safely erased entirely during compile-time.

3.3 Asynchronous communication mechanisms

An asynchronous communication mechanism (ACM) is a means for two programs to

exchange a piece of data without relying on explicit synchronization. By avoiding

the use of locks or semaphores, programs can interact safely without fear of deadlock,
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priority inversion, or unpredictable blocking delay being caused by OS-level code.

Many such mechanisms have been described in past work. Simpson (2003) created

a taxonomy of such protocols, out of which I am most interested in the pool-style

protocols. In his telling, these pool-style protocols are designed to exchange a piece

of reference data between some number of writers and some number of readers. The

writers may destructively overwrite the reference data at any time. The readers may

non-destructively read a coherent copy of the reference data at any time. The details

of the protocol ensure that the writers and the readers do not interfere with or confuse

each other. Pool-style ACMs typically strive to achieve the following properties:

Coherency Reading and writing operations should not trample on each other. A

writer should always be able to write data cleanly without interference. And a reader

should always be able to obtain a complete piece of data exactly in the same form

that an earlier writer placed it.

Freshness Readers should be able to access the most recent, coherent piece of data

as soon as possible after the writer has finished putting it into memory. Readers

should never see a past version of the data once a fresher version has been made

available.

Concurrency Reading and writing operations should be able to run as concurrently

as possible, without interference from each other.

3.4 The four-slot mechanism and generalizations

3.4.1 Introduction

The “four-slot mechanism” (Simpson, 1990) is an ACM designed to allow one-way,

memory-less communication between a writer program and a reader program with-
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out the use of locks. This mechanism was later generalized to multiple readers and

multiple writers (Simpson, 1997a).

The following sections use the formulation of the mechanism that was developed in

the second paper, a form which varies significantly from the original, but is more easily

generalized. First is shown a proof of coherency for the single-reader version. Then

it is expanded and shown that each of the steps has a “linearization point” (Herlihy

and Wing, 1990). Finally, a similar proof is elaborated for the multiple-reader version

of the mechanism. In the future, a multiple-writer version will be added.

Past work by Simpson (1997b) has focused on model-checking techniques to show

correctness of the mechanism. This section contributes an alternative formulation of

the coherency proof, given in the style that will be used for other algorithms encoded

into ATS and provided with Terrier. It is a style that blends lemmas worked out by

hand on paper along with reasoning encoded into ATS types and checked by machine.

3.4.2 Definitions

Definition 1 (Potentially conflicting steps). R1 and W3 are examples of operations

that take time to read or write the data array, and therefore, could conflict with each

other if they are both operating on the same element of the array during overlapping

periods of time.

Definition 2 (The “precede” relation). When operation A is said to precede operation

B, it means that operation A occurs prior to the execution of operation B, and the

full effect of operation A is visible and available to operation B.

Definition 3 (Interacting operations). If two operations, A and B, act upon the

same memory address then they are said to be interacting. If those operations are

linearizable then the ordering is strict: either A precedes B or B precedes A.

Definition 4 (Associated operations). The operations which set up the state variables

in preparation for the subsequent read or write are considered to be “associated” with

that read or write. For example, instances of W2 and W3 are associated with the

subsequent instance of W1. And instances of R1 and R2 are associated with the

subsequent R3.
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3.4.3 Single-reader mechanism definitions

• r, w are shared bit-arrays, |r| = |w| = 2.

• ip, op are shared bit variables

• d [·, ·] is the four slot array indexed by two dimensions

Property 1. Steps W2, W3, R1, and R2 are all linearizable.

Reader pseudo-code

R1 r ← w

R2 op← ¬ip

R3 read data from d [op, r [op]]

Writer pseudo-code

W1 write data into d [ip, w [ip]]

W2 ip← ¬ip

W3 w [ip]← ¬r [ip]

3.4.4 Single-reader proofs

Reader

The following lemmas apply to the reader code and are applicable until the reader

completes R3.

Lemma 1. Given an instance of W3, if it does not occur in the time between the

beginning of R1 and the completion of R3, then the associated W1 is non-conflicting

because op 6= ip or it does not overlap with a conflicting R3.

Proof. Suppose there is a W1 which potentially conflicts with R3, but the associated

W3 operation occurred preceding the R1, as shown in Figure 3.1. Then by transitivity,

it must be the case that the associated W2 preceded R2, and therefore it is safe to

say that op 6= ip because R2 sets op← ¬ip.
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WS3
w[ip]←¬r[ip]

WS1
write into d[ip,w[ip]]

WS2
ip←¬ip

RS1
r←w

RS2
op←¬ip

RS3
read from d[op,r[op]]

op≠ip

WS2
ip←¬ip

WS3 does not occur between RS1 and completion of RS3

∴ non-conflicting

Figure 3.1: W3 does not occur between R1 and completion of R3

WS3
w[ip]←¬r[ip]

WS1
write into d[ip,w[ip]]

WS2
ip←¬ip

RS1
r←w

RS2
op←¬ip

RS3
read from d[op,r[op]]

r[ip]≠w[ip]

WS3 occurs at least once between RS1 and completion of RS3

WS3
w[ip]←¬r[ip]

WS1
write into d[ip,w[ip]]

WS2
ip←¬ip

op≠ip ∴ non-conflicting op=ip r[ip]≠w[ip] ∴ non-conflicting

Figure 3.2: W3 occurs at least once between R1 and completion of R3

Lemma 2. Given an instance of W3, if it does occur in the time between the beginning

of R1 and the completion of R3, then the associated W1 is non-conflicting because

r [ip] 6= w [ip], op 6= ip or it does not overlap with a conflicting R3.

Proof. Suppose there is a W1 which potentially conflicts with R3, and the associated

W3 is preceded by R1, as shown in Figure 3.2. Because R1 controls the value of r, any

occurrence of W3 will then set w [ip]← ¬r [ip] so that w [ip] 6= r [ip] for the associated

W1.

Theorem 1 (Coherency of reader). If R3 may potentially conflict with W1, then

either op 6= ip or w [ip] 6= r [op].
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WS3
w[ip]←¬r[ip]

WS1
write into d[ip,w[ip]]

WS2
ip←¬ip

RS1
r←w

RS2
op←¬ip

RS3
read from d[op,r[op]]

w[ip]≠r[ip]

RS1 does not occur between WS3 and completion of WS1

∴ non-conflictingip=op

Figure 3.3: R1 does not occur between W3 and completion of W1

Proof. A potential conflict between R3 and W1 means that W1 does not occur strictly

before R2.

If the writer has not yet completed its first invocation, and W2 has not occurred

at all yet, then op 6= ip because nothing could have changed the value of ip.

Interacting operations R2 and W2 must occur in one order or the other. The same

goes for interacting operations R1 and W3. Lemmas 1 and 2 cover the cases.

Writer

The following lemmas apply to the writer code and are applicable until the writer

completes W1.

Lemma 3. Given an instance of R1, if it does not occur in the time between the

beginning of W3 and the completion of W1, then the associated R3 is non-conflicting

because w [ip] 6= r [ip], op 6= ip or it does not overlap with a conflicting W1.

Proof. Suppose there is a R3 which potentially conflicts with W1, but the associated

R1 occurred preceding the W3 step, as shown in Figure 3.3. Suppose further that

ip = op because R2 preceded W2. Then, because W3 sets w [ip] ← ¬r [ip] the value

of w [ip] 6= r [ip].
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WS3
w[ip]←¬r[ip]

WS1
write into d[ip,w[ip]]

WS2
ip←¬ip

RS1
r←w

RS2
op←¬ip

RS3
read from d[op,r[op]]

ip≠op

RS1 occurs at least once between WS3 and completion of WS1

∴ non-conflicting

Figure 3.4: R1 occurs at least once between W3 and completion of
W1, as well as a case where op = ip

Lemma 4. Given an instance of R1, if it does in occur in the time between the

beginning of W3 and the completion of W1, then the associated R3 is non-conflicting

because ip 6= op or it does not overlap with a conflicting W1.

Proof. Suppose there is a R3 which potentially conflicts with W1, and the associated

R1 is preceded by W3, as shown in Figure 3.4. By transitivity, that means W2 precedes

R2, but then it must be the case that op 6= ip.

Theorem 2 (Coherency of writer). If W1 may potentially conflict with R3, then

either op 6= ip or w [ip] 6= r [op].

Proof. By theorem 1 we know that the reader will avoid conflicting with the writer.

Then we need to show that the writer will avoid conflicting with the reader.

If this is the first time that the writer runs then ip has not yet been modified from

its initial value, and the reader must run R2 op ← ¬ip before reading, so op 6= ip.

In subsequent runs of the writer code, the question becomes about how W2 and W3

make safe choices for the subsequent W1.

Interacting operations R1 and W3 must occur in one order or the other. Lem-

mas 3 and 4 cover the cases.
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3.4.5 Single-reader (expanded)

The steps R1, R2, W1 and W2 are, in fact, composed of multiple atomic instructions

each. The following diagrams will illustrate that each step has a “linearization” point,

when the effect of that step appears to take place, and that the proofs are still valid

based on those program points.

3.4.6 Expanded pseudocode

New variables t, u are introduced, temporary local variables used to hold values that

are being loaded or stored from memory by atomic operations.

Reader pseudocode

R1a t← w

R1b r ← t

R2a t← ip

R2b op← ¬t

R3 read data from d [op, r [op]]

Writer pseudocode

W1 write data into d [ip, w [ip]]

W2a u← ip (see note1)

W2b ip← ¬u

W3a u← r [ip]

W3b w [ip]← ¬u

3.4.7 Linearization points

To claim that a program has the property of linearizability is equivalent to the state-

ment that all procedures within have a “linearization point”, which is the step when

1Modern ARM can do W2a, W2b as a single atomic operation using LDREX, STREX
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the effect of that procedure appears to take place instantaneously (Herlihy and Wing,

1990).

Of the steps stipulated in proposition 1, here are their linearization points: R1b,

R2a, W2b, and W3a. Below are all the diagrams, redone with the expanded pseu-

docode.

3.4.8 Diagrams

The diagrams are found in Figures 3.5, 3.6, 3.7, and 3.8. The proofs and theorems

are the same as in the previous section.

3.4.9 The four-slot mechanism interface

The ATS interface to the four-slot mechanism is shown in Listing 3.2. The view and

initialization interface is specified similarly to the IPC memory interface described

in Section 3.2, except that this consumes ipcmem_v and produces an either_v for a

fourslot_v instead. The either_v, in this case, requires that the programmer check

the returned status value for OK before being allowed to proceed to use the fourslot_v,

or else if there is failure, then the programmer has to clean-up the ipcmem_v. The coun-

terpart function, fourslot_ipc_free, consumes a fourslot_v and returns an ipcmem_v.

Finally, the read and write functions are templates that allow the communicated item

to be passed by-value.

3.5 The multi-reader mechanism

This section continues the discussion from the previous section and expands the defi-

nitions to accommodate the presence of multiple programs reading from the ACM at

the same time.
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WS1
write into d[ip,w[ip]]

RS3
read from d[op,r[op]]

ip≠op

RS1 occurs at least once between WS3 and completion of WS1

∴ non-conflicting

RS1
t←w; r←t 

RS2
t←ip; op←¬t

WS3
u←r[ip]; w[ip]←¬u

WS2
u←ip; ip←¬u

Figure 3.5: R1 occurs at least once between W3 and completion of
W1, as well as a case where op = ip

WS3
u←r[ip]; w[ip]←¬u

WS1
write into d[ip,w[ip]]

WS2
u←ip; ip←¬u

RS1
t←w; r←t 

RS2
t←ip; op←¬t

RS3
read from d[op,r[op]]

w[ip]≠r[ip]

RS1 does not occur between WS3 and completion of WS1

∴ non-conflictingip=op

Figure 3.6: R1 does not occur between W3 and completion of W1
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WS1
write into d[ip,w[ip]]

RS3
read from d[op,r[op]]

op≠ip

WS3 does not occur between RS1 and completion of RS3

∴ non-conflicting

WS3
u←r[ip]; w[ip]←¬u

WS2
u←ip; ip←¬u

RS1
t←w; r←t 

RS2
t←ip; op←¬t

w[ip]=r[ip]?

Figure 3.7: W3 does not occur between R1 and completion of R3

WS1
write into d[ip,w[ip]]

RS3
read from d[op,r[op]]

r[ip]≠w[ip]

WS3 occurs at least once between RS1 and completion of RS3

WS1
write into d[ip,w[ip]]

op≠ip ∴ non-conflicting op=ip r[ip]≠w[ip] ∴ non-conflicting

WS3
u←r[ip]; w[ip]←¬u

WS2
u←ip; ip←¬u

WS3
u←r[ip]; w[ip]←¬u

WS2
u←ip; ip←¬u

RS1
t←w; r←t 

RS2
t←ip; op←¬t

Figure 3.8: W3 occurs at least once between R1 and completion of R3
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absview fourslot_v (l: addr, n: int, a: t@ype, w: bool)

fun{a:t@ype} fourslot_ipc_writer_init {l: agz} {pages: nat} (
! ipcmem_v (l, pages) >> either_v (ipcmem_v (l, pages),

fourslot_v (l, pages, a, true),
s == 0) |

ptr l, int pages
): #[s:int] status s

fun{a:t@ype} fourslot_ipc_reader_init {l: agz} {pages: nat} (
! ipcmem_v (l, pages) >> either_v (ipcmem_v (l, pages),

fourslot_v (l, pages, a, false),
s == 0) |

ptr l, int pages
): #[s:int] status s

prfun fourslot_ipc_free {l: addr} {pages: nat} {a: t@ype} {w: bool} (
fourslot_v (l, pages, a, w)

): ipcmem_v (l, pages)

fun{a:t@ype} fourslot_read {l: addr} {n: nat} (
! fourslot_v (l, n, a, false) | fs: ptr (l)

): a

fun{a:t@ype} fourslot_write {l: addr} {n: nat} (
! fourslot_v (l, n, a, true) | fs: ptr (l), item: a

): void

Listing 3.2: The four-slot mechanism interface
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3.5.1 Definitions

Definition 5 (Family of readers). Suppose there are n readers. Each reader is denoted

by Ri and its steps by Rij, where 0 ≤ i < n. The various variables are defined as

follows:

• n is the number of readers.

