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Abstract. This paper studies how to adjoin probability to event structures, lead-
ing to the model of probabilistic event structures. In theirsimplest form prob-
abilistic choice is localised to cells, where conflict arises; in which case proba-
bilistic independence coincides with causal independence. An application to the
semantics of a probabilistic CCS is sketched. An event structure is associated
with a domain—that of its configurations ordered by inclusion. In domain theory
probabilistic processes are denoted by continuous valuations on a domain. A key
result of this paper is a representation theorem showing howcontinuous valua-
tions on the domain of a confusion-free event structure correspond to the proba-
bilistic event structures it supports. We explore how to extend probability to event
structures which are not confusion-free via two notions of probabilistic runs of a
general event structure. Finally, we show how probabilistic correlation and prob-
abilistic event structures with confusion can arise from event structures which are
originally confusion-free by using morphisms to rename andhide events.

1 Introduction

There is a central divide in models for concurrent processesaccording to whether they
represent parallelism by nondeterministic interleaving of actions or directly as causal
independence. Where a model stands with respect to this divide affects how proba-
bility is adjoined. Most work has been concerned with probabilistic interleaving mod-
els [LS91,Seg95,DEP02]. In contrast, we propose a probabilistic causal model, a form
of probabilistic event structure.

An event structure consists of a set of events with relationsof causal dependency
and conflict. A configuration (a state, or partial run of the event structure) consists of
a subset of events which respects causal dependency and is conflict free. Ordered by
inclusion, configurations form a special kind of Scott domain [NPW81].

The first model we investigate is based on the idea that all conflict is resolved prob-
abilistically and locally. This intuition leads us to a simple model based onconfusion-
freeevent structures, a form of concrete data structures [KP93], but where computation
proceeds by making a probabilistic choice as to which event occurs at each currently
accessible cell. (The probabilistic event structures which arise are a special case of those
studied by Katoen [Kat96]—though our concentration on the purely probabilistic case

? Work partially done as PhD student at BRICS - Aarhus, Denmark
Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.



and the use of cells makes the definition simpler.) Such a probabilistic event structure
immediately gives a “probability” weighting to each configuration got as the product
of the probabilities of its constituent events. We characterise those weightings (called
configuration valuations) which result in this way. Understanding the weighting as a
true probability will lead us later to the important notion of probabilistic test.

Traditionally, in domain theory a probabilistic process isrepresented as a contin-
uous valuation on the open sets of a domain, i.e., as an element of the probabilistic
powerdomain of Jones and Plotkin [JP89]. We reconcile probabilistic event structures
with domain theory, lifting the work of [NPW81] to the probabilistic case, by showing
how they determine continuous valuations on the domain of configurations. In doing so
however we do not obtain all continuous valuations. We show that this is essentially for
two reasons: in valuations probability can “leak” in the sense that the total probability
can be strictly less than1; more significantly, in a valuation the probabilistic choices at
different cells need not be probabilistically independent. In the process we are led to a
more general definition of probabilistic event structure from which we obtain a key rep-
resentation theorem: continuous valuations on the domain of configurations correspond
to the more general probabilistic event structures.

How do we adjoin probabilities to event structures which arenot necessarily confu-
sion-free? We argue that in general a probabilistic event structure can be identified with
a probabilistic run of the underlying event structure and that this corresponds to a prob-
ability measure over the maximal configurations. This sweeping definition is backed up
by a precise correspondence in the case of confusion-free event structures. Exploring
the operational content of this general definition leads us to consider probabilistic tests
comprising a set of finite configurations which are both mutually exclusive and exhaus-
tive. Tests do indeed carry a probability distribution, andas such can be regarded as
finite probabilistic partial runs of the event structure.

Finally we explore how phenomena such as probabilistic correlation between choi-
ces and confusion can arise through the hiding and relabeling of events. To this end
we present some preliminary results on “tight” morphisms ofevent structures, showing
how, while preserving continuous valuations, they can produce such phenomena.

2 Probabilistic Event Structures

2.1 Event Structures

An event structureis a tripleE = 〈E,≤, #〉 such that

• E is a countable set ofevents;
• 〈E,≤〉 is a partial order, called thecausal order, such that for everye ∈ E, the set

of events↓ e is finite;
• # is an irreflexive and symmetric relation, called theconflict relation, satisfying

the following: for everye1, e2, e3 ∈ E if e1 ≤ e2 ande1 # e3 thene2 # e3.

