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Abstract. This paper studies how to adjoin probability to event strcees, lead-

ing to the model of probabilistic event structures. In tr@mplest form prob-

abilistic choice is localised to cells, where conflict asise which case proba-
bilistic independence coincides with causal independefineapplication to the

semantics of a probabilistic CCS is sketched. An event &trads associated
with a domain—that of its configurations ordered by inclasim domain theory

probabilistic processes are denoted by continuous vahgtin a domain. A key
result of this paper is a representation theorem showing d@winuous valua-

tions on the domain of a confusion-free event structureesmpond to the proba-
bilistic event structures it supports. We explore how t@egtprobability to event
structures which are not confusion-free via two notionsrobpbilistic runs of a

general event structure. Finally, we show how probabilistirrelation and prob-
abilistic event structures with confusion can arise fromrg\structures which are
originally confusion-free by using morphisms to rename hiadlé events.

1 Introduction

There is a central divide in models for concurrent proceasesrding to whether they
represent parallelism by nondeterministic interleavih@aions or directly as causal
independence. Where a model stands with respect to thidedaffects how proba-
bility is adjoined. Most work has been concerned with prolisgtle interleaving mod-
els [LS91,Seg95,DEPO2]. In contrast, we propose a prababitausal model, a form
of probabilistic event structure.

An event structure consists of a set of events with relatafrsausal dependency
and conflict. A configuration (a state, or partial run of themvstructure) consists of
a subset of events which respects causal dependency andflistdoee. Ordered by
inclusion, configurations form a special kind of Scott dom{alPW81].

The first model we investigate is based on the idea that aflicois resolved prob-
abilistically and locally. This intuition leads us to a sitapnodel based ononfusion-
freeevent structures, a form of concrete data structures [KR23Wwhere computation
proceeds by making a probabilistic choice as to which eveotis at each currently
accessible cell. (The probabilistic event structures tvhiise are a special case of those
studied by Katoen [Kat96]—though our concentration on theely probabilistic case
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and the use of cells makes the definition simpler.) Such aghitibtic event structure
immediately gives a “probability” weighting to each configtion got as the product
of the probabilities of its constituent events. We chandatethose weightings (called
configuration valuationswhich result in this way. Understanding the weighting as a
true probability will lead us later to the important notiohpsobabilistic test.

Traditionally, in domain theory a probabilistic processepresented as a contin-
uous valuation on the open sets of a domain, i.e., as an eteshdéime probabilistic
powerdomain of Jones and Plotkin [JP89]. We reconcile filistic event structures
with domain theory, lifting the work of [NPW81] to the prolilitic case, by showing
how they determine continuous valuations on the domain ofigorations. In doing so
however we do not obtain all continuous valuations. We stawthis is essentially for
two reasons: in valuations probability can “leak” in the setthat the total probability
can be strictly less thalt more significantly, in a valuation the probabilistic chescat
different cells need not be probabilistically independémthe process we are led to a
more general definition of probabilistic event structumirwhich we obtain a key rep-
resentation theorem: continuous valuations on the donfaiardigurations correspond
to the more general probabilistic event structures.

How do we adjoin probabilities to event structures whichresenecessarily confu-
sion-free? We argue that in general a probabilistic eveatstre can be identified with
a probabilistic run of the underlying event structure arat this corresponds to a prob-
ability measure over the maximal configurations. This sweggefinition is backed up
by a precise correspondence in the case of confusion-fiee structures. Exploring
the operational content of this general definition leadouhsider probabilistic tests
comprising a set of finite configurations which are both miljwexclusive and exhaus-
tive. Tests do indeed carry a probability distribution, asdsuch can be regarded as
finite probabilistic partial runs of the event structure.

Finally we explore how phenomena such as probabilisticetation between choi-
ces and confusion can arise through the hiding and relapefirevents. To this end
we present some preliminary results on “tight” morphismewsnt structures, showing
how, while preserving continuous valuations, they can peedsuch phenomena.

2 Probabilistic Event Structures

2.1 Event Structures

An event structurés a triple€ = (E, <, #) such that

e FEis a countable set @vents

e (E, <) is apartial order, called theausal ordersuch that for every € E, the set
of events| e is finite;

e # is an irreflexive and symmetric relation, called ttenflict relation satisfying
the following: for everye;, es, e3 € Eif e1 < es ande; # e3 thenes # e3.