• ip, op0, . . . , opn−1 ∈ {0, 1}

• the number of slots |d| = 2n+ 2

• |w| = |r0| = . . . = |rn−1| = 2

• w [0] , r0 [0] , . . . , rn−1 [0] ∈ {0, . . . , n− 1}

• w [1] , r0 [1] , . . . , rn−1 [1] ∈ {0, . . . , n− 1}

Informally, the main difference here is that we have introduced a family of variables

named opi, one for each reader, and a family of two-element arrays named ri, one

for each reader. In addition, the arrays are no longer bit-arrays but rather have each

element contain values from 0 up to n − 1. And of course, it is no longer merely a

“four slot” array but a 2n+ 2 slot array.

Definition 6 (Generalized negation). v′ = ¬ (v0, . . . , vn−2) is an operation with n−1

operands. The result of this operation is defined to be unequal to any of the operands:

for all i < n− 1, it is the case that v′ 6= vi. If there is more than one allowable result

value, the choice is arbitrary. Examples: suppose n = 3 then ¬ (0, 1) = 2 and ¬ (0, 0)

can be 1 or 2.

Property 2. Steps W2, W3, Ri1, and Ri2 are all linearizable.

3.5.2 Pseudocode

Reader pseudocode

Ri1 ri ← w
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WS3
w[ip]←¬(r0[ip],...)

WS1
write into d[ip,w[ip]]

WS2
ip←¬ip

RSi1
ri←w

RSi2
opi←¬ip

RSi3
read from d[opi,ri[opi]]

opi≠ip

WS2
ip←¬ip

WS3 does not occur between RiS1 and completion of RiS3

∴ non-conflicting

Figure 3.9: W3 does not occur between Ri1 and completion of Ri3

Ri2 opi ← ¬ip

Ri3 read data from d [opi, ri [opi]]

Writer pseudocode

W1 write data into d [ip, w [ip]]

W2 ip← ¬ip

W3 w [ip]← ¬ (r0 [ip] , . . . , rn−1 [ip])

3.5.3 Proofs

Reader

The following lemmas apply to the code of reader Ri and are applicable until that

reader completes Ri3.

Lemma 5. Given an instance of W3, if it does not occur in the time between the

beginning of Ri1 and the completion of Ri3, then the associated W1 is non-conflicting

because ip 6= opi or it does not overlap with a conflicting Ri3.

Proof. Suppose there is a W1 which potentially conflicts with Ri3, but the associated

W3 operation occurred preceding the Ri1, as shown in Figure 3.9. Then by transitivity,
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WS3
w[ip]←¬(r0[ip],...) w[ip]←¬(r0[ip],...)

WS1
write into d[ip,w[ip]]

WS2
ip←¬ip

RiS1
ri←w

RiS2
opi←¬ip

RiS3
read from d[opi,ri[opi]]

ri[ip]≠w[ip]

WS3 occurs at least once between RiS1 and completion of RiS3

WS3 WS1
write into d[ip,w[ip]]

WS2
ip←¬ip

opi≠ip ∴ non-conflicting opi=ip ri[ip]≠w[ip] ∴ non-conflicting

Figure 3.10: W3 occurs at least once between Ri1 and completion of
Ri3, as well as a case where ip = opi

it must be the case that the associated W2 preceded Ri2, and therefore it is safe to

say that ip 6= opi because Ri2 sets opi ← ¬ip.

Lemma 6. Given an instance of W3, if it does occur in the time between the beginning

of Ri1 and the completion of Ri3, then the associated W1 is non-conflicting because

w [ip] 6= ri [ip], ip 6= opi or it does not overlap with a conflicting Ri3.

Proof. Suppose there is a W1 which potentially conflicts with Ri3, and the associated

W3 is preceded by Ri1, as shown in Figure 3.10. Because Ri1 controls the value of

ri, any occurrence of W3 will then set w [ip]← ¬ri [ip] so that w [ip] 6= ri [ip] for the

associated W1.

Theorem 3 (Coherency of reader). If Ri3 may potentially conflict with W1, then

either ip 6= opi or w [ip] 6= ri [op].

Proof. A potential conflict between Ri3 and W1 means that W1 does not occur strictly

before Ri2.

If the writer has not yet completed its first invocation, and W2 has not occurred

at all yet, then ip 6= opi because nothing could have changed the value of ip.

Interacting operations Ri2 and W2 must occur in one order or the other. The same

goes for interacting operations Ri1 and W3. Lemmas 5 and 6 cover the cases.

Writer

The following lemmas apply to the writer code and are applicable until the writer

completes W1.
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WS3
w[ip]←¬r[ip]

WS1
write into d[ip,w[ip]]

WS2
ip←¬ip

w[ip]≠ri[ip]

RiS1 does not occur between WS3 and completion of WS1

∴ non-conflictingip=opi

RiS1
ri←w

RiS2
opi←¬ip

RiS3
read from d[opi,ri[opi]]

Figure 3.11: Ri1 does not occur between W3 and completion of W1

Lemma 7. Given an instance of Ri1, if it does not occur in the time between the

beginning of W3 and the completion of W1, then the associated Ri3 is non-conflicting

because w [ip] 6= ri [ip], ip 6= opi or it does not overlap with a conflicting W1.

Proof. Suppose there is a Ri3 which potentially conflicts with W1, but the associated

Ri1 occurred preceding the W3 step, as shown in Figure 3.11. Suppose further that

ip = opi because Ri2 preceded W2. Then, because W3 sets w [ip]← ¬ri [ip] the value

of w [ip] 6= ri [ip].

Lemma 8. Given an instance of Ri1, if it does in occur in the time between the

beginning of W3 and the completion of W1, then the associated Ri3 is non-conflicting

because ip 6= opi or it does not overlap with a conflicting W1.

Proof. Suppose there is a Ri3 which potentially conflicts with W1, and the associated

Ri1 is preceded by W3, as shown in Figure 3.12. By transitivity, that means W2

precedes Ri2, but then it must be the case that ip 6= opi.

Theorem 4 (Coherency of writer). For any reader Ri, if W1 may potentially conflict

with Ri3, then either ip 6= opi or w [ip] 6= ri [op].

Proof. By theorem 3 we know that the reader Ri will avoid conflicting with the writer.

Then we need to show that the writer will avoid conflicting with the reader.
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WS3
w[ip]←¬r[ip]

WS1
write into d[ip,w[ip]]

WS2
ip←¬ip

RiS1
ri←w

ip≠opi

RiS1 occurs at least once between WS3 and completion of WS1

∴ non-conflicting

RiS2
opi←¬ip

RiS3
read from d[opi,ri[opi]]

Figure 3.12: Ri1 occurs at least once between W3 and completion of
W1, as well as a case where opi = ip

If this is the first time that the writer runs then ip has not yet been modified from

its initial value, and the reader must run Ri2 opi ← ¬ip before reading, so ip 6= opi.

In subsequent runs of the writer code, the question becomes about how W2 and W3

make safe choices for the subsequent W1.

Interacting operations Ri1 and W3 must occur in one order or the other. Lem-

mas 7 and 8 cover the cases.

3.5.4 The multi-reader mechanism interface

Listing 3.3 on page 80 shows the multi-reader mechanism interface. This interface

is considerably more complicated than the four-slot mechanism for several reasons.

One of the issues is that each reader must now carry an associated “index” value, to

be passed along whenever invoking the read function. A read index is generated by

the initialization function for the reader, and the ATS types ensure that the correct

value is always provided to the read function. However, it is another piece of data

to be managed by the programmer. Another issue is that the generalization of the

mechanism causes a postcondition named ws3_v to be generated after every write,

and that postcondition must become a precondition of the following write in order



79

for the proof to hold. An initial ws3_v is generated by the initialization function.

Although this ws3_v parameter must be managed by the programmer, it is erased by

the compiler and does not produce any additional overhead. As a result of this ws3_v,

however, many of the internal indices and assertions are exposed in the types. For

example, the condition that (OP’ != IP’) || (Rip’ != Wip’) || (overlap’ == false) is

probably not of much interest to application programmers, but this proposition must

be encoded for the indices that are used by ws3_v, so they must appear in the type.

However, other than the read index value, the use of the interface is largely similar to

the four-slot mechanism, and the various assertions are all carried along and resolved

by the ATS type-checker automatically.

3.5.5 Conclusion

The multi-reader mechanism offers an approach to the single-writer, multi-reader

asynchronous communication problem. However, the memory requirement for the

multi-reader mechanism scales linearly with the number of readers. Under some cir-

cumstances, that poses a difficulty, particularly in cases where the number of readers

is not known ahead of time, or under memory space constraints. The following section

explores an ACM that can operate within a constant amount of space.

3.6 The fixed-slot mechanism

An analysis of existing ACMs shows that there are several recurring patterns. In

order for a writer program to have a free hand, there should always be an extra,

unused slot available to be filled, in a scheme reminiscent of double buffering. And

for each reader program to operate uninterrupted, there should be a filled slot of

which it can take ownership, temporarily. The exact details vary depending on the

particular algorithm and whether or not it is taking advantage of hardware atomic

operations. But in general, in order to obtain a full expression of the features of
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absview mslot_v (l: addr, pages: int, a: t@ype, w: bool, i: int)
absview ws3_v (OP: bit, IP: bit, Rip: bit, Wip: bit, overlap: bool)

fun{a:t@ype} multireader_initialize_reader {l: agz} {pages: nat} (
ipcmem_v (l, n) | ptr (l), int (pages), index: & int? >> int (i)

): #[i: nat] [s: int]
(either_v (ipcmem_v (l, pages), mslot_v (l, pages, a, false, i), s == 0) |
status (s))

fun{a:t@ype} multireader_initialize_writer {l: agz} {pages: nat} (
pf: ipcmem_v (l, n) | p: ptr (l), pages: int (pages)

): [s: int]
[overlap’: bool]
[OP’, IP’, Rip’, Wip’: bit |

(OP’ != IP’) || (Rip’ != Wip’) || (overlap’ == false)]
(either_v (ipcmem_v (l, pages),

( mslot_v (l, pages, a, true, 0),
ws3_v (OP’, IP’, Rip’, Wip’, overlap’) ),

s == 0) |
status (s))

prfun multireader_release {l:addr} {n,i:nat} {a:t@ype} {w:bool} (
mslot_v (l, n, a, w, i)

): ipcmem_v (l, n)

prfun multireader_release_ws3_v {OP, IP, Rip, Wip: bit} {overlap: bool} (
ws3_v (OP, IP, Rip, Wip, overlap)

): void

fun{a:t@ype} multireader_read {l: addr} {n, i: nat} (
! mslot_v (l, n, a, false, i) | ptr (l), int (i)

): a

fun{a:t@ype} multireader_write
{l: addr} {n: nat}
{overlap: bool}
{OP, IP, Rip, Wip: bit | (OP != IP) || (Rip != Wip) || (overlap == false)} (

! mslot_v (l, n, a, true, 0),
! ws3_v (OP, IP, Rip, Wip, overlap) >> ws3_v (OP’, IP’, Rip’, Wip’, overlap’) |
ms: ptr l, item: a

): #[overlap’: bool]
#[OP’, IP’, Rip’, Wip’: bit |

(OP’ != IP’) || (Rip’ != Wip’) || (overlap’ == false)]
void

Listing 3.3: The multi-reader mechanism interface
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coherency, freshness and concurrency, there is a rising memory requirement as the

number of involved programs increases.

If you are willing to relax the strictness of one of coherency, freshness, or con-

currency, then it is possible to create a mechanism that can serve any number of

readers without increasing the amount of memory devoted to them. For the rest of

this discussion, I will focus on the case where I am willing to weaken a feature as

a trade off for a fixed memory requirement. In addition, I will focus on the single-

writer, multiple-reader design, where the single-writer acts as a broadcaster sending

out a piece of reference data to any number of readers willing to participate. After

consideration, the feature that I have chosen to weaken is freshness. Coherency is too

important for program correctness, and concurrency is fundamental to my entire sys-

tem’s design. However, I have use for an ACM that might occasionally have slightly

stale data, if in return it would give me a fixed memory space requirement.

3.6.1 High level functional description and example

The resulting ACM is described by the following principles:

• The single-writer still has its two slots for its double buffering-style scheme.

• The swarm of readers are confined into one or two slots not reserved for the

writer.

• If all the readers are working on one slot, then a second slot with fresher data

may become available to read.

• As readers finish up with an older piece of data, they are migrated towards the

slot with the fresher piece of data.

Therefore, only four slots are absolutely required to handle a single-writer and any

number of readers, although more does not hurt. An example of the operation of
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these principles is shown in Figure 3.13 on page 83, and the symbols are described in

Table 3.1. From left-to-right, and top-to-bottom, the state of the fixed-slot mechanism

is shown. In the first row of the figure, you can see a depiction of the swarm of reader

threads moving from the slot marked “p” to the slot marked “t”. Meanwhile, the

writer thread continues working back and forth on the other two slots, leaving the “f”

marker behind when it has completed writing into that slot. By the end of the row, all

of the readers have completely vacated the “p” slot, therefore the “p” marker is moved

to the same slot as the “t” marker. And after that happens, the “t” marker is itself

free to advance to the freshest data as indicated by the “f” marker. The remainder

of the example continues to show this pattern of markers leading and following the

threads.

p previous target
t current target
f most recently f illed
r reader thread
w writer thread

Table 3.1: Legend for Figure 3.13

By ensuring that all reader threads may only occupy one of two slots at any time,

and by having a single writer thread only, I can show that four data slots is all that is

strictly necessary to make this scheme work, no matter the number of readers. The

advancement of the “p” and “t” markers occurs in a step-over-step fashion, while

the writer thread can flit back and forth between the remaining two slots. Therefore

this data structure is different from a circular buffer in which the advancement of the

threads through the buffer always proceeds in the same direction. The reason why

this ACM compromises freshness is because no reader is allowed to move onto the

slot marked “f” until the “p” and “t” markers are placed together. The net effect is

that a slow reader thread might hold up the advancement of faster reader threads.

Whether this turns out to be a problem in practice remains to be seen.
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Figure 3.13: Example sequence of steps for a fixed-slot mechanism
with four slots and six readers

3.6.2 Pseudo-code

The shared variables are described in Figure 3.14. The rcount array stores a count of

how many readers are currently working on a particular slot at any time. I call S the

“safety” counter and its rationale is described in Section 5.1.1. p, t, f are the markers

as described in Table 3.1 and they are represented as indices into the data slot array.