Causal dependence and conflict are mutually exclusive. If two events are not causally
dependent nor in conflict they are said to beconcurrent.



A configurationx of an event structureE is a conflict-free downward closed subset
of E, i.e. a subsetx of E satisfying: (1) whenevere ∈ x ande′ ≤ e thene′ ∈ x and (2)
for everye, e′ ∈ x, it is not the case thate # e′. Therefore, two events of a configuration
are either causally dependent or concurrent, i.e., a configuration represents a run of
an event structure where events are partially ordered. The set of configurations ofE ,
partially ordered by inclusion, is denoted asL(E). The set of finite configurations is
written byLfin(E). We denote the empty configuration by⊥.

If x is a configuration ande is an event such thate 6∈ x andx∪{e} is a configuration,
then we say thate is enabledatx. Two configurationsx, x′ are said to becompatibleif
x∪x′ is a configuration. For every evente of an event structureE , we define[e] := ↓ e,
and[e) := [e] \ {e}. It is easy to see that any evente is enabled at[e).

We say that eventse1 ande2 are in immediateconflict, and writee1 #µ e2 when
e1 # e2 and both[e1) ∪ [e2] and[e1] ∪ [e2) are configurations. Note that the immediate
conflict relation is symmetric. It is also easy to see that a conflict e1 # e2 is immediate
if and only if there is a configuration where bothe1 ande2 are enabled.

2.2 Confusion-free Event Structures

The most intuitive way to add probability to an event structure is to identify “probabilis-
tic events”, such as coin flips, where probability is associated locally. A probabilistic
event can be thought of as probability distribution over acell, that is, a set of events (the
outcomes) that are pairwise in immediate conflict and that have the same set of causal
predecessors. The latter implies that all outcomes are enabled at the same configura-
tions, which allows us to say that the probabilistic event iseither enabled or not enabled
at a configuration.

Definition 2.1. A partial cellis a setc of events such thate, e′ ∈ c impliese #µ e′ and
[e) = [e′). A maximal partial cell is called acell.

We will now restrict our attention to event structures whereeach immediate conflict
is resolved through some probabilistic event. That is, we assume that cells are closed
under immediate conflict. This implies that cells are pairwise disjoint.

Definition 2.2. An event structure isconfusion-freeif its cells are closed under imme-
diate conflict.

Proposition 2.3. An event structure is confusion-free if and only if the reflexive closure
of immediate conflict is transitive and inside cells, the latter meaning thate #µ e′ =⇒
[e) = [e′).

It follows that, in a confusion-free event structure, the reflexive closure of immediate
conflict is an equivalence with cells being its equivalence classes. If an evente ∈ c is
enabled at a configurationx, all the events ofc are enabled as well. In which case
we say that the cellc is accessibleat x. Confusion-free event structures correspond to
deterministic concrete data structures [NPW81,KP93] and to confusion-free occurrence
nets [NPW81].

We find it useful to define cells without directly referring toevents. To this end we
introduce the notion ofcovering.



Definition 2.4. Given two configurationsx, x′ ∈ L(E) we say thatx′ coversx if there
existse 6∈ x such thatx′ = x∪ {e}. For every finite configurationx of a confusion-free
event structure, apartial coveringat x is a set of pairwise incompatible configurations
that coverx. A coveringat x is a maximal partial covering atx.

Proposition 2.5. In a confusion-free event structure ifC is a covering atx, thenc =
{e |x ∪ {e} ∈ C} is a cell accessible atx. Conversely, ifc is accessible atx, then
C := {x ∪ {e} | e ∈ c} is a covering atx.

2.3 Probabilistic Event Structures with Independence

Once an event structure is confusion-free, we can associatea probability distribution
with each cell. Intuitively it is as if we have a die local to each cell, determining the
probability with which the events at that cell occur. In thisway we obtain our first
definition of a probabilistic event structure, a definition in which dice at different cells
are assumed probabilistically independent.

Definition 2.6. Whenf : X → [0, +∞] is a function, for everyY ⊆ X , we define
f [Y ] :=

∑

x∈Y f(x). A cell valuationon a confusion-free event structure〈E,≤, #〉 is
a functionp : E → [0, 1] such that for every cellc, we havep[c] = 1.

Assuming probabilistic independence of all probabilisticevents, every finite config-
uration can be given a “probability” which is obtained as theproduct of probabilities of
its constituent events. This gives us a functionLfin(E) → [0, 1] which we can charac-
terise in terms of the order-theoretic structure ofLfin(E) by using coverings.