Causal dependence and conflict are mutually exclusive.dféwents are not causally
dependent nor in conflict they are said todmacurrent



A configurationz of an event structuré€ is a conflict-free downward closed subset
of E, i.e. a subset of F satisfying: (1) whenever € z ande’ < e thene’ € z and (2)
foreverye, e’ € z, itis not the case that# ¢’. Therefore, two events of a configuration
are either causally dependent or concurrent, i.e., a canfign represents a run of
an event structure where events are partially ordered. &hefsonfigurations of,
partially ordered by inclusion, is denoted A&6€). The set of finite configurations is
written by Lq, (£). We denote the empty configuration ly

If 2 is a configuration andis an event such that¢Z = andzU{e} is a configuration,
then we say that is enabledatz. Two configurationsg:, ' are said to beompatiblef
x Uz’ is a configuration. For every evenbf an event structurg, we definde] := | e,
ande) := [e] \ {e}. Itis easy to see that any everit enabled afe).

We say that events; ande are inimmediateconflict, and writee; #,, e when
e1 # eo and bothe; ) U [e2] and[e1] U [e2) are configurations. Note that the immediate
conflict relation is symmetric. It is also easy to see thatr&lai e; # e5 is immediate
if and only if there is a configuration where bathande, are enabled.

2.2 Confusion-free Event Structures

The most intuitive way to add probability to an event struetis to identify “probabilis-
tic events”, such as coin flips, where probability is assecidocally. A probabilistic
event can be thought of as probability distribution oveeb, that is, a set of events (the
outcomes) that are pairwise in immediate conflict and thae ltlhe same set of causal
predecessors. The latter implies that all outcomes areleshab the same configura-
tions, which allows us to say that the probabilistic evemitiser enabled or not enabled
at a configuration.

Definition 2.1. A partial cellis a setc of events such that e’ € c impliese #,, ¢’ and
[e) = [¢). A maximal partial cell is called aell.

We will now restrict our attention to event structures wheseh immediate conflict
is resolved through some probabilistic event. That is, veeiiere that cells are closed
under immediate conflict. This implies that cells are paendisjoint.

Definition 2.2. An event structure isonfusion-freef its cells are closed under imme-
diate conflict.

Proposition 2.3. An event structure is confusion-free if and only if the réflexlosure
of immediate conflict is transitive and inside cells, thédatmeaning that # , ¢/ =

[e) = [¢).

Itfollows that, in a confusion-free event structure, thidepdve closure of immediate
conflict is an equivalence with cells being its equivalenesses. If an evernt € c is
enabled at a configuration, all the events ot are enabled as well. In which case
we say that the celt is accessiblat z. Confusion-free event structures correspond to
deterministic concrete data structures [NPW81,KP93] amdhfusion-free occurrence
nets [NPW81].

We find it useful to define cells without directly referringgwents. To this end we
introduce the notion ofovering



Definition 2.4. Given two configurations, 2’ € L(£) we say that’ coverse if there
existse ¢ x such thatt’ = x U {e}. For every finite configuratiom of a confusion-free
event structure, partial coveringat x is a set of pairwise incompatible configurations
that coverz. A coveringat = is a maximal partial covering at.

Proposition 2.5. In a confusion-free event structure(f is a covering atz, thenc =
{e|z U {e} € C} is a cell accessible at. Conversely, it is accessible at, then
C :={xU{e}|e € c}is acovering at:.

2.3 Probabilistic Event Structures with Independence

Once an event structure is confusion-free, we can assaziptebability distribution
with each cell. Intuitively it is as if we have a die local tockacell, determining the
probability with which the events at that cell occur. In thigy we obtain our first
definition of a probabilistic event structure, a definitionwhich dice at different cells
are assumed probabilistically independent.

Definition 2.6. Whenf : X — [0,+o0] is a function, for everyy” C X, we define
fIY]:==>_,cy f(x). Acell valuationon a confusion-free event structuie, <, #) is
afunctionp : E — [0, 1] such that for every cell, we havep[c] = 1.

Assuming probabilistic independence of all probabilistients, every finite config-
uration can be given a “probability” which is obtained aspheduct of probabilities of
its constituent events. This gives us a functiyy () — [0, 1] which we can charac-
terise in terms of the order-theoretic structureCgf, (£) by using coverings.

