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1. INTRODUCTION
At the boundary of all operating systems are device 

drivers, software modules, usually run in fully privileged 
mode, that connect specific hardware devices with the 
more general kernel API. Device drivers are highly com-
plex pieces of software. They have to contend with asyn-
chronous event notifications from both hardware and 
software (often simultaneously), subtle kernel threading 
and locking models, complex hardware offload state 
management and notoriously poorly documented inter-
faces to both the kernel and the hardware itself. Addi-
tionally, device drivers are often written to support a 
multitude of subtle hardware variations.  The popular 
Intel 1G (e1000) and 10G (ixgbe) Linux device drivers 
both support more than 25 different PCI endpoint identi-
fiers1 each.  

Faced with this range and complexity of devices, 
driver developers rarely test their device drivers against 
all possible devices and all device variants thereof. A 
recent study found that over two dozen Linux and BSD 
driver patches were marked as “compiled tested 
only”[1]. Yet, despite their complexity and minimal test-
ing, device drivers are by far the largest contributor to 
kernel code line counts. Approximately 60%2  of the 
Linux 3.9 kernel source code is device driver code alone. 
This figure is likely to be higher in the Windows kernel 
with its anecdotally larger device support than Linux. 
Worryingly, device diver code has been found to contain 
3-7x more errors per line of code than other kernel code 
[2]. It is not surprising then that these subtle, complex, 
fragile, error prone and highly privileged modules are a 
major source of failure.   Over 75% of all system crashes 
reported in Windows XP were due to device driver fail-
ures [3]. An analysis of defects in a range of Linux de-
vice drivers revealed that device protocol violations was 
leading the cause of failure, accounting for nearly 40% 
of all reported bugs [4]. Device protocol violations occur 
when the driver behaves in a way that violates the re-
quired hardware-software interface usually resulting in 
an indeterminate state in hardware and/or causing a cata-
strophic crash in the kernel. 

In this already challenging and failure prone envi-
ronment, a new class of devices is adding further com-
plexity to the hardware-software interface. Traditional 
approaches to hardware design center on commodity, 
application specific integrated circuits (ASICs). Due to 
their design expense, ASICs exhibit slow moving feature 

sets and long product life cycles often taking years to 
develop and release. Whilst writing drivers for ASIC 
based devices is already problematic, the hardware-
software interfaces are relatively static, changing infre-
quently and incrementally over time. The relatively re-
cent introduction of field programable gate array 
(FPGA) based devices such as [5][6] alter the status-quo 
considerably. Whereas traditional ASIC based designs 
undergo minor revisions over a timespan of years, FPGA 
based interfaces can be totally reimplemented in months 
or even weeks. Furthermore, FPGA based device’s re-
configurable flexibility makes then especially attractive 
for in-field reconfiguration. FPGAs are rapidly reaching 
a price point suitable for wide scale deployment. Ongo-
ing research [7] suggests that it is now, or soon will be, 
feasible to equip an entire datacenter (i.e. many 1000s of 
machines) with FPGA enabled devices. 

The fragile, error prone and complex device drivers 
described above are now expected to have their inter-
faces updated, modified and rewritten regularly to meet 
the deadlines and demands of this new, fast moving, 
hardware category. To the driver developer this presents 
both a challenge and an opportunity. Whilst it is now 
more challenging than ever to write and maintain device 
drivers, for the first time, device driver writers are being 
given an active voice in the construction of the 
hardware-software interface while it is being con-
structed. FPGA based devices can be reprogramed to 
whatever hardware-software interface the device de-
signer and the driver writer agree upon. The obvious 
challenge here is, how to go about designing these inter-
faces in such a way that we minimize errors, account for 
rapidly increasing device variability, provide a suitable 
testing framework and,  offer a practical solution to both 
software facing driver writers and hardware facing 
hardware designers.  

To address these challenges, this paper presents Ul-
traviolet (UV), a library and framework for rapid devel-
opment and testing of new hardware devices as well as 
debugging and long term regression testing of older de-
vices. 

2. ULTRAVIOLET KEY CONCEPTS
Device drivers typically implement two interfaces; a 

device facing bus interface and kernel facing data inter-
face. Figure 1a illustrates this arrangement for a typical 
Network Interface Controller (NIC) device and driver. 

1 Results from analysis of Linux 3.9-rc1 source tree as at 15 April 2013. Tests performed by counting the instances of PCI device 
endpoints present in the PCI_DEVICE_TABLE in e1000_main.c and ixgbe_main.c.