Proposition 2.7. Let p be a cell valuation and letv : Lfin(E) → [0, 1] be defined by
v(x) = Πe∈xp(e). Then we have

(a) (Normality)v(⊥) = 1;
(b) (Conservation) ifC is a covering atx, thenv[C] = v(x);
(c) (Independence) ifx, y are compatible, thenv(x) · v(y) = v(x ∪ y) · v(x ∩ y).

Definition 2.8. A configuration valuation with independenceon a confusion-free event
structureE is a functionv : Lfin(E) → [0, 1] that satisfies normality, conservation
and independence. The configuration valuation associated with a cell valuationp as in
Prop. 2.7 is denoted byvp.

Proposition 2.9. If v is a configuration valuation with independence andp : E →
[0, 1] is a mapping such thatv([e]) = p(e) · v([e)) for all e ∈ E, thenp is a cell
valuation such thatvp = v.

Condition (c) from Proposition 2.7 is essential to prove Proposition 2.9.We will
show later (Theorem 5.3) the sense in which this condition amounts to probabilistic
independence.

We give an example. Take the following confusion-free eventstructureE1: E1 =
{a, b, c, d} with the discrete causal ordering and witha #µ b andc #µ d.

We define a cell valuation onE1 by p(a) = 1/3, p(b) = 2/3, p(c) = 1/4, p(d) =
3/4. The corresponding configuration valuation is defined as



• vp(⊥) = 1;
• vp({a}) = 1/3, vp({b}) = 2/3, vp({c}) = 1/4, vp({d}) = 3/4;
• vp({a, c}) = 1/12, vp({b, c}) = 1/6, vp({a, d}) = 1/4, vp({b, d}) = 1/2.

In the event structure above, a covering at⊥ consists of{a}, {b}, while a covering at
{a} consists of{a, c}, {a, d}.

We conclude this section with a definition of a probabilisticevent structure. Though,
as the definition indicates, we will consider a more general definition later, one in which
there can be probabilistic correlations between the choices at different cells.

Definition 2.10. A probabilistic event structure with independenceconsists of a confu-
sion-free event structure together with a configuration valuation with independence.

3 A Process Language

Confusion-freeness is a strong requirement. But it is stillpossible to give a seman-
tics to a fairly rich language for probabilistic processes in terms of probabilistic event
structures with independence. The language we sketch is a probabilistic version of
value passing CCS. Following an idea of Milner, used in the context of confluent pro-
cesses [Mil89], we restrict parallel composition so that there is no ambiguity as to which
two processes can communicate at a channel; parallel composition will then preserve
confusion-freeness.

Assume a set of channelsL. For simplicity we assume that a common set of values
V may be communicated over any channela ∈ L. The syntax of processes is given by:

P ::= 0 |
∑

v∈V

a!(pv, v).Pv | a?(x).P | P1‖P2 | P \ A |

P [f ] | if b then P1 elseP2 | X | recX.P

Herex ranges over value variables,X over process variables,A over subsets of chan-
nels andf over injective renaming functions on channels,b over boolean expressions
(which make use of values and value variables). The coefficientspv are real numbers
such that

∑

v∈V pv = 1.
A closed process will denote a probabilistic event structure with independence, but

with an additional labelling function from events to outputlabelsa!v, input labelsa?v
wherea is a channel andv a value, orτ . At the cost of some informality we explain the
probabilistic semantics in terms of CCS constructions on the underlying labelled event
structures, in which we treat pairs of labels consisting of an output labela!v and input
labela?v as complementary. (See e.g. the handbook chapter [WN95] or [Win82,Win87]
for an explanation of the event structure semantics of CCS.)For simplicity we restrict
attention to the semantics of closed process terms.

The nil process0 denotes the empty probabilistic event structure. A closed output
process

∑

v∈V a!(pv, v).Pv can perform a synchronisation at channela, outputting a
value v with probability pv, whereupon it resumes as the processPv. EachPv, for
v ∈ V , will denote a labelled probabilistic event structure withunderlying labelled



event structureE [[Pv]]. The underlying event structure of such a closed output process
is got by the juxtaposition of the family of prefixed event structures

a!v.E [[Pv ]] ,

with v ∈ V , in which the additional prefixing events labelleda!v are put in (immedi-
ate) conflict; the new prefixing events labelleda!v are then assigned probabilitiespv to
obtain the labelled probabilistic event structure.