Proposition 2.7. Let p be a cell valuation and let : Lg,(€) — [0, 1] be defined by
v(x) = I.e.p(e). Then we have

(@) (Normality)v(L) =1,
(b) (Conservation) if” is a covering atr, thenv[C] = v(z);
(c) (Independence)if, y are compatible, then(x) - v(y) = v(z Uy) - v(z Ny).

Definition 2.8. A configuration valuation with independenme a confusion-free event
structure& is a functionv : Lg,(E) — [0, 1] that satisfies normality, conservation
and independence. The configuration valuation associatédaxcell valuationp as in
Prop. 2.7 is denoted by,.

Proposition 2.9. If v is a configuration valuation with independence gnd £ —
[0,1] is a mapping such that([e]) = p(e) - v([e)) for all e € E, thenp is a cell
valuation such that,, = v.

Condition (c) from Proposition 2.7 is essential to prove Proposition 2\8. will
show later (Theorem 5.3) the sense in which this conditioowarts to probabilistic
independence.

We give an example. Take the following confusion-free ew#nicturef;: £, =
{a, b, c,d} with the discrete causal ordering and with,, b andc #, d.

We define a cell valuation ofy; by p(a) = 1/3,p(b) = 2/3,p(c) = 1/4,p(d) =
3/4. The corresponding configuration valuation is defined as



o up(L) =1,
o vp({a}) = 1/3,v,({b}) = 2/3, v,({c}) = 1/4,v,({d}) = 3/4;
o v,({a,c}) =1/12,v,({b,c}) =1/6,v,({a,d}) = 1/4,v,({b,d}) = 1/2.

In the event structure above, a coveringlatonsists of{a}, {b}, while a covering at
{a} consists of a, ¢}, {a, d}.

We conclude this section with a definition of a probabilistient structure. Though,
as the definition indicates, we will consider a more genegihdion later, one in which
there can be probabilistic correlations between the chatdifferent cells.

Definition 2.10. A probabilistic event structure with independeroasists of a confu-
sion-free event structure together with a configuratioruagibn with independence.

3 A Process Language

Confusion-freeness is a strong requirement. But it is ptisible to give a seman-
tics to a fairly rich language for probabilistic processesarms of probabilistic event
structures with independence. The language we sketch islzabilistic version of
value passing CCS. Following an idea of Milner, used in thatext of confluent pro-
cesses [Mil89], we restrict parallel composition so thatéis no ambiguity as to which
two processes can communicate at a channel; parallel catioposill then preserve
confusion-freeness.

Assume a set of channels For simplicity we assume that a common set of values
V' may be communicated over any chanmel L. The syntax of processes is given by:

Pu=0] Y al(py,v).Py | a?(z).P| Po|[Py| P\ Al
veV

P[f] |if bthen P, elseP; | X |recX.P

Herex ranges over value variableX, over process variableg, over subsets of chan-
nels andf over injective renaming functions on channélever boolean expressions
(which make use of values and value variables). The coeffiejg, are real numbers
suchthad .y p, = 1.

A closed process will denote a probabilistic event struetuvith independence, but
with an additional labelling function from events to outfaltelsa!v, input labelsa?v
whereq is a channel and a value, orr. At the cost of some informality we explain the
probabilistic semantics in terms of CCS constructions enuthderlying labelled event
structures, in which we treat pairs of labels consistingrobatput labek!v and input
labela?v as complementary. (See e.g. the handbook chapter [WN98{ioBR,Win87]
for an explanation of the event structure semantics of CE&. simplicity we restrict
attention to the semantics of closed process terms.

The nil proces$) denotes the empty probabilistic event structure. A closggud
process) . al(p,,v).P, can perform a synchronisation at chanagbutputting a
value v with probability p,,, whereupon it resumes as the procéss Each P, for
v € V, will denote a labelled probabilistic event structure withderlying labelled



event structuré€[P,]. The underlying event structure of such a closed outputge®c
is got by the juxtaposition of the family of prefixed eventstures

al.&[P,] ,

with v € V, in which the additional prefixing events labellel are put in (immedi-
ate) conflict; the new prefixing events labelléd are then assigned probabilitipsto
obtain the labelled probabilistic event structure.