The pseudo-code is laid out in Figure 3.15 and Figure 3.16. The first step of the

writer uses the notation ¬ (p, t, f) to describe the notion of “generalized negation” as

introduced by Simpson (1997a): it produces a number that is not found in the set

{p, t, f}. The writer does not require the use of any atomic operations beyond the

ability to load and store integer values from memory coherently, a property called

“single-copy atomicity” that will be discussed in Section 3.6.3.
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• rcount [i] ∈ N for slots i ∈ {0, 1, 2, 3},

• S ∈ N,

• p, t, f ∈ {0, 1, 2, 3} and

• an array sized to fit four slots of data.

Figure 3.14: The shared variable state

W1. wi ← ¬ (p, t, f)
W2. write data into slot wi

W3. f ← wi

Figure 3.15: Fixed-slot mechanism pseudo-code: writer

The reader is somewhat more complex. Steps R1 and R6 implement the step-over-

step logic: when the conditions are right, t chases f , while p chases t. Both R1 and

R6 must be implemented as atomic operations, this will be discussed in Section 3.6.3.

Steps R2, R3 and R5 are basic increment or decrement operations, and these are

trivial to implement atomically using hardware support.

3.6.3 Details of implementation

Atomic operations R1 and R6 are non-trivial and require additional explanation. Ar-

chitectures in the real world provide various levels of support for hardware atomic in-

structions, and it often comes in subtly different forms. For the purpose of the Terrier

operating system, I will focus on the commonly available ARM architecture (ARM,

2011), and I will discuss the capabilities of the ARM processor in handling atomic in-

structions. This does not preclude the fixed-slot mechanism from operating on other

architectures, but it does require conversion to whatever primitive atomic instructions

are available.
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R1. incr S;
if p = t then { t← f };
ri ← t

R2. incr rcount [ri]
R3. decr S
R4. read data from slot ri

R5. decr rcount [ri]
R6. if S = 0 and rcount [p] = 0 then { p← t }

Figure 3.16: Fixed-slot mechanism pseudo-code: reader

Atomicity and the ARM processor

The 32-bit ARMv7 processor has a few options for implementing atomic operations.

One of the most basic is that a 32-bit load or store can be guaranteed to be what

is called “single-copy atomic” when operating on normal memory. The gist of this

property is that no matter the interleaving, loads will always return a coherent 32-bit

value that was previously written, and stores will always manage to save a coherent

32-bit value. The manual states that: it is impossible for part of the value of the

memory location to come from one write operation and another part of the value to

come from a different write operation. The ARM processor also offers single-copy

atomicity in 8-bit and 16-bit operations, but I will not take advantage of those.

Past versions of the ARM architecture have offered a now-deprecated SWP, or

“swap”, atomic instruction. However, modern ARM versions have moved onto a

much more flexible and sophisticated scheme known popularly as “load-link/store-

conditional (LL/SC)” (Jensen et al., 1987) or LDREX/STREX in ARM parlance. LL/SC

is an optimistic scheme that allows an atomic operation to unfold in the time between

two instructions: LDREX and STREX, which stand for “load-exclusive” and “store-

exclusive” respectively. The LDREX operation retrieves a word from memory and

establishes a “monitor” on that memory address. The processor then may go on to

execute a series of instructions before finally coming to a STREX instruction. The

STREX instruction is supposed to store a word of memory into the exact same address
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as was previously accessed by LDREX. However, if anything has disturbed the monitor,

then the STREX operation will return an error code, and the program is thus informed

that the store operation did not take place. The usual procedure is then to loop back

and retry the whole operation, starting with the LDREX all over again. Various effects

can disturb the monitor, especially if another processor comes along and attempts to

write to the same memory address that the monitor is watching. An example atomic

procedure is shown with pseudo-code in Figure 3.17. Another important property

of LL/SC is that the ARM specification guarantees that at least one thread will

progress when using STREX on the same memory address. This makes it suitable for

implementing lock-free algorithms. LL/SC can be used to implement a whole family

of atomic operations, such as Test-And-Set or Compare-And-Swap. And it can be

used to do more elaborate operations as well. The ARM manual merely recommends

that the number of instructions between LDREX and STREX be kept to a minimum in

order to minimize the chance of disturbing the monitor, and that 128 bytes between

the two is probably the upper limit of reasonableness.

Implementing the reader

In short, the use of LDREX/STREX implies that the code in the monitored section

should be free of side-effects except on the specific memory address affected by the

STREX operation. Therefore, with this fact in mind, I have chosen to implement the

S, p, t, f shared state variables as fields in a single 32-bit word, as shown in Table 3.2.

Variables p, t, f only require 2 bits of space each, which leaves up to 26 bits worth

of room to store the counter S. Technically, this decision restricts the number of

1. v ← LDREX [address]
2. v ← v + 1
3. r ← STREX v, [address]
4. if r 6= 0 then goto 1

Figure 3.17: Atomic increment using LDREX/STREX
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bits: 2 2 2 26
32 p t f S 0

Table 3.2: The bit layout of the 32-bit word

simultaneous readers to 226 but I feel that this limitation is more than sufficient for

any conceivable system.

The implications of this layout are that incrementing and decrementing S can be

done the usual way, with compiler primitives that expand into assembly code much

like shown in Figure 3.17. Accessing the shared state variables p, t, f does require

masking and shifting, but the ARM processor is quite adept at that task, as many

instructions can invoke the inline “barrel shifter” functionality at no additional cost.

In any case, having access to all state variables simultaneously is advantageous for

implementing operations such as R1 and W1.

Sample pseudo-code for the atomic operations R1 and R6 are shown in Figures 3.18

and 3.19. The pseudo-code largely reflects the actual ARM assembly code but more

comprehensible names are substituted for various operations:

• GetBits (r, off, len) and SetBits (r, off, len) perform shifting and masking opera-

tions to get or set the bit-fields as specified by an offset and a length.

• PSHIFT, TSHIFT, FSHIFT, and SLENGTH are constants intended to encode the

layout of the 32-bit word as described in Table 3.2.

• Pseudo-registers with a meaningful label, such as rt, are used instead of actual

registers.

• if · · · then goto is used instead of the normal comparison, branch or conditional

execution codes.

Notably, the assembly code is no more than about a dozen instructions, which

is far below the limits suggested by the ARM manual. The code largely consists
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R1. incr S; if p = t then { t← f }; ri ← t

1. rw ← LDREX [address]
2. rw ← rw + 1
3. rp ← GetBits (rw,PSHIFT, 2)
4. rt ← GetBits (rw,TSHIFT, 2)
5. if rp 6= rt then goto 8
6. rf ← GetBits (rw,FSHIFT, 2)
7. SetBits (rw,TSHIFT, 2)← rf

8. rc ← STREX rw, [address]
9. if rc 6= 0 then goto 1

10. ri ← GetBits (rw,TSHIFT, 2)

Figure 3.18: Assembly pseudo-code for atomic operation R1

R6. if S = 0 and rcount [p] = 0 then { p← t }

1. rw ← LDREX [address]
2. rS ← GetBits (rw, 0, SLENGTH)
3. if rS 6= 0 then goto 9
4. rp ← GetBits (rw,PSHIFT, 2)
5. rn ← LOAD [address of rcount [rp]]
6. if rn 6= 0 then goto 9
7. rt ← GetBits (rw,TSHIFT, 2)
8. SetBits (rw,PSHIFT, 2)← rt

9. rc ← STREX rw, [address]
10. if rc 6= 0 then goto 1

Figure 3.19: Assembly pseudo-code for atomic operation R6

of shifting and masking operations performed on a single word, with no side-effects

outside of that. R6 does reach out to perform a memory load from an address not

under the exclusive monitor, but that is also acceptable under the ARM specification:

so long as the access is to normal memory.

Implementation of the writer

The writer performs fewer steps and each of them is less complex. For W1, a more gen-

eralized negation operation might invoke the CLZ instruction (count-leading-zeroes),

but with only four possible result values, the most efficient implementation here in-
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volves simply setting and testing a few bits in a register. W3 is simply a couple of shift-

ing and masking operations to set the value of f , wrapped in the usual LDREX/STREX

pair. For both the reader’s R4 and the writer’s W2, the actual reading and writing of

data can be left to the compiler’s most efficient version of memcpy.

Given all of these assembly sections, I can examine them and their context to figure

out reasonable pre-conditions and post-conditions. And I know that LDREX and STREX

will always allow at least one thread to progress. So, the following question is: can

I put this all together and show that they work together in sequence to give me the

desired property of coherency? That is the topic of Chapter 5, and for the fixed-slot

mechanism specifically, in Section 5.1.

3.6.4 The fixed-slot mechanism interface

Types and initialization

Some simplifications have been made in the discussion of the fixed-slot mechanism

thus far in this chapter, as well as in Section 5.1. These simplifications shorten the

description for the purpose of discussing the workings of the mechanism, without

affecting its correctness. In this section, I will introduce the true interface for the

fixed-slot mechanism, which adds annotations that are useful to the application pro-

grammer. In Listing 3.4 you can see the true viewtype definitions for the fixed-slot

mechanism. These types are indexed by two parameters of interest to users of the

interface: the type of data being communicated by the mechanism, and the direction,

encoded as a boolean value (at the type level) that is true iff this is the writer side.

Two convenient aliases are also provided, one for writers, and one for readers. The

definition of the fixedslot type is omitted here, since it is an existential type that is

hiding details only of interest to the implementation.

Listing 3.5 shows the set of initialization and free functions available. They make

use of the IPC memory interface described in Section 3.2. There are separate functions
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vtypedef fixedslot (a: t@ype, wr: bool)
vtypedef fixedslotw (a: t@ype) = fixedslot (a, true)
vtypedef fixedslotr (a: t@ype) = fixedslot (a, false)

Listing 3.4: Types for the fixed-slot mechanism

fun fixedslot_initialize_reader {a: t@ype} {l: addr} {n: nat} (
ipcmem_v (l, n) | ptr l, int n

): fixedslotr a

fun fixedslot_initialize_writer {a: t@ype} {l: addr} {n: nat} (
ipcmem_v (l, n) | ptr l, int n

): fixedslotw a

fun fixedslot_free {a: t@ype} {wr: bool} (
fixedslot (a, wr)

): [l: addr] [n: nat] (ipcmem_v (l, n) | ptr l)

Listing 3.5: Initialization for the fixed-slot mechanism

for initializing readers and writers, but only one is needed for releasing the memory

back to the IPC memory pool. These functions cannot fail so no special error-handling

is needed.

Basic interface

For reading and writing of small values that are not awkward to pass by value, a simple

interface is provided as shown in Listing 3.6. As will be common to all the following

interface functions, the viewtype for the fixed-slot mechanism is shown to evolve even

though there are no apparent changes at this level, e.g. ! fixedslotr a >> _. In fact,

since this viewtype has existential variables, there are changes behind the scenes.

ATS provides a convenient syntax using the underscore that allows us to express that

although the type has remained the same at the lexical level, there are changes going

on that are hidden from us: and therefore when the function returns, it means that

the value has been updated in some fashion.
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fun{a:t@ype} fixedslot_read (! fixedslotr a >> _): a
fun{a:t@ype} fixedslot_write (! fixedslotw a >> _, a): void

Listing 3.6: Basic interface for the fixed-slot mechanism

fun fixedslot_readptr {a:t@ype} {l: agz} (
!a @ l | ! fixedslotr a >> _, ptr l, size_t (sizeof a)

): void

fun fixedslot_writeptr {a:t@ype} {l: agz} (
!a @ l | ! fixedslotw a >> _, ptr l, size_t (sizeof a)

): void

Listing 3.7: Pointer-based interface for the fixed-slot mechanism

Pointer interface

For larger types, such as arrays, it is not such a good idea to pass by value. A reference

interface could have been provided but I have opted to express it as a pointer-with-

views instead. In Listing 3.7, for this interface, the programmer must provide a view

that proves the right to access the piece of memory for the given pointer, as well as the

correct size value for the type. If these are not provided correctly, then type-checking

shall fail.

Higher-order function interface

Perhaps the most intriguing opportunity for an ATS interface is the potential of using

higher-order functions to express code in better, possibly even more more efficient

ways. Listing 3.8 shows an interface that allows a programmer to pass along a function

that takes a reference to the communicated data and then returns some other value.

This may be useful, for example, if you only wish to examine a small portion of the

incoming data, and therefore doing a full copy into a buffer is unnecessary work.

A working example is provided in Listing 3.9. For this use, the buffer is quite

large (1600 bytes), but for the time being I am only interested in the first four bytes.

The combination of var, lam@, and =<clo1> has allowed me to create a downward-only
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fun{b:t@ype} fixedslot_readfn {a:t@ype} (
! fixedslotr a >> _, & ((& INV(a)) -<clo1> b), size_t (sizeof a)

): b

Listing 3.8: Higher-order function interface for the fixed-slot mecha-
nism

fixedslot_readfn<uint> (input, f, BUFSIZE) where {
var f = lam@ (rbuf: & buf_t): uint =<clo1> rbuf[0]

}

Listing 3.9: Higher-order function example for the fixed-slot mecha-
nism

closure that is allocated upon the stack. It is a function that can be passed as a value,

but it cannot be returned, in order to protect the dynamic extent of the closure. But

I only need it to survive long enough to finish running the fixedslot_readfn function.

In this case, instead of reading 1600 bytes into a separate buffer, I simply dereference

and index into the buf_t, which happens to be defined as an array of 400 uints. The

fixedslot_readfn function operates the mechanism far enough to obtain the proper

state for reading, then calls my function, and then cleans up afterwards. It is also

fully parametric in that it returns the value that my function returned. In this way,

I have implemented a function that is both simple and efficient, and it manages to

capture this essence of functional programming in a systems setting.

3.6.5 Performance

I conducted several experiments to find out whether the atomic operations were prac-

tical in the presence of several competing threads: I believe that the results are

reasonable. Those results are shown in Table 3.3 from a testbed with a Cortex-A9

MPCore ARM processor running the Terrier OS. One writer and three readers were

tested under various rate-monotonic static priority scheduling scenarios. The number

of cycles required to complete the atomic operation R1 was measured for each invoca-
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tion, starting from before LDREX and recording the cycle count after STREX completed

successfully. Each run could result in over a hundred thousand invocations of R1.

The total number of cycles and invocations was then added up and divided to give

an average for each testing scenario.

As you can see in the table, certain scheduling scenarios result in higher average

cycle counts for R1. I suspect that this is due to increased contention on the exclusive

monitor, and unfortunate timing of context switching away from the running process.