2 Results from analysis of Linux 3.9-rc1 source tree as at 15 April 2013. Tests performed by running the cloc utility 
(http://cloc.sourceforge.net) on full the full source tree and the drivers/ subdirectory. Lines of code (LOC) count excludes comments 
and blank lines but includes all 22 languages represented in the tree. The 3.9 Kernel release (candidate) has 11.3 million LOC and 6.3 
million LOC in the drivers/  subdirectory. 
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An application uses the kernel API (e.g.  sockets or file I/
O) to send/receive data to the kernel. The kernel uses an 
internal API (e.g. netif/skbufs) to communicate with an 
appropriate device driver. The device driver then sends/
receives data by interacting with the hardware over a bus 
interface (e.g. PCIe).  The driver configures and queries 
registers by issuing read/write requests to the bus.  The 
device responds to these requests by performing direct 
memory access (DMA) operations and causing interrupts 
to occur. Finally, the device driver marshals this data 
back into a form acceptable to the kernel (e.g. an skbuf) 
and allows the kernel to communicate data back to the 
application.  

The key concept behind Ultraviolet, is intercept the 
software hardware interface, by hijacking the communi-
cation bus (e.g. PCIe) at a source level and routing that 
communication out of the kernel into a userspace virtual 
(UV) hardware application,  leaving the device driver 
unmodified. A virtual hardware application implements 
the functionality of a hardware device without the re-
quirement for the physical device to be present. The de-
vice driver is therefore unaware that it is running against 
a virtual hardware device and so behaves as it would 
were there a real hardware device attached. This means 
that the driver can be tested against hardware devices 
that are not available, are not attached or do not yet exist. 
It also provides a convenient mechanism to sketch out 
and test the error prone hardware-software interface. 
That is, the layout of registers, the protocol for commu-
nication and DMA and the operation and synchronisation 
of state machines in both the device and the driver. Be-
cause UV intercepts bus communication it is perfectly 
located to detect invalid address access violations from 
both the device and the driver, issuing warnings rather 
than crashing the machine as is likely with real hard-
ware. 

3. PROOF OF CONCEP: THE USER-
SPACE VIRTUAL NIC (UVNIC) 

As a proof of the Ulatraviolet concept, I have imple-
mented and tested a complete UV version of the PCI 
express bus communications sublayer in the linux kernel. 
Over the top of this, I have written and ported a collec-
tion of real and imaginary userspace virtual network 
interface controllers (uvNICs). There is no specific con-
ceptual reason for choosing PCIe and NICs as a starting 
point other than familiarity with both the hardware and 
software in the NetFPGA 10G project. Experiences with 
Ultraviolet so far suggest that it is highly amenable to 
implementing USB, IEEE1394 and other communication 
protocols as well. 

A high level view of the uvNIC proof of concept is 
illustrated in figure 1b. Unlike figure 1a, instead of (or 
addition to) regular PCI operations, uvPCI forwards in-
teractions with PCI hardware over a uvBus device to a 
userspace virtual NIC application. This application im-
plements a software emulation of the hardware NIC and 
responds appropriately by sending and receiving packets 
over a commodity device operated in raw socket mode. 
This gives the driver the impression that a real hardware 
device is running and connected to a real network even 
though no such device exists. 

Implementing the a virtual hardware device and PCI 
virtualisation layer is not trivial.  Operating system ker-
nels are designed with strict one way dependencies in 
mind.  That is, userspace applications are dependent on 
the kernel, the kernel is dependent on the hardware. Im-
portantly, the kernel is not designed for, nor does it easily 
facilitate dependence (i.e. blocking) on userspace appli-
cations. For the ultraviolet framework,  this is problem-
atic. The virtual device should appear to the driver as a 
hardware device, but to the kernel it appears as a user-
space application. Solving this problem ultimately turned 
out to be easier than expected, so long as care considera-
tion of threading behaviour was taken into account (de-
scribed later). 