A closed input process?(x). P synchronises at channel inputting a valuey and
resuming as the closed procé3g/x]. Such a procesB[v/x] denotes a labelled prob-
abilistic event structure with underlying labelled evemusture€ [ P[v/«x]]. The under-
lying labelled event structure of the input process is gahagarallel juxtaposition of
the family of prefixed event structures

a?.E[Plv/z]] ,

with v € V; the new prefixing events labelledv are then assigned probabilities

The probabilistic parallel composition corresponds toukeal CCS parallel com-
position followed by restricting away on all channels usedcdommunication. In order
for the parallel compositiod®; || P» to be well formed the set of input channels f
and P, must be disjoint, as must be their output channels. So, &ainte, it is not
possible to form the parallel composition

> al(pu,v).0]la?(z).Py||a?(x).P, .
veV
In this way we ensure that no confusion is introduced thraygtthronisation.
We first describe the effect of the parallel composition a@thderlying event struc-
tures of the two components, assumed taFheand E,. This is got by CCS parallel
composition followed by restricting away events in aSet

(E1|E2)\ S

whereS consists of all labelg!v, a?v for which alv appears i, anda?v in Es, or
vice versa. In this way any communication betwégrand F,, is forced when possible.
The newly introduced--events, corresponding to a synchronisation betweealan
event with probabilityp,, and ana?v-event with probabilityl, are assigned probability

Po-
ArestrictionP \ A has the effect of the CCS restriction

E[P] \{alv,a?v |veV &ae A}

on the underlying event structure; the probabilities ofdtaents which remain stay the
same. A renamind[f] has the usual effect on the underlying event structure,grob
bilities of events being maintained. A closed conditiofilalb then P; elseP) has the
denotation ofP; whenb is true and ofP, whenb is false.

The recursive definition of probabilistic event structuiekws that of event struc-
tures [Win87] carrying the extra probabilities along. Thhwcare must be taken to en-
sure that a confusion-free event structure results: onetavagisure this is to insist that
for rec X.P to be well-formed the process variab{e may not occur under a parallel
composition.



4 Probabilistic Event Structures and Domains

The configurationg£(€), C) of a confusion-free event structu€e ordered by inclu-
sion, form a domain, specificallydistributive concrete domaifcf. [NPW81,KP93])).
In traditional domain theory, a probabilistic process isated by acontinuous valu-
ation. Here we show that, as one would hope, every probabilisgeoestructure with
independence corresponds to a unique continuous valuatawever not all continu-
ous valuations arise in this way. Exploring why leads us tocaentiberal notion of a
configuration valuation, in which there may be probabtiistrrelation between cells.
This provides a representation of the normalised contiswaluations on distributive
concrete domains in terms of probabilistic event strustuf€he Appendix includes a
brief survey of the domain theory we require. The rather lveo proofs of this section
can be found in [Var03].)

4.1 Domains

The probabilistic powerdomain of Jones and Plotkin [JP8@isists of continuous val-
uations, to be thought of as denotations of probabilisticpsses. Aontinuous valua-

tionon a DCPOD is a functionv defined on the Scott open subsetdnpftaking values

on [0, +o0], and satisfying:

e (Strictnessy(0) = 0;

e (Monotonicity)U CV = v(U) < v(V);

e (Modularity)v(U) +v(V) =v(UUV) +v(UNV);

e (Continuity) if 7 is a directed family of open sets(|J.J) = supye s v(U).

A continuous valuation is normalisedif v(D) = 1. Let V(D) denote the set of
normalised continuous valuations éhequipped with the pointwise order:< ¢ if for
all open setd/, v(U) < ¢(U). V(D) is a DCPO [JP89,Edags].

The open sets in the Scott topology represent observatibrs.is an algebraic
domain andr € D is compact, therincipal setT x is open. Principal open sets can be
thought of as basic observations. Indeed they form a basieedBcott topology.

Intuitively a normalised continuous valuatienassigns probabilities to observa-
tions. In particular we could think of the probability of aqeipal open sef = as rep-
resenting the probability of.

4.2 Continuous and Configuration Valuations

As can be hoped, a configuration valuation with independeneeconfusion-free event
structure€ corresponds to a normalised continuous valuation on theadof(£), C),
in the following sense.