A closed input processa?(x).P synchronises at channela, inputting a valuev and
resuming as the closed processP [v/x]. Such a processP [v/x] denotes a labelled prob-
abilistic event structure with underlying labelled event structureE [[P [v/x]]]. The under-
lying labelled event structure of the input process is got asthe parallel juxtaposition of
the family of prefixed event structures

a?v.E [[P [v/x]]] ,

with v ∈ V ; the new prefixing events labelleda?v are then assigned probabilities1.
The probabilistic parallel composition corresponds to theusual CCS parallel com-

position followed by restricting away on all channels used for communication. In order
for the parallel compositionP1‖P2 to be well formed the set of input channels ofP1

andP2 must be disjoint, as must be their output channels. So, for instance, it is not
possible to form the parallel composition

∑

v∈V

a!(pv, v).0‖a?(x).P1‖a?(x).P2 .

In this way we ensure that no confusion is introduced throughsynchronisation.
We first describe the effect of the parallel composition on the underlying event struc-

tures of the two components, assumed to beE1 andE2. This is got by CCS parallel
composition followed by restricting away events in a setS:

(E1 |E2) \ S

whereS consists of all labelsa!v, a?v for which a!v appears inE1 anda?v in E2, or
vice versa. In this way any communication betweenE1 andE2 is forced when possible.
The newly introducedτ -events, corresponding to a synchronisation between ana!v-
event with probabilitypv and ana?v-event with probability1, are assigned probability
pv.

A restrictionP \ A has the effect of the CCS restriction

E [[P ]] \ {a!v, a?v | v ∈ V & a ∈ A}

on the underlying event structure; the probabilities of theevents which remain stay the
same. A renamingP [f ] has the usual effect on the underlying event structure, proba-
bilities of events being maintained. A closed conditional(if b then P1 elseP2) has the
denotation ofP1 whenb is true and ofP2 whenb is false.

The recursive definition of probabilistic event structuresfollows that of event struc-
tures [Win87] carrying the extra probabilities along. Though care must be taken to en-
sure that a confusion-free event structure results: one wayto ensure this is to insist that
for recX.P to be well-formed the process variableX may not occur under a parallel
composition.



4 Probabilistic Event Structures and Domains

The configurations〈L(E),⊆〉 of a confusion-free event structureE , ordered by inclu-
sion, form a domain, specifically adistributive concrete domain(cf. [NPW81,KP93]).
In traditional domain theory, a probabilistic process is denoted by acontinuous valu-
ation. Here we show that, as one would hope, every probabilistic event structure with
independence corresponds to a unique continuous valuation. However not all continu-
ous valuations arise in this way. Exploring why leads us to a more liberal notion of a
configuration valuation, in which there may be probabilistic correlation between cells.
This provides a representation of the normalised continuous valuations on distributive
concrete domains in terms of probabilistic event structures. (The Appendix includes a
brief survey of the domain theory we require. The rather involved proofs of this section
can be found in [Var03].)

4.1 Domains

The probabilistic powerdomain of Jones and Plotkin [JP89] consists of continuous val-
uations, to be thought of as denotations of probabilistic processes. Acontinuous valua-
tion on a DCPOD is a functionν defined on the Scott open subsets ofD, taking values
on [0, +∞], and satisfying:

• (Strictness)ν(∅) = 0;
• (Monotonicity)U ⊆ V =⇒ ν(U) ≤ ν(V );
• (Modularity)ν(U) + ν(V ) = ν(U ∪ V ) + ν(U ∩ V );
• (Continuity) if J is a directed family of open sets,ν

(
⋃

J
)

= supU∈J ν(U).

A continuous valuationν is normalisedif ν(D) = 1. Let V1(D) denote the set of
normalised continuous valuations onD equipped with the pointwise order:ν ≤ ξ if for
all open setsU , ν(U) ≤ ξ(U). V1(D) is a DCPO [JP89,Eda95].

The open sets in the Scott topology represent observations.If D is an algebraic
domain andx ∈ D is compact, theprincipal set↑x is open. Principal open sets can be
thought of as basic observations. Indeed they form a basis ofthe Scott topology.

Intuitively a normalised continuous valuationν assigns probabilities to observa-
tions. In particular we could think of the probability of a principal open set↑x as rep-
resenting the probability ofx.

4.2 Continuous and Configuration Valuations

As can be hoped, a configuration valuation with independenceon a confusion-free event
structureE corresponds to a normalised continuous valuation on the domain〈L(E),⊆〉,
in the following sense.

