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We recast dataflow in a modern categorical light using profunctors as a generalisation of relations.
The well known causal anomalies associated with relational semantics of indeterminate dataflow are
avoided, but still we preserve much of the intuitions of a relational model. The development fits
with the view of categories of models for concurrency and the general treatment of bisimulation
they provide. In particular it fits with the recent categorical formulation of feedback using traced
monoidal categories. The payoffs are: (1) explicit relations to existing models and semantics,
especially the usual axioms of monotone IO automata are read off from the definition of profunctors,
(2) a new definition of bisimulation for dataflow, the proof of the congruence of which benefits from
the preservation properties associated with open maps and (3) a treatment of higher-order dataflow
as a biproduct, essentially by following the geometry of interaction programme.

Introduction

A fundamental dichotomy in concurrency is the distinction between asynchronous communica-
tion and synchronous communication. In the present paper we unify the analysis of these situ-
ations in the framework of a categorical presentation of models for concurrency as initiated by
Winskel and Nielsen (Winskel and Nielsen, 1995). In particular we have given a treatment of
indeterminate dataflow networks in terms of (a special kind of) profunctors which is very close
to the treatment of synchronous communication. This new semantical treatment has a number of
benefits

1 the general functoriality and naturality properties of presheaves automatically imply the usu-
ally postulated axioms for asynchronous, monotone automata (Panangaden and Stark, 1988;
Selinger, 1997)

2 we get a notion of bisimulation, which is crucial when allowing synchronous, CCS-like prim-
itives,

3 it is both closely connected to the extant models (Jonsson, 1989) expressed in terms of trace
sets, and a direct generalisation of Kahn’s model of determinate dataflow (Kahn, 1974), thus
providing a relational viewpoint which allows one to think of composing network compo-
nents as a (kind of) relational composition,

4 it gives a semantics of higher-order networks almost for “free” by using the passage from
traced monoidal categories to compact-closed categories (Abramsky, 1996; Joyal, Street and
Verity, 1996b) (the “geometry of interaction” construction).
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The categorical presentation is critical for all these points. Without the realization that Kahn pro-
cesses can be described as a traced monoidal category and knowledge of the results in (Abramsky,
1996; Joyal, Street and Verity, 1996b) it would be hard to see how one could have proposed our
model of higher-order processes. It is notable that the profunctor semantics of dataflow yields
automatically the axioms for monotone port automata used in modelling dataflow (Panangaden
and Stark, 1988) in contrast to the work in (Stark, 1989a). At the same time we have to work
to get a correct operation on profunctors to model the dataflow feedback; “the obvious” choice
of modelling feedback by coend doesn’t account for the subtle causal constraints which plague
dataflow semantics.

The background for this paper includes work done on presenting models for concurrency as
categories, as summarised in (Winskel and Nielsen, 1995). This enabled a sweeping definition of
bisimulation based on open maps applicable to any category of models equipped with a distin-
guished subcategory of paths (Joyal, Nielsen and Winskel, 1996a). It also exposed a new space of
models: presheaves. Presheaf categories possess a canonical choice of open maps and bisimula-
tion, and can themselves be related in the bicategory of profunctors. This yields a form of domain
theory but boosted to the level of using categories rather than partial orders as the appropriate
domains.

One argument for the definition of bisimulation based on open maps is the powerful preserva-
tion properties associated with it. Notable is the result of (Cattani and Winskel, 1997) that any
colimit preserving functor between presheaf categories preserves bisimulation, which besides
obvious uses in relating semantics in different models with different notions of bisimulation is,
along with several other general results, useful in establishing congruence properties of process
languages. By understanding dataflow in terms of profunctors we are able to exploit the frame-
work not just to give a definition of bisimulation between dataflow networks but also in showing
it to be a congruence with respect to the standard operations of dataflow.

A difficulty has been in understanding the operational significance of the bisimulation which
comes from open maps for higher-order process languages (where for example processes them-
selves can be passed as values). Another gap, more open and so more difficult to approach, is that
whereas both interleaving models and independence models like event structures can be recast
as presheaf models, as soon as higher-order features appear, the presheaf semantics at present
reduce concurrency to nondeterministic interleaving. A study of nondeterministic dataflow is
helpful here as its compositional models are forced to account for causal dependency using ideas
familiar from independence models; at the same time the models are a step towards understand-
ing higher-order as they represent nondeterministic functions from input to output.

The idea that non-deterministic dataflow can be modelled by some kind of generalised rela-
tions fits with that of others, notably Stark in (Stark, 1989a; Stark, 1989b; Stark, 1998). Bisimula-
tion for dataflow is studied in (Stark, 1992). That dataflow should fit within a categorical account
of feedback accords for instance with (Katis et al., 1997; Abramsky, 1996). But in presenting
a semantics of dataflow as profunctors we obtain the benefits to be had from placing nondeter-
ministic dataflow centrally within categories of models for concurrency, and in particular within
presheaf models.

Structure of the paper: In Sec. 1 and Sec. 2 we review the well known causal anomalies associ-
ated with relational semantics of indeterminate dataflow and recall the notion of traced monoidal
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categories. In Sec. 3 we present the classical model of non-deterministic dataflow based on sets
of execution traces as an instance of a traced monoidal category, and describe the relationship to
the so-called history-model of input-output relations categorically. We then proceed in Sec. 4 to
present the bicategory of profunctors as a categorical generalisation of input-output relations and
provide a concrete, operational reading of profunctors as (monotone) port automata. We end the
section by identifying the subcategory of stable port profunctors and provide a characterisation
of such profunctors as stable monotone port automata. In Sec. 5 we define a trace for the category
of stable port profunctors, and give two characterisations of the trace in terms of port automata
and an abstract characterisation of the trace as a colimit. The details of the proof that the trace
satisfies the axioms of a traced monoidal category (up to isomorphism) can be found in App. A.
Finally, Sec. 6 briefly goes through some of the consequences of the categorical semantics of
dataflow; the relationship to stable domain theory, a bisimulation congruence obtained from the
theory of open maps, and finally a model of (linear) higher-order dataflow by the geometry of
interaction construction. The paper is a revised version of ch. 8 in (Hildebrandt, 1999a), a short
version appears in the proceedings of Concur ’98.

1. Models for Indeterminate Dataflow

The Dataflow paradigm for parallel computation, originated in work of Jack Dennis and oth-
ers in the mid-sixties (Kahn, 1974; Dennis, 1974). The essential idea is that data flows between
asynchronous computing agents, that are interconnected by communication channels acting as
unbounded buffers. Traditionally, the observable behaviour is taken to be the input-output rela-
tion between sequences of values on respectively input and output channels, sometimes referred
to as the history model (Jonsson, 1989). If

�
is the set of values, the set of histories on ports � is

defined to be the set of functions � ������� from the set of port names � to the set of sequences of
values

�	�
. An IO-relation for a dataflow with input ports � and output ports 
 is then a relation�
� � �	������� � �	����� .

For dataflow networks built from only deterministic nodes, Kahn (Kahn, 1974) has observed
that their behaviour can be captured denotationally in the history model, defining network com-
position by the least fixed point of a set of equations describing the components, which was
later shown formally by several authors, e.g. Faustini (Faustini, 1982), Lynch and Stark (Lynch
and Stark, 1989). Subsequently, different semantics have been described as satisfying Kahn’s
principle when they are built up compositionally along similar lines (Abramsky, 1990).

For indeterminate networks, the situation is not so simple. Brock and Ackerman (Brock and
Ackerman, 1981) showed the fact, referred to as the “Brock-Ackerman anomaly”, that for net-
works containing the nondeterministic primitive fair merge, the history model preserves too little
information about the structure of the networks to support a compositional semantics. Later,
Trakhtenbrot and Rabinovich, and independently, Russell gave examples of anomalies showing
that this is true even for the simplest nondeterministic primitive � the ordinary bounded choice.
We present a similar example to illustrate what additional information is needed. It works by
giving two simple examples of automata � � and � � , which have the same input-output relation,

�
See (Panangaden and Stark, 1988; Panangaden, 1995) for a detailed study of indeterminate dataflow primitives.
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������� ����� =

Fig. 1. The automata �
	 inserted in context �
����� consisting of a fork process � and a feedback loop

and a context
����� � in which they behave differently. The context consists of a fork process

�
(a

process that copies every input to two outputs), through which the output of the automata � � is
fed back to the input channel, as shown in Fig. 1. Automaton � � has the following (determin-
istic) behaviour: It outputs a token; waits for a token on input and then outputs another token.
Automaton � � has the choice between two behaviours: Either it outputs a token and stops, or
it waits for an input token, then outputs two tokens. For both automata, the IO-relation relates
empty input to zero or one output token, and non-empty input to zero, one or two output tokens,
but

��� � � � can output two tokens, whereas
��� � � � can only output a single token, choosing the first

behaviour of � � . This example shows the need for a model that records a more detailed causality
relation between individual data tokens than the history model.

Jonsson (Jonsson, 1989) and Kok (Kok, 1987) have independently given fully abstract models
for indeterminate dataflow. Jonsson’s model is based on trace � sets, which are sets of possible
interaction sequences, finite or infinite, between a process and its environment. Kok’s model
turned out to be equivalent. Rabinovich and Traktenbrot analyzed the same issues from the point
of view of finite observations and came up with general conditions under which a Kahn-like
principle would hold (Rabinovich and Trakhtenbrot, 1988; Rabinovich and Trakhtenbrot, 1989;
Rabinovich and Trakhtenbrot, 1990). Abramsky has generalised Kahn’s principle to a family of
generalised trace set models for indeterminate networks, giving conditions for when a trace set
computes a set of functions. The trace set for a composite network is shown to compute a set of
least fixed points of functions computed by the constituent networks (Abramsky, 1990).

2. Traced Monoidal Categories

The notion of traced monoidal category abstracts the notion of trace of a matrix from multilinear
algebra. However it has emerged in a variety of new contexts including the study of feedback
systems (Bainbridge, 1976), knot theory (Jones, 1985) and recursion (Hasegawa, 1997b). The
axiomatization presented below is the definition of Joyal, Street and Verity (Joyal, Street and
Verity, 1996b), slightly simplified and specialized as in (Hasegawa, 1997b) to the context of
(strict) symmetric monoidal categories so that the axioms appear simpler; in particular we do
not consider braiding or twists. In the Joyal, Street and Verity paper the fact that trace models
feedback (or iteration) is attributed to Bloom, but as far back as 25 years ago Bainbridge had been
studying trace in the context of feedback in systems and control theory. Indeed Bainbridge had
noticed that there were two kinds of trace (associated with two different monoidal structures)

�
This word commonly used in the literature unfortunately clashes with “trace” in linear algebra. Normally this is not a
problem but the present paper uses this word in both senses, we hope the reader will be able to disambiguate from the
context.
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in ����� , the category of sets and binary relations. Furthermore he noted that one of the traces
corresponds to feedback in what are essentially memoryless Kahn networks. �

Below we recall the axioms for a strict symmetric monoidal category equipped with a trace.
We assume that the reader is familiar with the notion of a (strict) symmetric tensor product. We
write � for the tensor product and ���
	���
�����������
 for the natural isomorphism (the
symmetry) in this case. Throughout the paper we will use the notation ��������
���� for the
composition of arrows ��� 
!�"� and ���#�$�%� .

Definition 2.1. A trace for a symmetric monoidal category
�

is a family of functions
&�')(�+* 	 � � �,
-��.0/1�2�3. � � � �,
4/5� �

satisfying the following conditions

1 Bekic: ��� 
6�3.7�38$�9�2��.��38 and �+� 
!�"�
&�' (;:�<�+* 	 �=� �?> &�' (�+* 	 � &�' <� :@( * 	 :�( �)� � � and

&�'BA�+* 	 �C� �D> ��E
2 Yanking:

&�')(( * ( �)� (F( �?>HG ( .
3 Superposing: Given ��� 
6��.I�9�2�3.

&�' (J : �+* J : 	 � G J �K� �?>2G J � &�' (�+* 	 �)� � E
4 Naturality: Given �����K�3.��"�2��. , ��� 
!�L� and MN�O���LP

&�')(�+* Q ���=�R� G ( � �S�����=MT� G ( ����> ��� &�'B(J * 	 �C� � �UMVE
5 Dinaturality: Given ��� 
W��.X�9�X�K8 and ���O8��L.

&�')(�+* 	 �=����� G 	Y�Z� � �?> &�')<�+* 	 � � G �7�Z� � �1� � E
The intuition of a traced symmetric monoidal category as a category with feedback becomes
clear when the axioms are presented graphically as in Fig. 2. The symmetry is indicated by a
cross inside the box (swapping the wires) and identities just as straight arrows.

The following proposition is an easy consequence of the yanking and naturality conditions,
keeping in mind functoriality of � and naturality of symmetries. It shows how composition can
be defined from trace and tensor as illustrated by Fig. 3.