The worst case came when all programs shared the same capacity and period values,

and it did not seem to matter whether or not they were split across the different

CPUs. One interesting note from the tests is not shown in the table: when R1 was

able to run without any interference, it could finish in as little as 27 cycles.

A set of larger experiments were conducted as well, mostly involving interaction

with the USB interface. These experiments happened in conjunction with the ex-

periments described in Section 4.1.3, which may need to be consulted in order to

understand the full context. In short: a USB network interface card is being used to

send and receive Ethernet frames, and the µIP library is providing a basic network

test1 test2 test3 test4 test5
writer

capacity 1 1 1 1 1
period 4 4 7 5 7

affinity cpu0 cpu0 cpu0 cpu0 cpu0
reader0

capacity 1 2 1 1 1
period 9 9 7 7 7

affinity cpu1 cpu1 cpu1 cpu1 cpu0
reader1

capacity 1 3 1 1 1
period 9 9 7 11 7

affinity cpu1 cpu1 cpu1 cpu1 cpu0
reader3

capacity 1 4 1 1 1
period 9 9 7 13 7

affinity cpu0 cpu0 cpu0 cpu0 cpu0
R1 avg cycles 86.8 74.3 124.9 87.7 122.0

Table 3.3: Average cycle counts to run step R1 under various schedul-
ing scenarios
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Figure 3.20: Experiment with separate µIP process of varying capac-
ity

stack.

Table 3.4 shows the basic setup of the processes on the CPUs. Capacity and Period

units are given in multiples of 1/16384 of a second, approximately 61 µseconds each.

C1 and C2 were set and varied in various ways: when not varied, the default C1 or

C2 chosen was 19. The NIC1 process used the fixed-slot mechanism to pass received

packets to the µIP process, and the µIP process used the fixed-slot mechanism to

send packets back to the NIC1 for transmission. Therefore, each ICMP ping must go

twice between processes. This style of programming more closely resembles that of a

microkernel; it is not generally recommended for Terrier. However, it does provide a

good example of an IPC task that must take place within a timely manner.

CPU0 CPU1
EHCI µIP NIC1

Capacity 16 C1 C2
Period 320 20 20

Table 3.4: Basic scheduling setup for the experiments

Figure 3.20 compares the performance of a system with a separate µIP process
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that must rely on the fixed-slot mechanism for communication against a system where

the µIP stack is integrated into the NIC1 process. The capacity of the µIP process,

C2, is varied from 1 to 20. As expected, the separate µIP system performs worse
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Figure 3.21: Experiment varying capacity of NIC1 with separate µIP
process
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Figure 3.22: Experiment varying capacity of both NIC1 and separate
µIP process
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on this responsiveness test than the integrated system; it has to communicate two

additional times, after all. However, the overall difference is about 200 µsec, and it

still outperforms Angstrom Linux as long as C2 > 13. Altogether, this suggests that

each operation of IPC had overall overhead at about 100 µsec: to transfer a 1600-byte

buffer across processors via the asynchronous fixed-slot mechanism, in an experiment

where the two processes were allowed to operate completely independently of each

other.

Next, a similar experiment was conducted but instead of varying C2, I varied C1,

the NIC1 capacity. Those results are shown in Figure 3.21. And in Figure 3.22 I

varied both C1 and C2 simultaneously. In all cases, the difference in response time

between the integrated and the separate µIP processes are present in approximately

the same way, although the performance in the extremely low capacity case varied

significantly.
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Chapter 4

Memory Protection using Types

One of the primary goals of Terrier is to gain the advantage of memory protection

by employing the use of type system-level reasoning instead of safety checks at run-

time. The following sections describe how that philosophy was applied to various

subsystems within the operating system.

4.1 The USB interface

The low-level process of setting up the USB host controller, with the Enhanced Host

Controller Interface (EHCI), is described in Section 2.3.4. The initialization takes

place under the ehci module, which also publishes a shared, inter-process piece of

memory that allows other programs to perform USB operations directly upon the

internal structures of the host controller driver without any additional inter-process

communication or kernel-privilege level switching. The interface to that shared mem-

ory is specified by userlib/usb.sats. It is also expected that most users of the USB

interface will want to take advantage of the prewritten USB data structure manipu-

lation library that is described in the same file. This provided library has functions

with types that help ensure the proper steps are followed when preparing, executing

and analyzing USB transfers. The following sections describe an example and the

provided interface for executing USB transfers asynchronously.

4.1.1 An example use of the interface

Listing 4.1 shows the implementation of a function that invokes the ClearFeature

command on a USB endpoint to clear a halted endpoint, using a standard USB

control transfer.
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fun usb_clear_endpoint {i: nat} (
dev: ! usb_device_vt (i), endpt: int

): [s: int] status (s) =
usb_with_urb (dev, 0, 0, f) where {
var f = lam@ (

dev: ! usb_device_vt (i),
urb: ! urb_vt (i, 0, false)

): [s: int] status (s) =<clo1>
let
val (xfer_v | s) =

urb_begin_control_nodata (
urb, make_RequestType (HostToDevice, Standard, Endpoint),
make_Request ClearFeature,
ENDPOINT_HALT, endpt

)
in
if s = OK then begin
urb_wait_while_active (xfer_v | urb);
urb_transfer_completed (xfer_v | urb);
urb_detach_and_free urb

end else begin
urb_transfer_completed (xfer_v | urb);
urb_detach_and_free_ urb;
s

end
end

}

Listing 4.1: usb_clear_endpoint

I make use of the higher-order function usb_with_urb to neatly bracket the use of

the USB Request Block (URB) with the appropriate resource allocation and release

operations. ATS makes it possible to use higher-order functions such as usb_with_urb

in a low-level setting by allocating the closure on the stack. This is accomplished

by the syntax shown in the listing, where var f is defined as a function using the

lam@ keyword and a linear closure with effects using the =<clo1> syntax after the type

signature. Such a stack-allocated closure may be used in downward function calls but

cannot be returned up the stack, and the type system prevents that from happening.

The viewtype urb_vt representing the URB is an abstract stand-in that is con-

cretely represented behind the scenes as a standard EHCI queue head structure.

Several such URBs are prepared by the ehci module and kept in reserve, so that
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they can be allocated at will for each device. Statically, the abstract viewtype urb_vt

keeps track of the index of the device, the number of Transfer Descriptors currently

attached, and whether or not they are active as far as the program knows:

absvtype urb_vt (i: int, nTDs: int, active: bool)

The function usb_begin_control_nodata begins a type of USB control transfer that

has no DATA stage, only the SETUP and STATUS stages. The SETUP stage of any

USB control transfer is given in a standard USB device request format that has a

number of fields defined by the USB specification. They are flexible and intended for

many different uses depending on the specific request being made. Here they have

been encoded as such:

• usb_RequestType_t is created by a make_RequestType function (see Listing 4.8) that

expects three values defined with algebraic datatypes, but those are essentially

translated by ATS into enumerated integer types, so there is no overhead.

• The same goes for usb_Request_t and make_Request.

• The next value is known as the wValue in USB parlance and in this particular

case, it specifies the particular feature to be cleared, namely the ENDPOINT_HALT.

• The final parameter is the wIndex and for this particular request it is defined to

be the endpoint that should be cleared. Notice that the variable endpt is part

of the closure.

The USB interface provided by the usb.sats library has a set of functions, such

as urb_begin_control_nodata, that set up the data structures and initiate the transfer

but then return and expect the clean-up to be handled by the caller. With ATS types

we can easily make specifications that require the caller to clean up properly.

In this case, the function that begins the control transfer returns dynamically a

single integer value that specifies the status of the transfer. It also returns a static
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! urb_vt (i, 0, false) >> urb_vt (i, nTDs, active) // where
#[nTDs: int | (s == 0 || nTDs == 0) && (s <> 0 || nTDs > 0)] // and
#[active: bool | (s == 0) == active]

Listing 4.2: The way urb_begin_control_nodata modifies the URB

view, named xfer_v, that represents the fact that a transfer might be on-going. A

couple of other viewtypes are modified “in-place” as well. The evolution of the URB

is shown in Listing 4.2.

These definitions work together: the view representing the URB cannot be fully

comprehended until the value of the status s is known. The guards encode the

following logical statements:

• If s is not OK then the value of nTDs is equal to 0.

• If s is OK then the value of nTDs is greater than 0.

• The value of the boolean static variable named active is equal to the result of

comparing s with the value of OK.

After the return from urb_begin_control_nodata we must deal with the URB be-

cause it is now possibly active, with a chain of allocated TDs to manage. So, with

the ATS type system, we are required to deal with the value of urb_vt in some way

because it has a linear type. But we cannot choose the functions to deal with it

until we know whether or not the status is OK. In this way, we force the application

programmer to do the proper error-checking and handling, and this is all handled

statically during type-checking.

Let us consider the else branch first: the function urb_transfer_completed is defined

to require that the URB object it operates upon is not active. Thanks to the if-

statement we know that is the case.

Finally, we must take responsibility for the chain of transfer descriptors that is

attached to the URB. Since they represent allocated memory, they must be managed.
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absvtype usb_device_vt (i: int)

fun usb_acquire_device {i: nat} (int i): usb_device_vt (i)

fun usb_release_device {i: nat} (usb_device_vt (i)): void

Listing 4.3: USB device acquisition and release

Again, the types stipulate that we must return a URB with zero TDs attached, so

ATS will not let us off the hook until we do something about the TDs. The function

urb_detach_and_free_ is a helper function that unhooks the TDs from the USB device

and also deallocates all of them. It returns void, so we simply return the failed status

from earlier.

In the then branch, we know that the USB transaction was successfully started.

But the types tell us that we cannot return an URB that is “in progress.” Therefore

we use the function usb_wait_while_active to ensure that the URB is no longer active

when it returns. Then we flush the transfer status using urb_transfer_completed, and

deallocate the TDs using urb_detach_and_free. This version of the function does not

return void, but rather it returns a status value that it obtains by examining the TDs.

With all this done, we can safely return from the anonymous function and allow

usb_with_urb to complete the job of cleaning up the URB.

4.1.2 The provided library interface

Allocation and release

The ehci module identifies and configures all USB devices that it finds. Then it

makes them available to other programs via an IPC interface that is mediated by

the interface found in Listing 4.3. USB devices are indexed starting from 0 and

applications can obtain a handle by requesting it. Since usb_device_vt is a viewtype,

the type-checker ensures that it is later released. The interface is not sophisticated

but suffices for the purpose of experiments.
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absvtype urb_vt (i: int, nTDs: int, active: bool)

vtypedef urb0 = [i: int | i >= ~1] urb_vt (i, 0, false)

fun usb_device_alloc_urb
{i, endpt, maxpkt: nat | (endpt < 16 && 7 < maxpkt && maxpkt < 2048) ||

(endpt == 0 && maxpkt == 0)} (
! usb_device_vt (i), int (endpt), int (maxpkt), & urb0? >> urb_vt (i’, 0, false)

): #[s, i’: int | (s != 0 || i’ == i) && (s == 0 || i’ == ~1)] status (s)

fun usb_device_release_urb {i: nat} (
! usb_device_vt (i), urb_vt (i, 0, false)

): void

prfun usb_device_release_null_urb (urb_vt (~1, 0, false)): void

Listing 4.4: URB allocation and release

A USB Request Block (URB) is the entity through which USB transfers are me-

diated. URBs are allocated within each USB device. Behind the scenes, URBs are

actually EHCI Queue Head (QH) data structures, and the ehci module has preconfig-

ured all of the possible QHs into the circularly-linked list that forms the Asynchronous

schedule. An example of this is shown in Figure 4.2. The interface specified in List-

ing 4.4 allows application programs to retrieve a handle to a preconfigured URB that

must eventually be released, thanks to the ATS type system. URBs are allocated with

an endpoint and a maximum packet size specified. The USB specification puts some

hard limits on those values, so that has been encoded into ATS. I have created a spe-

cial case for endpoint 0, the Control endpoint, where by specifying maximum packet

size 0, it will automatically look up the proper maximum packet size for endpoint 0.

Since it is possible for URB allocation to fail, the return types reflect the possibility

that the returned URB is invalid, as given by a negative index. The alias urb0 is a

shortcut for an URB that could be invalid. The function usb_device_alloc_urb returns

a status value to tell us if allocation succeeded; if OK then it stores the URB object

into the “out parameter” that is passed by reference. The ATS type system forces you

to check if the returned status is OK in order to prove that the URB has a valid index.
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fun usb_with_urb
{i, endpt, maxpkt: nat | (endpt < 16 && 7 < maxpkt && maxpkt < 2048) ||
(endpt == 0 && maxpkt == 0)} (

! usb_device_vt i, int endpt, int maxpkt,
f: &((! usb_device_vt i, ! urb_vt (i, 0, false)) -<clo1> [s: int] status (s))

): [s: int] status (s);

Listing 4.5: usb_with_urb

absvtype usb_mem_vt (l: addr, n: int)

fun usb_buf_alloc {n: nat | n < USB_BUF_SIZE} (int n): [l: agez] usb_mem_vt (l, n)

fun usb_buf_release {l: agz} {n: int} (usb_mem_vt (l, n)): void

prfun usb_buf_release_null {a: t@ype} {n: int} (usb_mem_vt (null, n)): void

Listing 4.6: USB memory area allocation and release

This is encoded by the logical statement (s != 0 || i’ == i) && (s == 0 || i’ == ~1)

where OK is considered to be a status value of 0. If the URB turns out to be

invalid, a trivial proof-function is provided to discard the linear object, which is

named usb_device_release_null_urb. Proof-functions are erased by the compiler, so

this is just a measure that exists to tie up loose ends. For valid URBs, the real

function usb_device_release_urb takes care of cleaning up.

Allocation and release of an URB is a rote procedure, so I have also provided a

helper higher-order function, shown in Listing 4.5, that can be applied to a function

with a stack-allocated closure. An example use and detailed explanation is found in

Section 4.1.1.