Proposition 4.1. For every configuration valuation with independencev on E there is
a unique normalised continuous valuationν onL(E) such that for every finite configu-
ration x, ν(↑ x) = v(x).



Proof. The claim is a special case of the subsequent Theorem 4.4. �

While a configuration valuation with independence gives rise to a continuous val-
uation, not every continuous valuation arises in this way. As an example, consider the
event structureE1 as defined in Section 2.3. Define

• ν(↑{a}) = ν(↑{b}) = ν(↑{c}) = ν(↑{d}) = 1/2;
• ν(↑{a, d}) = ν(↑{b, c}) = 1/2;
• ν(↑{a, c}) = ν(↑{b, d}) = 0;

and extend it to all open sets by modularity. It is easy to verify that it is indeed a con-
tinuous valuation onL(E1). Define a functionv : Lfin(E1) → [0, 1] by v(x) := ν(↑x).
This is not a configuration valuation with independence; it does not satisfy condition
(c) of Proposition 2.7. If we consider the compatible configurationsx := {a}, y := {c}
thenv(x ∪ y) · v(x ∩ y) = 0 < 1/4 = v(x) · v(y).

Also continuous valuations “leaking” probability do not arise from probabilistic
event structures with independence.

Definition 4.2. Denote the set of maximal elements of a DCPOD by Ω(D). A nor-
malised continuous valuationν on D is non-leakingif for every open setO ⊇ Ω(D),
we haveν(O) = 1.

This definition is new, although inspired by a similar concept in [Eda95]. For the sim-
plest example of a leaking continuous valuation, consider the event structureE2 con-
sisting of one evente only, and the valuation defined asν(∅) = 0, ν(↑⊥) = 1,
ν(↑{e}) = 1/2. The corresponding functionv : Lfin(E2) → [0, 1] violates condition
(b) of Proposition 2.7. The probabilities in the cell ofe do not sum up to 1.

We analyse how valuations without independence and leakingvaluations can arise
in the next two sections.

4.3 Valuations Without Independence

Definition 2.10 of probabilistic event structures assumes the probabilistic independence
of choice at different cells. This is reflected by condition(c) in Proposition 2.7 on which
it depends. In the first example above, the probabilistic choices in the two cells are not
independent: once we know the outcome of one of them, we also know the outcome
of the other. This observation leads us to a more general definition of a configuration
valuation and probabilistic event structure.

Definition 4.3. A configuration valuationon a confusion-free event structureE is a
functionv : Lfin(E) → [0, 1] such that:

(a) v(⊥) = 1;
(b) if C is a covering atx, thenv[C] = v(x).

A probabilistic event structureconsists of a confusion-free event structure together with
a configuration valuation.

Now we can generalise Proposition 4.1, and provide a converse:



Theorem 4.4. For every configuration valuationv on E there is a unique normalised
continuous valuationν on L(E) such that for every finite configurationx, ν(↑ x) =
v(x). Moreoverν is non-leaking.

Theorem 4.5. Let ν be a non-leaking continuous valuation onL(E). The functionv :
Lfin(E) → [0, 1] defined byv(x) = ν(↑ x) is a configuration valuation.

The two theorems above provide a representation of non-leaking continuous valu-
ations on distributive concrete domains—see [Var03], Thm.6.4.1 and Thm. 7.6.2 for
their proof. Using this representation result, we are also able to characterise the maxi-
mal elements inV1(L(E)) as precisely the non-leaking valuations—a fact which is not
known for general domains.

Theorem 4.6. LetE be a confusion-free event structure and letν ∈ V1(L(E)). Thenν
is non-leaking if and only if it is maximal.

Proof. See [Var03], Prop. 7.6.3 and Thm. 7.6.4. �

4.4 Leaking Valuations

There remain leaking continuous valuations, as yet unrepresented by any probabilistic
event structures. At first sight it might seem that to accountfor leaking valuations it
would be enough to relax condition(b) of Definition 4.3 to the following

(b’) if C is a covering atx, thenv[C] ≤ v(x).

However, it turns out that this is not the right generalisation, as the following ex-
ample shows. Consider the event structureE3 whereE3 = {a, b} with the flat causal
ordering and no conflict. Define a “leaking configuration valuation” onE3 by v(⊥) =
v({a}) = v({b}) = 1, v({a, b}) = 0.

The functionv satisfies conditions(a)and(b’), but it cannot be extended to a contin-
uous valuation on the domain of configurations. However, we can show that the leaking
of probability is attributable to an “invisible” event.