Proposition 2.1. Given ����.��"� and ���[
!�%. we have
&�' (�+* 	 ���=�\�Z� � �5� ( 	 �?> �����IE

This can be viewed as a generalisation of the yanking condition.
It is instructive to consider the two well-known examples of trace in the category of sets and

binary relations. In the first case one takes the tensor product to be the cartesian product of the
underlying sets and in the second case one takes the tensor product to be disjoint union of sets
(with the evident action on relations); we call these structures �5�#�]�^/ � � and �������_/a` � respectively.
The trace in �������^/ � � is given by

&�'=(�+* 	 � � � �Bb@/�c �D>Xdfehg .0E � �,bi/ e /5c�/ e � /
j

We are indebted to Samson Abramsky for pointing this reference out to us.
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Fig. 2. Graphical presentation of the axioms for a traced strict symmetric monoidal category

=

�

�
� �

Fig. 3. The generalised Yanking property

where
�

is a binary relation from 
 � . to � � . . Now for the other structure one proceeds
as follows. Let

�
be a binary relation from 
�� . to �
� . . This can be seen as consisting of

4 pieces, namely the relations
� �
	 ,

� � ( ,
� ( 	 and

� (F( . For example we say that
� �0	 �Bb@/�c �

holds for b g 
4/�c g � iff
� �Bb@/�c � holds. Now the trace is given by
&�',(�+* 	 � � �?> � �
	�� � � ( � � �(F( � � ( 	 /

where we are using the standard relational algebra concepts; � for reflexive, transitive closure, �
for relational composition and � for union of the sets of pairs in the relation. Intuitively this is
the formula expressing feedback: either b and c are directly related or b is related to some

e
and

that
e

is related to c (once around the feedback loop) or, more generally, we can go around the
“feedback loop” an indefinite number of times.

3. A Traced Monoidal Category of Kahn Process

The basic intuitions behind Kahn networks are, of course, due to Kahn (Kahn, 1974) and a for-
mal operational semantics in terms of coroutines is due to Kahn and MacQueen (Kahn and Mac-
Queen, 1977). The particular axiomatisation presented here builds on the ideas of Stark (Stark,
1989a) but using the formalism of traces presented in (Panangaden and Shanbhogue, 1992). No
originality is claimed for the trace model; it was Bengt Jonsson (Jonsson, 1989) who showed
that traces form a fully abstract model of dataflow networks and there were several others with
similar ideas at the time.
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We assume a fixed set
�

of values. A dataflow network processes values on a finite set of input
ports producing values on a finite set of output ports. Following (Stark, 1992) we will assume that
ports are indexed by natural numbers. By doing this we can smoothly avoid problems with name
clashes and in addition work with the simpler categorical structures of strict monoidal categories.
For � ��� g��

let
� � E E E � � >��	��
 � � �
����� ��� and

� � � > � � E E E � � , i.e. the set of indexes
below

�
.

An event is a triple ���]/���/���� where � g��	� /�� � is the polarity, � g �
is the index of the port

and � g �
the value. We say that �!�#/"�#� is the label of the event ���]/���/���� . An event of the

form �$�O/��#/"�#� is called an output event and one of the form � � /"��/"�#� is called an input event. We
consider sequences of these events, writing

�
for the prefix order on sequences and % for the

empty sequence. We write &(' for the set
�	� � � � � � � � of all input events on ports below

�
and

similarly ) ' for
� � � � � � � � � . We write * ' for the set

� � � � � of labels on ports below
�

. If+ is a sequence of events we write ,�� + � for the corresponding sequence of labels. We write + 
.-
(or + 
 � ) for the sequence of output (or input) events obtained from + by discarding the input (or
output) events.

Definition 3.1. A process of sort � � /�� � , is a non-empty prefix closed set / of finite sequences
over the alphabet & ' ��)10 satisfying the following closure properties:

K1. If + �2�O/43 /����5� � /"��/ e �76 g / then + � � /"��/ e �5�$�O/�3 /����86 g / (Output/Input Independence).
K2. If + �2�O/43 /����5�$�O/43:9B/ e �;6 g / and 3=<> 3:9 then + �$�O/�359,/ e �>�2�#/�3 /"�#�76 g / (Output Independence).
K3. If + � � /"��/ e �>� � /"�#9)/����86 g / and �?<> �#9 then + � � /��#9=/����5� � /���/ e �86 g / (Input Independence).
K4. If + g / then + � � /"��/���� g / for all �!�#/"�#� g *@' (Receptivity),

where + and 6 are sequences of events. We say that
�

is the input arity of / and � is the output
arity of / , and let / � � �A� denote that / is a process of sort � � /�� � .

The first three conditions express independence between events occurring at different ports.
Note the asymmetry in the first condition: Output events are independent of later input events,
but not (necessarily) of earlier input events. If an output occurs after an input then it may be in
response to the input. The receptivity condition expresses that a process could receive any data
on its input ports - unlike with synchronous processes. The first independence condition and the
receptivity condition can be seen as a monotonicity condition.

As we will see in the end of this section, monotonicity implies that the IO-relations of Kahn
processes are buffered in a formal sense. This makes them reasonable assumptions for the type of
networks we consider. The restriction to prefix closed sets of finite sequences is a simplification
that ensures consistency with the model presented in the following section, but it is not necessary
for the results in this section. It is worth stressing, that it rules out the possiblity of expressing
(non-continuous) processes such as fair merge and poll, but not non-deterministic processes built
from simpler primitives as e.g. bounded choice.

Given processes as sets of sequences we define a strict symmetric monoidal category of Kahn
processes. First we need some notations for restricting sequences of events. For

� g��
we write+ 
CB ' (respectively + 
.D ' ) for the sequence obtained from + by keeping only the input events

on the ports below
�

(respectively higher or equal
�

, subsequently re-indexed by subtracting
�

from the port index). We can then define + 
 ' > � + 
 D ' �>
 B �

, i.e. the re-indexed sequence of input
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������� �����/ 9
/

� ��
	��
�������	��������

Fig. 4. The shuffle � ��� � (parallel composition) of processes ��������� and � � ��� � ��� � .
events on port

�
. Formally, define % 
 B ' > % 
CD ' > % and for + > �!� /��#/"�#� + 9

+ 
 B ' >
� ��� /"��/���� + 9 
 B ' if � >�� � � � � /+ 9 
 B ' otherwise / (1)

and

+ 
 D ' >
� ��� /"� � � /���� + 9 
 D ' if � >�� � �� � /+ 9 
 D ' otherwise E (2)

We define + 
 B ' , + 
 D ' and + 
 ' similarly just for output events. Finally, we allow all combi-
nations of these restrictions, e.g. + 
 B 'D 0 is the sequence obtained by keeping the input events on
ports below

�
and output events on ports above or equal � , and subsequently re-indexing the

ports of the output events by subtracting � from the port number. We extend these notations to
sets of sequences.

We can now define for any
� g �

the identity process ! ' of sort � � / � � by

! ' > � + g �.& ' ��) ' � � 
#" + 9 � + " � g � � � E ,�� + 9 
 $ � � ,�� + 9 
 $ � � E
We then define the shuffle of two processes, which corresponds to a parallel composition of two
processes as illustrated in Fig. 4.

Definition 3.2. For two processes / � � �A� and / 9 � � 9 �A� 9 , define the process

/ 9 � / � � � ` � 9 � � �2�V` � 9 �
(read, / 9 shuffle / ) by

/ 9 � / >��&%4g �.& '(' '() ��) 0 ' 0 ) � � 
#% 
 B 'B 0 g / �*% 
 D 'D 0 g / 9 � E
For
� /�� g �

, the symmetry process � ' * 0 of sort � � ` �Y/"�V` � � is then given by

� ' * 0 >�� + g � & '(' 0 ��) 0 '(' � � 
 , � + 
 B 'D 0 �+g ! ' � ,�� + 
 D 'B 0 �+g ! 0 � E
We then define sequential composition of two processes to be the shuffle of the two processes,
from which we have picked the sequences with the right causal precedence of events on the
“internal” connected ports and then discarded these events.

Definition 3.3. For two processes / � � �A� and / 9 � � �,+ , define the composite process

/
��/ 9 � � �-+
by

/
��/ 9 >��#. g /h� / 9 
 ,�� . 
 B 0 �D> , � . 
 D0/ � �1"2. 9 � . E ,�� . 9 
 B 0 � � ,�� . 9 
 D0/ � � 
 D 0B0/ E
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It is not difficult to verify that the above definitions allow us to define a strict symmetric
monoidal category of Kahn processes as follows.

Definition 3.4. Let ������� be the strict symmetric monoidal category of Kahn processes, with
the natural numbers as objects, processes of sort � � /�� � as morphisms from

�
to � and the

identities defined above. The tensor product of the strict monoidal structure is given by sum on
objects (with unit 0) and shuffle on arrows and symmetries as defined in Def. 3.2. Composition
of morphisms are defined as in Def. 3.3.

The trace construction is as follows.

Definition 3.5. Given / � � `*+ �A�V`*+ we define �	� /' * 0 �!/ � � � � � by

�	�
/ ' * 0 �!/ � >��&%4g �.& ' ��) 0 � �=
]d .Tg / E . 
 D0/D0/ >�%

, � . 
 B0/ �?> , � . 
 B0/ � �" . 9 � . E ,�� . 9 
 B0/ � � , � . 9 
 B / � �
The condition

. 
 D /D / >�% simply says that the projection to input and output events on ports above+ gives the sequence
%

. The other two conditions express that each of the sequences of values on
output ports below + match the sequence of values on the corresponding input ports below + , and
that any such output appears before its corresponding input.

The following lemma intuitively expresses that we may allow the feedback ports to be buffered.

Lemma 3.1. Given / � � `*+ �A�-`1+ , then

�
�
/ ' * 0 �!/ � >��&%4g �.& ' ��) 0 � �1
]d . g / E . 
 D0/D0/ > %��1" � g � + �=E

� ,�� . 
 $ �?> ,�� . 
 $ � �" . 9 � . E ,�� . 9 
 $ � � , � . 9 
 $ �
� �
Proof. (Sketch) We must show that for all processes / � � `�+ �A��`�+ and

% g � & ' � ) 0 � �
d . g / E . 
 D /D / >�% � , � . 
 B0/ �?> , � . 
 B0/ � �*"2. 9 � . E ,�� . 9 
 B0/ � � ,�� . 9 
 B0/ � (3)

if and only if
d0. g / E . 
 D0/D0/ >�%��1" � g � + � E � , � . 
 $ �D> , � . 
 $ � �*"2. 9 � . E ,�� . 9 
 $ � � ,�� . 9 
 $ �
� E (4)

That (3) implies (4) follows directly from the definition of
. 
 B0/

and
. 
 $

. To show that (4) im-
plies (3) we use the axioms K1 and K3. Assume

. g / and
. 
 D0/D0/ > %���" �3g � + � E � ,�� . 
 $ � >

,�� . 
 $ � ��" . 9 � . E , � . 9 
 $ � � , � . 9 
 $ � � . Let
.4> . 9 . 9 9 such that

. 9 is the longest prefix of
.

sat-
isfying , � . 9 
CB0/ � � ,�� . 9 
 B0/ � . We proceed showing (3) holds by induction in the length


 . 9 9 
 of. 9 9 . If

 . 9 9 
D> � , i.e.

. > . 9 , then
"2. 9 � . E , � . 9 
 B / � � ,�� . 9 
 B0/ � , and then

.
also satisfies the

condition , � . 
CB / �\> ,�� . 
 B / � in (3) and we are done. Now assume that

 . 9 9 
�> � ` ! . Then it

follows, that
.Z> . 9!� � / � 9)/���� . � � � / � /"�#� . � for some

� / � 9 g � + � and sequence � � / � 9)/���� . � where
� � / � 9,/"�#� . �


 $ > % and ,�� . 9!� � / � /"�#� 
 B / � � , � . 9�� � / � /���� 
 B0/ � . Using the axioms K1 and K3 we infer
that

. 9!� � / � /"�#�>� � / � 9)/"�#� . �
.

�
g / . It is easy to see that

. 9�� � / � /����5� � / � 9)/���� . �
.

� satisfies (4) and since
 � � / � 9)/���� . �
.

�

]> �

we conclude by the induction hypothesis that (3) holds.
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From the alternative definition of the trace given in Lem. 3.1 above it follows quite easily that
the trace makes ������� a strict symmetric monoidal category.

Theorem 3.2. � ����� is a traced strict symmetric monoidal category.

Proof. (Sketch) Follows from a tedious but straightforward verification of the axioms in Fig. 2
using Lem. 3.1. For the Bekic I axiom, we use the equalities � . 
 D �D � � 
 D /D / > . 
 D / ' �D / ' � , � . 
 D �D � �>
 $ >. 
 $ ' � and � . 
 D �D � � 
 $ > . 
 $ ' � .
The generalised yanking property can be interpreted in this category as saying that composition
can be obtained as a combination of parallel composition (that is, shuffling) and feedback. This
is a well-known fact in dataflow folklore.

