
Between a rock and a hardware place:
Ultraviolet and the case for Userspace Virtual hardware

Matthew P. Grosvenor
University of Cambridge Computer Laboratory

matthew.grosvenor@cl.cam.ac.uk

1. INTRODUCTION
At the boundary of all operating systems are device

drivers, software modules, usually run in fully privileged
mode, that connect specific hardware devices with the
more general kernel API. Device drivers are highly com-
plex pieces of software. They have to contend with asyn-
chronous event notifications from both hardware and
software (often simultaneously), subtle kernel threading
and locking models, complex hardware offload state
management and notoriously poorly documented inter-
faces to both the kernel and the hardware itself. Addi-
tionally, device drivers are often written to support a
multitude of subtle hardware variations. The popular
Intel 1G (e1000) and 10G (ixgbe) Linux device drivers
both support more than 25 different PCI endpoint identi-
fiers1 each.

Faced with this range and complexity of devices,
driver developers rarely test their device drivers against
all possible devices and all device variants thereof. A
recent study found that over two dozen Linux and BSD
driver patches were marked as “compiled tested
only”[1]. Yet, despite their complexity and minimal test-
ing, device drivers are by far the largest contributor to
kernel code line counts. Approximately 60%2 of the
Linux 3.9 kernel source code is device driver code alone.
This figure is likely to be higher in the Windows kernel
with its anecdotally larger device support than Linux.
Worryingly, device diver code has been found to contain
3-7x more errors per line of code than other kernel code
[2]. It is not surprising then that these subtle, complex,
fragile, error prone and highly privileged modules are a
major source of failure. Over 75% of all system crashes
reported in Windows XP were due to device driver fail-
ures [3]. An analysis of defects in a range of Linux de-
vice drivers revealed that device protocol violations was
leading the cause of failure, accounting for nearly 40%
of all reported bugs [4]. Device protocol violations occur
when the driver behaves in a way that violates the re-
quired hardware-software interface usually resulting in
an indeterminate state in hardware and/or causing a cata-
strophic crash in the kernel.

In this already challenging and failure prone envi-
ronment, a new class of devices is adding further com-
plexity to the hardware-software interface. Traditional
approaches to hardware design center on commodity,
application specific integrated circuits (ASICs). Due to
their design expense, ASICs exhibit slow moving feature

sets and long product life cycles often taking years to
develop and release. Whilst writing drivers for ASIC
based devices is already problematic, the hardware-
software interfaces are relatively static, changing infre-
quently and incrementally over time. The relatively re-
cent introduction of field programable gate array
(FPGA) based devices such as [5][6] alter the status-quo
considerably. Whereas traditional ASIC based designs
undergo minor revisions over a timespan of years, FPGA
based interfaces can be totally reimplemented in months
or even weeks. Furthermore, FPGA based device’s re-
configurable flexibility makes then especially attractive
for in-field reconfiguration. FPGAs are rapidly reaching
a price point suitable for wide scale deployment. Ongo-
ing research [7] suggests that it is now, or soon will be,
feasible to equip an entire datacenter (i.e. many 1000s of
machines) with FPGA enabled devices.

The fragile, error prone and complex device drivers
described above are now expected to have their inter-
faces updated, modified and rewritten regularly to meet
the deadlines and demands of this new, fast moving,
hardware category. To the driver developer this presents
both a challenge and an opportunity. Whilst it is now
more challenging than ever to write and maintain device
drivers, for the first time, device driver writers are being
given an active voice in the construction of the
hardware-software interface while it is being con-
structed. FPGA based devices can be reprogramed to
whatever hardware-software interface the device de-
signer and the driver writer agree upon. The obvious
challenge here is, how to go about designing these inter-
faces in such a way that we minimize errors, account for
rapidly increasing device variability, provide a suitable
testing framework and, offer a practical solution to both
software facing driver writers and hardware facing
hardware designers.

To address these challenges, this paper presents Ul-
traviolet (UV), a library and framework for rapid devel-
opment and testing of new hardware devices as well as
debugging and long term regression testing of older de-
vices.