Definition 4.7. Consider a confusion-free event structureE = 〈E,≤, #〉. For every
cell c we consider a new “invisible” event∂c such that∂c 6∈ E and if c 6= c′ then
∂c 6= ∂c′ . Let∂ = {∂c | c is a cell}. We defineE∂ to be〈E∂ ,≤∂, #∂〉, where

• E∂ = E ∪ ∂;
• ≤∂ is≤ extended bye ≤∂ ∂c if for all e′ ∈ c, e ≤ e′;
• #∂ is # extended bye #∂ ∂c if there existse′ ∈ c, e′ ≤ e.

SoE∂ is E extended by an extra invisible event at every cell. Invisible events can
absorb all leaking probability, as shown by Theorem 4.9 below.

Definition 4.8. Let E be a confusion-free event structure. Ageneralised configuration
valuationonE is a functionv : Lfin(E) → [0, 1] that can be extended to a configuration
valuation onE∂ .



It is not difficult to prove that, when such an extension exists, it is unique.

Theorem 4.9. LetE be a confusion-free event structure. Letv : Lfin(E) → [0, 1]. There
exists a unique normalised continuous valuationν onL(E) with v(x) = ν(↑ x), if and
only if v is a generalised configuration valuation.

Proof. See [Var03], Thm. 6.5.3. �

The above theorem completely characterises the normalisedcontinuous valuations
on distributive concrete domains in terms of probabilisticevent structures.

5 Probabilistic Event Structures as Probabilistic Runs

In the rest of the paper we investigate how to adjoin probabilities to event structures
which are not confusion-free. In order to do so, we find it useful to introduce two notions
of probabilistic run.

Configurations represent runs (or computation paths) of an event structure. What is
a probabilistic run (or probabilistic computation path) ofan event structure? One would
expect a probabilistic run to be a form of probabilistic configuration, so a probability
distribution over a suitably chosen subset of configurations. As a guideline we con-
sider the traditional model of probabilistic automata [Seg95], where probabilistic runs
are represented in essentially two ways: as a probability measure over the set of max-
imal runs [Seg95], and as a probability distribution over finite runs of the same length
[dAHJ01].

The first approach is readily available to us, and where we begin. As we will see,
according to this view probabilistic event structures overan underlying event structure
E correspond precisely to the probabilistic runs ofE .

The proofs of the results in this section are omitted, but they can be found in the
technical report [VVW04].

5.1 Probabilistic Runs of an Event Structure

The first approach suggests that a probabilistic run of an event structureE be taken to
be a probability measure on the maximal configurations ofL(E).

To do so requires some notions from measure theory. A measurable space is a pair
〈Ω,S〉, whereΩ is a set andS is aσ-algebra overΩ. A measure over a measurable
space〈Ω,S〉 is a countably additive functionµ : S → [0, +∞]. If µ(Ω) = 1, we talk
of a probability measure. LetD be an algebraic domain. Recall thatΩ(D) denotes the
set of maximal elements ofD and that for every compact elementx ∈ D theprincipal
set↑x is Scott open. The setK(x) := ↑x ∩ Ω(D) is called theshadowof x. We shall
consider theσ-algebraS onΩ(D) generated by the shadows of the compact elements.
The configurations of an event structure form a coherentω-algebraic domain, whose
compact elements are the finite configurations [NPW81].

Definition 5.1. A probabilistic runof an event structureE is a probability measure
on 〈Ω(L(E)),S〉, whereS is theσ-algebra generated by the shadows of the compact
elements.



There is a tight correspondence between non-leaking valuations and probabilistic runs.

Theorem 5.2. Let ν be a non-leaking normalised continuous valuation on a coherent
ω-algebraic domainD. Then there is a unique probability measureµ onS such that for
every compact elementx, µ(K(x)) = ν(↑ x).
Let µ be a probability measure onS. Then the functionν defined on open sets by
ν(O) = µ(O ∩ Ω(D)) is a non-leaking normalised continuous valuation.

According to the result above, probabilistic event structures over a common event
structureE correspond precisely to the probabilistic runs ofE . Among these we can
characterise probabilistic event structureswith independencein terms of the standard
measure-theoretic notion of independence. In fact, for such a probabilistic event struc-
ture, every two compatible configurations are probabilistically independent, given the
common past:

Proposition 5.3. Letv be a configuration valuation on a confusion-free event structure
E . Letµv be the corresponding measure as of Propositions 4.1 and Theorem 5.2. Then,
v is a configuration valuationwith independenceiff for every two finite compatible
configurationsx, y

µv

(

K(x) ∩ K(y) | K(x ∩ y)
)

= µv

(

K(x) | K(x ∩ y)
)

· µv

(

K(y) | K(x ∩ y)
)

.