3.1. From Kahn Processes to Input-output Relations

The category of Kahn processes can be related to the history model by a functor from � �����
to a category of buffered relations between histories. As mentioned previously, the set

���
of

histories on ports
� � � , is traditionally defined to be the set � � ����� '�� of functions from the set of

port names
� � � to the set of sequences of values

���
and IO-relations are relations of the form�
� �	� � �	


for
� /"� g �

. We use an alternative but equivalent definition of histories, inspired
by Mazurkiewicz trace languages, which facilitates the map from Kahn processes to histories.
For
� g �

, let � ' denote the smallest equivalence relation on * �' , such that + �!�#9=/��#9 �5�$��/"�#�;6 �+ �!��/����5�$�#9 /"� 9 �86 g * �' if � <> � 9 g � � � . For + g * �' , let + denote the equivalence class of + .
We then define

� �
to be the quotient set * �'
� � ordered by +�� 6 g * �'
� � iff

d�%7g * �' such
that + % > 6 (Winskel and Nielsen, 1995). This is also known as the free partially commutative
monoid (Diekert and Métivier, 1997) over �$* ';/ � ' � . Viewed as functions, the order corresponds
to the standard pointwise order of functions induced by the prefix order on sequences.

For any Kahn process / � � �A� we trivially get an IO-relation � ��/ �?>�� � % / . �0g ��� � �	
 

d + g / E %h> , � + 
 � � � . > ,�� + 
 -�� � . This mapping preserves composition.

Lemma 3.3. Let / � � �A� and / 9 ����� ��9 be Kahn processes. Then � ��/0��/ 9 �?> � ��/ � ��� �!/ 9 � .
Proof. We only show that � �!/0�4/ 9 �	� � ��/ � ��� �!/ 9 � , the other direction follows by reversing

all implications. Assume � % / . �+g � �!/0�4/ 9 � . Then there exists + g /0�4/ 9 such that% > ,�� + 
 � � � . > , � + 
 -�� E (5)

By Def. 3.3 there exists � g / � / 9 such that

+ > � 
 D 0B / / (6)

,���� 
 B 0 �D> , ��� 
 D0/ � and (7)" � 9 � �@E ,���� 9 
 B 0 � � , ��� 9 
 D / � E
But this implies by Def. 3.2 that � 
 B 0B0/ g / 9 and � 
 D 0D / g / . Let ��� ) > � 
 B 0B0/ , ��� > � 
 D 0D /
and 6 > , ��� 
CB 0 � . Now from (5) and (6) above it follows that ,���� � 
 � � > % and ,���� � ) 
 -�� >�. .
From (7) it follows that ,������ ) 
 � ��> , ����� 
 - ��> 6 . But then � % / 6 �0g � �!/ � and � 6�/ . �0g � �!/ 9 � so
� % / . �+g � ��/0��/ 9 � .
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By considering the receptivity condition in Def. 3.1, it is easy to see that the mapping given
above does not preserve identities, and thus fails to be functorial. However, this can be reme-
died by considering buffered IO-relations. For

� g��
we define the buffer 
 ' on

�	�
by 
 ' >

� � ! ' � >A� � + / 6 � g�� ' ��� ' 
 6 � + � . Inspired by (Selinger, 1997), we then say that an
IO-relation

� ��� ' ��� 0 is buffered if it satisfies that
��> 
 ' � � and

��> � � 
 ' , that is, the
relation is closed under composition with buffers. The lemma below gives a characterisation of
buffered IO-relations.

Lemma 3.4. Let
�
��� ' ��� 0 . Then the relation

�
is buffered if and only if

— If � + / 6 �+g � and + � + 9 then � + 9 / 6 �+g � .
— If � + / 6 �+g � and 6 9 � 6 then � + / 6 9 �+g � .

Proof. Straightforward.

Noting that 
 ' � 
 ' > 
 ' for any
� g �

it is easy to see that buffered IO-relations form a
category with buffers as identities.

Definition 3.6. Let
� � ���

be the category with objects
� �

for
� g �

and morphisms buffered
IO-relations.

A tensor product is defined on objects by
� 
 � � �R> � 
 ' � and on arrows by “shuffling” of

relations. Define %	� B ' > %
� D ' > % and for + > �!�#/"�#� + 9 g * �' define

+ � B ' >
� �$��/"�#� + 9 � B ' if � � � /
+ 9 � B ' otherwise

(8)

and

+ � D ' >
� �$� � � /���� + 9 � D ' if �� � /+ 9 � D ' otherwise E (9)

We can now define a tensor on arrows formally by
� 9;� �%> � � . / % � g �	� ) ' � � � 
 ) ' 
 


� . � D ' / % � D 0 �+g � 9 � � . � B ' / % � B 0 �+g � � for
� � �	� � � 


and
� 9 � � � ) � �	
 ) .

Lemma 3.5. The category � � � ��� /U� � is a strict symmetric monoidal category.

From Lem. 3.3 and the definition of buffers it follows easily that � defines a symmetric
monoidal functor from the category of Kahn processes to the category of buffered IO-relations.

Proposition 3.6. There is a symmetric monoidal functor �H� � ����� � � � ���
on objects defined

by � � � � >�� ' and on arrows by � ��/ � > � � % / . � 
�d + g / E %3> , � + 
 � � � . > , � + 
 - � � / for
/ � � �A� .

Proof. Functoriality follows from the definition of identities in the two categories and Lem. 3.3.
It is easy to verify that the symmetric monoidal structure is preserved.

4. Generalised Relations

Kahn processes are typical of the solutions to the problem of obtaining a compositional se-
mantics for nondeterministic dataflow. A correct compositional semantics is got by representing
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processes as interaction sequences, keeping track of the causal dependency between events. How-
ever, this seems far removed from the relational history model. In this section we will describe
another solution that contains the Kahn processes, which comes about as a natural (categorical)
extension of the history model. Moreover, it gives a branching semantics, which opens the way
to combining the asynchronous dataflow communication primitives with synchronous communi-
cation primitives.

Our first observation is that buffered IO-relations between
� �

and
� 


correspond exactly to
functors

�	� � �	
���� � � � �
, where

� � �
is the category consisting of two objects

�
and ! and only one

non-identity arrow
� � ! . This is an immediate categorical analogy to characteristic functions� � � � 
 � � � / ! � of relations. Viewing the buffered IO-relations in this way, composition of� � � � � �	
 ��� � � � �

and
� 9 � �	
 � � � ��� � � � �

can be written as

� � � 9 � + / % �?>��
�
	���


� � + / 6 �(� � 9 � 6D/ % � / (10)

where we make use of the obvious join and meet operations on
� � �

.
This defines a category �?���]� of buffered relations, with path categories as objects, arrows

being relations and composition as defined above. The category �?����� can be equipped with a
strict symmetric monoidal structure as in

� � � �
, and as stated below, �?�#�]� is just an alternative

presentation of the category
� � ���

given in the previous section.

Proposition 4.1. The category
� � ���

is (strict symmetric monoidal) equivalent to the category
�?����� .

Proof. Follows easily from Lem. 3.4.

A trace in �?����� can be defined as in �������_/ � � , that is for
� � � � ' � � � 
 ' � ��� � � � �

, define for
� + / 6 � in

�	� � � 
 ���
,

&�' ������ * ��
 � � � � + / % �?> �
��	�� �

� � � + / 6 � /�� % / 6 ��� / (11)

where we have implicitly used the isomorphisms
��� ' � �> �	� � � � and

�	
 ' � �> �	
 � � � .
However, the anomaly given in Sec. 1 shows that there is no way of defining a trace on �?�����

such that the functor � given in the last section preserves the trace of � ����� . It must be possible
to represent different dependencies between input and output for a particular input-output pair in
the relation. This is precisely what moving to the bicategory of profunctors does for us.

4.1. Profunctors

The bicategory � ' ��� of profunctors, also referred to as bimodules, or distributors (Borceux,
1994), is a categorical generalisation of sets and relations. The objects of � ' ��� are small cat-
egories and arrows are profunctors; profunctors are like the buffered relations above but with the
category

� � �
replaced by �f� � .

Definition 4.1. Let � and � be small categories. A profunctor 
 from � to � is a bifunctor

$��� � � ��� ���f� � (or equivalently, a presheaf in �� ��� � � ), and will be written as 
$��� ' // � .
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Composition of profunctors 
$��� ' // � and � � � ' // � is given by the coend (Mac Lane, 1971)


K�5� � +i/�� �?>���� 
 � +i/ e � � � � e /�� � / (12)

(which is functorial in its parameters). This defines composition only to within isomorphism,
explaining why we get a bicategory. Note how (12) generalises the expression for relational
composition given by (10) earlier. Identities

G	� ��� ' // � are given by hom-functors as

G
� � +i/ + 9 �?> � � + 9 / + � E
The tensor product is given by the product of categories on objects and set-theoretic product on
arrows. This defines a symmetric monoidal structure (Day and Street, 1997) on � ' ��� .
Definition 4.2. Let � , � 9 and � , � 9 be small categories and 
�� � ' // � , � � � 9 ' // � 9 profunc-
tors. Define �N� � 9 > � � � 9 and 
X� � > 
 � � � �
� � 9 ' // � � � 9 , so �B
X� � � � +i/ + 9)/��f/��	9 ��>

�� +@/�� � � � � + 9)/��	9 � . This defines a (pseudo-) functorial tensor product with unit the one object
(and one arrow) category � . The symmetry � ��� )]� � � � 9 ' // � 9O� � is defined in the obvious
way from hom-functors, so � ��� ) ��� +i/ + 9 � /��
� 9 /�� ���?> � � � 9 � �
�f/�� 9 � / � +i/ + 9 � � .

The bicategory � ' ��� is in fact compact closed (Street, 2003), and thus have an essentially
unique choice of trace � (� * � �B
 � for a profunctor 
I� �\� � ' // � � � given by the coend

� (� * � �B
 � � +@/�� �?> ��� 
�� � +@/ e � /��
�f/ e ��� / (13)

which satisfies the properties of a trace up to isomorphism. In particular, we can prove the gen-
eralised yanking property.

Proposition 4.2. Given 
$��� ' // � and � � � ' // � we have a (natural) isomorphism

� (� * � ���,
6�K� � �5� ( � � �> 
 �5��E
Proof. By unfolding the definitions we get

� (� * � ���,
 � � � �5� ( � � � +@/�� �?> � � �B
W� � � �1� ( � ��� +@/ e � / ���f/ e ���
> � � ��� � ) * � )�� 
6�K� � � +@/ e � /�� e 9 /�� 9 ���	� � ( � � � e 9 /�� 9 � /��
�f/ e ���
> ����� � � ) * � )�� 
6�K� � � +@/ e � /�� e 9 /�� 9 ���	� � � � � � e /�� � /�� e 9 /�� 9 � �
>���� �B
W� � � � G (;: � ��� +i/ e � / � e /�� � �
�> � � 
 � +i/ e � � � � e /�� � /

where the isomorphism comes from the (natural) isomorphism for composition with the identity
in � ' ��� .
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Since we are working with functors into �f� � , the coend in Eq. (13) has an explicit definition. For+ and � objects of respectively � and � , we have

� � 
�� +@/ e /��f/ e � �> �

� 	��
� b g 
���� +i/ e � / ���f/ e ��� ����� / (14)

where � is the symmetric, transitive closure of the relation � defined as follows. For b g

�� +@/ e /��f/ e � and b 9 g 
�� +i/ e 9B/��f/ e 9 � , let b	�"b 9 if
d �2� e � e 9 and c g 
�� +@/ e /��f/ e 9 � such that 
 � +i/ e /��f/�� � c > b and 
�� +@/�� /��f/ e 9 � c > b 9 E

For � ��+ � + 9 and ��� �	9#� � arrows of respectively � and � , we have

� � 
 ���)��/ e � /��B��/ e ��� � b � � > � 
����=��/&! � � / �C��/&! � ��� b � � for b g 
�� � +@/ e � /��
�f/ e ��� . (15)

For our purpose, we focus on the subbicategory � � ' ��� of � ' ��� generalising the buffered IO-
relations, with arrows being profunctors 
�� ��� ' //

�	

between path categories. We refer to such

profunctors as port profunctors.

A tensor product on � � ' ��� is given by
��� � �	
 > �	� ' 
 with unit

G > ��

. Via the isomor-

phism
� � ' 
 �> � � � � 


the category � � ' ��� inherits the traced symmetric monoidal structure
(up to iso) of � ' ��� . We will refer to the symmetries by � ' * 0 � �	� � � 
 � �	
 � �	�

. Below we
will see that this category is a promising candidate for a model of non-deterministic dataflow.
However, first we will note that the trace as given by the coend fails to satisfy the causal con-
straints of feedback, that a token must appear as output before it appears as input on a feedback
channel, as stated in the third requirement of the trace in � ����� . This is not surprising, bearing in
mind the close relationship to the trace in �������_/ � � .

Consider the fork process
� � �
� ' //

��� � ���
used in the example of Sect. 1, which is just

a buffer copying each input to two output channels. The port profunctor corresponding to
�

is constructed from hom-functors, on objects defined by
� � + / � 6�/ % � � > ��� � 6D/ + � � ��� � % / + � .