2. ULTRAVIOLET KEY CONCEPTS
Device drivers typically implement two interfaces; a

device facing bus interface and kernel facing data inter-
face. Figure 1a illustrates this arrangement for a typical
Network Interface Controller (NIC) device and driver.

1 Results from analysis of Linux 3.9-rc1 source tree as at 15 April 2013. Tests performed by counting the instances of PCI device
endpoints present in the PCI_DEVICE_TABLE in e1000_main.c and ixgbe_main.c.

2 Results from analysis of Linux 3.9-rc1 source tree as at 15 April 2013. Tests performed by running the cloc utility
(http://cloc.sourceforge.net) on full the full source tree and the drivers/ subdirectory. Lines of code (LOC) count excludes comments
and blank lines but includes all 22 languages represented in the tree. The 3.9 Kernel release (candidate) has 11.3 million LOC and 6.3
million LOC in the drivers/ subdirectory.

mailto:mpg39@cam.ac.uk
mailto:mpg39@cam.ac.uk

An application uses the kernel API (e.g. sockets or file I/
O) to send/receive data to the kernel. The kernel uses an
internal API (e.g. netif/skbufs) to communicate with an
appropriate device driver. The device driver then sends/
receives data by interacting with the hardware over a bus
interface (e.g. PCIe). The driver configures and queries
registers by issuing read/write requests to the bus. The
device responds to these requests by performing direct
memory access (DMA) operations and causing interrupts
to occur. Finally, the device driver marshals this data
back into a form acceptable to the kernel (e.g. an skbuf)
and allows the kernel to communicate data back to the
application.

The key concept behind Ultraviolet, is intercept the
software hardware interface, by hijacking the communi-
cation bus (e.g. PCIe) at a source level and routing that
communication out of the kernel into a userspace virtual
(UV) hardware application, leaving the device driver
unmodified. A virtual hardware application implements
the functionality of a hardware device without the re-
quirement for the physical device to be present. The de-
vice driver is therefore unaware that it is running against
a virtual hardware device and so behaves as it would
were there a real hardware device attached. This means
that the driver can be tested against hardware devices
that are not available, are not attached or do not yet exist.
It also provides a convenient mechanism to sketch out
and test the error prone hardware-software interface.
That is, the layout of registers, the protocol for commu-
nication and DMA and the operation and synchronisation
of state machines in both the device and the driver. Be-
cause UV intercepts bus communication it is perfectly
located to detect invalid address access violations from
both the device and the driver, issuing warnings rather
than crashing the machine as is likely with real hard-
ware.

3. PROOF OF CONCEP: THE USER-
SPACE VIRTUAL NIC (UVNIC)

As a proof of the Ulatraviolet concept, I have imple-
mented and tested a complete UV version of the PCI
express bus communications sublayer in the linux kernel.
Over the top of this, I have written and ported a collec-
tion of real and imaginary userspace virtual network
interface controllers (uvNICs). There is no specific con-
ceptual reason for choosing PCIe and NICs as a starting
point other than familiarity with both the hardware and
software in the NetFPGA 10G project. Experiences with
Ultraviolet so far suggest that it is highly amenable to
implementing USB, IEEE1394 and other communication
protocols as well.

A high level view of the uvNIC proof of concept is
illustrated in figure 1b. Unlike figure 1a, instead of (or
addition to) regular PCI operations, uvPCI forwards in-
teractions with PCI hardware over a uvBus device to a
userspace virtual NIC application. This application im-
plements a software emulation of the hardware NIC and
responds appropriately by sending and receiving packets
over a commodity device operated in raw socket mode.
This gives the driver the impression that a real hardware
device is running and connected to a real network even
though no such device exists.

Implementing the a virtual hardware device and PCI
virtualisation layer is not trivial. Operating system ker-
nels are designed with strict one way dependencies in
mind. That is, userspace applications are dependent on
the kernel, the kernel is dependent on the hardware. Im-
portantly, the kernel is not designed for, nor does it easily
facilitate dependence (i.e. blocking) on userspace appli-
cations. For the ultraviolet framework, this is problem-
atic. The virtual device should appear to the driver as a
hardware device, but to the kernel it appears as a user-
space application. Solving this problem ultimately turned
out to be easier than expected, so long as care considera-
tion of threading behaviour was taken into account (de-
scribed later).