Note that the definition of probabilistic run of an event structure does not require
that the event structure is confusion-free. It thus suggests a general definition of a proba-
bilistic event structure as an event structure with a probability measureµ on its maximal
configurations, even when the event structure is not confusion-free. This definition, in
itself, is however not very informative and we look to an explanation in terms of finite
probabilistic runs.

5.2 Finite Runs

What is a finite probabilistic run? Following the analogy heading this section, we want
it to be a probability distribution over finite configurations. But which sets are suitable
to be the support of such distribution? In interleaving models, the sets of runs of the
same length do the job. For event structures this won’t do.

To see why consider the event structure with only two concurrent eventsa, b. The
only maximal run assigns probability 1 to the maximal configuration{a, b}. This corre-
sponds to a configuration valuation which assigns 1 to both{a} and{b}. Now these are
two configurations of the same size, but their common “probability” is equal to 2! The
reason is that the two configurations are compatible: they donot representalternative
choices. We therefore need to represent alternative choices, and we need to represent
them all. This leads us to the following definition.

Definition 5.4. Let E be an event structure. Apartial testof E is a setC of pairwise
incompatible configurations ofE . A testis a maximal partial test. A test isfinitary if all
its elements are finite.



Maximality of a partial testC can be characterised equivalently ascompleteness:
for every maximal configurationz, there existsx ∈ C such thatx ⊆ z. The set of tests,
endowed with the Egli-Milner order has an interesting structure: the set of all tests is a
complete lattice, while finitary tests form a lattice.

Tests were designed to support probability distributions.So given a sensible val-
uation on finite configurations we expect it to restrict to probability distributions on
tests.

Definition 5.5. Letv be a functionLfin(E) → [0, 1]. Thenv is called atest valuationif
for all finitary testsC we havev[C] = 1.

Theorem 5.6. Letµ be a probabilistic run ofE . Definev : Lfin(E) → [0, 1] byv(x) =
µ(K(x)). Thenv is a test valuation.

Note that Theorem 5.6 is for general event structures. We unfortunately do not
have a converse in general. However, there is a converse whenthe event structure is
confusion-free:

Theorem 5.7. LetE be a confusion-free event structure. Letv be a functionLfin(E) →
[0, 1]. Thenv is a configuration valuation if and only if it is a test valuation.

The proof of this theorem hinges on a property of tests. The property is that of
whether partial tests can be completed. Clearly every partial test can be completed to a
test (by Zorn’s lemma), but there exist finitary partial tests that cannot be completed to
finitary tests.

Definition 5.8. A finitary partial test ishonestif it is part of a finitary test. A finite
configuration is honest if it is honest as partial test.

Proposition 5.9. If E is a confusion-free event structure and ifx is a finite configuration
of E , thenx is honest inL(E).

So confusion-free event structures behave well with respect to honesty. For general
event structures, the following is the best we can do at present:

Theorem 5.10. Let v be a test valuation onE . Let H be theσ-algebra onΩ(L(E))
generated by the shadows of honest finite configurations. Then there exists a unique
measureµ onH such thatµ(K(x)) = v(x) for every honest finite configurationx.

Theorem 5.11. If all finite configurations are honest, then for every test valuation v
there exists a unique continuous valuationν, such thatν(↑ x) = v(x).

But, we do not know whether in all event structures, every finite configuration is
honest. We conjecture this to be the case. If so this would entail the general converse to
Theorem 5.6 and so characterise probabilistic event structures, allowing confusion, in
terms of finitary tests.



6 Morphisms

It is relatively straightforward to understand event structures with independence. But
how can general test valuations on a confusion-free event structures arise? More gen-
erally how do we get runs of arbitrary event structures? We explore one answer in this
section. We show how to obtain test valuations as “projections” along a morphism from
a configuration valuation with independence on a confusion-free event structure. The
use of morphisms shows us how general valuations are obtained through the hiding and
renaming of events.

Definition 6.1 ([Win82,WN95]). Given two event structuresE , E ′, a morphismf :
E → E ′ is a partial functionf : E → E′ such that

• wheneverx ∈ L(E) thenf(x) ∈ L(E ′);
• for everyx ∈ L(E), for all e1, e2 ∈ x if f(e1), f(e2) are both defined andf(e1) =

f(e2), thene1 = e2.