In order to send or receive data via USB, a buffer must be prepared in a special

memory region that is designated for memory-mapped I/O. The details are handled

by an interface shown in Listing 4.6. Again, it is possible for allocation to fail, so

usb_mem_vt is indexed by an address value that can be zero. This situation occurs so

often in ATS that there is a set of aliases for convenience:

• addr is the general, unrestricted sort that models pointer addresses.
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fun usb_buf_set_uint_at {l: agz} {i, n: nat | 4 * i <= n} (
! usb_mem_vt (l, n), int (i), uint

): void

fun usb_buf_get_uint_at {l: agz} {i, n: nat | 4 * i <= n} (
! usb_mem_vt (l, n), int (i)

): uint

fun{a:t@ype} usb_buf_copy_from_array {n, m: nat} {src, dst: agz} (
! (@[a][m]) @ src |
! usb_mem_vt (dst, n), ptr (src), int (m)

): void

fun{a:t@ype} usb_buf_copy_into_array {n, m: nat} {src, dst: agz} (
! (@[a][m]) @ dst |
ptr (dst), ! usb_mem_vt (src, n), int (m)

): void

fun usb_buf_takeout {a: t@ype} {l: agz} {n: nat | sizeof (a) <= n} (
usb_mem_vt (l, n)

): (a? @ l, a @ l -<lin,prf> usb_mem_vt (l, n) | ptr (l))

Listing 4.7: USB memory area access

• agez means “address greater than or equal to zero.”

• agz means “address greater than zero.”

Therefore, by returning [l: agez] usb_mem_vt (l, n), the function usb_buf_alloc

is telling us that the return value might be NULL. But most functions that want

to handle usb_mem_vt will require an agz, that is, an “address greater than zero,”

including usb_buf_release. To handle this situation in general, the ATS style is to

overload the ptrcast function. This allows the programmer to compare the usb_mem_vt

value against zero using an if-statement. If the value is zero, then it can be discharged

using the proof-function usb_buf_release_null. And if it is greater than zero, the ATS

type-checker is smart enough to understand the refined constraint.

USB device memory access

The memory regions used to transfer data to and from USB devices are described by

a special viewtype named usb_mem_vt. However, ultimately, these are simply memory
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datatype usb_RequestType_dir = HostToDevice | DeviceToHost
datatype usb_RequestType_type = Standard | Class | Vendor
datatype usb_RequestType_receipt = Device | Iface | Endpoint | Other
fun make_RequestType (
usb_RequestType_dir, usb_RequestType_type, usb_RequestType_receipt

): usb_RequestType_t

datatype usb_Request =
GetStatus | ClearFeature | _Invalid_bRequest1 | SetFeature |
_Invalid_bRequest2 | SetAddress | GetDescriptor | SetDescriptor |
GetConfiguration | SetConfiguration | GetInterface | SetInterface |
SynchFrame

fun make_Request (usb_Request): usb_Request_t

Listing 4.8: USB request types and requests

regions that will need to be accessed by ordinary program code at some point. Several

functions are available for that purpose, shown in Listing 4.7. These were developed

as needed for various experiments, as I found a use for them. usb_buf_set/get_uint_at

are basic buffer indexing operations that operate on a single machine word, a uint.

This is useful for tasks such as quickly accessing the header of a packet stored in

the USB memory space. For larger operations, there are memory copy functions for

transfering data between an ATS array and the USB memory space. Finally, most

generally, usb_buf_takeout allows a programmer to temporarily cast the USB memory

space as an ordinary pointer with any view desired; as long as the size requested

fits within the space. This function generates a linear proof-function that serves

as an obligation to convert the pointer back into a usb_mem_vt so that the ordinary

pointer cannot “escape” and be used in other contexts. The cast target type a? is

considered to be an uninitialized location in ATS, with the question mark modifier,

and is protected against uninitialized read by the type-checker.

Transfers

The USB allows devices to communicate with the host using what is known as a

“control” transfer; the purpose being to help configure the hardware for further use.
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The format of these transfers is well-defined within the USB specification. Without

getting into the details of packet types, there are essentially 6 parts to a control

transfer: request type, request, value, index, length, and data. The request type

and request values have been defined in ATS as shown in Listing 4.8. The request

type describes the direction of data transfer, the type of request, and the recipient

of the request. The request itself can be either one of the standard requests, or

something defined in a class specification or by a vendor. If it is a standard request

then it appears in Listing 4.8. Note that the use of datatype in ATS with these

0-parameter constructors is efficient: there is no memory allocation, instead, they

are simply enumerated starting from 0. The function make_RequestType does the bit-

manipulation necessary to form a single value from the three parameters.

Both wValue and wIndex are general-use parameters that depend upon the precise

request being fulfilled for their meaning. All of the standard requests specify what

they expect these values to be, and so should all vendor and class requests.

Listing 4.9 shows the function signature for urb_begin_control_read, which is one

of the functions available for initiating control transfers. There is also a symmetric

function for control write, and also one for what is called “control nodata” for when

there is no data being transfered. The control write function has the same signature

fun urb_begin_control_read {i, n, len: nat | len <= n} {l: agz} (
! urb_vt (i, 0, false) >> urb_vt (i, nTDs, active),
usb_RequestType_t,
usb_Request_t,
int, // wValue
int, // wIndex
int (len), // wLength
! usb_mem_vt (l, n) // data

): #[s: int]
#[nTDs: int | (s == 0 || nTDs == 0) && (s <> 0 || nTDs > 0)]
#[active: bool | (s == 0) == active]
(usb_transfer_status (i) | status (s))

Listing 4.9: USB control read
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fun urb_begin_bulk_read {i, n, len: nat | len <= n} {l: agz} (
! urb_vt (i, 0, false) >> urb_vt (i, nTDs, active),
int (len), // number of elements
! usb_mem_vt (l, n) // data

): #[s: int]
#[nTDs: int | (s == 0 || nTDs == 0) && (s <> 0 || nTDs > 0)]
#[active: bool | (s == 0) == active]
(usb_transfer_status (i) | status (s))

Listing 4.10: USB bulk read

and the only difference for “nodata” is that wLength and data are no longer needed.

Those two functions have been omitted for space’s sake.

Examining urb_begin_control_read more closely, you can see that the first param-

eter is a urb_vt that is expected to evolve upon return. Initially, it must provably

signify a URB that has zero TDs attached and that is not active. But afterwards, the

number of TDs attached and active state will depend upon whether the function was

able to successfully return or not. Therefore, in the return type, the indices have been

defined with the following logic in mind: if and only if s is OK, then nTDs is greater

than zero. And since active is a boolean value, it can simply be assigned the result

of testing whether s is OK. The net effect of providing this return type is that the

programmer is forced to check the returned status of the function in order to write

sensible code that will pass the type-checker.

The remainder of the parameters are as described by the USB specification, except

that the data parameter must be provided as the special usb_mem_vt viewtype that was

discussed earlier. Note that the ATS type-checker enforces the provision len <= n that

the wLength parameter must be provably no larger than the amount of USB memory

allocated. Finally, on the proof-world side, the function also returns a view named

usb_transfer_status that also serves as an obligation to check and clean-up after the

transfer. Such functions will be discussed shortly.

Before moving on, I would like to describe the function used for initiating the USB
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fun urb_transfer_chain_active {i, nTDs: nat | nTDs > 0} {active: bool} (
! usb_transfer_status (i) |
! urb_vt (i, nTDs, active) >> urb_vt (i, nTDs, active’)

): #[s: int] #[active’: bool | (s == 0) == active’] status (s)

fun urb_transfer_result_status {i, nTDs: nat | nTDs > 0} (
! urb_vt (i, nTDs, false)

): [s: int] status (s)

fun urb_wait_if_active {i, nTDs: nat} {active: bool} (
xfer_v: ! usb_transfer_status (i) |
usbd: ! urb_vt (i, nTDs, active) >> urb_vt (i, nTDs, false)

): void

Listing 4.11: Checking result status

“bulk” transfer process. Bulk transfers are the USB’s mechanism for transfering large

amounts of general-purpose data on an available-bandwidth basis. They are actually

rather similar to control transfers except that much less is required to be specified.

All that a bulk transfer needs is a URB, a length, and the data buffer. Listing 4.10

shows the signature of the bulk read function, which is symmetrical to the bulk write

function. There is no “bulk nodata” function, since that would not make sense. As

you can see, it is very similar to the control read function, but with fewer parameters,

so I will not repeat the discussion again.

Checking result status

Upon initiation of the transfer, the USB host controller will asynchronously send and

receive packets at the next available opportunity. The outcome of the transfer will be

reflected in the special data structures that are used by the driver to communicate

with the host controller. The precise details of those data structures are kept abstract

by this interface. Instead, the programmer has several functions available to query

the status of the transaction: urb_transfer_chain_active in Listing 4.11 returns OK if

the host controller has not completed the transfer. The return type of the function

specifies that the value of active’ has the same boolean value as comparing s == OK.
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fun urb_transfer_completed {i, nTDs: nat} (
usb_transfer_status (i) |
! urb_vt (i, nTDs, false)

): void

fun urb_transfer_abort {i, nTDs: nat} {active: bool} (
usb_transfer_status (i) |
! urb_vt (i, nTDs, active) >> urb_vt (i, nTDs, false)

): void

fun urb_detach {i, nTDs: nat} (
! urb_vt (i, nTDs, false) >> urb_vt (i, 0, false)

): [l: agz] ehci_td_ptr (l)

fun urb_detach_and_free {i, nTDs: nat | nTDs > 0} (
! urb_vt (i, nTDs, false) >> urb_vt (i, 0, false)

): [s: int] status s

fun usb_device_detach_and_release_urb {i, nTDs: nat | nTDs > 0} (
! usb_device_vt (i), urb_vt (i, nTDs, false)

): [s: int] status s

Listing 4.12: Clean up

This allows a programmer to resolve whether or not the transfer is still active by using

an ordinary if-statement, and the indexed type urb_vt will be adjusted appropriately

depending upon which branch is considered.

Once the program reaches a point where active index is proven to be false, then

it is possible to query the final result status of the transfer. If it was successful, then

urb_transfer_result_status will return OK, or otherwise it will return an error status

such as EDATA or EINCOMPLETE. Now, it is possible for the program to go and do other

things while waiting for the transfer to become inactive, but a convenience function

is also provided that busy-waits until the transfer is complete: usb_wait_if_active.

The behavior is described by its type: it will only return once it has proven that the

URB is no longer active.
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Clean-up

Listing 4.12 shows signatures of some functions that assist with cleaning up after

a USB transaction. The first function, usb_transfer_completed, can only be used on

an inactive URB and it consumes the usb_transfer_status view that was produced

by the initiation function. The second function, usb_transfer_abort, can be used on

an URB in any state of activity, and is intended to be used when the programmer

wishes to cancel a transfer. Once a URB is inactive, then it can have its TD chain

safely removed. The TD chain is a linked list of host controller data structures used

to communicate with hardware. It is important that the URB be inactive before

tinkering with the TD chain or else hardware may become confused. The ATS type

system prevents the use of these functions until the URB is provably inactive.

The most basic function is urb_detach that unlinks the TD chain from the URB

and then returns it. TD chains are pieces of device memory, and therefore represent a

resource that must be handled by the programmer correctly. I have not discussed TD

chains yet because they are a low-level detail that is mostly unnecessary to handle

when using the high-level interface. But if the programmer wishes to obtain a handle

on the TD chain, then it must eventually be freed with a call to ehci_td_chain_free.

More likely, the programmer will want to simply combine those two steps into one

that avoids the need to handle the TD chain explicitly, by using urb_detach_and_free.

This function detaches the TD chain, then frees the memory, but not before obtaining

the result status of the transfer – which it then returns. Altogether a convenient

function. There is also a version named urb_detach_and_free_ that does not return

the status.

Finally, there is a function named usb_device_detach_and_release_urb that not only

detaches and releases the TD chain, it also releases the URB. This is useful for

functions that execute a single USB transfer with an URB and quickly want to clean

up and return a status.
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fun usb_set_configuration {i: nat} (! usb_device_vt (i), int): [s: int] status (s)

fun usb_get_configuration {i: nat} (
! usb_device_vt (i), & uint8? >> uint8

): [s: int] status (s)

fun usb_get_endpoint_status {i: nat} (
! usb_device_vt (i), int, & uint? >> uint

): [s: int] status (s)

fun usb_clear_endpoint {i: nat} (! usb_device_vt (i), int): [s: int] status (s)

Listing 4.13: Helper functions

Helper functions

Using these USB transfer tools, several basic helper functions shown in Listing 4.13

have been provided that execute some of the standard device requests allowed for by

the USB standard. One of the most important is usb_set_configuration: it selects

the configuration of the device based upon the provided configuration value (a simple

integer). Just about all USB devices require that this configuration step take place

before operation may proceed. It has a counterpart named usb_get_configuration

that shows how such a function might choose to return a result value. In this case,

the second parameter is by reference, and it specifies that some piece of uninitialized

1-byte length piece of memory be provided to write the returned value. The actual

return value is a status that specifies whether or not the function succeeded. Both

of the other functions behave similarly and perform their respective duties as defined

by the USB specification.

4.1.3 Performance

Figure 4.3 shows the results of an experiment conducted using two separate USB

Ethernet network interface cards (NIC). NIC1 is from the SMSC 9500-series, and

NIC2 is based on the ASIX AX88772, both commonly used by USB Ethernet adapters.

The NICs were both hooked up to a third machine, a quad-core Xeon E5506 running
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CPU0 CPU1
UART NIC1 EHCI NIC2

Capacity 1 C 1 18
Period 20 20 20 20

Table 4.1: Basic scheduling setup for the experiments

Scientific Linux 6, using an Ethernet switch (but this was changed later, as explained

below). On the PandaBoard, four processes were loaded and arranged into a static

priority rate-monotonic schedule across the two processors, as laid out by Table 4.1.

The entry marked with an C, the capacity of NIC1, was varied over the course of

the experiments. Capacity and Period units are given in multiples of 1/16384 of a

second, approximately 61 µseconds each.

Both of the NIC processes are continually running a copy of the µIP (Dunkels,

2013) TCP/IP stack each, independently responding to network activity by polling

the interfaces. They are both using the provided USB library and interface for ATS

in order to operate and manage their own memory-mapped I/O interaction with the

EHCI host controller hardware itself. Both drivers are able to perform their duties

without invoking any kernel functionality, and with only one exception they are oper-

ating entirely in their own space. That main notable exception is the way the Queue

Heads must be managed in the shared device space, as described by the EHCI spec-

ification. Access to the Queue Head data structures is mediated through the ATS

programming interface for safety purposes. The arrangement is described by Fig-

ure 4.1, which shows how the ehci module uses the IPC framework to communicate

status information, as well as set up the USB memory-mapped device I/O space for

both NIC modules to use independently.