Figure 2. illustrates the uvNIC proof of concept im-
plementation in more detail. At the core is the uvBus
message transport layer. UvBus connects the kernel and

Figure 1a - Arrangement of a typical network interface controller (NIC) hardware and driver; Figure 1b - Arrangement
of a the uvNIC driver, virtual PCIe bus, virtual hardware and underlying hardware.

the virtual device by using standard file I/O operations
(open(), ioctl(), mmap()). It establishes a pair of
shared memory regions between the kernel and user-
space. Messages are exchanged by enqueuing and de-
queueing fixed size packets into the lockless circular
buffers in the shared memory regions. Message delivery
order is strictly maintained. UvBus also includes an out
of band, bi-directional signalling mechanism for alerting
message consumers about incoming data. Userspace
applications signal the kernel by calling write() with a
64 bit signal value. Likewise, the kernel signals user-
space by providing a 64 bit response to poll()/read()
system calls.

A lightweight PCIe like protocol (uvPCI) is imple-
mented on top of uvBus. Much like real PCI, uvPCI im-
plements non-blocking write (posted) and blocking read
(non-posted) operations in both kernel and userspace.
The most important of these operations is blocking reads
in kernel space. When using hardware implementations
of PCI, if the CPU issues a read instruction to PCI, it
halts progress until the response is received. Emulating
this behaviour is critical to the functioning of uvPCI but
is not trivial. It requires that the kernel block waiting for
a response from userspace, inverting the usual order of
dependence in the kernel. This is implemented in uvPCI
by spinning on uvBus shared memory device and kept
safe by using timeouts (in case the device software has
crashed) and appropriate calls to yield(). It is vitally
important that the driver thread in the kernel call yield,
as it gives the virtual hardware thread an opportunity to
run. The system will deadlock rapidly if this is not the
case. An important aspect of uvPCI is that it maintains
read and write message ordering in a manner that is con-
sistent with hardware PCIe implementations. Although a
software implementation of a hardware device will never
be as fast a the real thing, the strict ordering of messages
ensure that the device driver is exercised though nearly
all possible states. In some senses, the slowness of the
hardware to react will exercise the driver’s correctness
more so than fully functioning hardware. One major
shortcoming of Ultraviolet is that it is possible that tim-
ing issues only see at full speed will not be found in the
virtual environment. This is discussed further in Section
6 - Future Work.

In addition to basic PCI read and write operations,
uvPCI implements a suite of x86 specific PCIe restric-
tions and functions. A complete PCI configuration space
is implemented including 32bit and 64 bit memory and I/
O base address registers along with commands to read
and write the configuration space. This is important as it
is the mechanism by which drivers determine and map
the register space of the device. Register reads/writes are
also implemented and limited to 32bits / 64bits accord-
ing to the configuration space above. Interrupts are mes-
sage signalled and those messages share the same infra-
structure as regular messages. This ensures that ordering
in the system is strictly maintained. Finally, PCI enforces
limits on the maximum DMA fetch size and alignment.
Many PCIe root hubs implement 128B, 32bit aligned
DMA operations as does uvPCIx86. Since DMA opera-
tions are initiated by the virtual hardware thread, they
enter the kernel as a different thread to the device driver
itself. This means that DMA transactions appear to the
driver as they would in reality. That is, data appears and
is removed from DMA mapped buffers asynchronously
without the driver’s direct involvement.