Figure 2. illustrates the uvNIC proof of concept im-
plementation in more detail. At the core is the uvBus 
message transport layer.  UvBus connects the kernel and 

Figure 1a -  Arrangement of a typical network interface controller (NIC) hardware and driver; Figure 1b - Arrangement 
of a the uvNIC driver, virtual PCIe bus, virtual hardware and underlying hardware. 



the virtual device by using standard file I/O operations 
(open(), ioctl(), mmap()). It establishes a pair of 
shared memory regions between the kernel and user-
space. Messages are exchanged by enqueuing and de-
queueing fixed size packets into the lockless circular 
buffers in the shared memory regions. Message delivery 
order is strictly maintained. UvBus also includes an out 
of band, bi-directional signalling mechanism for alerting 
message consumers about incoming data. Userspace 
applications signal the kernel by calling write() with a 
64 bit signal value. Likewise,  the kernel signals user-
space by providing a 64 bit response to poll()/read() 
system calls. 

A lightweight PCIe like protocol (uvPCI) is imple-
mented on top of uvBus. Much like real PCI, uvPCI im-
plements non-blocking write (posted) and blocking read 
(non-posted) operations in both kernel and userspace. 
The most important of these operations is blocking reads 
in kernel space.  When using hardware implementations 
of PCI, if the CPU issues a read instruction to PCI, it 
halts progress until the response is received. Emulating 
this behaviour is critical to the functioning of uvPCI but 
is not trivial. It requires that the kernel block waiting for 
a response from userspace, inverting the usual order of 
dependence in the kernel.  This is implemented in uvPCI 
by spinning on uvBus shared memory device and kept 
safe by using timeouts (in case the device software has 
crashed) and appropriate calls to yield(). It is vitally 
important that the driver thread in the kernel call yield, 
as it gives the virtual hardware thread an opportunity to 
run. The system will deadlock rapidly if this is not the 
case. An important aspect of uvPCI is that it maintains 
read and write message ordering in a manner that is con-
sistent with hardware PCIe implementations. Although a 
software implementation of a hardware device will never 
be as fast a the real thing, the strict ordering of messages 
ensure that the device driver is exercised though nearly 
all possible states. In some senses, the slowness of the 
hardware to react will exercise the driver’s correctness 
more so than fully functioning hardware. One major 
shortcoming of Ultraviolet is that it is possible that tim-
ing issues only see at full speed will not be found in the 
virtual environment. This is discussed further in Section 
6 - Future Work. 

In addition to basic PCI read and write operations, 
uvPCI implements a suite of x86 specific PCIe restric-
tions and functions. A complete PCI configuration space 
is implemented including 32bit and 64 bit memory and I/
O base address registers along with commands to read 
and write the configuration space. This is important as it 
is the mechanism by which drivers determine and map 
the register space of the device. Register reads/writes are 
also implemented and limited to 32bits / 64bits accord-
ing to the configuration space above.  Interrupts are mes-
sage signalled and those messages share the same infra-
structure as regular messages. This ensures that ordering 
in the system is strictly maintained. Finally, PCI enforces 
limits on the maximum DMA fetch size and alignment. 
Many PCIe root hubs implement 128B, 32bit aligned 
DMA operations as does uvPCIx86. Since DMA opera-
tions are initiated by the virtual hardware thread, they 
enter the kernel as a different thread to the device driver 
itself. This means that DMA transactions appear to the 
driver as they would in reality.  That is, data appears and 
is removed from DMA mapped buffers asynchronously 
without the driver’s direct involvement. 

The final and most important layer of the uvPCI en-
vironment is the device driver interface. It is critical to 
the goals of Ultraviolet that the device driver remain 
unmodified or nearly so. With substantial effort it is pos-
sible that Ultraviolet could be built deep into the kernel, 
allowing some sort of kernel option to switch between 
virtual and physical device operation. For implementa-
tion expedience this path was not taken. Instead, uvPCI 
requires that driver writers replace <linux/pci.h> 
with <uvPCI/pci.h> and that all calls to PCI func-
tions are prepended with the letters “uv”. For example, 
pci_enable_msix() i s i n s t ead wr i t t en a s       
uvpci_enable_msix().  A simple search and replace 
for all instaces of “uv” with the empty string is all that is 
required to “port” a uvPCI device over to real PCI. 
UvPCI implements a functionally equivalent, parallel 
implementation of the PCI stack. Porting both the pro-
duction NetFPGA 10G driver and the more complex 
Intel 10G IXGBE driver to use uvNIC have both proved 
to be light work.  

Figure 2 - Detailed view of the uvPCI internal design. 



4. EVALUATION
Ultraviolet is a difficult tool too numerically evalu-

ate. As a software emulation of a hardware device, per-
formance numbers have very little meaning. The aim and 
intent of Ultraviolet was never to high be performance, 
but instead to provide a framework in which the highly 
error prone software-hardware interface could be rapidly 
prototyped, tested and debugged. The key criteria for 
evaluation are then:

1. Does/can it work? Can a functional Ultraviolet im-
plementation be put together, especially taking into 
account the difficulties of inverting the kernel to de-
pend on userspace? 