For the purpose of this experiment, one NIC at a time was bombarded with ICMP

packets. In Figure 4.3, we can see that reducing the capacity of the NIC1 process

from 19 down to 2 has a drastic effect on its ability to respond to ICMP ping re-

quest packets. I have included two data-sets on the chart, in order to elaborate on
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Figure 4.1: The relationships between modules and hardware
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Figure 4.2: URB linked list example
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Figure 4.3: Effect of NIC1 capacity on ping roundtrip time using
Ethernet switch

a commonly observed effect. The experiments were conducted under two scenarios:

one where ICMP ping packets were released as soon as the previous response was

received (“Back-to-back”), and one where ICMP ping packets were released at pre-

cisely 1 millisecond intervals (“1-msec intervals”). As shown on the chart, these set

of experiments wound up demonstrating that there is a difference between response

time and interpacket gap.

Since response times were normally well under a millisecond, when a single packet

was sent every millisecond, the USB NIC was able to respond within about 200 µsec

each time. However, when packets were sent out as fast as possible – back-to-back

– the response times rose to around 550 µsec after the first packet. You can see

this effect by observing how the “Back-to-back” trend line flattens out at just under

0.6 msec. The same effect occurs with both NICs and also under Linux. Then I

tested it using an old-fashioned Ethernet hub as well as a direct connection and found

that the discrepancy disappeared. The results of comparing the Ethernet switch to

a direct connection are shown in Figure 4.4. I am forced to conclude that it is
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Figure 4.4: Effect from type of network connection on ping roundtrip
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the Ethernet switch, a Netgear GS105, that is responsible for forcing the apparent

550 µsec minimum inter-packet gap during the “back-to-back” test. Therefore, to

eliminate as much interference as possible, further testing was done without the use

of the Ethernet switch. Instead, a direct connection was formed by plugging a cross-

over cable into each NIC.

After sorting that out, to give a comparison, I booted the PandaBoard using a

vendor-supplied image of Angstrom 2010.4-test-20100416 running under Linux kernel

version 3.0.4 (SMP) for ARM. And for an unfair comparison, I also plugged one of the

USB Ethernet devices into a four-core Xeon R© E5506 (2.13 GHz) running Scientific

Linux 6. Also, even more unfairly, I ran an additional test against the PCI-based

NIC of the same machine. These results are plotted in Figure 4.5, along with the

Terrier USB NIC performance under different levels of capacity. As you can see,

the most responsive network adapter is the PCI NIC under SciLinux6, unsurprising

given the quality of the interconnect and the machine. All of the USB NICs operated

at a disadvantage to the PCI card. The performance of the Terrier driver depends
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Figure 4.5: Comparison of ping roundtrip time to various Linux sce-
narios

upon the amount of capacity given. When C > 14, Terrier manages to respond more

quickly than SciLinux running on the quad-core Xeon. And as long as C > 5, Terrier

is more responsive than Angstrom Linux running on the same platform.

Linux is using a more conventional USB stack with interrupt handlers that check

the status of the USB transaction upon IRQ. Terrier is running processes that are

devoted to periodically polling the USB transaction data structures according to the

static priority schedule that is configured ahead of time. With less overhead going

around, Terrier is capable of responding more quickly to packets when the NIC process

is given enough capacity.

Returning to Figure 4.3, as capacity is lowered, we should expect and do see that

some degradation of performance occurs: going from 90% CPU utilization down to

50% CPU utilization means that the NIC1 process can only respond immediately to

ping requests about half of the time. That fact is made evident in the distribution

of ping response times as displayed in the summary of results, shown on Figure 4.6.

The more capacity given to the driver, the closer the minimum is to the maximum;
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Figure 4.6: Distribution of ping response times (min/avg/max)

the less capacity given, the larger the difference and the higher the average.

The minimum roundtrip time reflects a lucky ping request that arrived while the

NIC1 process was running and ready to respond, whereas the maximum roundtrip

time is the result of a packet that arrived just as the process ran out of its allotted

capacity for that period. This effect can be seen further in Figure 4.7, where the period

of NIC1 is extended while maintaining a 90% CPU utilization through corresponding

capacity increases. The longer the period, the larger the worst-case response time.

Although fast ping roundtrip time is not an explicit goal of the Terrier project, I am

pleased to see that the inside-out approach of Terrier’s USB interface is vindicated by

this strongly responsive performance in experiments; with quality able to be smoothly

controlled through adjustment of the scheduling parameters. Terrier is able to respond

in under 100 µsec when utilization is near 100%, and can still respond more quickly

than Linux even when utilization is reduced almost to 25%. This is despite the fact

that the Terrier drivers are relatively crude and unrefined compared to the years of

work behind Linux USB drivers and TCP/IP stack. The ability of the NIC1 program,
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running on the PandaBoard, to manage its own USB data structures without kernel

intervention, or other context switching, allows it to match responsiveness levels found

on the much more powerful PC hardware.

4.2 Physical memory manager

In Section 2.3.1 a brief overview of the physical memory manager was given. This

section will continue the discussion. The physical memory manager is largely imple-

mented in a functional style in ATS, providing a useful example of how some prosaic,

run-of-the-mill datatypes can be deployed for typical, straightforward data structure

manipulation.

Listing 4.14 shows the type signature and implementation of the function named

physical_alloc_pages found in the file mem/physical.dats. Physical memory is tracked

by a set of bitmaps where each bit corresponds to a physical frame in available mem-

ory: 4096 kilobytes each. The allocation function uses a linear search of these bitmaps

in order to find a consecutive string of available, suitably-aligned, frames. The search
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fun physical_alloc_pages (
n: int,
align: int,
addr: & physaddr? >> physaddr_t p

): #[s: int] #[p: addr | s == OK <==> p > null] status s

implement physical_alloc_pages(n, align, addr) = let
val (n’, saved) = search (n, align, n, @(0, 0, 0), @(~1, 0, 0))
val (saved_m, saved_byt, saved_bit) = saved

in
if saved_m = ~1 || n’ <> 0 then begin
addr := nullphysaddr; ENOSPACE

end else begin
mark (n, saved);
addr := bitmap_compute_start_physaddr (saved_m, saved_byt, saved_bit); OK

end
end

Listing 4.14: physical_alloc_pages

function is shown in Listing 4.15. The main complication of the search function comes

from the fact that it must find n available frames in a row, and therefore must restart

the count whenever an allocated frame interferes with the search.

The current position of the search is stored as a flat tuple of ints, as described

by the type named searchstate. Since ATS translates these flat tuples into C structs,

these usages of the searchstate type, and even the return type @(int, searchstate), are

all compiled to efficient binary code making use of registers and the stack to handle

dataflow. A searchstate encapsulates the three numbers that describe a location in

the bitmaps: bitmap index, byte index, and bit offset. The function inc_searchstate

returns a new state that has been incremented to the next consecutive state. And

using this function, search uses tail-recursion to loop through the bitmaps until it

finds the consecutive string of available frames, or reaches the end.

Finally, Listing 4.16 shows a simple tail-recursive function that loops from a start-

ing point over an identified range of consecutive frames, and marks each one. Both

search and mark use basic functional programming techniques such as tail-recursion

and pattern matching to implement the algorithm. Concurrency issues are avoided
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by having the physical memory manager only be operated on a single processor;

within the framework of Terrier, thus far, that has not been a problem because most

allocation takes place during the boot process.
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typedef searchstate = @(int, int, int) // (m, byt, bit)

fun inc_searchstate((m, byt, bit): searchstate): searchstate =
if bit + 1 < 8 then (m, byt, bit + 1)
else if byt + 1 < bitmap_num_bytes m then (m, byt + 1, 0)
else (m + 1, 0, 0)

fun search (
n: int, align: int, count: int , curr: searchstate, saved: searchstate

): @(int, searchstate) =
let
val (m, byt, bit) = curr
val curr’ = inc_searchstate curr

in
if m = num_bitmaps then
// reached end of bitmap sequence
(count, saved)

else if count = 0 then
// found n unallocated pages - terminate search
(0, saved)

else if bitmap_tst (m, byt, bit) then
// found an allocated page - reset count
search (n, align, n, curr’, @(~1, 0, 0))

else if m <> curr’.0 then
// cannot have ranges spanning bitmaps - reset count
search (n, align, n, curr’, @(~1, 0, 0))

else if count = n && is_aligned (bit, align) then
// found an unallocated, aligned page - start span
search (n, align, count - 1, curr’, @(m, byt, bit))

else if count = n then
// found an unallocated, unaligned page - skip it
search (n, align, count, curr’, @(~1, 0, 0))

else
// found an unallocated page mid-span - keep counting down
search (n, align, count - 1, curr’, saved)

end

Listing 4.15: search and search states

fun mark (count: int, curr: searchstate): void = let
val (m: int, byt: int, bit: int) = curr
val curr’ = inc_searchstate curr

in
if count > 0 then begin
bitmap_set (m, byt, bit);
mark (count - 1, curr’)

end else ()
end

Listing 4.16: mark
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Chapter 5

Debugging with Types and Logic

The Terrier operating system is written partially in the ATS programming language

because I need to be able to write very low-level code, but at the same time, I would

like to enjoy the advantage of a very strong type system. ATS offers what are known

as dependent and linear types, which can be used to create very precise specifications

of intended program behavior that are then checked statically prior to compilation.

The output of ATS is C code that may be compiled and linked with ordinary C

compilers such as GCC, and it does not require any special run-time support.

In the Terrier OS, all of the interprocess communication mechanisms are written

in ATS and must be invoked through an ATS-based API. This allows me to do a

great deal of safety checking prior to compilation. The fixed-slot mechanism is no

different, and it has been developed under the same requirements. Furthermore, the

use of ATS types during the process of designing the algorithm resulted in the finding

of a subtle concurrency bug that has since been corrected in the final design. That

bug will be discussed in Section 5.1.1.

5.1 The fixed-slot mechanism

The next few sections will describe how I used ATS to help me design and specify

the algorithms for the fixed-slot mechanism, assuming no reader knowledge of ATS.

The code presented is a simplified form of the actual code, but the salient points will

all be covered.
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5.1.1 Static types for the fixed-slot mechanism

Before a single line of assembly code or actual working code was written, I began to

sketch out the overall skeleton of the reader and the writer using a series of function

prototypes, along with abstract data types. The first step was establishing a name

for the abstract data type that would represent a fixed-slot mechanism: absviewtype

fixedslot. The ATS declaration of absviewtype establishes a viewtype, also known

as a linear abstract data type. Essentially, fixedslot is a type of data that will be

treated as a resource at the type level. The way the program manipulates values

of this type will be carefully watched by the compiler to ensure that they are used

in a linear fashion: no aliasing allowed. I find linear types to be very helpful when

managing anything that represents a system resource, such as blocks of memory,

because it means that the type system prevents resource leaks and requires proper

clean-up along all possible paths of execution.

The writer

I sketched out function prototypes for the atomic operation W1: in ATS, fun pick wi

(! fixedslot): int. This describes a function that accepts a single parameter of

type fixedslot and returns an int. The importance of the ! operator relates to the

linear type system: normally, a value of a linear type is “consumed” when it is used,

and thereafter becomes unavailable for use. If you want to create a linear sequence

of operations on the same linear value, then you need to return or “reproduce” the

value after each operation so that the next one can use it too. This gets to be

tiresome to write out every time, so ATS provides a ! notation that is syntactic

sugar indicating that the function does not consume the linear value, leaving it for

a future operation to consume instead. So, in essence, this function prototype for

pick wi simply states that the fixed-slot mechanism is at first consumed by this

function, but then reproduced along with an integer value when it returns.
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In a similar fashion, I can define all three steps of the writer function:

absviewtype fixedslot

W1 fun pick wi (! fixedslot): int

W2 fun{ty: type} write data (

! fixedslot, int, ty

): void

W3 fun set f (! fixedslot, int): void

The only additional feature introduced here is the use of ATS templates. By

specifying fun{ty: type} I can parameterize the write data function over any

type of data that the mechanism wants to write into memory, and that data would

be passed as the third parameter to that function.

So far, I have done only the most minimal of specification. ATS is capable of far

more, but I like to use a development process where I iteratively increase the strength

of my specifications as I become more comfortable with the ideas behind my code.

In this case, the next step would be to start trying to represent the shared state vari-

ables in an abstract way, statically, using what are called dependent types. The way

I do that is by augmenting the abstract viewtype with static indices: absviewtype

fixedslot (p: int, t: int, f: int). The indices p, t, f are not regular vari-

ables, they are variables at the type level. And the name int in this context does

not mean a type of value, it means a type of a static term. These types are called

“sorts” in ATS parlance, to distinguish them from types of values. Now, I am able to

rewrite my function prototypes and make use of these indices to specify more precise

behavior:

absviewtype fixedslot (p:int, t:int, f:int)

W1 fun pick wi {p,t,f: nat} (

! fixedslot (p, t, f)

): [i: nat | i != p && i != t && i != f] int(i)

W2 fun{ty: type} write data
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{p,t,f,i: nat | i != p && i != t && i != f} (

! fixedslot (p, t, f), int(i), ty

): void

W3 fun set f {p,t,f,f’: nat} (

! fixedslot (p, t, f), int(f’)): void

This requires some additional explanation: now that I have names for type in-

dices, I must declare them. This is done through quantification. So for example, the

syntax for universal quantification {p,t,f: nat} reads as “for all p, t, and f that

are natural numbers”, where nat is an alias for ints greater than or equal to zero.

And the syntax for existential quantification [i: nat | i != p && i != t && i

!= f] reads as “there exists i that is a natural number such that i is not equal to

p, i is not equal to t, and i is not equal to f.” As you can see, ATS provides a

expressive notation for specifying constraints on quantification in a manner that is

reminiscent of mathematical set notation. In addition, you can see that fixedslot

is not the only type that accepts indices. Many types can have indices. In this case,

even the int type can have an index. The type int(i) denotes the type of integers

that are exactly equal to i. So, if i is somehow determined to be equal to 1, then

int(i) would mean that the only permissible value of that singleton type is the value

of 1, therefore the type checker must be able to prove that is the case. None of these

type annotations, indices or quantifiers is going to exist at run-time — they will all

be erased by the compiler.