Connecting one of the output channels to the input channel should result in a process with no
input channels and one output channel, that can output nothing but the empty trace. This is
indeed the result in � ����� . However, from the explicit definition of the coend given in (14) it is
not difficult to compute that

� ������ * � � � � � � �f/ 6 � �> �
� 	�� �
� b g ��� � 6D/ + � � ��� � + / + � �����

�> � + 
 6 � + g ��� � /
(16)

where � denote the unique history in
��


. This means that � � �� � * ��� � � � � �f/ 6 � is non-empty (in
fact infinite) for any output history 6 , in other words, any output history is contained in the
(generalised) IO-relation.

For reasons that will become clear in the following section, we will restrict attention further
to the sub(bi)category � � ' ����� of � � ' ��� induced by the rooted port profunctors 
$� � � ' //

� 

,

which are the port profunctors satisfying that 
�� + / % � is the singleton set for any + in
� �

.
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4.2. An Operational Reading

The bicategory � � ' ��� � of rooted port profunctors can be given an operational reading via a gen-
eralised Grothendieck construction (Street, 1980), thereby representing profunctors as particular
port-automata (Panangaden and Stark, 1988; Lynch and Stark, 1989). This is a direct generalisa-
tion of the representation of rooted presheaves as synchronisation trees given in (Joyal, Nielsen
and Winskel, 1996a; Winskel and Nielsen, 1996). In particular, the hom-category � � ' ��� � � G / ��� �
is equivalent to the category of rooted presheaves over

� �
, which is equivalent to the category

� &�� of synchronisation trees with label set
�

. In this way, the hom-categories in � � ' ��� � can be
viewed as generalising the presheaf models used in giving semantics to synchronously comuni-
cating systems (Cattani and Winskel, 1997), to be able to represent multiple output ports and
asynchronous input.

Port automata are particular examples of I/O automata (Lynch and Tuttle, 1987). An I/O au-
tomaton is a labelled transition system for which the set of actions is partioned in sets of input,
output and internal actions. A port automaton is then an I/O automaton for which the sets of
input and output actions consist of respectively input events and output events for specified sets
of input and output ports. We need only the special case where the set of internal actions is empty
and where the port sets are index sets.

Definition 4.3. Let
� /"� g �

. An � � /"� � -port automaton � is a quintuple �!/ / � / � �H/ � � ��/ � � � � ,
where

— / is a set of states,
— � g / is the initial state,
—

� � � and
� � � are the sets of resp. input ports and output ports, and

—
� � � / � ����� � / , for ����� > & ' ��) 0 , is the transition relation.

The transition relation is extended to sequences of actions as follows. We write � �� � � 9 if

� g �����
$

for some
�$g �

and � �
	� � � �

���� � � � E E E
��
�� �� � � $�> � 9 . We write � � �� � � 9 if+ g � � � � � � �

$
for some

� g �
and � � � 	� � � �

� � �� � � � E E E
� � 
�� �� � � $ > � 9 , and similarly for output

transitions. Define /�� � � � �N> � � g ����� � 
[d � g / E � �� � � � , i.e. the set of finite sequences of
events labelling sequences of transitions of � beginning at the initial state � .

We define morphisms between � � /"� � -port automata as for labelled transition systems (Winskel
and Nielsen, 1995).

Definition 4.4. Let
� /�� g��

and let � � > ��/ � /
� � / � � � / � � �O/ � � � � be two � � /�� � -port automata.
A morphism ��� � � � � � consists of a function �N� / � � / � such that

— � � � �
�D> � � ,

— if � �� � � � 9 then � ��� � �� � � � �!� 9 �

It is easy to check that the above definition makes � � /"� � -port automata into a category, which
we will denote by ����� � � � /"� � .

Below we define the associated � � /�� � -port automaton for a port profunctor. If + � % in
� �

,
we write

� + / % � � + � %
and

� % / + � � % � + for the unique arrows in respectively
� �

and
�	� ���

.
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Definition 4.5. Let 
�� � � ' //
�	


be a rooted port profunctor. Define its associated � � /"� � -port
automaton by � �,
 �?> ��/ /
� / � �H/ � � ��/ � � � � , where

— / > � � � + / 6 � /5b � 
 b g 
�� + / 6 � � ,
— � > � �!% /"% � /5b � for b g 
��!% /�% � , and
—

� � � / � ����� � / is given by the rules by

–
� � + / 6 � /5b � ��� * �� � � � + �$��/���� / 6 � /5c � , if 
 � � + / + �!�#/"�#� � / 6 � b > c ,

–
� � + / 6 � /5b � ��� * �� � � � + / 6 ��3 /���� � /�c � , if 
�� + / � 6 ��3 /���� / 6 � � c > b .

We will write /�� � �B
 � for /�� � � � �,
 � � .
The port automaton obtained from a port profunctor defines the action on objects of a functor

from the hom-category � � ' ��� � � �	� / �	
 � of rooted profunctors between
� �

and
�	


to the category
����� � � � /"� � .

Remarkably, axioms similar to those usually postulated for monotone port automata (Panan-
gaden and Stark, 1988) follow for port automata of profunctors simply by functoriality.

Proposition 4.3. Let 
�� � � ' //
� 


be a rooted port profunctor and � �B
 �?> �!/ /
� / � �7/ � � �f/ � � � �
its associated port automaton. Then

A1. For all �!�#/"� � g � � � � �
, and � g / there exists a unique � 9 g / such that � ��� * �� � � 9

(Receptivity),

A2. For all � ��� * �� � � and � ��� * � )� � �;9 there exists a unique
e g / such that �

��� * � )� � e
and �;9 ��� * �� � e

,

pictorially

�;9
� ��

��� * � ) ?? e
��� * �
��

�
???��� * � �� ��� * � )??
� d	� (Monotonicity),

A3. For all � <> �#9 g � � � , if � ��� * �� � � and �
��� ) * � )� � e

then there exists a unique ��9 g / such that

� ��� ) * � )� � �;9 and �;9 ��� * �� � e
, pictorially

e

� ��
�

��� ) * � ) ??

�;9
��� * �__

�
???��� * �
__ ��� ) * � )??
� d	� (Input Commutativity),

A4. For all 3 <> 359 g � � � , if � ��� * �� � � and � ��� ) * � )� � e
then there exists a unique ��9 g / such that

� ��� ) * � )� � �;9 and �;9 ��� * �� � e
, pictorially

e

� ��
�

��� ) * � ) ??

� 9
��� * �__

�
???��� * �
__ ��� * � )??
� d	� (Output Commutativity),

The monotonicity axiom A2 says that an input transition can never disable an output transition.
It can equivalently be stated as an asymmetric commutativity axiom between input and output
arrows.

A2’.For all � ��� * �� � � and �
��� * � )� � e

there exists a unique ��9 g / such that � ��� * � )� � �;9 and �;9 ��� * �� � e
,

pictorially

e

� ��
�

��� * � ) ??

� 9
��� * �__

�
???��� * �
__ ��� * � )??
� d	� (Asymmetric I/O Commutativity).
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Fig. 5. The initial parts of two port automata representing the networks given in Sec. 1

Proposition 4.4. Axiom A1 together with axiom A2 of proposition 4.3 are equivalent to ax-
iom A1 together with axiom A2’.

Proof. Assume axiom A1 and A2. If � ��� * �� � � and �
� � * � )� � e

, then by axiom A1 one gets thatd	� �;9 g / E � � � * � )� � �;9 and from axiom A2 it follows that
dfe 9 g / E �;9 ��� * �� � e 9 and �

��� * � )� � e 9 .
Axiom A1 implies that

e3>Ve 9 . For the other direction, assume axiom A1 and A2’. If � ��� * �� � �
and � ��� * � )� � �;9 , then by axiom A1 one gets

d[eKg / E � ��� * � )� � e
and from axiom A2’ it follows thatd	� �;9 9 g / E � � � * � )� � �;9 9 and ��9 9 ��� * �� � e

. Axiom A1 gives that ��9 > �;9 9 .
As a corollary, we get a mapping from port profunctors to Kahn processes.

Corollary 4.5. Let 
�� � � ' //
�	


be a rooted port profunctor. Then /�� � �B
 � is a Kahn process
of sort � � /�� � .

Figure 5 shows (the initial parts of) two � !]/ ! � -port automata representing the networks de-
scribed in Sect. 1 (where we assumed that the set of values

�
consisted of just a single “token”).

All vertical arrows are output transitions (producing a token on the unique output port) and ho-
risontal arrows are input transitions (receiving a token on the unique input port). The dotted
transitions indicate that the automata can receive more input tokens. Notice the two runs in au-
tomaton � � , with the same action sequence, but different dependencies.

The operational reading makes rooted port profunctors look promising as a model of non-
deterministic dataflow. However, in order to define the trace operation we restrict attention to the
class of stable (rooted) port profunctors. These are the profunctors for which the associated port
automaton satisfies the additional axiom

A5. For all ��<> � 9 g / , if � ��� * �� � � and � 9 ��� ) * � )� � � then � <> �#9 and there exists a unique
eKg /

such that
e ��� ) * � )� � � and

e ��� * �� � � 9 , pictorially

�
� ��

�
��� * �

�� e
��� ) * � )__

� 9
??��� ) * � ) __ ��� * ���

� d	� (Stability).

Categorically, axiom A5 is equivalent to requiring that the profunctor (when regarded as a functor

$� �	� � ��	


) preserves pullbacks. In our setting, this amounts to preserving meets of bounded
(or consistent) pairs. As explained in Sec. 6.1, stable profunctors can be viewed as a direct gen-
eralisation of the stable continuous functions of Berry (Berry, 1979; Gunter, 1992). Stable rooted
port profunctors define a sub symmetric monoidal bicategory of � � ' ��� � , which we will refer to
as � � ' ����� . We will use the notation 
�� � � ' // �

� 

to indicate that 
 is a profunctor in � � ' ����� .

For any Kahn process / there exists a stable rooted port profunctor
� �!/ � such that /�� � � � �!/ � �?>

/ , i.e. the set of sequences for
� �!/ � as defined in Def. 4.5 equals the original process / . The pro-
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functor
� ��/ � can be defined by

� �!/ � � + / 6 �?>�� %4g / 
#% 
 � g + � % 
 - g 6 � . This construction
gives a functor

�
from hom-categories �������

� � /"� � to � � ' ��� � � � � / � 
 � with /�� � as left inverse.
However, it does not map identities to identities, so it does not extend to a functor between the
full categories. It remains an open question if there exists a functor from ������� to � � ' ��� � having
/�� � as left inverse.

We end this section giving a complete characterisation of stable port profunctors in terms of
port automata. Port automata associated to port profunctors will always have a reachable and
acyclic transition relation with at most one transition between any two states. The possibility of
two transitions having the same codomain is restricted by axiom A5 and further by the following
two “unfolding” axioms.

U1. If � <> � 9 g / , � ��� * �� � � and � 9 ��� ) * � )� � � then 3 <> 359 and there exists a unique
e g / such that

e ��� ) * � )� � � and
e ��� * �� � � 9 , pictorially

�
� ��

�
��� * �

�� e
��� ) * � )__

� 9
??��� ) * � ) __ ��� * ���

� d � (Output Unfold).

U2. If �?<> � 9 g / , � ��� * �� � e
and � 9 ��� * � )� � e

then there exists a unique
e g / such that

e ��� * � )� � �
and

e ��� * �� � � 9 , pictorially

�
� ��

�
��� * �

�� e
��� * � )__

� 9
??��� * � ) __ ��� * ���

� d	� (Input/Output Unfold).

Together with the stability axiom, the two unfolding axioms tell that port automata associated
to port profunctors are essentially trees, except for the diamonds required by the commutativity
axioms A2’, A3 and A4.

Theorem 4.6. Let
� /�� g��

. Then the hom category � � ' ��� � � � � / � 
 � is equivalent to the full sub
category of ����� � � � /�� � induced by � � /"� � -port automata satisfying axiom A1-A5 and U1-U2,
and having a reachable and acyclic transition relation, with at most one transition between any
two states.

We can recover the category of elements of the presheaf 
 from its associated port automaton
� �B
 � , which thus determines 
 up to isomorphism (Mac Lane and Moerdijk, 1992). This allows
us to work with the more concrete representation when convenient, and we will freely confuse
elements b g 
 � + / 6 � with their corresponding states in � �B
 � .

5. A Trace for Stable Profunctors

The trace as given by the coend in (13) is not well defined in � � ' ��� � , since the coend will not
always be a rooted profunctor. This fact is illustrated by the example given in the end of sec-
tion 4.1, which gives a profunctor with infinitely many roots. Below we will define a trace in
� � ' ����� which intuitively speaking restricts the coend to causally secured states. Observe that the
relation � defined in the explicit definition of the coend given by (14) can be interpreted as a re-
lation between states of the associated port automaton, expressing that two states are connected
by a chain of internal communications. More precisely, if b and b 9 are states of a profunctor

$� �	� � � � ' //

�	
 � � � (or rather, its associated port automaton) and � � /�� � g � + � � � , we
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will let b � * �> � / b 9 denote that b � � * �� �
� � * �� ��b 9 , i.e. b 9 is reachable from b by two transitions, the

first outputs a value on port � and the second inputs the same value on the corresponding input
port. We will write b > � / b 9 if b � * �> � / b 9 for some � � /�� �Tg � + � � � and let

> � �/ denote the
reflexive, symmetric and transitive closure of

> � / . If we now take � , � and � in Eq. (14) to
be respectively

� �
,
�	


and
� � we get that b � b 9 if and only if b > � �/ b 9 . This leads to the

following definition.