2. Is it complete (enough)? Can an ultraviolet imple-
mentation be used against a serious production 
driver? Are there aspects of the framework that are 
lacking or missing. 

3. Do drivers port easily? Given virtual hardware 
driver, how complex is it to move over to using real 
hardware. 

4. How complex is the virtual hardware device?  Is it a 
suitable first point for designing and testing useful 
interfaces? 

In order to test these ideas, several virtual devices were 
written and evaluated. These are described below: 

4.1 The 1-in 1-out NIC
High performance network interface adapters operate 

by directly copying inbound/outbound packets to/from 
host memory over DMA. Onboard they have a descriptor 
table that describes the size and location of memory 
buffers allocated by the host driver to which/from DMA 
operations must occur.  It is the job of the driver to re-
fresh the descriptor table with new memory regions 
when packets become available or are completed proc-
essing. The first device written for Ultraviolet was a 
network interface adapter with exactly 1 table entry for 
inbound packets and 1 table entry for outbound packets. 
This approach was taken to reduce complexity of both 
the driver and the device. The test was expected to an-
swer the evaluation questions 1 and 4.

The result was a resounding success. The first user 
space NIC hardware device was written in only 250 lines 
of C code. It formed a complete and functional user 
space NIC hardware device. The interface comprised just 
4 registers, 1 register for both size and address in both 
transmit and receive directions forming an effective 
DMA descriptor table. The device driver was equally 
simple comprising about 500 lines of C code. An outgo-
ing packet would be directly allocated to the transmit 
registers. The driver would then wait for a special inter-
rupt number from the card to confirm that the message 
had been sent. Likewise a single receive buffer was allo-
cated to the receive registers. A special number interrupt 
number would signal that a packet had arrived. The 
driver would clear this when ready by resetting size reg-
ister. 

Although simple, this test neatly and fully exercised 
the design and intent of Ultraviolet.  Both a device and a 
device driver were prototyped, with a trivial but useful 

device interface protocol. The NIC performed ping-flood 
and traceroute operations using standard Unix tools but 
could not handle a full secure shell (ssh) connection. 
Initially it was thought that this was due to the extremely 
limited “device resources” available,  but later it was 
found that an ARP misconfiguration in Linux was to 
blame. Nevertheless, this test did show that a working 
Ultraviolet hardware device was possible and that the 
complexity was low enough to make testing and design-
ing useful, partially answering evaluation questions 1 
and 4. 

4.2 A Simple NetFPGA Hardware Device
A second uvNIC driver was written, this time for a 

NetFGPA 10G FPGA card,  programmed with custom 
firmware to run a simple register and interrupt generator 
module. Once prototyped in software, the driver was 
ported to real hardware and the Verilog hardware de-
scription was written and tested. This test was necessar-
ily simple because real hardware development is a long 
and complex process and was not the aim of the test. 
This test showed that a minimal but functional driver 
could be written against a hypothetical specification and 
run against a real hardware device at a later stage in par-
tial answer to evaluation questions 1 - 4.  

4.3 Fully Featured NetFPGA 10G 4 Port NIC
The previous two tests indicated that toy examples of 

devices were possible to write and run over uvNIC, but 
did not exercise the framework in any serious way. To 
more fully answer evaluation question 2, the full produc-
tion version of NetFPGA 10G driver was ported to uv-
NIC. This port was interesting for several reasons; 
Firstly, two minor bugs in the source code were discov-
ered as a result of the port,  and, secondly, it showed that 
very little effort was required to complete the port. It did 
show, however,  that more effort was required to “for-
ward” port a device to uvNIC than to “backwards” port a 
device from it.  This is because a simple search and re-
place of  “pci_” with “uvpci_” often turned up spurious 
results where the driver author had named a function or 
name themselves with the characters “pci_”. This is not 
true of the reverse process, were all instance of “uvpci_” 
could be removed. Despite the extra effort involved,  the 
port of the NetFPGA 10G was again a success. When 
complete, an 11” Mac BookAir ran an emulated 4 port 
10G network card over a basic Intel e1000 NIC using an 
essentially unmodified driver. By coincidence, the proc-
ess also formed the first attempt at documenting the in-
ternal NetFPGA 10G DMA engine functionality (by re-
verse engineering) and is unique in the sense that the C 
code now represents an executable specification of that 
interface. The NetFPGA port was fully capable of sus-
taining multiple interactive TCP ssh sessions and sup-
ported interactive web browsing to a limited degree3.  
This was a strong answer to evaluation questions 1-4.