Proposition 4.1. For every configuration valuation with independencen £ there is
a unique normalised continuous valuatioon £(£) such that for every finite configu-
ration z, v(1 x) = v(x).



Proof. The claim is a special case of the subsequent Theorem 4.4. O

While a configuration valuation with independence gives tsa continuous val-
uation, not every continuous valuation arises in this wayaf example, consider the
event structuré; as defined in Section 2.3. Define

o v(1{a}) = v(1{B}) = v(1{c}) = v(1{d}) = 1/2;
o v(H{a.d}) = v(1{b.c}) = 1/2;
o v(H{a.c}) = v(1{b,d}) = 0;

and extend it to all open sets by modularity. It is easy tofydhat it is indeed a con-
tinuous valuation or (&, ). Define a function : Lg,(€1) — [0,1] by v(x) := v(] ).
This is not a configuration valuation with independencepigsinot satisfy condition
(c) of Proposition 2.7. If we consider the compatible configiorax := {a},y := {c}
thenv(z Uy) -v(zNy) =0<1/4 =v(x) - v(y).

Also continuous valuations “leaking” probability do notiss from probabilistic
event structures with independence.

Definition 4.2. Denote the set of maximal elements of a DCPQy (D). A nor-
malised continuous valuatianon D is non-leakingf for every open seb 2 (D),
we haver(O) = 1.

This definition is new, although inspired by a similar condedEda95]. For the sim-
plest example of a leaking continuous valuation, considerevent structuré, con-
sisting of one event only, and the valuation defined ag()) = 0, v(TL) = 1,
v(1{e}) = 1/2. The corresponding function : Lg,(E2) — [0, 1] violates condition
(b) of Proposition 2.7. The probabilities in the celloflo not sum up to 1.

We analyse how valuations without independence and leakihgtions can arise
in the next two sections.

4.3 Valuations Without Independence

Definition 2.10 of probabilistic event structures assurhegrobabilistic independence
of choice at different cells. This is reflected by condit{ojin Proposition 2.7 on which
it depends. In the first example above, the probabilistidéag®in the two cells are not
independent: once we know the outcome of one of them, we aew khe outcome
of the other. This observation leads us to a more generalitiefirof a configuration
valuation and probabilistic event structure.

Definition 4.3. A configuration valuatioron a confusion-free event structufeis a
functionv : Lg,(€) — [0, 1] such that:

(@) v(lL) =1
(b) if C'is a covering atz, thenv[C] = v(x).

A probabilistic event structur@nsists of a confusion-free event structure together with
a configuration valuation.

Now we can generalise Proposition 4.1, and provide a coavers



Theorem 4.4. For every configuration valuation on £ there is a unique normalised
continuous valuationr on £(£) such that for every finite configuration v(1z) =
v(x). Moreoverv is non-leaking.

Theorem 4.5. Let v be a non-leaking continuous valuation g4¢€). The functiorv :
Lsn(E) — [0, 1] defined by (z) = v(] x) is a configuration valuation.

The two theorems above provide a representation of nonAgaontinuous valu-
ations on distributive concrete domains—see [Var03], TB.1 and Thm. 7.6.2 for
their proof. Using this representation result, we are alsle to characterise the maxi-
mal elements iV (L£(€)) as precisely the non-leaking valuations—a fact which is not
known for general domains.

Theorem 4.6. Let € be a confusion-free event structure anduet V! (L£(€)). Thenv
is non-leaking if and only if it is maximal.

Proof. See [Var03], Prop. 7.6.3 and Thm. 7.6.4. O

4.4 Leaking Valuations

There remain leaking continuous valuations, as yet unsepited by any probabilistic
event structures. At first sight it might seem that to accdanteaking valuations it
would be enough to relax conditigh) of Definition 4.3 to the following

(b”) if C'is a covering atr, thenv[C] < v(x).

However, it turns out that this is not the right generalisatias the following ex-
ample shows. Consider the event structfifevhere E3 = {a, b} with the flat causal
ordering and no conflict. Define a “leaking configuration aion” on&; by v(L) =
v({a}) = v({}) = 1, v({a,b}) = 0.

The functionw satisfies condition&) and(b), but it cannot be extended to a contin-
uous valuation on the domain of configurations. However, areshow that the leaking
of probability is attributable to an “invisible” event.