Definition 5.1. Let 
$� � � � � � ' // �
� 
 � � � and � �B
 � > �!/ /
� / � �7/ � � ` + �=/ � �W` + � � . We

say that � g / is + -secured if

�
� �� � > � �/ � �� � � /

for some + g � � + E E E � `
+ � � � � � and 6 g � � +TE E E�� ` + � � � � � , i.e. a state is + -secured if it
is reachable from the root by a sequence of input transitions on ports not in

� + � , followed by a
sequence of internal communication transitions on ports in

� + � and ended by a sequence of output
transitions on ports not in

� + � .
Observation 5.1. Let 
�� � � � � � ' // �

�	
 � � � and � �B
 �+> ��/ /
� / � �H/ � � ` + �=/ � �-`1+ � � . If
� > � �/ � for � > � � + / % � / 6D/ % �

� /�b � and � > � � + / % � / 6D/ % � � /�b 9 � then
%
� � % � , and if

%
�
> % �

then � > � .
Lemma 5.2. Let 
�� � � � � � ' // �

�	
 � � � and � �B
 � > �!/ / � / � �H/ � � `
+ � / � �6` + � � . Then> � �/ is a partial order satisfying the descending chain condition.

Proof. Follows from Obs. 5.1 and the fact that the partial order
� � satisfy the descending

chain condition.

Lemma 5.3. Let 
$� � � � � � ' // �
� 
 � � � and � �,
 �D> �!/ / � / � �H/ � � `1+ � / � � ` + � � . Then if

��<> � 9 and � > � / � and � 9 > � / � , there exists a (unique) state
eKg / such that

e > � / � ande > � / � 9 .
Proof. Follows from Obs. 5.1 and the axioms U1, U2 and A5.

Let � / be the least equivalence relation including
> � / .

Lemma 5.4. Let 
�� � � � � � ' // �
�	
 � � � and � �B
 � > �!/ / � / � �H/ � � `
+ � / � �6` + � � . Then

if � � / �;9 , for � > � � + / % � / 6D/ % � � /�b � g / and �;9 > � � + / % � ) / 6?/ % � ) � /5b 9 � g / , then there exists a
state �

> � � + / % � � % � ) / 6?/ % � � % � ) � /�b 9 9 � g / such that �
> � �/ � and �

> � �/ � 9 .
Proof. Induction using Lem. 5.3.

We are now ready to show a crucial property for stable port profunctors exploited in this paper:
any � / -equivalence class has a least element with respect to the partial order

> � �/ .

Proposition 5.5. Let 
$� � � � � � ' // �
� 
 � � � and � �B
 �?> �!/ /
� / � �7/ � � ` + �=/ � �H` + � � . Then

for any � > � � + / % / 6�/ % � /�b � g / the equivalence class
� � � � � has a least element with respect to

the partial order
> � �/ , which we denote by ��� / .

Proof. By Obs. 5.1 and Lem. 5.4 we get that if � � / � for � > � � + / % / 6?/ % � /5b � and � >
� � + / % / 6?/ % � /5b 9 � then � > � . This implies that the number of elements of any � / -equivalence
class is bounded by the number of objects in

� � , which is countable. Let
� � � � / > � � � � � 	�� . By
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induction in
�
, we define (using Lem. 5.4) a set

� � � � � 	�� such that � � > � �/ ��� and � � > � �/ ��� for� � �
. For the basis, let ��� > ��� . For the induction step, assume we have defined

� � � � ��� � � � .
Then let � � ' � be the element given by Lem. 5.4 such that � � ' �

> � �/ � � and � � ' �
> � �/ � � ' � . This

completes the definition of
� � � � � 	�� . Using Lem. 5.2 we conclude from � � > � �/ � � for

� � �
that� � � � � 	�� has a (unique) least element and from � � > � �/ ��� for

� � �
that this element also is the

(unique) least element of
� � � � / .

The securedness condition has some useful equivalent formulations.

Lemma 5.6. Let 
I� � � � � � ' // �
� 
 � � � and � �,
 � > �!/ / � / � �H/ � � ` + � / � ��` + � � . Let	!> � + E E E � `1+ � and

	�> � + E E E;�-`1+ � . Then the following statements are equivalent

1) � g / is + -secured,

2) �
� 
� � � � / ���� � � � ,

3) � �
� 
� � � � / � �
�� � � � � ,

4) there exists a sequence of transitions �
� � ��� � � � �

� � E E E � � � ' > � , such that if
� � > � � + � / % � / 6 � / . � � /5b � � then

% � � . � and
% ' > . ' .

5) �
� 
� � � � or

d � 9,E � 9 is + -secured and � 9 > � / �
�� � � �
Proof. It follows directly that 1) implies 2), that 2) implies 3) and that 1) implies 4). That 3)

implies 2) follows by repeated use of the axioms A2, A3 and A4. To show that 2) implies 1),

assume that �
� 
� � � � � / �;9 ���� � � � . Then, by Lem. 5.4 there exists � such that �

> � �/ � and
�
> � �/ �;9 . Since � > � � + /�% /"% /"% � /5b � for some + and b g 
�� + /�% /�% /"% � , it follows from Obs. 5.1

that � > � . That 4) implies 3) can be shown by an induction in the length of
% ' , using axioms

A2, A3 and A4. That 5) is equivalent to 1) follows from a simple induction proof.

We will say that a state � of an automaton ��/ /
� / � �H/ � � `�+ � / � �I`�+ � � is pre + -secured if there
exists a sequence �

� � � � � � � �
� � E E E � � � ' > � , such that if � � > � � + � / % � / 6 � / . � � /5b � �

then
% � � . � . By 4) above, + -securedness clearly implies pre + -securedness, moreover, for any

pre + -secured state � > � � + / % / 6?/ . � /�b � there exists a (unique) secured state �	9 > � � + / . / 6?/ . � /�b 9 �
such that �

� � / �� � � � 9 .
The lemma below says that (pre) + -securedness is closed under forward and backward transi-

tions on ports above + .

Lemma 5.7. Let 
I� � � � � � ' // �
�	
 � � � and � �,
 � > �!/ / � / � �H/ � � ` + � / � ��` + � � . Let

	 > � + E E E � ` + � and � > � + E E E;�6`*+ � . If � g / is (pre) + -secured and � � 
� � � 9 or � 9 � 
� � �
or � ���� � � 9 or � 9 ���� � � then � 9 is (pre) + -secured.

Proof. Assume � g / is (pre) + -secured. If � � 
� � � 9 or � ���� � � 9 it follows directly from

Lem. 5.6 that � 9 is (pre) + -secured. If � 9 � 
� � � (or � 9 ���� � � ), then one may show by induction
in
�

using axiom U2 and axiom A5 (or axiom U1) that if there exists a sequence �
� � � � � �

� �
� � E E E � � � ' > � , such that if � � > � � + �S/ % � / 6 � / . � � /5b � � then

% � � . � then there exists a

sequence �
� � � 9� � � � 9 � � � E E E � � � 9' ) > � 9 , such that if � 9� > � � + 9� / % 9� / 6 9� / . 9� � /�b 9� � then% 9� � . 9� . It then follows from 4) above that � 9 is (pre) + -secured.
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We will now finally define a trace on � � ' ��� � satisfying the causal constraints of feedback.
The definition is given as a restriction on the explicit definition of the coend and that it yields
a profunctor follows from Lem. 5.7. Rootedness follows easily from Prop. 5.5. The proof of
functoriality and that the trace yields a stable port profunctor is postponed.

Definition 5.2. Let 
�� � � � � � ' // �
�	
 � � � . Define

&�' � �� � * � 
 �B
 � � �	� ' //
�	


, the trace of 

to be given by

&�' � �� � * � 
 �,
 � � + / 6 �?> �
� 	�� �
� b g 
�� + / % / 6?/ % � 
 b is + -secured

�����
� / (17)

where the action on arrows is defined as for the coend. We will often abbreviate
&�' ������ * ��
 to

&�' / ' * 0
or just

&�' /
.

Below we give two characterisations of the trace in terms of port automata.

Lemma 5.8. Let 
�� � � � � � ' // �
�	
 � � � and � �B
 � > �!/ / � / � �H/ � � `
+ � / � �6` + � � . Then

� � &�' / ' * 0 �,
 ��� �> �!/ � / / � � � � / / � � � / / � � �;/ � � � � , where / � / >�� � g / 
 � is + -secured
����� / and

� � � � / ��� * �� � � / � � 9 � � / if � � � ) * �� � � 9 , for � 9 > � `*+ and � g � � � and

� � � � / ��� * �� � � / � � 9 � � / if � ��� ) * � )� � � 9 , for 3 9 > 3 `*+ 3 g � � � E
The operational reading of Lem. 5.8 is not clear. Intuitively, any computation in the traced au-
tomaton should correspond to a computation of the original automaton, consisting of internal
communication on ports in

� + � and output and input transitions on ports not in
� + � . Using Prop. 5.5

we can give an alternative characterisation by replacing the equivalence classes of states with
their minimal representatives, which has the intuitive operational reading.

Lemma 5.9. Let 
�� � � � � � ' // �
� 
 � � � and � �,
 �?> �!/ / � / � �H/ � � `*+ � / � � `*+ � � .

��� / ��� ) * �� � � / � 9 , for � g � � � if and only if ��� / ��� ) * �� � � 9� / , for � 9 > � `*+ and � g � � � and (18)

� � / ��� ) * �� � � / � 9 , for 3 g � � � if and only if ��� / > � �/ ��� ) * �� � � 9� / , for 3 9 > 3 `1+ and 3 g � � � . (19)

Proof. The if case of both (18) and (19) is immediate. The only if case of (18): From the

axioms A2 and A3 we get that � � / ��� ' / * �� � � / � 9 implies � � / ��� ' / * �� � � / � 9 . Now, assume �
/> � / � 9 .

Then by axioms U1, U2 it follows that there exists � 9 /> � / � � / , contradicting the minimality of
� � / . So we can conclude that � 9 > � 9� / . The only if case of (19) follows in a similar way, using
axiom A4.

Proposition 5.10. Let 
�� � � � � � ' // �
�	
 � � � and � �B
 � > ��/ /
� / � �7/ � � ` + �=/ � � `
+ � � .

Then � � &�' / ' * 0 �,
 ��� �> �!/ / / � / � � / / � � � / � � � � , / / > � � � / g / 
 � is + -secured
� / where � � / is

given as in Prop. 5.5 and

� � / ��� * �� � / � 9� / if � � / ��� ' / * �� � � 9� / , for � g � � � and

� � / ��� * �� � / � 9� / if � � / /> � �/ ��� ' / * � )� � � 9� / , for 3 g � � � .
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This characterisation can be read as a demand driven feedback, since internal communication
does only occur when needed for producing output.

Using the port automata characterisation of the trace, we now prove that the trace as defined
in Def. 5.2 is functorial and yields a stable port profunctor.

Lemma 5.11. The trace given in Def. 5.2 above defines the action on objects for a functor&�' � �� � * � 
 ��� � ' ��� � � � � � � � / �	
 � � � ��� � � ' ��� � � � � / �	
 � .
Proof. Let 
$� �	� � � � ' // �

� 
 � � � and � �,
 � �> �!/ / � / � �H/ � � `
+ �=/ � ��`
+ � � . We first
show that the automaton ��/ / /
� / � � / / � � ��/ � � � � associated to

&�' / ' * 0 �,
 � as given in Prop. 5.10

satisfies axiom A5. Assume � � / <> � 9� / /�� � / ��� * �� � / � � / and � 9� / ��� ) * � )� � / � � / . Then � � / ��� ' / * �� � � � / and

� 9� / ��� ) ' / * � )� � � � / . By stability of 
 , � `1+ <> ��9 `*+ and
d	� e E e

��� ) ' / * � )� � � � / and
e � � ' / * �� � � 9� / E By

Lem. 5.7,
e

is + -secured, and as in the proof of Lem. 5.9 it follows that
e >�e

� / . We conclude

that
d	� e

� / E e � / ��� ) * � )� � / � � / and
e
� / ��� * �� � / � 9� / E

Functoriality of the trace is given as for the coend. Assume �
� 
 ��"� is a natural transforma-
tion between 
 and � in � � ' ����� � � � � � � / � 
 � � � � . Then

&�' / ' * 0 ��� � � &�' / ' * 0 �,
 � �� &�' / ' * 0 �)� �
is given by

&�' / ' * 0 ��� � � * � � b � � / > � � � * � * � * �]b � � / , for + g �	�
, 6 g �	


and
%Zg � � . To check that

this is well defined we just need to verify that if b is + -secured then � � * � * � * � b is + -secured as
well. This is a simple consequence of the definition.