The final and most important layer of the uvPCI en-
vironment is the device driver interface. It is critical to
the goals of Ultraviolet that the device driver remain
unmodified or nearly so. With substantial effort it is pos-
sible that Ultraviolet could be built deep into the kernel,
allowing some sort of kernel option to switch between
virtual and physical device operation. For implementa-
tion expedience this path was not taken. Instead, uvPCI
requires that driver writers replace <linux/pci.h>
with <uvPCI/pci.h> and that all calls to PCI func-
tions are prepended with the letters “uv”. For example,
pci_enable_msix() i s i n s t ead wr i t t en a s
uvpci_enable_msix(). A simple search and replace
for all instaces of “uv” with the empty string is all that is
required to “port” a uvPCI device over to real PCI.
UvPCI implements a functionally equivalent, parallel
implementation of the PCI stack. Porting both the pro-
duction NetFPGA 10G driver and the more complex
Intel 10G IXGBE driver to use uvNIC have both proved
to be light work.

Figure 2 - Detailed view of the uvPCI internal design.

4. EVALUATION
Ultraviolet is a difficult tool too numerically evalu-

ate. As a software emulation of a hardware device, per-
formance numbers have very little meaning. The aim and
intent of Ultraviolet was never to high be performance,
but instead to provide a framework in which the highly
error prone software-hardware interface could be rapidly
prototyped, tested and debugged. The key criteria for
evaluation are then:

1. Does/can it work? Can a functional Ultraviolet im-
plementation be put together, especially taking into
account the difficulties of inverting the kernel to de-
pend on userspace?

2. Is it complete (enough)? Can an ultraviolet imple-
mentation be used against a serious production
driver? Are there aspects of the framework that are
lacking or missing.

3. Do drivers port easily? Given virtual hardware
driver, how complex is it to move over to using real
hardware.

4. How complex is the virtual hardware device? Is it a
suitable first point for designing and testing useful
interfaces?

In order to test these ideas, several virtual devices were
written and evaluated. These are described below:

4.1 The 1-in 1-out NIC
High performance network interface adapters operate

by directly copying inbound/outbound packets to/from
host memory over DMA. Onboard they have a descriptor
table that describes the size and location of memory
buffers allocated by the host driver to which/from DMA
operations must occur. It is the job of the driver to re-
fresh the descriptor table with new memory regions
when packets become available or are completed proc-
essing. The first device written for Ultraviolet was a
network interface adapter with exactly 1 table entry for
inbound packets and 1 table entry for outbound packets.
This approach was taken to reduce complexity of both
the driver and the device. The test was expected to an-
swer the evaluation questions 1 and 4.

The result was a resounding success. The first user
space NIC hardware device was written in only 250 lines
of C code. It formed a complete and functional user
space NIC hardware device. The interface comprised just
4 registers, 1 register for both size and address in both
transmit and receive directions forming an effective
DMA descriptor table. The device driver was equally
simple comprising about 500 lines of C code. An outgo-
ing packet would be directly allocated to the transmit
registers. The driver would then wait for a special inter-
rupt number from the card to confirm that the message
had been sent. Likewise a single receive buffer was allo-
cated to the receive registers. A special number interrupt
number would signal that a packet had arrived. The
driver would clear this when ready by resetting size reg-
ister.

Although simple, this test neatly and fully exercised
the design and intent of Ultraviolet. Both a device and a
device driver were prototyped, with a trivial but useful

device interface protocol. The NIC performed ping-flood
and traceroute operations using standard Unix tools but
could not handle a full secure shell (ssh) connection.
Initially it was thought that this was due to the extremely
limited “device resources” available, but later it was
found that an ARP misconfiguration in Linux was to
blame. Nevertheless, this test did show that a working
Ultraviolet hardware device was possible and that the
complexity was low enough to make testing and design-
ing useful, partially answering evaluation questions 1
and 4.

4.2 A Simple NetFPGA Hardware Device
A second uvNIC driver was written, this time for a

NetFGPA 10G FPGA card, programmed with custom
firmware to run a simple register and interrupt generator
module. Once prototyped in software, the driver was
ported to real hardware and the Verilog hardware de-
scription was written and tested. This test was necessar-
ily simple because real hardware development is a long
and complex process and was not the aim of the test.
This test showed that a minimal but functional driver
could be written against a hypothetical specification and
run against a real hardware device at a later stage in par-
tial answer to evaluation questions 1 - 4.