Definition 4.7. Consider a confusion-free event structdéte= (F, <, #). For every
cell ¢ we consider a new “invisible” event,. such thatd. ¢ F and ifc # ¢ then
0c # 0. Letd = {0, | cis acelll. We defin€, to be(Ey, <a, #4), Where

e Fy=FEUO,
o <yis<extended by <y O.ifforall ¢’ € ¢c,e < ¢;
o #,is# extended by #, J. if there exists’ € ¢, ¢’ <e.

So &y is € extended by an extra invisible event at every cell. Invisiéents can
absorb all leaking probability, as shown by Theorem 4.9\Welo

Definition 4.8. Let £ be a confusion-free event structureg@neralised configuration
valuationon £ is a functionv : L4, () — [0, 1] that can be extended to a configuration
valuation on&y.



It is not difficult to prove that, when such an extension eigtis unique.

Theorem 4.9. Let€ be a confusion-free event structure. betLgq,(€) — [0, 1]. There
exists a unique normalised continuous valuatioon £(&) with v(z) = v(T z), if and
only if v is a generalised configuration valuation.

Proof. See [Var03], Thm. 6.5.3. O
The above theorem completely characterises the normal@&ithuous valuations
on distributive concrete domains in terms of probabilistient structures.

5 Probabilistic Event Structures as Probabilistic Runs

In the rest of the paper we investigate how to adjoin proli&silto event structures
which are not confusion-free. In order to do so, we find it ubfintroduce two notions
of probabilistic run.

Configurations represent runs (or computation paths) of/antestructure. What is
a probabilistic run (or probabilistic computation pathaofevent structure? One would
expect a probabilistic run to be a form of probabilistic cguafiation, so a probability
distribution over a suitably chosen subset of configuratidks a guideline we con-
sider the traditional model of probabilistic automata [$elg where probabilistic runs
are represented in essentially two ways: as a probabiligsome over the set of max-
imal runs [Seg95], and as a probability distribution oveitéimuns of the same length
[dAHJO01].

The first approach is readily available to us, and where wénbég we will see,
according to this view probabilistic event structures auerunderlying event structure
& correspond precisely to the probabilistic run£of

The proofs of the results in this section are omitted, buy tten be found in the
technical report [VVWO04].

5.1 Probabilistic Runs of an Event Structure

The first approach suggests that a probabilistic run of antesteucture€ be taken to
be a probability measure on the maximal configurations(@f).

To do so requires some notions from measure theory. A mdaswspace is a pair
(2,S), where{2 is a set andS is ac-algebra over2. A measure over a measurable
space((2,S) is a countably additive functiop : S — [0, +o0]. If u(£2) = 1, we talk
of a probability measure. LdD be an algebraic domain. Recall thatD) denotes the
set of maximal elements dp and that for every compact element D theprincipal
set] x is Scott open. The sét (x) := T2 N (D) is called theshadowof z. We shall
consider ther-algebraS on 2(D) generated by the shadows of the compact elements.
The configurations of an event structure form a cohegeatgebraic domain, whose
compact elements are the finite configurations [NPW81].

Definition 5.1. A probabilistic runof an event structur€ is a probability measure
on (2(L(€)),S), whereS is theos-algebra generated by the shadows of the compact
elements.



There is a tight correspondence between non-leaking vahsand probabilistic runs.

Theorem 5.2. Let v be a non-leaking normalised continuous valuation on a cehier
w-algebraic domainD. Then there is a unique probability measuren S such that for
every compact element u(K (z)) = v(T x).

Let u be a probability measure o8. Then the functions defined on open sets by
v(0) = u(O N 2(D)) is a non-leaking normalised continuous valuation.

According to the result above, probabilistic event streeslover a common event
structure€ correspond precisely to the probabilistic runséofAmong these we can
characterise probabilistic event structuvgth independencin terms of the standard
measure-theoretic notion of independence. In fact, foh suprobabilistic event struc-
ture, every two compatible configurations are probabiily independent, given the
common past:

Proposition 5.3. Letv be a configuration valuation on a confusion-free event stmec

E. Letyu, be the corresponding measure as of Propositions 4.1 andréheb.2. Then,
v is a configuration valuatiorwith independencdf for every two finite compatible
configurationse, y

(K@) 0 K(y) | K@ny)) = (K@) | K@ny)) (K@) | K@ny).