As for the trace, we can characterise composition and the tensor product directly in terms of
automata.

Lemma 5.12. Let 
$� � � ' // �
� 


and � �,
 �?> ��/ /
� / � �H/ � � �=/ � � � � . Then for all � > � � + / 6 � /�b �
in / there exists a unique state

� ��� in
� � � � � such that

� ��� � 
� � � � and for all � 9 g / E if � 9 � 
� � � �
then

� ��� � 
� � � � 9 .
Proof. By induction in


 + 
 using axiom A5.

Lemma 5.13. Let 
 �]� � ��� � � 
��
and � �B
 � �T> �!/ �5/
� ��/ � � ��/ � � ��� / � � � � � for

�Tg � ! / � � such
that � �

> �
� . Then � �B
 � ��
 �

� �> ��/ �
� � / � � /�� � � / � �

� / � � �
	 � / � � � � / � � � � � , where
� / � � >

� ��� � /�� �
�
g / �

� / �

 � �

> � � � � � and the transition relation
� � ��� � is defined by

— �!� � /4� �
� ��� �� � �
� � ��� 9 � /�� 9� � if � �

��� ) �� � � � 9 � and � �
> � 9�

— �!� � /4� �
� ��� �� � �
� � ��� 9 � /�� 9� � if � �

� � � � �� � �
� ��� � �� � ������� � ��� � �� � � � 9 � and � �

� � � � �� � �

� ��� � �� � ������� � ��� � �� � �

� 9 9� ��� �� � � � 9� and � 9� > � � 9� � .

Lemma 5.14. Let 
 � � �	� � � �	
 �
and � �,
 � � > �!/ � /
� � / � � � / � � � � / � � � � � for

� g�� !]/ � � . Then
� �B
 � �Y
 �

� �> �!/ �
� / � / � � � / � �

� / � � �
	 � / � � � ` � � � / � � � ` � � � � , where the transition relation� � ��	 � is defined by

— �!� � /4� �
� ��� �� � ��	 � �!� 9 � /�� 9� � if ( � �

��� ) �� � � � 9 � and � > �#9 ` � � ) or � �

��� �� � � � 9� ,

— �!� � /4� �
� ��� �� � ��	 � �!� 9 � /�� 9� � if ( � �

��� ) �� � � � 9 � and 3 > 3:9 `�� � ) or � �
��� �� � � � 9� ,

We are now ready to state the main theorem, that the trace operator given in Def. 5.2 satisfy the
axioms of a traced monoidal category up to isomorphism. The proof can be found in App. A.
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Theorem 5.15. With the trace operator given in Def. 5.2, � � ' ��� � satisfies (up to isomorphism)
the axioms of a traced monoidal category.

Proposition 5.16. The map /�� � given in Def. 4.5 defines the action on arrows of a pseudofunctor
/�� ����� � ' ��� � � ������� , that preserves the traced monoidal structure, on objects mapping

� �
to
�

.

Proof. (Sketch) Use Lem. 5.6 formulation 4) of securedness and Prop. 5.10.

5.1. The Trace as a Colimit

The secured trace can be defined as the composition of two functors on hom-categories; first a
functor restricting to secured states and then a colimit, hiding internal communication. We will
benefit from this formulation of the secured trace in proving that bisimulation is a congruence
with respect to trace.

We begin with the standard construction of the subdivision category (Mac Lane, 1971) for
a category

� � . Note the definition here is the dual to that in (Mac Lane, 1971) since we are
concerned with coends and not ends. For a category

� � , the subdivision category
� � � has as

objects all arrows ��� + � 6 of
� � (i.e. � > � + / 6 � .) For each such object � , it has two arrows

� � �F�X� ! � and � � �F�X� ! � , i.e.
� + / + � � + / 6 �

���
oo

� �
//
� 6�/ 6 � E These are the only non-

identity arrows. Now we define a functor � ��� � ' ��� � � �	� � � � / �	
 � � � ��� � ' ��� � �	� � � � � / �	
 �
as in the standard construction, except we restrict to secured states. Let 
 be a profuncor in
� � ' ��� � � �	� � � � / �	
 � � � � . Define a functor � �B
 � � �	� � � � � � �	
 ��� � �f� � as follows. For
� % / � + / 6 � / . � an object in

� � � � � � � � 
 ���
define

� �,
 � � % / � + / 6 �=/ . �?>�� b g 
 � � + / % � /�� 6�/ . � � 
 b is pre + -secured
� /

implicitly using the equivalence between � ' ��� � � � ' � / � 
 ' � � and � ' ��� � � � � � � / � 
 � � � � .
For M
� % � % 9 and

� � . 9 � .
arrows of respectively

� �
and

�	

, and b g � �,
 � � % / � + / 6
�=/ . �

define

� �B
 � �)Mi/ � + / 6 � � / � � b > 
 � �)Mi/&! � � / � � 6D/ + � / � � � b and

� �B
 � �)Mi/ � + / 6 � � / � � b > 
 � �)Mi/ � + / 6 � � /�� ! � / � � � b@E
For �
�[
 ��"� a natural transformation between profunctors 
4/5� in � � ' ��� � � � � � � � / � 
 � � � �
define a natural transformation � ��� � ��� �,
 � ���� �,� � by

� ��� � � � * � � * � � * � � b > � � � * � * � * � � b@/
for � % / � + / 6 � / . � an object in

� � � � � � � �	
 ���
.

Well definedness follows from Lem. 5.7 and the fact that if b g 
 � � % / + � /�� 6?/ . � � is pre + -
secured then 
 � � ! � / � + / 6 � � /�� ! � /&! � �
� b is pre + -secured too, (in fact + -secured).

Proposition 5.17. Let 
$� �	� � � � ' // �
�	
 � � � . Then

&�' / ' * 0 �B
 � �> Colim ����� � �B
 � / (20)

where
� � � is the subdivision category of

� � as defined above.

Proof. As for the standard construction.
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6. Some Consequences

We will briefly go through some of the consequences of the categorical semantics of dataflow
given in the two previous sections.

6.1. Generalised Scott Domains

We have chosen to introduce the category � � ' ��� � as a categorical generalisation of relations.
Alternatively, � � ' ����� could have been introduced as a generalisation of the category of Scott-
continuous functions between algebraic domains �� , to the category of connected colimit pre-
serving functors between presheaf categories

�� ' (where �� is the well-known ideal completion
of the basis

�
). In this sense, the stable port profunctors is a direct generalisation of the stable

continuous functions of Berry (Berry, 1979; Gunter, 1992). As described in (Cattani, 1999; Cat-
tani and Winskel, 1999), the free connected-colimit completion of a category � with initial object�

can be represented by the strict extension of the Yoneda embedding, ���� � �	� � �

� ' , mapping

the initial object
�

to the empty presheaf. The Kan extension of a functor 
$� � � � �
�� ' 


along

�
���� � �	� � �
�� ' �

gives a connected colimit preserving functor 
$�
�� ' � � �

�� ' 

, which extends

to an equivalence between the category � � ' ��� � and the category of connected-colimit preserv-

ing functors between presheaf categories of the form
�� ' �

for
� g��

. This generalises the ideal
completion in domain-theory. Connected-colimit preserving functors satisfy a very strong prop-
erty (Cattani and Winskel, 2000): they preserve the canonical notion of open maps in presheaf
categories - and thus the canonical notion of bisimulation equivalence. We will return to this
issue below.

6.2. A Bisimulation Congruence

The presentation of models for concurrency as categories allows us to apply a general notion
of bisimulation from spans of open maps proposed in (Joyal, Nielsen and Winskel, 1996a) and
arising from work of Joyal and Moerdijk (Joyal and Moerdijk, 1994). The general idea is to
identify a functor �Z� �7�
� from a path category � (which in (Joyal, Nielsen and Winskel,
1996a) was assumed to be the inclusion of a subcategory) to the model � , with objects identify-
ing runs (or histories) and morphisms compatible extensions of these. A morphism is said to be
� -open if it satisfies the path-lifting property, i.e. it reflects extensions of histories. For a presheaf
model �� , the canonical choice of path category is the category ��� , which is obtained from � by
adding a new initial object

�
and embeds in � � by the strict extension of the Yoneda embedding

� ���� ��� � � � � , mapping
�

to the empty presheaf. The definition of � ���� -open maps in presheaf
categories can be given conveniently as follows.

Definition 6.1. Let ��� 
9� � be a morphism in �� . Then � is ������ -open if � is surjective and
for any arrow �@� � ��� of � the square below is a quasi-pullback.


���� � ���
//

���
��


�� � �
���

��

� ��� � 	��
// � � � �
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Two objects are said to be � -open map bisimilar if they are connected by a span of � -open
maps. We will usually omit the reference to � ���� when refering to the canonical open maps and
open map bisimulation for presheaf categories. Note that the canonical open maps in the present
setting are exactly the surjective open maps of (Joyal and Moerdijk, 1994).

Now, since a port profunctor 
$� � � ' // �
�	


can be viewed as a presheaf in ��	� ��� � �	

, we get

a canonical notion of bisimulation from open maps for port profunctors as defined above. As for
the presheaves as transition systems in (Winskel and Nielsen, 1996), the open map bisimulation
can be characterised as a back-&-forth bisimulation between the associated port automata.

Proposition 6.1. Let 
 � � �	� ' // �
� 


and � �B
 � �
> �!/ � / � � / � � � / � � �F/ � � � � for
�+g � ! / � � . 
 �

and 
 � are open map bisimilar iff � �,
 �
�
, � �B
 �

�
are back-&-forth bisimilar: There exists a

relation
�
� / �

� / � such that � � � / � �
�0g �

and

— �!� /�� 9 �+g � � � �� � � � � d � 9 E�� 9 �� � � � 9 � � �a/ � 9 �0g � ,

— �!� /�� 9 �+g � � � �� � � � � d �;9=E � 9 �� � � �;9 � � �a/ �;9 �0g � ,

— �!� /�� 9 �+g � � �;9 �� � � � 9 � d �aE��
�� � � � � � �a/ �;9 �+g � ,

— �!� /�� 9 �+g � � � 9 �� � � �;9 � d �aE � �� � � � � � �a/ �;9 �+g � .

As noted in the previous section, the hom-category � � ' ��� � � G / � � � is equivalent to the category
of synchronisation trees with label set

�
, indeed the associated port automata are trees labelled

with
� � � � � � � � � . The bisimulation in this case reduces to the standard strong bisimulation.

It is important to check that our notion of bisimulation on � � ' ��� � is a congruence with respect
to the operations tensor and trace. Here we can exploit some general properties of open maps and
so bisimulation on presheaves: the product of (surjective) open maps in a presheaf category is
(surjective) open (Joyal and Moerdijk, 1994); any colimit-preserving functor between presheaf
categories preserves (surjective) open maps (Cattani and Winskel, 1997). The proof that trace on
� � ' ����� preserves bisimulation uses the latter property, exploiting the fact that trace can be ex-
pressed as a colimit, first showing that � as a functor between presheaf categories preserves open
maps. The proof of the corresponding result for tensor rests on a construction of tensor from more
basic functors, which are all colimit-preserving and so preserve (surjective) open maps. Using
the simple fact that bisimulation is a congruence with respect to sequential composition with a
symmetry together with the generalised yanking property we can conclude that bisimulation is a
congruence with respect to all of the operations on networks as stated in the theorem below. The
details of the proof can be found in App. 5.1.

Theorem 6.2. Open map bisimulation in � � ' ��� � is a congruence with respect to sequential com-
position, tensor and trace.

The congruence property allows us to work with the quotiont category with bisimulation
classes of profunctors as arrows. This is exploted in the following section. Also, by placing
dataflow within profunctors and the broader class of presheaf models, constructions of dataflow
could be mixed with constructions from other paradigms of concurrent computation such as those
traditionally from CCS-like process calculi. As an example, a pairwise synchronous join of out-
put ports between two port profunctors can be represented by the product of presheaves. In this
richer world of constructions bisimulation would appear to be the more suitable equivalence.
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�� '
���


 '

��

�� ' 
 '

�� ���is implemented by

Fig. 6. A process with bi-directional I/O implemented by an uni-directional process. Dotted lines
indicate channels that play the opposite role in the higher-order model

� �� ' � '


��


 '
� � ���

Fig. 7. Implementation of composition in the higher-order model using symmetries and trace

6.3. Linear Higher-order Dataflow via Geometry of Interaction

The Geometry of Interaction program was invented by Girard in his analysis of the fine structure
of cut elimination (Girard, 1989a; Girard, 1989b). His basic insight was that higher order struc-
ture could be understood in terms of trace but this understanding was hidden in the mathematical
setting - Hilbert spaces and traces of operators - that he used. Several people had the idea that
Girard’s Geometry of Interaction construction could be understood in terms of a trace operator
on a monoidal category. Two well known accounts of this appear in (Joyal, Street and Verity,
1996b) and (Abramsky, 1996).