For the writer, I am mostly interested in showing that the value of i given to

write data is not going to conflict with any of the readers, nor is it going to overwrite

the most recently written data. From the algorithm I know that the readers are

supposed to obey an invariant that restricts them to operating only on the slots

marked by p and t, as well as that the writer has marked the most recent data with

f . Therefore, my precondition on write data is simply that i is not equal to any of
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those markers. The return value of pick wi is purposefully intended to meet those

same preconditions. Now, if my specification was actually complete, then I would have

a very trivial proof, since these statements match exactly. But I am not finished with

the specification: because of concurrency, I am making far too strong an assumption

about the values of p and t. I do not know if p and t will retain the same exact values

from step to step, because the readers may modify these values at any time. I only

know that f will not be modified, except by the function set f that only the writer

invokes. So armed with this information, I need to modify my code a bit more:

absviewtype fixedslot (p:int, t:int, f:int)

viewtypedef postcon (p:int, t:int, f:int) = [

p’,t’: nat |

((p’ == p && t’ == t) || (p’ == t && t’ == t) ||

(p’ == t && t’ == f) || (p’ == f && t’ == f))

] fixedslot (p’, t’, f)

W1 fun pick wi {p,t,f: nat} (

! fixedslot (p, t, f) >> postcon (p, t, f)

): [i: nat | i != p && i != t && i != f] int(i)

W2 fun{ty: type} write data

{p,t,f,i: nat | i != p && i != t && i != f} (

! fixedslot (p, t, f) >> postcon (p, t, f),

int(i), ty

): void

W3 fun set f {p,t,f,f’: nat} (

! fixedslot (p, t, f) >> postcon (p, t, f’),

int(f’)

): void

For convenience, I have defined an alias named postcon that uses existential

quantification to specify a post-condition on every step. That post-condition states

that there will exist two values of p’ and t’ such that one of four possible states can

occur, by the definition of the algorithm, at every step. Those four states encode the

legally allowed movements of the p and t markers, assuming that the f marker stays
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constant.

The post-condition is then used in conjunction with a bit more ATS syntactic

sugar. Earlier it was said that the ! notation means that the function preserves

a value of linear type. When type indices are involved, sometimes you want to do

more than just preserve, you want the type indices to change after the function

returns. Therefore, ATS includes a convenience syntax that allows you to specify

that a linear, dependent type has not only been preserved, but it has returned in a

different form. That syntax is constructed by combining the use of the ! notation

along with the >> notation as shown above. For example, in the function set f,

the notation ! fixedslot (p, t, f) >> postcon (p, t, f’) means that the

linear value of type fixedslot (p, t, f) will become a linear value of the type

aliased by postcon (p, t, f’) when that function returns. In this case, it is useful

for specifying that the value int(f’), supplied as the second parameter, is actually

incorporated into the state of the fixed-slot mechanism.

At this point, I felt that I had specified the writer enough to move onto other

parts of the code, before coming back to fill in the actual working code. The ATS

type-checker is able to verify that this type of write data is satisfied by the type

of value returned by pick wi. Even though it is not quite as trivial as before, the

constraints are simple enough for an automated solver, included with ATS, to verify.

The reader

After putting together the writer, a similar evolution of specifications was worked out

for the reader.

R1 fun pick ri {p,t,f: nat} (

! fixedslot (p, t, f) >> fixedslot (p’, t’, f’)

): [p’,t’,f’,i: nat | ((p == t) ==> (t’ == f’)) && i == t’] int(i)
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The function pick ri returns an integer and morphs my fixedslot viewtype in

a similar way to that described in the previous section. Except in this case, I can no

longer assume that f is untouched. Now I must assume that any of p, t, or f can be

changed behind my back. From analysis of the algorithm, I do know that the new

value of t’ could be equal to f’ if in the pre-condition it was true that p == t. And

the return value from this step will be equal to t’, either way.

The following step introduces a new abstract linear proposition, also known in

in ATS as an abstract view. A linear proposition must be managed as a resource

at the type level, much like the viewtype fixedslot. But because it is merely a

proposition, it does not exist at the program level, only in the type-checker. It will be

erased along with the rest of the types, by the ATS compiler. Therefore, it is useful

for representing some kind of property, statically, without interfering with run-time

performance.

absview reading view (i: int)

R2 fun incr rcount {p,t,f,i: nat} (

! fixedslot (p, t, f) >> fixedslot (p’, t’, f’),

int(i)

): [p’,t’,f’: nat | (p’ == p && t’ == t) ||

(p == t && p’ == p && t’ == f’)]

(reading view(i) | void)

R4 fun{ty: type} read data

{p,t,f,i: nat | i == p || i == t} (

! reading view(i) |

! fixedslot (p, t, f) >> fixedslot (p’, t’, f’)

): [p’,t’,f’: nat] ty

In the case of R2, the reading view is introduced to be a kind of reminder that

I am in the process of reading, I have incremented a number in memory, and that

operation must be cleaned up after the read is complete. The ATS type-checker

will ensure that I do not forget to decrement the number after the read is complete.
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This basic usage of views is quite common in ATS programs because it is simple

and yet effective: it stops resource leaks. Since reading view does not represent

a real program value, it must be returned on the left side of a |, as shown by the

syntax (reading view(i) | void). This is the so-called “proof” side of function

arguments, and it consists of parameters that are completely erased by the compiler.

More importantly for the proof of my algorithm, I have a post-condition specified

on the indices p’, t’, f’. This post-condition establishes that there can be only

two possible alternatives for the shared state variables after this step returns: either

there has been no change to the variables, or t’ has now become equal to f’. It was

in the process of writing this post-condition that I realized that the algorithm was

incomplete as originally formulated.

The safety counter The shared state variable S was not part of the original for-

mulation of the fixed-slot ACM. Prior to introducing S, the formulation of the post-

condition for R2 had to be specified with more than two branches in the disjunction,

in addition to what is shown above. After all, it was possible in theory for interleaving

to produce several outcomes. In particular, it was possible for other reader threads

to come along and move both the p and t markers around.

However, I knew for certain that I wanted to prove that my function read data

would be given an integer parameter i such that i == p or i == t. That’s because

one of the fundamental principles of the fixed-slot ACM is that the readers can operate

only on one of two slots: the one marked by p or the one marked by t.

But this pre-condition of read data simply was not provable when the post-

condition of R2 could involve changes to p. After struggling with it for a while, I

realized that in the original formulation of the reader algorithm there was a counter-

example to the desired pre-condition. Namely, it was conceivable for a sequence of

operations to interleave in such a fashion that the current ri would be left behind while
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Suppose p = 2, t = 0, f = 1 and rcount = {0, 0, 0}.

R1 : ri ← t

Now R1’s version of ri = 0

R2 : if rcount [p] = 0 then p← t

Now p = 0.

R2 : if p = t then t← f

Now t = 1.

R3 : if rcount [p] = 0 then p← t

Now p = 1.

R1 : The invariant fails: ri = 0 while p = t = 1.

Figure 5.1: What happens without the safety counter S.

the other readers pushed both the p and t markers to other slots. Then, once the

current reader resumed, its value of ri would violate the pre-condition of read data.

An example sequence with reader threads R1, R2, and R3 is shown in Figure 5.1.

With this example in mind, I determined that the problem was due to the fact

that the marker p could be moved around after a value of ri had been chosen but

before rcount [ri] had been incremented. I then decided to create the safety counter

S with the purpose of preventing this kind of interleaving from taking place. Going

back to Figure 3.16 you should now be able to see that the safety counter prevents the

modification of p while any reader thread is working on steps R1, R2, and has not yet

completed R3. Therefore, returning to the post-condition of R2, this fact simplifies

the disjunction down to the two branches you do see in the above code: (p’ == p

&& t’ == t) || (p == t && p’ == p && t’ == f’). With this post-condition in

place, the ATS type checker is now able to successfully verify that the pre-condition

for read data is satisfied, namely that i == p || i == t. And thanks to the error
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raised by the ATS type-checker, I was able dodge a subtle concurrency bug before I

even wrote a single line of running code.

5.2 Case study: Model-checking a complex entry handler

In Chapter 2.4.1 I described the design principles behind the entry handler, as well

as a simple entry handler. For more elaborate entry handlers, I have chosen to gain

some assurance of their correct operation by using model-checking techniques. It is

the case that model-checking for ATS programs (Ren, 2014) exists, but it is still a

work-in-progress that may be suitable in the future. For the time being, I relied

upon hand-coded assembly code and a partial encoding of semantics into the model-

checking program called PAT: Process Analysis Toolkit (Sun et al., 2009). PAT

supports a language called CSP# (Communicating Sequential Programs-Sharp) for

modeling.

The more elaborate entry handler under review will be the one used by the ehci

module. The goal of this entry handler is to manage two separate contexts: one for

the “normal” thread of execution within the module, and a temporary context that is

established for the purpose of handling IRQs. This entry handler can also be viewed

as a specific implementation of a more general idea: managing multiple, preemptible

threads using code written at the application level.

The transcription of the assembly code into the PAT model is shown below. The

operation of the code is broken down into processes. A key mechanism in the model

is the use of the internal choice operator <> to simulate the effect of interrupts: as we

proceed from process to process, an internal choice is always offered back to Start.

This simulates the possibility of having arbitrary restarts of the entry handler – at

any moment. To help understand the meaning of the register assignments, please

consult Table 5.1. A graphical diagram of the entry handler control flow is found in

Figure 5.2, and a sample sequence of steps is shown in Figure 5.3 on page 143.
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IRQ_state == 3IRQ_state != 3

IRQ# == 1

IRQ# == 0 IRQ_state == 2IRQ_state == 0

IRQ_state == 1

Leave entry handler

Enter entry handler

Check
IRQ_state

Check
IRQ_state

Check IRQ
table

IRQ_state := 0

IRQ_state := 1

IRQ_state := 2

Copy kernel_context
into saved_context

Load IRQ handler
into kernel_context

Restore kernel_context

Copy saved_context
into kernel_context

Figure 5.2: Entry handler control flow diagram

The first process, InitEntry, models the possibility of entering the program for

the first time, when r13 will be zero. Otherwise, the simulation continues under the

presumption that r13 will not be zero.

There are two possibilities for InitEntry, determined by internal choice. In the

case of firstTime, we set up a bunch of model variables to match the conditions of

entering the program for the first time. In the case of normal, the condition is simply

r11 Pointer to the IRQ state variable
r12 Pointer to the IRQ status table
r13 Pointer to the kernel-provided process context

Table 5.1: Meanings ascribed to registers in the ehci entry handler
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_start:
CMP r13, #0
LDREQ sp, =_stack
LDREQ pc, =main

InitEntry =
(firstTime {
r13 = 0; ctxt = KernelCtxt;
IRQstate = CSwitchStage; CSstep = 4;

} -> Finish) <>
normal { ctxt = KernelCtxt; } -> IRQ

Table 5.2: The InitEntry stage

LDR r11, =irq_state
LDR r1, [r11]
CMP r1, #3
BEQ 3f

Start = regularStart { r13 = r13address; } -> Start1;
Start1 = if (IRQstate == RestoreStage) {
RestoreSavedContext1 <> Start

} else { Start2 <> Start };

Table 5.3: Check to see if we are returning from IRQ-handling mode

that the kernel has provided us a pointer to a valid context.

Then, the following process shown in Listing 5.1 simulates whether an IRQ is raised

or not, or whether the IRQ handler has indicated that it has completed processing

and would like to return.

Now, the real start of the interesting part of the entry handler is in Table 5.3,

presuming that r13 is equal to some non-zero address, and the first step is to test the

IRQ state machine to see if the IRQ handler is ready to return. If so, we branch to

RestoreSaved stage that is shown in Table 5.8.

Moving on, recall that the entry handler protocol defines r12 as containing a valid

pointer to an IRQ status table. Therefore we can check the status of IRQ 77 (in

this case, for the ehci module) quickly, and branch appropriately. The irq variable

models the result of querying the interrupt status table, as shown in Table 5.4.

Finally, in Table 5.5, we complete the initial case breakdown, picking up wherever

the IRQ state said that we left off previously: either saving the “normal” context into

IRQ = (irqOff { irq = 0; } -> Start) <>
(irqOn { irq = 1; } -> Start) <>
(irqFinished { irq = 0; IRQstate = RestoreStage; } -> Start);

Listing 5.1: Simulating IRQs
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LDRB r0, [r12, #77]
CMP r0, #1
BNE 2f

Start2 = if (irq == 0) {
ContextSwitch1 <> Start

} else { Start3 <> Start };

Table 5.4: Check the IRQ status table

CMP r1, #1
BEQ 1f
BGT 2f

Start3 = if (IRQstate == SaveStage) {
SaveContext1 <> Start

} else {
Start4 <> Start

};
Start4 = if (IRQstate == LoadIRQStage) {
LoadIRQContext1 <> Start

} else {
ContextSwitch1 <> Start

};

Table 5.5: Switch between the Save, LoadIRQ, or ContextSwitch stages

a designated space, loading the IRQ handling context, or completing the process of

switching into it.

By this time you may have noticed that each step in the code is broken down as

a “process” in the CSP# encoding. Those processes are then linked together, but at

each step is inserted the possibility of an arbitrary branch back to the Start. That

pattern continues for the Save stage, in Table 5.6.

Pairs of LDM and STM instructions are used to quickly copy memory from one address

to another. The specific semantics of these instructions are only partially modeled.

The r13 variable tracks whether the original value is properly restored by the end.

And the SCstep variable will be used to prove that the entire block executes atomically

with respect to the overall entry handler. Finally, the IRQ state is advanced by storing

the value of 1, corresponding to the LoadIRQ stage, into the state variable addressed

by r11.