Note that the definition of probabilistic run of an event stte does not require
that the event structure is confusion-free. It thus suggegeneral definition of a proba-
bilistic event structure as an event structure with a praibameasureu on its maximal
configurations, even when the event structure is not comfiuee. This definition, in
itself, is however not very informative and we look to an exjation in terms of finite
probabilistic runs.

5.2 Finite Runs

What is a finite probabilistic run? Following the analogy tieg this section, we want
it to be a probability distribution over finite configurat@rBut which sets are suitable
to be the support of such distribution? In interleaving msdthe sets of runs of the
same length do the job. For event structures this won't do.

To see why consider the event structure with only two coranirevents:, b. The
only maximal run assigns probability 1 to the maximal confidion{a, b}. This corre-
sponds to a configuration valuation which assigns 1 to pefrand{b}. Now these are
two configurations of the same size, but their common “prdltghis equal to 2! The
reason is that the two configurations are compatible: theyaloepresenalternative
choices. We therefore need to represent alternative choarel we need to represent
them all. This leads us to the following definition.

Definition 5.4. Let £ be an event structure. partial testof £ is a setC' of pairwise
incompatible configurations @f. A testis a maximal partial test. A test fiitary if all
its elements are finite.



Maximality of a partial testC can be characterised equivalentlyasnpleteness
for every maximal configuration, there exists: € C such that: C z. The set of tests,
endowed with the Egli-Milner order has an interesting dtrce: the set of all tests is a
complete lattice, while finitary tests form a lattice.

Tests were designed to support probability distributid®s.given a sensible val-
uation on finite configurations we expect it to restrict tolmbility distributions on
tests.

Definition 5.5. Letv be a functionCs,(€) — [0, 1]. Thenw is called atest valuationif
for all finitary testsC' we havey[C] = 1.

Theorem 5.6. Let . be a probabilistic run of. Definev : La,(€) — [0,1] byv(z) =
p(K(x)). Thenv is a test valuation.

Note that Theorem 5.6 is for general event structures. Wertinfately do not
have a converse in general. However, there is a converse thibesvent structure is
confusion-free:

Theorem 5.7. Let€ be a confusion-free event structure. kdie a functionCa, (£) —
[0,1]. Therw is a configuration valuation if and only if it is a test valuati.

The proof of this theorem hinges on a property of tests. Tlopgnty is that of
whether partial tests can be completed. Clearly everyaldest can be completed to a
test (by Zorn’s lemma), but there exist finitary partial $etbiat cannot be completed to
finitary tests.

Definition 5.8. A finitary partial test ishonestif it is part of a finitary test. A finite
configuration is honest if it is honest as partial test.

Proposition 5.9. If £ is a confusion-free event structure and if a finite configuration
of &, thenx is honestinC(E).

So confusion-free event structures behave well with reégpdwonesty. For general
event structures, the following is the best we can do at ptese

Theorem 5.10.Let v be a test valuation o&. Let’H be theo-algebra on22(L(£))
generated by the shadows of honest finite configurations Thege exists a unique
measureu on’H such thatu(K (x)) = v(x) for every honest finite configuratian

Theorem 5.11.If all finite configurations are honest, then for every tesuation v
there exists a unique continuous valuatigrsuch that (7 x) = v(z).

But, we do not know whether in all event structures, eventdicbnfiguration is
honest. We conjecture this to be the case. If so this woulsilehe general converse to
Theorem 5.6 and so characterise probabilistic event strest allowing confusion, in
terms of finitary tests.



6 Morphisms

It is relatively straightforward to understand event stuues with independence. But
how can general test valuations on a confusion-free evannttates arise? More gen-
erally how do we get runs of arbitrary event structures? \Weagg one answer in this

section. We show how to obtain test valuations as “projestialong a morphism from

a configuration valuation with independence on a confufiea-event structure. The
use of morphisms shows us how general valuations are obtt#ingeugh the hiding and

renaming of events.

Definition 6.1 ([Win82,WN95]). Given two event structure$, £/, a morphismf :
& — &' is a partial functionf : E — E’ such that

e whenever: € L(€) thenf(z) € L(E');
o foreveryz € L(E), forall er,ex € xif f(e1), f(ez) are both defined andi(e;) =
f(eg), thenel = €9.