We will just give the main definition, for more details see (Joyal, Street and Verity, 1996b;
Abramsky, 1996). Essentially, one obtains a (linear) higher-order model by working with pro-
cesses with bi-directional “input” and “output”. These processes are implemented by uni-directional
processes of the underlying category in the obvious way, regarding negative, i.e. reversed, input
channels as output channels and negative output as input.

Definition 6.2. Given a traced monoidal category
� > � � /a� / G /5��/ &�' � we define a new cate-

gory � � � � as follows. The objects of � � � � are pairs of objects � � ' / ��� � of
�

. A morphism
�7� � � ' / ��� � � � 
 ' / 
�� � of � � � � is a

�
-morphism �7� � ' � 
��X� 
 ' � ��� , as illus-

trated in Fig. 6. Composition is implemented using composition, trace and symmetries of
�

to
connect channels with same polarity, ie. for � � � 
 ' / 
�� � � � � ' / � � � , ����� is implemented, as
illustrated in Fig. 7, by

&�' � ���� :
	 � * 	 � : � � � � G � � �3� � ���)�\� G 	 � � � � G � � �K� 9 � ���B� � G � � � ��� G 	 � �K� 9 9 � � /
for the appropriate symmetries � , � 9 and �(9 9 .
Note that

�
embeds into � � � � as arrows with no negative flow, mapping objects � to � � / G � .

A symmetric monoidal structure � is defined on objects by � � ' / ��� � � � 
 ' / 
�� � > � � ' �

 ' / 
��Y� ��� � . The unit of � is the pair � G / G � . An obvious duality is defined on objects by
� � ' / ��� � ��> � ����/ � ' � , and on arrows by swapping the roles of channels as illustrated in
Fig. 8. This defines a contravariant functor � � � � ��� � � � �
� � � � . Internal hom sets are given
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�� '
���


 '

��

�
��

 '

���
� '

Fig. 8. The duality is obtained by swapping the roles of the channels

�� '
���


 '

��

�
� ' ��
��


 ' �����

Fig. 9. Involution

by � � ' / ��� � ��� � 
 ' / 
�� � > � 
 ' / 
�� � � � � ' / ��� � � , giving an involution as illustrated by
Fig. 9.

We can now directly apply the above construction to the category ������� , obtaining a category
� �
������� � of (linear) higher order Kahn processes. Since � � ' ��� � is a bicategory, only satisfying
the axioms of a TMC up to isomorphism, � � � � ' ��� � � will not be a category, e.g. composition is
only associative up to isomorphism. There may be several ways around this problem. It is likely
to be the case, that by making precise what it means to be a traced monoidal bicategory one can
show that � � � � ' ��� � � is a compact closed bicategory. This should be related to the work in (Katis
et al., 1997). Another possibility is to consider the quotient of � � ' ��� � with respect to open map
bisimulation, analogous to the definition of the category � � � ����� in (Abramsky et al., 1994; Gay,
1995). That is, instead of � � ' ��� � use the category with objects being path categories as usual, but
taking arrows to be equivalence classes with respect to open map bisimulation. By Thm. 6.2 this
is indeed well defined and it is easy to check that we get a traced (strict) symmetric monoidal
category. Since the pseudofunctor /�� � from � � ' ��� � to ������� preserves tensor and trace, it extends
to a (possibly pseudo)functor from � � � � ' ��� � � to � � � ����� � using /�� � on the base category.

The higher order structure of � � � ����� � and � � � � ' ����� � has a very intuitive interpretation in
� ����� and � � ' ��� � as plugging networks into contexts. As an example, consider the fork process� � � � ' // �

� � � � �
which was used in definining the context

����� � of Sec. 1. It implements
the higher order process

� � � �
� / ��� � � � ��� / G � , that is, a process
� � � �
� ��� ��� � � ���

writing
���

as short for � ��� / G � . The processes � � � ��� ' // �
���

implements higher order processes
� � � � ��� / G � � � ��� / G � which by involution can be regarded as processes � � � G � � ��� ��� ��� � ,
again writing

���
as short for � �
� / G � . Now the processes

��� � � � are simply the processes � � � �
obtained by composition as illustrated in Fig. 10.

� � �

Fig. 10. The fork process � regarded as a higher-order process, applied to the automata � 	
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7. Concluding Remarks

The upshot of the work in this paper is a treatment of non-deterministic dataflow within the
framework of categorical models for concurrency that unifies different phenomena - asynchrony
and synchrony in our case - and different viewpoints of dataflow networks: dataflow composition
as relational composition, dataflow processes as categorical constructs and the concrete views of
dataflow networks as port automata and as sequences of events encoding causality. In particu-
lar, we obtain a bisimulation congruence from the bisimulation from open maps approach, and
dataflow feedback is shown as an instance of a trace operation in a category. This allows one to
adapt the ideas from the geometry of interaction program to give a smooth treatment of higher-
order processes. The development was carried out for dataflow networks between simple stream
domains for ease of presentation. However, the results only depend on the domains having a
countable basis satisfying the descending chain condition.

It remains to explore systematically the full family of models for dataflow, relating automata,
event structure and traces-based models to the relational model, following the pattern set in (Winskel
and Nielsen, 1995). This analysis would include the models of scenarios studied in (Brock, 1983;
Brock and Ackerman, 1981) and the generalized models in (Abramsky, 1990).

The seemingly close relationship between the model of stable port profunctors and the much
more concrete model in (Staples and Nguyen, 1985) should also be investigated.

It is an interesting question to find a more abstract characterisation of the trace in the pro-
functor model; the present one relies much on the concrete representation of profunctors as port-
automata. A step in this direction is taken in (Hildebrandt, 2000), where it is shown that the trace
satisfies a uniformity property suggested in the thesis of Hasegawa (Hasegawa, 1997a) and also
studied in (Selinger, 1999; Hasegawa, 2003) as a generalization of uniformity for fixed-point
operators. Another possibility is to explore the relationship to stable domains and generalise the
approach in (Abramsky, 1990).

The simplification to disregard fairness helped identifying the category of profunctors as a
relational model of indeterminate dataflow. We hope to incorporate fairness into the profunctor
model along the lines in (Hildebrandt, 1999a; Hildebrandt, 1999b) using separated presheaves
over path categories including completed, i.e. possibly infinite computations.

Appendix A. Traced Monoidal Properties

We show here that the trace as given by Def. 5.2 satisfies all the properties of a traced monoidal
category up to isomorphism.

We first introduce a more general notion of trace, in which two arbitrary ports can be con-
nected. For 
�� � � ' // �

�	

, we specify which ports are connected by a partial isomorphism

��� � � �
�

� � � � . Writing
�
� �)� � for the domain of � and � � �=� � for the codomain of � , the intuition

is that if � g �
� �=� � the input port � is connected to output port � � � � by a feedback wire.

For the definition of the generalised trace we generalise the communication relation as fol-
lows. Let 
�� � � ' // �

� 

and � �B
 � > ��/ /
� / � �H/ � � �=/ � � � � , and let ��� � � �

�
� � � � be a partial

isomorphism. We then let � � * �> � � � 9 , communication via � , denote that � � � ) * �� �
� � * �� � � 9 for some

� g �
� �=� � where � � � �T> �>9 , i.e. a communication via � consists of a transition that outputs a

value on a port in the codomain of � followed by a transition that inputs that value on the, via � ,
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corresponding input port. Let � � denote the least equivalence relation including
�> � . Now, we

say that a state � g / is � -secured if

�
� �� � > � �� � �� � ��/

for + g � � � ��� �
� �)� � � � � � and 6 g � � � ����� � �=� � � � � � .

As for the securedness defined in Sec. 4.2, � -securedness has some useful equivalent formu-
lations. In particular, if

� > � � ��� �
� �)� � and � > � � ����� � �=� � , then a state � g / is � -secured if

and only if � �
� �� � � � � �� � � � � , where b

� �� � b 9 denote that b
��� * �� � b 9 for some � g �

and b � �� �"b 9
denote that b ��� * �� � b 9 for some 3 g � .

For a set of indexes
	 � � � � and

� g 	
, we define

��� 	 > 
C� � 9 g 	 
 � 9 � � � 

, i.e.

��� 	
is

the number of elements below
�

in
	

.

Definition A.1. Let 
�� �	� � � � ' // �
�	
 � � � and let ��� � � ` + � �

� � � ` + � be a partial
isomorphism such that


 �
� �=� �>
 > + . Define

&�' � ��� * ��
 �,
 � � � � ' //
� 


, the generalised trace of 

to be given by

&�' � � � * � 
 �B
 � � + / 6 �?> �
� 	�� �
� b g 
�� �@/ � � 
 b is � -secured and

� � � � � � ��/ � / + / 6?/ % � ������� /
(21)

where
� � � � � is the predicate on

� � ' � � � 
 ' � � � � � � 
 � � � defined by
� � � � � � ��/ ��/ + / 6D/ % �

if and only if

� � ���?>
� % � � � ��� � � � �=� � � if

�Dg �
� �=� � /+ � � � � � `1+ �	� �

� �=� �
� if
� <g �

� �=� � E
and

� � ���D>
� % � � � � � �)� � � if

�?g � � �)� � /
6 � � � � �V`*+ ����� � �=� �
� if

� <g � � �)� � /
i.e. the predicate

� � � � � garantees that the ports are permutated correctly. The action on arrows
is defined as for the standard trace. We will usually abbreviate

&�' � ��� * ��
 to
&�' �' * 0 or just

&�' �
.

The following lemma states a generalised Yanking property, the straightforward proof is omit-
ted.

Lemma A.1 (Generalized Yanking). Let 
$� � � ' // �
� � and �Z� � � ' // �

�	

. Then


 �1� �> &�' � �,
6�K� � �> &�' / ' * 0 �B
W� � �5� / * 0 � /
for ��� � � `*+ � �� � �V`1+ � the partial isomorphism defined by � � ���?>�� `�� if

�Dg � + � .
The lemma below is a simple consequence of the definition of generalised securedness.

Lemma A.2. Let 
$� � � ' // �
� 


and ��/���� � � �
�

� � � � partial isomorphisms such that
�
� �B� � �

�
� �=� � and codomain � � �C� � � � � �=� � . Then a state � of � �B
 � is � -secured only if it is � -secured.

The lemma below is the crucial step in establishing the generalised Bekic property.
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Lemma A.3. Let 
�� � � ' // �
�	


and let ��/���� � � �
�

� � � � partial isomorphisms such that
�
� �)� ���

�
� �B� ��>��

and � � �=� ��� � � �C� �?>��
. Then

� ��� � � � � � * �� � ��� � � * �� � ��� � 9 if and only if � ��� � � � � � * �� �
� � * �� � ��� � 9

Proof. The if direction is immediate. For the only if direction, note that by definition

� ��� � � � � � * �� � ��� � � * �� � ��� � 9
if and only if

� ��� � � � � � * �� � � > � � �

� �
> � � �

$ � � * �� � ��� � 9 / (22)

for some
�hg��

, where
> � � �

� is the inverse of
> � � , i.e. � > � � �

� � 9 iff � 9 > � � � . We proceed
by induction in

�
, showing

G � � � � ��� � � � � � * �� � � > � � �

� �
> � � �

$ � � * �� � ��� � 9 implies � ��� � � � � � * �� �
� � * �� � ��� � 9 .

For
� > �

the desired result follows immediately. Now assume
��> � 9�` ! and

G � � 9 � holds.

Then there exists a state � 9 9 such that � 9 9 � > � � �

� � > � � �
$ ) � � * �� � � � � 9 and ( � � � � � � � � * �� � > � � �

� � 9 9
or � ��� � � � � � * �� � > � �
� 9 9 ). If � ��� � � � � � * �� � > � � �

� � 9 9 then it follows from Ax. U1-U2 and � � �B� ���

� � �)� �0>	�
that � ��� > � � �

� � 9 9 9 �
� � � � * �� � � 9 9 , which gives that � ���=� 9 9 9 � � � � � * �� � � 9 9 � > � � �

� �
> � �

� $ ) � � * �� � � � � 9 . By
G � � 9 � we then get � � � � � � � � * �� �

� � * �� � � � � 9 , which was the desired result. If

� ��� � � � � � * �� � > � � � 9 9 then it follows from Ax. A2’, A3-A4 and � � �C� �
� � � �)� �D>��
that � ��� > � �

� 9 9 9 � � � � � * �� � � 9 9 . As before it then follows by induction that � � � � � � � � * �� �
� � * �� � � � � 9 .

The scene is now set to prove the generalized Bekic property.