The LoadIRQ stage in Table 5.7 creates a new IRQ-handling context by taking

whatever existing context there is, clearing out the saved processor status register,

and arranging the saved stack and program counter to point at the IRQ-handling
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LDR r1, =saved_context
LDMIA r13!, {r2-r10}
STMIA r1!, {r2-r10}
LDMIA r13!, {r2-r10}
STMIA r1!, {r2-r10}
SUB r13, r13, #0x48

MOV r0, #1
STR r0, [r11]

SaveContext1 = sc1 { SCstep = 1; }
-> (SaveContext2 <> Start);

SaveContext2 = sc2 { r13 = r13 + 36; SCstep = 2; }
-> (SaveContext3 <> Start);

SaveContext3 = sc3 { SCstep = 3; }
-> (SaveContext4 <> Start);

SaveContext4 = sc4 { r13 = r13 + 36; SCstep = 4; }
-> (SaveContext5 <> Start);

SaveContext5 = sc5 { SCstep = 5; }
-> (SaveContext6 <> Start);

SaveContext6 = sc6 { r13 = r13 - 72; SCstep = 6; }
-> (SaveContext7 <> Start);

SaveContext7 = scDone { IRQstate = LoadIRQStage; }
-> (LoadIRQContext1 <> Start);

Table 5.6: The Save stage

1:
MOV r0, #0
STR r0, [r13]
LDR r0, =ehci_irq_handler
STR r0, [r13, #0x44]
LDR r0, =_irq_stack
STR r0, [r13, #0x3C]

MOV r0, #2
STR r0, [r11]

B 2f

LoadIRQContext1 = lic1 { LICstep = 1; }
-> (LoadIRQContext2 <> Start);

LoadIRQContext2 = lic2 { LICstep = 2; }
-> (LoadIRQContext3 <> Start);

LoadIRQContext3 = lic3 { LICstep = 3; }
-> (LoadIRQContext4 <> Start);

LoadIRQContext4 = lic4 { LICstep = 4; }
-> (LoadIRQContext5 <> Start);

LoadIRQContext5 = lic5 { LICstep = 5; }
-> (LoadIRQContext6 <> Start);

LoadIRQContext6 = lic6 { LICstep = 6; }
-> (LoadIRQContext7 <> Start);

LoadIRQContext7 = licDone {
ctxt = IRQCtxt;
IRQstate = CSwitchStage;

} -> (ContextSwitch1 <> Start);

Table 5.7: The LoadIRQ stage

stack and procedure. It then sets the IRQ state variable to 2, corresponding to the

CSwitchStage, and branches to the context-switching stage.

The RestoreSaved stage in Table 5.8 occurs on the other end of the IRQ-handling

procedure, when it is ready to return back to normal operation. Then, the previously-

saved context needs to be copied back into the regular context area so that the

context-switching mechanism can load it normally. Again, LDM and STM are used to

quickly copy a 72-byte segment of memory, via spare registers that are used as scratch

space. At the end, we assume the IRQ status was cleared by the handler, so the IRQ
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3:
LDR r1, =saved_context
LDMIA r1!, {r2-r10}
STMIA r13!, {r2-r10}
LDMIA r1!, {r2-r10}
STMIA r13!, {r2-r10}
SUB r13, r13, #0x48

MOV r0, #0
STR r0, [r11]

RestoreSavedContext1 = rsc1 { RSCstep = 1; }
-> (RestoreSavedContext2 <> Start);

RestoreSavedContext2 = rsc2 {
r13 = r13 + 36; RSCstep = 2;

} -> (RestoreSavedContext3 <> Start);
RestoreSavedContext3 = rsc3 { RSCstep = 3; }

-> (RestoreSavedContext4 <> Start);
RestoreSavedContext4 = rsc4 {

r13 = r13 + 36; RSCstep = 4;
} -> (RestoreSavedContext5 <> Start);

RestoreSavedContext5 = rsc5 { RSCstep = 5; }
-> (RestoreSavedContext6 <> Start);

RestoreSavedContext6 = rsc6 {
r13 = r13 - 72; RSCstep = 6;

} -> (RestoreSavedContext7 <> Start);
RestoreSavedContext7 = rscDone {

irq = 0;
ctxt = SavedCtxt;
IRQstate = CSwitchStage;

} -> (ContextSwitch1 <> Start);

Table 5.8: The RestoreSaved stage

2:
LDR r0, [r13]
MSR cpsr_sf, r0
ADD r13, r13, #8
LDMIA r13, {r0-r15}
/* control flow ends */

ContextSwitch1 = cs1 { CSstep = 1; }
-> (ContextSwitch2 <> Start);

ContextSwitch2 = cs2 { CSstep = 2; }
-> (ContextSwitch3 <> Start);

ContextSwitch3 = cs3 { CSstep = 3; }
-> (ContextSwitch4 <> Start);

ContextSwitch4 = cs4 { CSstep = 4; }
-> Finish;

Finish = f {finish = 1;} -> Skip;

Table 5.9: The ContextSwitch stage

state returns back to 0, indicating that the normal context is back in place and

things may proceed regularly. Then, assuming no interruption, we fall through to the

context-switching stage.

Finally, the ContextSwitch stage, as shown in Table 5.9, is used to actually load

and branch to the context that is stored in the memory space pointed to by r13. That

is accomplished by loading the saved program status register from the first slot, and

then using the LDM instruction to simultaneously load all 16 registers from the saved

context. The ARM architecture defines any load to the program counter (r15) as an
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#define cond finish == 1;
#define goal (r13 == 0 || r13 == r13address) &&

(CSstep == 4) &&
(!(LICstep == 0 && RSCstep == 0 && SCstep == 0) ||
ctxt == KernelCtxt) &&

(LICstep == 0 || (LICstep == 6 && ctxt == IRQCtxt)) &&
(RSCstep == 0 || (RSCstep == 6 && ctxt == SavedCtxt)) &&
(SCstep == 0 || (SCstep == 6 && ctxt == IRQCtxt)) &&
(IRQstate == CSwitchStage || irq == 0);

#assert InitEntry |= [] (cond -> goal);

Listing 5.2: The property to be checked

immediate branching instruction, therefore, this instruction will load all registers and

restore program flow in one swoop, as soon as it proceeds.

The model simulates this LDM instruction by excluding the internal choice from

the final step. Upon executing the LDM the program counter is no longer within the

entry handler, and therefore the assumptions about restartability no longer apply.

The entry handler has effectively finished its job. Any interruptions that occur to

the program outside of the entry handler will trigger the context-saving mechanism

of the kernel, overwriting the kernel context space as normally indicated. The model

contains an additional variable named finish that is used for the final assertion.

The final assertion, in Listing 5.2, is a Linear Temporal Logic (Pnueli, 1977)

statement that InitEntry entails that it is always the case ([]) that the condition

implies (->) the goal. The condition is simply that the Finish is reached. The goal is

a complicated conjunction that can be broken down into several pieces:

• Either r13 will be zero, or r13 will be equal to the address (arbitrary pointer

value) that it had upon entry.

• All four steps in the ContextSwitch stage will be executed.

• If none of the steps from the Save, LoadIRQ, or RestoreSaved stages are executed,

then the final context must have come from the kernel.
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• The LoadIRQ stage behaves atomically, and if it is executed then the final context

must be the IRQ context.

• The RestoreSaved stage behaves atomically, and if it is executed then the final

context must be the Saved context.

• The Save stage behaves atomically, and if it is executed then the final context

must also be the IRQ context.

• Either the final IRQ state is the ContextSwitch stage, or there was no IRQ raised.

I consider the successful validation of this property to be evidence that the mod-

eled entry handler’s control flow has the desired properties necessary to be safely

interruptible and restartable.

5.3 Case study: Invasive changes to a device driver

While writing device drivers and similar low level systems code, I often found it

necessary to rewrite large pieces of code in order to integrate new knowledge that

I had obtained, or optimizations that I wished to express. With ATS, it was quite

common to find that the code worked well, without additional testing, once I had

managed to satisfy the type-checker and gotten the code to compiler. I will describe

one example here: optimizing the packet transmit path of a µIP-based driver.

A quick explanation: µIP is extremely small and uses just a single global buffer

named uip_buf to store both the incoming packet and the eventual outgoing packet.

Therefore the ATS code that interfaces with µIP uses two functions to store and load

uip_buf, as shown in Listing 5.3.

The viewtype usb_mem_vt describes a special piece of memory that satisfies the

properties necessary to be used for memory-mapped I/O by the USB host controller

device. It is indexed by both location and by size. Therefore, the copy_*_uip_buf
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fun copy_into_uip_buf {n, m: nat | n <= m && n <= UIP_BUFSIZE} {l: agz} (
! usb_mem_vt (l, m), uint n

): void
fun copy_from_uip_buf {m: nat} {l: agz} (
! usb_mem_vt (l, m)

): [n: nat | n <= m && n <= UIP_BUFSIZE] uint n

Listing 5.3: The copy_*_uip_buf functions

fun do_one_send {i: nat} (usbd: ! usb_device_vt (i)): void

Listing 5.4: The older, unoptimized signature for do_one_send

functions are safe because they will not allow more than UIP_BUFSIZE to be copied to

or from the uip_buf, and the device memory space must be big enough for the copy

as well.

The µIP library expects the programmer to provide a do_one_send function that

takes the contents of the uip_buf and transmits it over the physical layer, in this case,

Ethernet. Since µIP uses a global variable to hold the data, the original version of

the do_one_send function was specified simply as shown in Listing 5.4.

This interface meant that the function had to allocate a URB as well as a piece

of device-accessible memory every single time that µIP wanted to send a packet, and

then release both resources. While not the hardest tasks to accomplish, doing this

was completely unnecessary. I had already written the µIP main loop to keep around

and reuse a URB and a buffer for the receive path. A slight advantage could be

gained by also keeping a persistant URB and buffer for reuse by the transmit path.

In addition, with the old method, the do_one_send function had to wait until the packet

was successfully processed by the hardware before it could release the resources and

return. With the new method, there is no need for do_one_send to wait, because it

does not need to release the resources. Instead, it can return control back to the µIP

main loop while the hardware sends the packet, and by the time control returns to

do_one_send, the packet will be long gone. Of course, that the resource is available
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fun do_one_send {i, ntTDs: nat} {tactive: bool} {tl: agz} (
txfer_v: ! usb_transfer_status i |
usbd: ! usb_device_vt (i),
turb: ! urb_vt (i, ntTDs, tactive) >> urb_vt (i, ntTDs’, tactive’),
tbuf: ! usb_mem_vt (tl, USBNET_BUFSIZE)

): #[ntTDs’: nat] #[tactive’: bool] void

Listing 5.5: The newer, optimized signature for do_one_send

implement do_one_send (txfer_v | usbd, turb, tbuf) = let
val _ = urb_wait_if_active (txfer_v | turb)
val _ = urb_transfer_completed (txfer_v | turb)
val _ = urb_detach_and_free_ (turb)
val txlen = copy_from_uip_buf (tbuf)
val header = ((txlen lxor 0xFFFF) << 16) lor txlen
val _ = usb_buf_set_uint_at (tbuf, 0, header)
val (xfer_v | s) =
urb_begin_bulk_write (turb, txlen + 8, tbuf)

prval _ = (txfer_v := xfer_v)
in () end

Listing 5.6: Implementation of do_one_send for the ASIX driver

is still required to be verified, but it takes relatively little time to do so. The new

signature for the do_one_send function is presented in Listing 5.5.

The new interface is significantly busier. Obviously, we need to pass along an

URB (named turb) and a buffer (named tbuf). Since a transmission could have been

initiated by an earlier call, we need to pass along the view representing the current

transfer status, so that it can be retired safely. Also, you can see that do_one_send

makes no assumptions about the status of the URB: whether it has a chain of TDs,

or whether it is active. It simply takes it as it is, and returns an updated version with

a new transfer established. The implementation has been considerably simplified too,

as a result of not having to acquire and release resources. It is short enough to be

shown in Listing 5.6.

First, the function checks the old transfer to see if it is still running, which it

most likely is not. Then it flushes out the old transfer and frees up the TDs. The

new data is copied into the tbuf and its length is placed into the variable txlen. The
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ASIX hardware requires that the first word of the USB transfer be a command that

carries the length of the following packet twice: in the most significant 16 bits, and

also in the least significant 16 bits. That value is prepared in the header variable and

then stored into the first word of tbuf (which has been conveniently reserved for this

purpose). Now, all the function has to do is kick off the bulk transfer and return the

new usb_transfer_status view in place of the old.

All that’s just the start. Now the µIP main loop must be refactored to allocate

a transmit URB and buffer, as well as thread those two resources through all the

paths leading to do_one_send. In addition, all of the exit paths must be updated with

code to release these two new resources in case of an error. But it’s just a matter of

letting the compiler find the problems. All of the call-sites of do_one_send need to be

updated with new parameters. But then those parameters have to come from further

up the chain. So I insert new parameters to the callers, and I add some more resource

allocation to the initialization function. Now the type-checker complains that these

resources are not being released in several places. For each one, I go and insert the

necessary code.

Originally, in do_one_send, I had used the function named usb_wait_while_active

instead of the usb_wait_if_active that is shown in Listing 5.6. But that caused the

type-checker to print out an error: it could not prove that the number of TDs for turb

was greater than zero. Since usb_wait_while_active assumes that the TD chain exists,

the function type has a guard that requires the number of TDs to be provably positive.

The function usb_wait_while_active would cause a data abort error if allowed to run

on a URB without TDs. After some thought, I realized that, in fact, it is possible that

this new URB reserved for the transmit path may not always have TDs attached. So

it would not be correct to use usb_wait_while_active every time on turb. Thankfully,

the type-checker prevented that crash bug before it ever happened. Then, I simply

wrote a function named usb_wait_if_active that is safe to use no matter if there are no
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TDs attached, and avoided the problem altogether. Altogether, the newly refactored

code was up and running and responding to packets correctly the first time it was

booted.
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Figure 5.3: Entry handler control flow example, with interrupts forc-
ing three restarts
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Chapter 6

Conclusion

6.1 Critiques

There are some differences between functionality available to hardware and software

that restrict the programming model the kernel can provide. For example, hardware

can be wired to react to changes in individual bits. Terrier can use the delivery of

software-invoked interrupts to achieve some of this functionality, but it can never

approach the nanosecond level of response that hardware can exhibit.

The decision to use reentrant, restartable entry handlers instead of interrupt mask-

ing means that programs are susceptible being interrupted by events that are not

directly relevant to their operation. This choice was made because in a real-time sys-

tem, all interrupts do have some relevance to all programs, insofar as they consume

time to handle, and therefore may influence the remaining program behavior

The choice of static priority, rate monotonic scheduling does lead to some loss of

flexibility and, in some cases, capacity. Application choices of capacity and period

must be evaluated on a case-by-case basis.

6.2 Future work

Terrier is not a completed system, and likely never will be. Such is the nature of

operating system projects. There is always something more to be done. However,

aside from additional hardware support, there are several avenues that might be

explored given the opportunity:

• Expand the use of higher-order functions to help programmers write more ele-

gant, easier code.
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• Using higher-order functions, provide low-level support for an event-based pro-

gramming paradigm such as functional reactive programming.

• Incorporate the use of session types for better reasoning about concurrency and

communication.

• Design a method for explicit static reasoning about temporal constraints and

use it for static verification of worst-case execution bounds.

• Investigate the use of other scheduling algorithms than basic rate monotonic

scheduling.
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