A morphismf : £ — £’ expresses how the occurrence of an everf induces a
synchronised occurrence of an eventih Some events i are hidden (iff is not
defined on them) and conflicting eventsimay synchronise with the same evengin
(if they are identified byf).

The second condition in the definition guarantees that msinpdof event structures
“reflect” reflexive conflict & U Idg). We now introduce morphisms that reflect tests;
such morphisms enable us to define a test valuatiof’ drom a test valuation o&.
To do so we need some preliminary definitions. Given a momplfis £ — £’, we say
that an event of is f-invisible, if it is not in the domain of. Given a configuration
of £ we definer to bex minus all its maximalf-invisible events. Clearly ; is still a
configuration and (z) = f(zy). If x = =7, we say that: is f-minimal.

Definition 6.2. A morphism of event structurgs: £ — £’ is tight when

o if y = f(x)andify’ Dy, there exists’ D x; such thay = f(2');
o if y = f(x)andify’ C y, there exists’ C x; such that = f(z');
¢ all maximal configurations ar¢-minimal (no maximal event i-invisible).

Proposition 6.3. A tight morphism of event structures is surjective on comditjons.
Givenf : £ — &’ tight, if C’ is a finitary test o’ then the set of -minimal inverse
images ofC’ along f is a finitary test in.

We now study the relation between valuations and morphi&ngn a function
v : Lan(€E) — [0,+00] and a morphisny : £ — &£ we define a functiory (v) :
Lin(E) = [0, +00] by f(v)(y) = > {v(z) | f(x) = y andz is f-minimal}.

Proposition 6.4. Let&, £’ be event structures, be a test valuation oé, andf : £ —
&’ atight morphism. Then the functigifv) is a test valuation og’.

Therefore we can obtain a run of a general event structurerdjpgiing a run of a
probabilistic event structure with independence. Prégarm don’t know whether every
run can be generated in this way.



7 Related and Future Work

In his PhD thesis, Katoen [Kat96] defines a notion of probstiilevent structure which
includes our probabilistic event structures with indeps . But his concerns are
more directly tuned to a specific process algebra. So in onseshkis work is more
general—his event structures also possess nondeterminigmie in another itis much
more specific in that it does not look beyond local probapitiistributions at cells.
Volzer [MoeO01] introduces similar concepts based on Redts and a special case of
Theorem 5.10. Benveniste et al. have an alternative definitf probabilistic Petri nets
in [BFHO3], and there is clearly an overlap of concerns thosgme significant differ-
ences which require study.

We have explored how to add probability to the independeradatof event struc-
tures. In the confusion-free case, this can be done in devguivalent ways: as val-
uations on configurations; as continuous valuations on tmaih of configurations;
as probabilistic runs (probability measures over maxinaaifigurations); and in the
simplest case, with independence, as probability digiohs existing locally and in-
dependently at cells. Work remains to be done on a more apeadtuinderstanding,
in particular on how to understand probability adjoined verg structures which are
not confusion-free. This involves relating probabilistigent structures to interleaving
models like Probabilistic Automata [Seg95] and Labelledhta Processes [DEPO02].
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Appendix: Domain Theory—Basic Notions

We briefly recall some basic notions of domain theory (see[Ad94]). A directed
complete partial order (DCPOip a partial order where every directed $ehas a least
upper boundl | Y. An element: of a DCPOD is compac{or finite) if for every directed
Y and everyr < | | Y there existgy € Y such thatr < y. The set of compact elements
is denoted byCp(D). A DCPO is analgebraic domainf or everyxz € D, z is the
directed least upper bound pf: N C'p(D). Itis w-algebraicif Cp(D) is countable.

In a partial order, two elements are said todmenpatibleif they have a common
upper bound. A subset of a partial ordecnsistenif every two of its elements are
compatible. A partial order isoherentf every consistent set has a least upper bound.

The Egli-Milner order on subsets of a partial order is definedX\ Y if for all
x € X there existy € Y,z < y and for ally € Y there exists € X, z < y. A subset
X of a DCPO isScott operif it is upward closed and if for every directed $étwhose
least upper bound is iiY, thenY N X # (). Scott open sets form tHgcott topology