Proposition A.4 (Generalized Bekic). Let 
�� � � ' // �
� 


, and let ��/���� � � �
�

� � � � partial
isomorphisms such that

�
� �)� ��� �

� �B� ��>��
and � � �)� ��� � � �C� �D>��

. Then there is an isomorphism
&�' ��
 � �,
 � �> &�' ��� � � &�' � �,
 ��� /

where � �?��� � � �
�

� � � � is the obvious union of the two partial isomorphisms, and � � �+� � � � + � ��

� � � + � for + > 
 �
� �B� � 
 is the partial isomorphism defined by � � � � ���T> � � � � , if there exists� g �

� �)� � such that
� � � � � � �

� �C� �?>�� .
Proof. Let � �B
 �?> �!/ /
� / � �7/ � � � / � � � � and � � &�' � �,
 ���D> �!/ 9=/ � 9)/ � � 9 / � � � + � / � � � + � � . It

is sufficient to show that

b g / is � � � -secured � � b � ��� g / 9 and
� b � ��� is � � � -secured E (23)

Let b > � ��� � b 9 denote that b ��� � � * �� � ��� � � * �� � ���Nb 9 , for some � g �
� �=� � . The relation

> � ��� � can
be read as “communication via � upto back&forth communication via � ”. Let

��> � � � � �
� �)� �D� �

and � > � � � ��� � �=� � � � , and let b
� �� � � � b 9 denote that b ��� ��� * �� � ���Tb 9 for some � g �

and

b � �� � � � b 9 denote that b � � ��� * �� � � � b 9 for some 3 g � . Then the right hand side of (23) is
equivalent to

b is � -secured and � �
� �� � � � � � � � � � � �� � � � � � b (24)
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where � � � � denote the least equivalence relation including
> � ��� � and ��� . For � ��
 � the least

equivalence relation including
> � ��
 � we now show that � ��
 � > � � � � . From the fact that

> � ��
 � > � > � � � > � � �� � > � ��� � � ��� � /
we get that � ��
 � � � � � � . From Lem. A.3 we get that

> � ��� � > ����� > � � ��� � . From the fact that
��� � > � � � � � � � � � � ��
 � it then follows that � � � � � � ��
 � and so � ��
 � > � � � � .
Now, since ��� � � ��
 � we get that (24) is equivalent to

b is � -secured and � �
� �� � � � ��
 � � � �� � � � b (25)

which by Lem. A.2 is equivalent to that b is � � � -secured.

We now show a generalised Superposing property.

Lemma A.5 (Generalised Superposing). Let 
 �]� � ��� ' // �
� 
��

for
�+g � !]/ � � and let ��� � � � `�

� �
�

� � � � ` � � � a partial isomorphism such that
�
� �)� � � � �

� � and � � �=� ��� � � � � . Then there
are isomorphisms &�' � �,
 � �Z
 �

� �> 
W� &�' ��� � � �,
 �
�

(26)

and &�' � ) �,
 � �Z
 �
� �> &�' ��� � � �B
 �

� � 
 / (27)

where � � ' � � � � � �
�

� � � � � is the restriction of � to the domain
� �

� � and � 9 � � ��> � � � � � �
� ` � � ,

if
� � �

�
g �

� �)� � .
Proof. We will just prove the existence of the first isomorphism, the proof for the second is

analogous. Let � �B
 � �?> �!/ � /
� � / � �H/ � � � � / � � � � � . Assume � �B
 � �T
 �
� �> ��/ �

� / � /�� � � /
� �
� / � �

/ � � � ` � � � / � � � ` � � � � as given by Lem. 5.14.
It is sufficient to show that for all �,b � /�b �

�+g / �
� / �

�
� �� � > � �� � �� � �,b � /�b �

� /
for + g � �

� ` � � ��� �
� �)� � and 6 9 g � � � ` � � ����� � �=� � if and only if

�
� � )� � �

> � �� � � � �
� )� � � b � and �

� � ) )� � �
� � ) )� � � b � /

for + 9 g � �
� ��� �

� �)� � ' � � and 6 9 g � � � ����� � �=� � ' � � .
The notation for the generalised trace can be used for coends as well. Let 
�� � � ' // �

� 

and

��� � � �
�

� � � � be a partial isomorphism defined on a single element
�Dg � � � . Then define

� � �B
 �?>�� �


�� � � / E E E / � � � � /�b@/ � � ' � / E E E / � ' � �
� � � � / E E E / � � � � � � � /5bi/ � � � � � ' � / E E E / � 0 � �

�

The definition is generalised in the obvious way to general partial isomorphisms defined on more
than one element. Using the following lemma together with the Generalised Bekic, Yanking and
Superposing properties, the naturality axioms can then be inferred from isomorphisms known to
exist for coends (Hyland, 1995).

Lemma A.6. Let 
�� �	� ' // �
� 


, �Z� � � ' // �
���

and let � � � + ` � � �
� � � ` � � be a partial
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isomorphism such that either
�
� �)� � � � + � and � � �)� � � � � `�� �	� � � � or

�
� �=� ��� � � `*+ �	� � + � and

� � �)� �	� � � � . Then there is an isomorphism
&�' � �B
W�K� � �> � � �,
W� � � E

Proof. (Sketch) Let � �,
 � > �!/ /
� / � �7/ � � `
+ � / � �W` � � � . Using Lem. 5.14 one shows that
for all � /�� 9 g /

� � � * �� � � � � � � * �� � � 9 for some � g �
� �)� � implies that � �

� � � � * �� �
� � * �� � � 9 E

It follows that the generalized securedness condition in the definition of the trace will hold. for
all elements of 
W�K�

Appendix B. Congruence Properties of Bisimulation

We here prove that trace and tensor preserves open maps as promised in Sec. 6.2. This implies
that open map bisimulation is a congruence with respect to feedback and parallel composition.

The crucial property we will use is that any colimit-preserving functor between presheaf cate-
gories preserves (surjective) open maps (Cattani and Winskel, 1997).

We first show that the trace operator preserves open maps. Recall that the notion of open
maps apply canonically to any presheaf category, why we also get a notion of open map between
presheaves over � �	� � � � � � ��� � � 


. The desired result then follows from Prop. 5.17 if we can
show that the functor � defined in App. 5.1 preserves (surjective) open maps.

Lemma B.1. Let 
4/5� � � � � � � ' // �
� 
 � � � . If ���#
 � � is an (surjective) open natural

transformation then � �)� � � � �B
 � ��� �,� � is (surjective) open too.

Proof. Let ���O
���� be an (surjective) open natural transformation. This means that (f is
surjective and) for any arrow �@� � ��� of � � � � � � � � ��� � �	


the square


���� � ���
//

���
��


�� � �
���

��

� ��� � 	��
// � � � �

(28)

is a quasi-pullback. We must then show that ( � �=� � is surjective and) for any arrow �@� � � � of
� �	� � � � � � ��� � � 


the square

� �B
 � ��� ��� � � � � //
� � � � �

��

� �B
 � � � �

� � � � �
��

� �,� � ��� ��� � 	 � � // � �,� � � � �
(29)

is a quasi-pullback. Subjectiveness is easily verified. For the quasi-pullback property it follows
by induction that it is enough to consider a class of arrows from which all arrows can be obtained
by finitely many compositions. Consequently, it suffices to consider the cases

1. � is an iso, i.e. � > � ! � /&! � � * � � /&! � � � � % / � + / 6 � / . � � � % / � + / 6 � / . � ,



A Relational Model of Non-Deterministic Dataflow 33

2. � > � � % / % 9 �=/ ! � � * � � / ! � � � � % / � + / 6 �=/ . � � � % 9 / � + / 6 � / . � , for
% 9 � % in

�	�
, or

3. � > � ! � /&! � � * � � / � . / . 9 � � � � % / � + / 6 � / . � � � % / � + / 6
�=/ . 9 � , for
. � . 9 in � 


, or

4. � > � ! � /S� � /&! � � � � % / � 6?/ 6
� / . � � � % / � + / 6 �=/ . � , for � � the opposite of
� + / 6 � � � � + / 6 �@� � 6?/ 6 �

in
� � � or

5. � > � ! � /S� � / ! � � � � % / � + / + � / . � � � % / � + / 6 � / . � , for � � the opposite of
� + / 6 � � � � + / 6
�\�� + / + � in

� � � .
Case 1 is trivial. Intuitively, case 2 and case 3 express respectively that backtracking of input on
ports in

�	�
and extension of output on ports in

��

in � �)� � can be matched in � �B
 � . Similarly,

case 4 and case 5 express respectively that backtracking of input(communication) on ports in
� �

and extension of output(communication) on ports in
� � in � �,� � can be matched in � �,
 � .

For the cases 2-5, we use that the diagram 28 is a quasi-pullback and use axioms U1,U2
repeatedly. We will only go through case 2, the other cases are treated in a similar fashion.

We want to show that

� �B
 � � % 9 / � + / 6 �=/ . � � � � � � � � ) * � � * ��� � � ��� * � � �
//

� � � ��� 	 ) � � � � ���
� ���
��

� �B
 � � % / � + / 6 � / . �
� � � ��� 	 � � � � ���
� ���

��

� �,� � � % 9 / � + / 6 � / . � � � 	 � � � � ) * � � * �
� � � �
� * � � �
// � �,� � � % / � + / 6 � / . �

(30)

is a quasi-pullback. Assume that b g � �B
 � � % / � + / 6 � / . � , c g � �,� � � % / � + / 6 � / . � and c 9 g
� �,� � � % 9 / � + / 6 � / . � , such that � �)� � � � ) * � � * � � * � � b > c and � �,� � � � % 9 / % � /&! � � * � � /&! � � c�9 > c . We must

then show that there exists b 9 g � �,
 � � % 9 / � + / 6 � / . � such that

� �B
 � � � % 9 / % � /&! � � * � � / ! � � b 9 > b (31)

and

� �)� � � � * � � * � � * � � b 9 > c 9 E (32)

Now, by using the definition of � the assumption gives us that

b g 
 � � % / + � /�� 6D/ . � � , c g � � � % / + � / � 6�/ . � � and c 9 g � � � % 9 / + � / � 6?/ . � � /
such that � � � ) * � * � * � � b > c and � � � � % 9 / % � /&! � � /�� ! � / ! � � � c�9 > c . Furthermore we have that
� > 
 � � ! � /&! � � / � � 6D/ + � /&! � � � b is + -secured. By Eq. 28 being a quasi-pullback, there exists
an b 9 g 
 � � % 9 / + � / � 6�/ . �
� such that 
 � � � % 9 / % � /&! � � / � ! � / ! � � � b 9 > b and � � � * � * � * � � b 9 > c�9)E
If we can show that b 9 g � �,
 � � % 9 / � + / 6 � / . � then Eq. 32 and Eq. 31 follows by definition
and the proof is completed. We only need to show that � 9 > 
 � � ! � ) /&! � � / � � 6D/ + � /&! � �
� b 9 is+ -secured. Now, note that � � � �� � � � �� � ����� � � �� � b for 6 > + � � � � E E E � ' , and b 9 � � �� �

� � �� � ����� � � �� � b
for
% > % � � � � E E E � ' . By repeated use of Ax. U2 we get �

� ���� � � � �� � ����� � � �� � b 9 such that

�
� � �� �

� � �� � ����� � � �� � � . Since � is p-secured it finally follows by repeated use Axioms U1,U2

and A4 that � is p-secured. Finally, since � 9 � � �� � � � �� � � � � �� � b 9 it follows by repeated use of
Ax. U1 that � 9 > � .

Proposition B.2. Let 
4/5� � �	� � � � ' // �
� 
 � � � . If � �O
"�%� is an open natural transfor-

mation then
&�' / ' * 0 �=� � � &�' / ' * 0 �B
 � � &�' / ' * 0 �)� � is open too.
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Proof. Note that Colim � � � is obviously a colimit preserving functor between presheaf cate-
gories, i.e. it preserves (surjective) open maps. The desired result then follows from Prop. 5.17
and Lem. B.1.

The proof that tensor preserves (surjective) open maps is simpler than the one for trace, we
simply show that tensor can be defined from colimit preserving functors.

Proposition B.3. Let 
4/5
 9 � � � � ' // �
� 
 � and �D/1�=9 � � ��� ' // �

� 
��
. If ���[
 � 
 9 and ��� � �

� 9 are open natural transformations then �\�Z��� 
6� � �"
 9 � � 9 is open too.

Proof. The tensor of 
�� � � � ' // �
�	
 � and �Z� �	� � ' // �

�	
 �
can be expressed as a product of

presheaves over
� � � ��� � � 
 � � � ��� ��� � � 
��

by 
W�K� > � � �� 
 � � � � �� � � , where e.g.

� �� � � � � � � �	
 � ��� /��[� � ��� � �	� � � � 
 � ��� � �	� � � �	
 � ��� /��f� � �
is obtained by composition with the projection

� � � �	� � � �	
 � ��� � �	� � � �	
 � ��� � � � � � �	
 � ��� /
so � �� �,
 � � + � / 6 �

� � + � / 6 �
�?> 
�� + � / 6 �

�
. For general reasons � �� has a right adjoint (constructed

as a right Kan extension - see (Mac Lane, 1971; Cattani and Winskel, 1997)). Thus � �� and,
similarly, �

�
� are left adjoints and so preserve (surjective) open maps. Combined with the similar

fact about product of presheaves we deduce that � preserves (surjective) open maps.
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