4.3 Fully Featured NetFPGA 10G 4 Port NIC
The previous two tests indicated that toy examples of

devices were possible to write and run over uvNIC, but
did not exercise the framework in any serious way. To
more fully answer evaluation question 2, the full produc-
tion version of NetFPGA 10G driver was ported to uv-
NIC. This port was interesting for several reasons;
Firstly, two minor bugs in the source code were discov-
ered as a result of the port, and, secondly, it showed that
very little effort was required to complete the port. It did
show, however, that more effort was required to “for-
ward” port a device to uvNIC than to “backwards” port a
device from it. This is because a simple search and re-
place of “pci_” with “uvpci_” often turned up spurious
results where the driver author had named a function or
name themselves with the characters “pci_”. This is not
true of the reverse process, were all instance of “uvpci_”
could be removed. Despite the extra effort involved, the
port of the NetFPGA 10G was again a success. When
complete, an 11” Mac BookAir ran an emulated 4 port
10G network card over a basic Intel e1000 NIC using an
essentially unmodified driver. By coincidence, the proc-
ess also formed the first attempt at documenting the in-
ternal NetFPGA 10G DMA engine functionality (by re-
verse engineering) and is unique in the sense that the C
code now represents an executable specification of that
interface. The NetFPGA port was fully capable of sus-
taining multiple interactive TCP ssh sessions and sup-
ported interactive web browsing to a limited degree3.
This was a strong answer to evaluation questions 1-4.

4.4 Fully Featured Intel 10G NIC
Work is currently underway to port the Intel 10G

IXGBE driver to using uvNIC. The driver compiled
against the uvNIC framework with relatively little effort
and now starts up and fails. The bulk of the efforts now

3 It has been found that Google Chrome causes the driver to lock up after a few minutes of operation. The cause for this is not yet
known but is being investigated, though is is known that Google Chrome is an extremely aggressive user of the network stack.

lie in reverse engineering the extensive and register and
DMA interfaces present in the card. Two chipsets,
(82958EB and 82599EB) are targeted at a bug finding
test. Substantial effort is involved in building a func-
tional hardware model of these chipsets and useful re-
sults are not yet available at the time of writing.

5. RELATED WORK
Userspace device drivers have a long history [8][9]

and continues to be employed widely, especially in high
performance situations [10][11]. Whilst Ultraviolet
shares the basic concept of implementing a part of the
device stack in userspace, it is distinct from previous
attempts because it implements the hardware in user-
space software rather than parts of software stack as is
commonly the case. It is crucial to note that performance
is not the primary goal of Ultraviolet, rather, the primary
goal is rapid prototyping and testing at the software/
hardware interface.

The structure and function of Ultraviolet is highly
similar to the virtual devices found in hypervisors and
virtual machines (VMs). Both VMware [12] and Xen
[13] expose virtualised hardware devices to their guest
OSes and hence the guest OS drivers. It is possible that
custom hardware could be designed and written in a VM
context instead of using Ultraviolet. However, the ap-
proach has the distinct disadvantage that development
and integration of a new virtual device into a VM is a
complex and time consuming task. This is in direct op-
position to the stated goal, which is which is to aid rapid
prototyping of the hardware and device driver.

Ultraviolet is also similar to File System in User
Space (FUSE) [14] systems. Like Ultraviolet, FUSE
requires that kernel become dependent on userspace ap-
plications. In contrast, however, FUSE systems are much
simpler than Ultraviolet because no direct emulation of
hardware timing, ordering and consistency parameters
are required.

The most similar work to Ultraviolet is Sym-
Drive[15]. This approach uses a complex set of symbolic
and virtual execution tools used to simulate execution of
a device driver in the absence of a device. This leads to
similar debugging ability to Ultraviolet. However, it does
not have the useful ability to prototype and test a new
driver against a speculated/non existent hardware inter-
face as Ultraviolet does.

Another similar approach to device driver correctness
involves reusing parts of the device hardware specifica-
tion to generate a device driver stub. Then, using a cus-
tom shim in the operating system [12] to run the stub as
the device driver. Whilst this is an elegant solution, the
approach requires that hardware designers learn and use
a specialised formal language for generating their tests,
which is unlikely to see traction amongst device design-
ers. This approach again lacks the facility to prototype
and play with interface ideas before committing to the
expensive and time consuming task of implementing the
hardware and it’s accompanying tests.