4.4 Fully Featured Intel 10G NIC
Work is currently underway to port the Intel 10G 

IXGBE driver to using uvNIC. The driver compiled 
against the uvNIC framework with relatively little effort 
and now starts up and fails.  The bulk of the efforts now 

3 It has been found that Google Chrome causes the driver to lock up after a few minutes of operation. The cause for this is not yet 
known but is being investigated, though is is known that Google Chrome is an extremely aggressive user of the network stack. 



lie in reverse engineering the extensive and register and 
DMA interfaces present in the card. Two chipsets, 
(82958EB and 82599EB) are targeted at a bug finding 
test. Substantial effort is involved in building a func-
tional hardware model of these chipsets and useful re-
sults are not yet available at the time of writing. 

5. RELATED WORK
Userspace device drivers have a long history [8][9] 

and continues to be employed widely, especially in high 
performance situations [10][11]. Whilst Ultraviolet 
shares the basic concept of implementing a part of the 
device stack in userspace, it is distinct from previous 
attempts because it implements the hardware in user-
space software rather than parts of software stack as is 
commonly the case.  It is crucial to note that performance 
is not the primary goal of Ultraviolet, rather, the primary 
goal is rapid prototyping and testing at the software/
hardware interface.

The structure and function of Ultraviolet is highly 
similar to the virtual devices found in hypervisors and 
virtual machines (VMs). Both VMware [12] and Xen 
[13] expose virtualised hardware devices to their guest 
OSes and hence the guest OS drivers. It is possible that 
custom hardware could be designed and written in a VM 
context instead of using Ultraviolet. However, the ap-
proach has the distinct disadvantage that development 
and integration of a new virtual device into a VM is a 
complex and time consuming task. This is in direct op-
position to the stated goal, which is which is to aid rapid 
prototyping of the hardware and device driver. 

Ultraviolet is also similar to File System in User 
Space (FUSE) [14] systems. Like Ultraviolet, FUSE 
requires that kernel become dependent on userspace ap-
plications. In contrast,  however, FUSE systems are much 
simpler than Ultraviolet because no direct emulation of 
hardware timing, ordering and consistency parameters 
are required. 

The most similar work to Ultraviolet is Sym-
Drive[15]. This approach uses a complex set of symbolic 
and virtual execution tools used to simulate execution of 
a device driver in the absence of a device. This leads to 
similar debugging ability to Ultraviolet. However, it does 
not have the useful ability to prototype and test a new 
driver against a speculated/non existent hardware inter-
face as Ultraviolet does. 

Another similar approach to device driver correctness 
involves reusing parts of the device hardware specifica-
tion to generate a device driver stub. Then, using a cus-
tom shim in the operating system [12] to run the stub as 
the device driver. Whilst this is an elegant solution, the 
approach requires that hardware designers learn and use 
a specialised formal language for generating their tests, 
which is unlikely to see traction amongst device design-
ers. This approach again lacks the facility to prototype 
and play with interface ideas before committing to the 
expensive and time consuming task of implementing the 
hardware and it’s accompanying tests. 

6. CONCLUSIONS AND NEXT STEPS
Ultraviolet is a simple but unique approach to a real 

problem. Work so far has indicated that the approach is  
valid and viable for a small subset of devices on a small 
subset of available buses. The framework is already be-
ing used as a measurement and debugging tool for real 
device drivers and for porting new device chipsets to old 

device drivers. The obvious next step is to expand num-
ber and types of devices and buses supported and to per-
form similar tests on these devices. Ultraviolet userspace 
hardware programs represent fully functional specifica-
tions against which device implementations and simula-
tions could potentially be tested before release. Another 
next step may be to migrate the virtualised hardware 
model to a cycle accurate simulation to facilitate full,  
cycle accurate device and driver simulation and testing. 
Ultraviolet affords designers an unique opportunity to 
rapidly explore the software-hardware interface of new 
and existing designs at low cost. It is expected that large 
suites of Ultraviolet devices could be created to perform 
automated regression testing on large kernels such as 
Linux prior to release, ideally improving the quality of 
devices and the stability of the operating systems that we 
all use on a daily basis. 
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