A morphismf : E → E ′ expresses how the occurrence of an event inE induces a
synchronised occurrence of an event inE ′. Some events inE are hidden (iff is not
defined on them) and conflicting events inE may synchronise with the same event inE ′

(if they are identified byf ).
The second condition in the definition guarantees that morphisms of event structures

“reflect” reflexive conflict (#∪ IdE). We now introduce morphisms that reflect tests;
such morphisms enable us to define a test valuation onE ′ from a test valuation onE .
To do so we need some preliminary definitions. Given a morphism f : E → E ′, we say
that an event ofE is f -invisible, if it is not in the domain off . Given a configurationx
of E we definexf to bex minus all its maximalf -invisible events. Clearlyxf is still a
configuration andf(x) = f(xf ). If x = xf , we say thatx is f -minimal.

Definition 6.2. A morphism of event structuresf : E → E ′ is tight when

• if y = f(x) and ify′ ⊇ y, there existsx′ ⊇ xf such thaty′ = f(x′);
• if y = f(x) and ify′ ⊆ y, there existsx′ ⊆ xf such thaty′ = f(x′);
• all maximal configurations aref -minimal (no maximal event isf -invisible).

Proposition 6.3. A tight morphism of event structures is surjective on configurations.
Givenf : E → E ′ tight, if C′ is a finitary test ofE ′ then the set off -minimal inverse
images ofC′ alongf is a finitary test inE .

We now study the relation between valuations and morphisms.Given a function
v : Lfin(E) → [0, +∞] and a morphismf : E → E ′ we define a functionf(v) :
Lfin(E ′) → [0, +∞] by f(v)(y) =

∑

{v(x) | f(x) = y andx is f -minimal}.

Proposition 6.4. LetE , E ′ be event structures,v be a test valuation onE , andf : E →
E ′ a tight morphism. Then the functionf(v) is a test valuation onE ′.

Therefore we can obtain a run of a general event structure by projecting a run of a
probabilistic event structure with independence. Presently we don’t know whether every
run can be generated in this way.



7 Related and Future Work

In his PhD thesis, Katoen [Kat96] defines a notion of probabilistic event structure which
includes our probabilistic event structures with independence. But his concerns are
more directly tuned to a specific process algebra. So in one sense his work is more
general—his event structures also possess nondeterminism—while in another it is much
more specific in that it does not look beyond local probability distributions at cells.
Völzer [Voe01] introduces similar concepts based on Petrinets and a special case of
Theorem 5.10. Benveniste et al. have an alternative definition of probabilistic Petri nets
in [BFH03], and there is clearly an overlap of concerns though some significant differ-
ences which require study.

We have explored how to add probability to the independence model of event struc-
tures. In the confusion-free case, this can be done in several equivalent ways: as val-
uations on configurations; as continuous valuations on the domain of configurations;
as probabilistic runs (probability measures over maximal configurations); and in the
simplest case, with independence, as probability distributions existing locally and in-
dependently at cells. Work remains to be done on a more operational understanding,
in particular on how to understand probability adjoined to event structures which are
not confusion-free. This involves relating probabilisticevent structures to interleaving
models like Probabilistic Automata [Seg95] and Labelled Markov Processes [DEP02].
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Appendix: Domain Theory—Basic Notions

We briefly recall some basic notions of domain theory (see e.g. [AJ94]). A directed
complete partial order (DCPO)is a partial order where every directed setY has a least
upper bound

⊔

Y . An elementx of a DCPOD is compact(orfinite) if for every directed
Y and everyx ≤

⊔

Y there existsy ∈ Y such thatx ≤ y. The set of compact elements
is denoted byCp(D). A DCPO is analgebraic domainif or every x ∈ D, x is the
directed least upper bound of↓ x ∩ Cp(D). It is ω-algebraicif Cp(D) is countable.

In a partial order, two elements are said to becompatibleif they have a common
upper bound. A subset of a partial order isconsistentif every two of its elements are
compatible. A partial order iscoherentif every consistent set has a least upper bound.

TheEgli-Milner order on subsets of a partial order is defined byX ≤ Y if for all
x ∈ X there existsy ∈ Y , x ≤ y and for ally ∈ Y there existsx ∈ X , x ≤ y. A subset
X of a DCPO isScott openif it is upward closed and if for every directed setY whose
least upper bound is inX , thenY ∩ X 6= ∅. Scott open sets form theScott topology.