6. CONCLUSIONS AND NEXT STEPS
Ultraviolet is a simple but unique approach to a real

problem. Work so far has indicated that the approach is
valid and viable for a small subset of devices on a small
subset of available buses. The framework is already be-
ing used as a measurement and debugging tool for real
device drivers and for porting new device chipsets to old

device drivers. The obvious next step is to expand num-
ber and types of devices and buses supported and to per-
form similar tests on these devices. Ultraviolet userspace
hardware programs represent fully functional specifica-
tions against which device implementations and simula-
tions could potentially be tested before release. Another
next step may be to migrate the virtualised hardware
model to a cycle accurate simulation to facilitate full,
cycle accurate device and driver simulation and testing.
Ultraviolet affords designers an unique opportunity to
rapidly explore the software-hardware interface of new
and existing designs at low cost. It is expected that large
suites of Ultraviolet devices could be created to perform
automated regression testing on large kernels such as
Linux prior to release, ideally improving the quality of
devices and the stability of the operating systems that we
all use on a daily basis.

7. REFERENCES
[1] Matthew J. Renzelmann, Asim Kadav and Michael M.

Swift, 2012. SymDrive: Testing Drivers without Devices,
OSDI 2012

[2] Archana Ganapathi, Viji Ganapathi, and David Patterson,
2006. Windows XP Kernel Crash Analysis, LISA 2006

[3] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem,
and Dawson Engler, An Empirical Study of Operating
Systems Errors, SOSP 2001

[4] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, Gernot Heiser,
Dingo: Taming Device Drivers, EuroSys 2009,

[5] John W. Lockwood, Nick McKeown, Greg Watson, Glen
Gibb, Paul Hartke, Jad Naous, Ramanan Raghuraman, and
Jianying Luo. 2007. NetFPGA--An Open Platform for
Gigabit-Rate Network Switching and Routing. Microelec-
tronic Systems Education (MSE '07).

[6] NetFPGA 10G Project, NetFPGA website,
http://www.netfpga.org

[7] C. Thacker, A. Nowatzyk, T. Rodeheffer, and F. Yu. A data
center network using FPGAs (v4.5), April 2011. Unpub-
lished.

[8] T. von Eicken, A. Basu, V. Buch, and W. Vogels. 1995. U-
Net: a user-level network interface for parallel and dis-
tributed computing. SIGOPS Oper. Syst. Rev. 29, 5 (De-
cember 1995), 40-53.

[9] Nanette J. Boden, Danny Cohen, Robert E. Felderman,
Alan E. Kulawik, Charles L. Seitz, Jakov N. Seizovic, and
Wen-King Su. 1995. Myrinet: A Gigabit-per-Second Local
Area Network. IEEE Micro15, 1 (February 1995), 29-36.

[10] Ian Pratt, Keir Fraser. 2001. Arsenic: A user-accessible
gigabit ethernet interface. INFOCOM 2001.

[11] David. Riddoch, Steven. Pope. 2008. OpenOnload, A
user-level network stack. Google Tech Talk,
http://www.openonload.org/openonload-google-talk.pdf

[12] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-
Hong Lim. 2001. Virtualizing I/O Devices on VMware
Workstation's Hosted Virtual Machine Monitor. USENIX
ATC 2001

[13] Aravind Menon, Alan L. Cox, and Willy Zwaenepoel.
2006.Optimizing network virtualization in Xen. USENIX
ATC 2006

[14] Miklos Szeredi. 2012, File System in User Space.
http://fuse.sourceforge.net

[15] Matthew J. Renzelmann, Asim Kadav and Michael M.
Swif, SymDrive. 2012, Testing Drivers without Devices,
OSDI 2012

http://www.netfpga.org
http://www.netfpga.org
http://www.openonload.org/openonload-google-talk.pdf
http://www.openonload.org/openonload-google-talk.pdf
http://fuse.sourceforge.net
http://fuse.sourceforge.net

